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Abstract

Background: For autonomous robot-delivered surgeries to ever become a feasible

option, we recommend the combination of human-centered artificial intelligence

(AI) and transparent machine learning (ML), with integrated Gross anatomy models.

This can be supplemented with medical imaging data of cadavers for performance

evaluation.

Methods: We reviewed technological advances and state-of-the-art documented

developments. We undertook a literature search on surgical robotics and skills, trac-

ing agent studies, relevant frameworks, and standards for AI. This embraced transpar-

ency aspects of AI.

Conclusion: We recommend “a procedure/skill template” for teaching AI that can be

used by a surgeon. Similar existing methodologies show that when such a metric-

based approach is used for training surgeons, cardiologists, and anesthetists, it results

in a >40% error reduction in objectively assessed intraoperative procedures. The inte-

gration of Explainable AI and ML, and novel tissue characterization sensorics to tele-
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operated robotic-assisted procedures with medical imaged cadavers, provides robotic

guidance and refines tissue classifications at a molecular level.

K E YWORD S

surgical skills, dexterity, autonomous robotic surgery, supervised autonomy, explainable artificial

intelligence xai, surgical navigation

1 | INTRODUCTION

Our thesis statement is 3-fold. Firstly, morphological and molecular

medical images of cadavers could potentially be used to evaluate skills

training in autonomous robotic surgery. Secondly, artificial intelligence

(AI) can enhance robotic navigation, tissue diagnosis, treatment, and

clinical management during surgery. Thirdly, combining surgeon-in-

the-loop and computer intervention into the decision-making process

complements their respective strengths. However, we take into con-

sideration that the detailed differences between a living person and a

cadaver are not to be underestimated. Moreover, a good and safe sur-

gery is very much about the detail of performance.

1.1 | Specific aim and methodology of this paper

The specific aim of this paper is to provide an initial step toward an

operational framework and training standard requirements for AI-

empowered robotic surgery. Only through the development of stan-

dards that ensure ethics and safety will autonomous robotic surgery

actually make it mainstream.

This review was based on a comprehensive search of relevant

published scientific literature found on the PubMed and DBLP data-

bases. In the case of Pubmed, we used MeSH tools to search the

terms: (autonomous robotic surgery) OR (surgical robot) OR (super-

vised autonomy) OR (training model) OR (surgical navigation) OR (dex-

terity). We manually searched for studies in the list of references in

the review articles, particularly studies that used tracing agents/con-

trasts/fiducials. We additionally searched PubMed and DBLP data-

bases to include studies related to augmented reality visualization and

transparency. To support our rationale for transparency, we included

studies that investigated explainable AI (XAI), machine learning

(ML) black box solutions, and algorithmic transparency/opacity. After

selecting the publications, we used the information to draw discus-

sions under two main sections entitled: “Challenges and knowledge

gaps”; and “Hypotheses and recommendations.”

1.2 | Gross anatomy

In academia, gross anatomy training courses are an untapped, highly

fertile, source of knowledge, and direction for AI and autonomous

robotic skills training. We are putting the spotlight on this untapped

source because it can be a starting point to open new avenues to

develop and advance autonomous robotic performance with explain-

able outcomes. It is indisputable that gross anatomy training plays a

major role in enhancing medical research and education. It is empiri-

cally proven that simulations, if designed and deployed adequately,

can significantly enhance learning in medical education.1-5 Today,

cadavers are still used to verify surgical techniques prior to surgery on

living patients.6 Although such practices are not worldwide, in the

United States, appendectomies are still practiced on human cadavers

and not in some computer technology simulations.7

1.3 | Autonomous surgical robots

Developments in autonomous robotic surgery are appealing to United

States military planners8 and the Food and Drug Administration

(FDA).9 In terms of public health care or general hospitals, autono-

mous robotic ENT (ear, nose, and throat) procedures are particularly

desirable and beneficial for patients with high-risk pathogens10 (eg,

coronaviruses/COVID-19). In otorhinolaryngology (ORL) therapy pro-

cedures, micro-robots could also be used to operate in complex sce-

narios involving restricted spaces within the face.11,12 For instance,

the nasal cavity, eye orbit, and mouth areas have multiple nerves and

structures that can easily be damaged. Autonomous microrobotic sur-

gery could prevent surgical injuries within these very confined ana-

tomical spaces (this also applies to ophthalmology). Typical injuries in

confined spaces include spinal nerves in spinal surgery, great vessel

(aortic, vena cava, and pulmonary artery) injury in cardiothoracic and

vascular surgery, as well as pelvic plexus, hypogastric nerve, and

pudendal nerve injury in prostatic/pelvic approaches. This also applies

to ophthalmology. Superpositioned in a very small space, microrobots

can facilitate the novel removal of tumors and even cope with compli-

cated retinal pathology.13

In gynecology, autonomous robotic surgery could also enhance

operating in complex surgical planes.14,15 Gynecological surgery can

be difficult for surgical calibration and access. At the pelvic rim, sta-

bilizing surgical maneuvers with superimposed computer-generated

images (generated from radiological and information-laden diagnos-

tic sources) fulfilling enhanced augmented-reality on robotic-derived

images of the gastrointestinal tract could be a solution for some

complicated operations. Moreover, in orthopedics, autonomous plat-

forms could allow enhanced reconstruction of broken limbs and

joints.10 This could achieve ideal optimization in a biomechanical

approach. Space exploration or disaster management also illustrate

realistic fields for autonomous robotic surgery. However, ethical
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issues are raised by increasing the levels of autonomy for surgical

robots.10,16

1.4 | Using cadavers to address the problem of
robot training limitations

Autonomous robots for surgery (fifth generation as described in

Figure 1) cannot be expected to match or exceed human skills if

access to cadavers is restricted solely to training humans. Moreover,

human cadavers present a very different proposition than work on

animals or training with phantoms (ie, plastic human models). One

cannot program a robot based on general assumptions or properties,

such as that which might be built into a simulation. Rather, robots

need a broad, experientially acquired knowledge of the cadaver mor-

phology. By combining experience of the operation with the preci-

sion of the robot and high-level molecular characterization of the

tissue, one can achieve, not only the objective, but also an explain-

able outcome, and as a relevant practically important result, a repli-

cable one. Robotic training with cadavers can prompt radical

innovation capabilities of AI researchers that will expand the known

art and enable others to pursue commercial improvisation, realiza-

tion, and explainable AI itself. As with gross anatomy for training

humans, cadavers can also provide robots with the opportunity to

have a full-contact machine learning (ML) environment.

Furthermore, through cadaver studies that include medical imag-

ing and other relevant data acquisition sensorics, we contend that one

can assess how a human or robot may differ in skills to demonstrate

consistency and autonomy in surgery (this may require tracking of the

robot). Work on autonomous surgical robotics has been cited by

authors who are solely interested in comparing the skills of “human

surgeons” against “robot surgeons” (eg, the 2016 surgical results of

the Smart Tissue Anastomosis Robot [STAR]18co-developed by Leon-

ard et al19 - STAR robot is shown in Figure 2). A recent survey of

other similar systems is presented in Opfermann et al.20

F IGURE 1 The learning curve of
surgical robotics. Source: Ashrafian
et al17

F IGURE 2 The smart tissue anastomosis robot (STAR)

O'SULLIVAN ET AL. 3 of 13
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2 | CHALLENGES AND KNOWLEDGE GAPS

In cadaver studies, autonomous robots can develop the low-level skills and

dexterity to execute a specific task in surgery. So far in AI, most work

covers milling, cutting, and suturing skills. One of themotives in addition to

advancing autonomous robotic procedures for surgery is to compare the

“robot's performance” against that of the “human's performance” (eg, nee-

dle positioning, tissues analysis, suture quality, speed, etc). From a research

standpoint, it is worth evaluating the variability of the performance results

to determine factors such as how often humans fail, or how costly human

procedures are, among other factors. Therefore, these are important

knowledge gaps for further studies. For these cadaver studies, one may

encounter restrictive access to costly high-end imaging devices such as

computed tomography (CT). However, it may be more practical to use

interventional tools (eg, conebeam CT, ultra sound, and fluorescence)

coupled to the robot.

It is worth mentioning that both humans and the robotic system have

problems accurately guiding devices to an identified area for collecting tis-

sue samples for subsequent pathological examination, for example. While

diagnostic imaging is generally able to show a pathological or otherwise

interesting area, the device itself—in our case robotic probe—causes imag-

ing artifacts when inserted into the human cadaver. These artifacts can

lead to significant distance errors that subsequently lead to inaccurate

determination on whether the target site has been reached or not. Biopsy

samples from the wrong target site could lead to false negative results.

We, therefore, propose that one can add audio sensors to the robotic sys-

tems that measure the signal between a tool-tissue interaction, and other

similar existing approaches should be taken into consideration.21

Advanced signal processing could extract features that can be used to

improve device guiding accuracy and may even be able to classify tis-

sues.22,23 The obtained cadaver audio profiles of different tissues could be

used as base information to create a virtual tissue histology database. In

F IGURE 3 The da Vinci Xi Surgical
System A, robot arms, B, console, C,
operation setting, and D, coronary
anastomosis surgical procedure. Source:
Ashrafian et al17
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remote robotic surgery, audio sensors have been added to the Da Vinci

(see Figure 3) to simulate and “display” haptic and palpation information.24

2.1 | Cadaver training with tracers/agents and
perfusion devices

Autonomous robots, trained to perform surgery without depending

on contrast agents, would have a variety of practical positive uses and

advantages. Many fluorescent markers or tracers require FDA

approval and biocompatibility. This is very much restrictive for robotic

surgeries on living humans (it may even require ethical approval to use

such agents during training on live animals). One could focus on navi-

gation of the robot by using 3D imaging and molecular tissue charac-

terization using multiplexing fluorescence immunohistochemistry

approaches (the analysis of such multiplexing data could benefit from

AI). This way one can develop generic technologies that could later

also be applied during surgery or pathology, respectively.25 Neverthe-

less, when using nonapproved potent agents on human cadavers (eg,

in angiography), toxicity is not an issue for surgical training and robots

can dissect with relatively higher accuracy. Yet, one can question how

to deliver a tracer to a hidden organ in a cadaver without intact blood

supply? Artificial circulation (eg, with a perfusion device) is a possible

solution for this challenge, but this may only be realized with lipophilic

tracers, and in this case, fluorescence can be used for the robot's tis-

sue identification task. (See the impressive work of van den Berg et al

with the da Vinci robot that used a fluorescent tracer on humans.26)

Decker et al used the same fluorescent dye, but as fiducial markers

instead of a tracer for autonomous procedures on cadavers.27

Nonetheless, this postmortem setting is still ideal for testing new

tracing agents and developing a new generation of AI-enhanced robotic

surgeons. However, one could question the proficiency of robots when

they are confronted with individual variability of organs and systems.

Therefore, recorded tracking of the robot relative to pre-intervention

images would be appropriate. The topography of the arterial system

can even be a challenge for many anatomists. There is a substantial ana-

tomical variation between individuals, and this is often related to the

variety of arterial distribution. Therefore, imaging after perfusion with,

for example, radiopaque contrast, could help identify critical deviations

between the anatomy of the cadaver and that in textbooks. Same will

be true for rigid structures such as bones. In combination, the two could

help to realize a deformable registration. Like an experienced anatomist

(or surgeon), a robot can remain calm in a surge. However, for autono-

mous robotic surgery, one of the challenges will be to integrate bowel

movements or arterial pulsation.

2.2 | Skills in surgery

Nowadays, authors reviewing surgical robotics are putting much

emphasis based on comparing surgical skills of “humans” vs “robots.”

One could argue that the da Vinci robot (the leading tele-operated-

robotic-assisted surgery system17) is mainly assessed in urology and

that its results are only measured at a macroscale (eg, reduced compli-

cations). This implies that microscale assessments are excluded, such

as suture quality. This usability is perhaps a major reason why sur-

geons want to use a robot. Without wristed tools, laparoscopic sutur-

ing can be quite complex. But this depends on the surgeon because

many skilled surgeons do not need a dextrous wrist. Either way, using

a dextrous wrist vs straight tools should not preclude the assessment

of small-scale performances.

When examining how surgeons assess a suture, one must aim to

find specific characteristics.28 One could attempt to gather elements

from previous studies to define what makes one suture more desir-

able than another suture. This could suggest that one should analyze

current robotic procedures. Here, tortuosity is considered to be a key

skill-related feature. However, dextrous/tortuosity features of hard-

ware should not dictate how a (sub)task can be objectively assessed.

Today, it seems challenging to find surgeons that can objectively

determine what makes a good suture and knot tying other than a sub-

jective assessment. It is important to have an objective standard of

what makes a “good” suture or how the quality of a suture can be

objectively measured.28,29 Metrics for hand movements may not pro-

vide tracking quality, since hand track is a measure of process, not

quality. For example, two surgeons can have different path lengths for

the same surgical procedure. One surgeon could have had a more dif-

ficult case or the other surgeon simply did not perform parts of the

procedure. Besides focusing on sutures, we also see relevance in

studying biopsy accuracy, needle placement during ablations, or

resection margins.

2.3 | Surgery as a science rather than an art form

One may determine that a suture is good when it makes what it is

designed for, the closure of tissue. Surgeons with lower rates of

leakages are considered better surgeons. Yet, these may still be

considered fairly subjective assessments; however, there is now a

considerable body of robust evidence demonstrating across disci-

plines and procedures that interventions can be validly character-

ized in detail. In addition, most tissues will leak right away. In

bowel anastomosis, surgeons will not witness blood or leakage

until digestion resumes. One could doubt that leakage rates of

sutures are properly assessed during surgery other than visually.

The difficulty in finding straightforward answers makes this an art

form rather than a science form. If a suture appears acceptable

and feels good, then it is favorable. Some surgeons may evaluate

the skills of a surgeon based on their number of useless move-

ments and their magnitudes.

2.4 | Defining performance standards for
autonomous robotic surgery

It is necessary to evaluate the variability of results for “autonomous

robot” vs “human.” The lack of standardization of these results is a

O'SULLIVAN ET AL. 5 of 13
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major knowledge gap. Cadaver training research potentially fills this

vacuum by proposing metrics and methods to standardize the

assessment of accuracy, consistency, and efficiency of surgical

robots. One can address this through automation of robotic sam-

pling. Sending both robots and engineers into this fray automati-

cally brings forth the desire for “standardization.” Although there

are few “standards” to assess how well a system performs, O'Sulli-

van et al highlight that there are several datasets that are used for

benchmarking.10 In robotics, there is an engineering tradition of

establishing a clear standard to define and categorize performance

(accuracy, repeatability, etc.), but also standards for procedures to

measure them. Therefore, purchasing a robot that conforms to

standards (eg, ISO XYZ), we know exactly what it can or cannot do

(ie, execute XYZ with a standardized measure of accuracy and

repeatability).

There is a broad range of skill set among different human sur-

geons. Some human surgeons are more dexterous than others at per-

forming certain tasks, whereas robot automation leads to movements

with less variability, resulting in more consistent and predictable

results. Automation standardizes results to a significantly higher

degree than humans—trial after trial produces similar positive results.

In robotics, researchers can receive criticism when making attempts to

define an ad hoc measure of accuracy for it. For example, there is no

standard definition of “accuracy” for navigation systems commonly

used in neurosurgeries or how accuracy must be measured. A “stan-

dard” should be defined regardless of some challenges such as the

variability of the human anatomy.30 However, one approach could be

to focus on a standard that could improve data recording and coupling

to machine learning. Therefore, a standard could be the forensic accu-

racy, because just as in surgery, pathology can also provide the gold

standard.

2.5 | Criticism of robot navigation

There are several robots autonomously navigating buildings albeit

they might not be as proficient as humans and require floor plans or

explorations. Criticism goes beyond this type of navigation. Take the

case of the robot navigations through the nuclear plant following

the Fukushima Daiichi nuclear disaster in 2011. There is a common

misconception that these robots were navigating autonomously, but

instead they were actually tele-operated. However, this recent

example may not be considered a normal navigation scenario. These

robots experienced malfunctions because of the strong radiation,

poor communication environment, or were limited due to their inca-

pability to navigate stairs.31 Nevertheless, there are plenty of chal-

lenging environments where robots navigate successfully. For

example, Minerva, a mobile robot, offered guided tours of the

Smithsonian Museum of American History in Washington, DC, for

14 days in 1998. During that period, the robot offered 620 tours

and traversed a distance greater than 44 km through the museum's

crowd.32

2.6 | Human thinking, gender, racial, and social
biases

We question whether one can train algorithms to expose hidden

biases in such systems. “Black-boxed” or opaque algorithmic pro-

cesses can perpetuate and reinforce, morally and epistemically, harm-

ful biases. For example, Vallor and Beckey33 highlight that it is very

common that human thinking biases (eg, racial, gender, or socioeco-

nomic) become embedded in human-generated datasets, which are

used to train or educate robot systems. These data define the “world”

that an AI agent “knows.” Yet the effect of human biased data on

robot outputs is easily obscured by many factors, making those biases

more harmful and resistant to eradication.33 A robot might, for exam-

ple, be subtly slower or a bit less precise given situations that were

rare in its training set, and the effects of these small differences may

be hard to detect on a case-by-case basis, while still contributing to

biased outcomes when analyzed at the population/subpopulation

level. Moreover, too many samples with pathologies may also lead to

overdiagnosis by AI systems when challenged with “real world” data.

Even researchers who understand the mechanisms by which

human bias can infect computer intelligence are frequently surprised

to realize the degree of such bias in computer outputs—even from

inputs considered to be relatively unbiased.34 Bolukbasi et al34 also

highlight important aspects of gender biases.

Learning data can also be based on religious, racial, or social

biases introduced by designers or trainer surgeons. These risks are

mentioned in the predictive justice sector in the United States. Biases

are not always intentional. The algorithm itself may not be considered

racist/prejudiced. The problem is that trainers and software testers

may not have taken care to use ethnically diverse data.35 These risks

may also exist in surgical robotics.

2.7 | AI robots potentially possess or lack
overconfidence (surgical ego)

For the expert-in-the-loop, gender factors are important to consider

because survey evidence shows that male doctors engage in more dis-

ruptive behavior and there appears to be better outcomes for the

patients of female surgeons than those of male surgeons.36,37 We

question whether the machine tends to perpetuate this present condi-

tion or whether robots can be designed and configured in ways that

promote gender equality. By investigating this for AI, it is necessary to

question whether AI surgical robots would be more preferable than

an occasional overconfident surgeon.

AI robots potentially lack overconfidence because “surgical ego”

depends on who educates and trains the robot. The “surgical ego”

may lead to irrational reasoning and recommendations in favor of per-

forming complicated, risky, and unnecessary laparoscopic surgeries,

simply to prove that they are possible.36,37 In other words, the surgical

egos of surgeons used to model actions for the machine to learn from,

may lead to the robot acquiring risky behaviors. There may also be

6 of 13 O'SULLIVAN ET AL.
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some difficulties in developing ways to change this from happening,

since this may require a deep “cultural change.” Therefore, this is not

exactly the ideal or appropriate learning environment for an AI robot

that is learning from a surgeon (eg, movements, tissue interpretation,

and more) and coding their skills. One could expect that surgical

robots possess patience and avoid rushing operations or taking inap-

propriate shortcuts.

It is also worth asking how to actually determine if robots are

learning from suitable surgeons or from egotistical/stressed surgeons?

Stress has been cited as an excuse for ego problems and “surgical

ego” is dangerous because it drives surgeons to take short cuts or hide

poor organization by performing fast incomplete surgeries.36 There-

fore, it is important to know who exactly is training and educating

these robots.

2.8 | Surgery and robot learning on a cadaver,
explainable results, and norms

The use of surgical robots can lead to specific risks for patient

safety,38 especially the risk of perforation, injury, or tissue burn.39 It

could be physically difficult to be aware of these disadvantages by

training on a cadaver. The risk would be then that the robot having

learned inappropriate information about a cadaver still reproduces the

same errors on a patient. It is essential to ensure that the develop-

ment of autonomous surgical robot learning does not increase existing

risks in surgical robotics. However, the scientific literature shows that

the training of the surgeon is decisive in reducing risks on robotic-

assisted surgery40: the better the surgeon trains, the more complica-

tions are reduced. The same would be true for robots.41-45 Another

limitation relating to machine learning techniques is also to think

about the risks for the patient. To avoid putting the life of the patient

in danger, the robot is required to be able to inform the surgeon oper-

ator in the case of a delicate/unknown situation or seek the surgeon's

approval for a course of action.

We see in a general way: (a) the algorithm needs to be explainable

also for the doctor who must be able to check at any time what the

robot has learned; (b) it is important to set a protocol for the surgeons

who train the robots, to prevent machines from learning inappropriate

actions. This should involve thinking about their own practices in

order to rationalize the right actions and to fix them in a protocol41,46;

(c) the surgeon operator has to be informed when the robot has not

been trained on a specific case; and (d) future standards will need to

consider these limitations and anticipate them.

2.9 | Confronting several problems with
explainability

We do not suggest that automation should, or will, replace conven-

tional or robotic-assisted surgical tasks on a short notice. We simply

postulate that using cadavers for developing explainable AI robots

fosters and complements robotic-assisted procedures in general. It

can be considered that it would only be the “experience” or a “metric

driven experience,” that is, procedure events which are operationally

defined. Today, designers and developers of AI/machine learning seek

new ways to make machine reasoning more transparent, and to avoid

biases in the input data and training sets.

As a matter of fact, the most successful current machine learning

methods are considered as so-called “black-box”-approaches.47 While

it is not completely correct to refer to such methods as “black-box,”

because we know the mathematical principles behind such

approaches, the inside-complexity makes it difficult to identify the

important explanatory factors underlying outcomes in a specific con-

text of a problem. In practice, this means that the results of specific

input to output transformations cannot easily be traced back, hence

such approaches are defying easy causal analysis.

With respect to explaining the basis of decisions, O'Sullivan

et al10 highlight the current situation. Compared with traditional logic-

based or symbolic AI approaches, successful current methods such as

“Deep Learning” (many layers of neural networks) are statistical learn-

ing approaches, which are highly nonlinear and require enormous

amounts of training data.48 The central problem here is that this is

conducive to an epistemically opaque relationship between input and

output. This opacity can result in a loss of understanding.49

If humans cannot reliably query an AI robot about the basis and

reasons behind its decision-making, then how can humans reliably

assess the decision's validity?50 Today, the problem of systematically

evaluating explainable AI confronts several problems: (a) it assumes a

“gold standard” for explanations that may not exist given the current

state of the art; (b) it requires the input of experts, who may have

biases leading them to question and reject explanations that are out-

side their experience; and (c) it needs to be calibrated to the back-

ground knowledge, social context, and ethical expectations of users,

be they physicians, other medical workers, patients, or relatives of

patients but also to specific needs of the Courts in the event of a law-

suit against the hospital, surgeon, or robot manufacturer. Usually, a

systematic approach to these challenges would require: (a) the adapta-

tion of methods of model testing, such as withheld data testing, from

their usual context of prediction to that of explanation; and (b) a clear

statement of the target audiences for explainable AI, and the develop-

ment of different strategies that acknowledge the various goals and

beliefs of those different audiences.

Explainable AI is a new area of research, but it is gaining momentum.

Explainable AI is used in the regulatory and compliance area of healthcare.

However, interviews with experts in these fields (who in the main are

non-technical) revealed, in several instances, a mistaken conflation of the

explanation of decision-makingwith the explanation of algorithm training.

The challenges of explaining algorithmic based decision-making are not

unique to AI. Explaining multivariate statistically based models and infer-

ential models to non-experts is just as fraught.

The challenge of explaining algorithm training is disturbing in

many ways; it reflects the reality that open-source AI tools are already

readily available for anyone to use regardless of any skill or profes-

sional training. The procedures and safe-guards that are common-

place to AI researchers (eg, to address training set bias) are not
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typically used by amateur enthusiasts. Thus, the credibility of a trained

AI tool may be suspected. But this is not a failure of the algorithm

itself, rather it is a failure of the humans who trained it. While it may

seem like an issue of semantics, it is not. The failure of humans to use

professional standards and procedures when training an AI can be

readily detected by another professional AI expert with some directed

questioning. However, more fundamental failures in an algorithm are

much more difficult to detect, because the algorithm cannot be inter-

rogated in the same way as a human.

2.10 | Overriding AI

To apply the questioning of Vallor and Beckey33 to a surgical case, one

can question: if an AI surgical robot has consistently demonstrated

higher competence than humans in specific tasks, then on what gro-

unds would an egoistic/overconfident/narcissistic surgeon be given the

power to challenge or override its decisions? This issue is for explain-

able AI to prevent and minimize any conflicts that may occur. AI can

provide diagnosis and recommendations.10 However, conflict may

occur between the surgeon in charge and other staff, who may be in

favor of the AI recommendations. Surgeons in charge may fail to accept

that their own diagnosis or therapeutic plan is erroneous or ill-con-

ceived, or decline the AI diagnosis or therapeutic alternative.36

2.11 | Favoring AI

On the other hand, the opposite may occur. Boscarato argues that

informed consent could be susceptible to influence by hospital staff.

Buying and installing surgical robot systems are very expensive pro-

cesses.51 Hospital staff may try to persuade patients to accept the

robotic procedure in order to pay off the costs of buying and installing

the system. Nevejans emphasizes that consent must, therefore, relate

not only to the surgical procedure itself, but especially to the use of

the robot.52 Therefore, regulating informed consent is very important

for providing patients with procedure details, explanations for robot

use, potential risks, side effects, and the advantages against using con-

ventional surgery.51 A European search report also requires the doctor

to indicate the sources that would make his/her claims legitimate, so

that the patient can assess their reliability and decide to use conven-

tional surgery.53 The use of surgical robotics requires the patient's

consent.52 Moreover, even in cases whereby a robotic surgery is more

preferable than a conventional surgery, the patient may have personal

reasons to refuse it, such as a lack of confidence in the robot or in the

algorithm, or simply being unable to pay the extra cost. All of these

factors need to be respected by the surgeon and hospital staff.52

2.12 | Delegate the medical decision to the AI

Another phenomenon could occur regarding the increasing decision-

making role of the autonomous surgical robot in dealing with humans.

This effect can already be seen in medicine with the development of

decision support algorithms. Nevejans shows that they can impact the

care relationship and push for a form of delegation of the medical

decision to the AI, because the doctor risks: (a) to withdraw from the

decision-making process in front of the algorithm whose response is

supposed to be better; (b) to be unable to explain the result of the

algorithm to his patient, to inform him, and to obtain full consent; and

(c) to feel relieved of liability for an algorithm which makes it seem like

deciding in his place.52 In surgical robotics, to avoid this delegation of

the decision to the AI, it would be necessary to put in place a protocol

to make sure that the human retains autonomy relating to clinical mat-

ters. For this purpose, the robot should detail the surgical process

chosen for the patient, and allow the surgeon the opportunity to pre-

view the various stages of the operation and to validate the operative

process of the robot if the doctor believes it is adequate.

3 | HYPOTHESES AND
RECOMMENDATIONS

Prior to training an autonomous robot on human cadavers, we recom-

mend that one should test the robot on organs and tissues of eutha-

nized large animals (eg, pigs). Human cases can begin later under the

supervision of medical experts (eg, surgeons). In what follows, we pro-

vide hypotheses and recommendations to guide others on their

cadaver work and deployment of standards for training autonomous

surgical robots. We submit that morphological imaged cadavers and

tracking technologies should be used to train robots to navigate and

react in real life to relevant robotic cadaver scenarios. This approach

can facilitate filling some of the knowledge gaps in the previously dis-

cussed: (ie, “Challenges and knowledge gaps” section of this paper).

3.1 | Mapping recorded training/pre-interventional
information to the reality

Tele-operated robots that assist surgical procedures, in synergy with

learning-algorithms, enable the robot to learn from the surgeon (eg,

robot arm positioning, tissue interpretation, and more) and code these

skills. To devise the optimal learning-algorithms, we recommend a

proposition point: the robot's recorder data (eg, telemetry/command,

camera footage, etc.) should be processed and analyzed during train-

ing and performance evaluation. This data processing and analysis

could lead to autonomous surgical procedures, augmented reality

visualization (eg, with ghost overlay), and alert systems for procedure

guidance. For example, on-screenreal-time faded guidance markers

and/or split screen footage of similar previous procedures. Such an

approach could provide alerts regarding errors or potential dangers.

Just as relevant to standardization, it can also provide skills' evalu-

ation of “novice vs expert” and even “human vs robot.” Realistically, at

some research/training centers, the robot could learn and know the

plans of many specific surgical procedures. However, at the beginning

of the operation, the anatomy can slightly change and organs may
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move. With one robot arm holding a needle guidance or imaging

device (eg, ultrasound transducer), the robot could be able to position

itself close enough to obtain a real-time image of the anatomy and

update its recorded-training (and pre-interventional) information of

the planned operation.54,55 This AI robot can detect that its recorded-

training (and initial) information has changed after incisions or dis-

section have been made. At certain points, it can then detect that it

needs to change its procedure. The robot could also be instructed

about where it is not allowed to dissect by introducing virtual walls

that oppose resistance when its instrumentation is too close to areas

of the anatomy.

For planned conventional surgeries, human surgeons sometimes

view a screen with a 3D image of the patient. However, this image may

have been obtained days or even weeks prior to the operation. Human

surgeons use their hands or surgical senses (eg, even smell) and their

own knowledge to perform the operation. We contend that for AI

robots, tracking combined with their camera view and state-of-the-art

tissue sampling methodologies can allow them to see the patient and

precisely map the pre-interventional information to the reality.

3.2 | Imaged cadavers with tracers/agents for skills
training and standardization

Automating postmortem studies has major significance and opens

new opportunities for testing automation using new tracing agents. It

provides an ideal test bench for testing novel near-infrared or radioac-

tive tracers,26,27 that are fundamental to automate surgery procedures

and, compared with testing in live patients, entails a reduction in the

level of clearance required by regulatory boards. Most agents need

viable tissue to work with. At times, postmortem can be an issue;

however, tests with immunohistochemical stainings could be

performed.

For the foreseeable future, autonomous robots cannot be

expected to perform autonomous procedures effectively without

using a combination of morphological and molecular imaging for guid-

ance. It is certainly worth considering this approach for developing

and testing AI-driven procedures in frequently repeated cycles of

optimization. One can create multiple different scenarios. Scenarios

such as needle placement and sample analysis could have clear bene-

fits and could also be considered less technically complex in compari-

son to other scenarios such as dissecting open, surgical removal, and

suturing closed; various endoscopic navigations; or closed reduction

surgery.

One area needed to be advanced is autonomous navigation; AI

can address this challenge by planning a robot motion to navigate to

the source of a problem that may have been overlooked by a human.

AI is very promising in radiology, so AI can help identify the target,

and initially this can be done together with a human operator.56 This

is a real prerequisite that one will find compelling and lead to a great

result. Novel integrative and interactive machine learning approaches

are complemented and extended by an expert surgeon integrated into

the robot learning procedure.

One intention could be to perform, for example, CT imaging

before and after the cadaver training for “automation standardization”

or for making comparisons of the performance attributes of “robots”

against “humans.” Using automation, one can provide equal or supe-

rior results even when compared with state-of-the-artrobotic-assisted

surgery devices. It is worth proposing to train autonomous robots on

how to prepare, position, and react to organ/bowel movements in an

open surgery scenario—which is a topic for machine learning57 and

can be facilitated using image navigation and tool tracking. Neverthe-

less, it is still just as important to focus on cadaver work for needle

navigation, and in this case, the subject may remain closed. A biomi-

metic learning approach could include a robot imitating human hand

movements, however, on its own, this approach could be considered

dangerous. Yet, it could be more efficient to develop skills for actu-

ated tools. This learning approach can make certain skills obsolete (eg,

needle transfer).

3.3 | Cultural skills, legal rules, and avoiding biases

Gross anatomy training is usually taught to clinical students who, for

the first time in their life, will be confronted with cadavers. For better

training, university staff may communicate cultural skills instead of

reproducing facts. Recent years have witnessed the hype of distant

learning and replacement of dissection courses by plastic human

models (ie, phantoms), particularly in the United States. However, for

the aims outlined earlier (ie, “Introduction” section of this paper), train-

ing options for autonomous robots, such as simulations or phantoms,

and even animal dissections, are still no match for training with human

cadavers.

For gender, racial, or social status (eg, homeless patient) biases,

we refer to two different aspects: (a) bias in the input data (eg, gender,

race, or social status of the expert-in-the-loop47); and (b) biases in the

training sets (eg, gender, race, or social status of the patient cadaver).

One must ensure that there is no bias in both input data and training

sets. For example, one must use cadavers that are fully representative

of the full population. Machine learning is quite sensitive to the

dataset bias. Therefore, we propose one can use digitalized anatomi-

cal atlases that are registered to the imaged cadaver using deformable

registration. Hereby, contours, bones, and blood vessels could act as

reference. Optimization of this process would again require

AI. Moreover, one needs different types of reference models. If the

training set is biased by gender or ethnicity in ways that correlate with

anatomical differences, performance could be worse on those seg-

ments of the population that are not adequately represented in the

training set.

For gender and “surgical ego” issues, it can be taken into consid-

eration that AI robotic surgery can accomplish quite unwanted results.

These unwanted results are (a) more gender inequality; and (b) more

surgeons (male and female) self-focused on their own careers rather

than focused on the well-being of the patients. Ego-driven attitudes,

which may constitute a risk for patients, are enhanced by introducing

sophisticated robotic technologies.51 Their application may be
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supported by the disruptive behavior of the surgeons rather by thera-

peutic indications. Thus, along with the technological innovation, a

cultural innovation is also needed in order to avoid such side effects.

For these specific problems of gender, racial, or social status

biases, practical solutions need to be put in place. In order to guaran-

tee the absence of bias, the learning data might be searchable. This

implies that this data is kept in order to trace it. This retention of

learning traces will allow auditing of data, especially in order to elimi-

nate errors, inconsistencies, biases, and discrimination in the system.

This data retention would play an active role in the event of a medical

accident, in case the developer, the trainer, or the surgeon is blamed.

Attention should also be paid to the particular nature of personal

data that may require compliance with ethical or legal rules. The

European Union has, for example, put in place very strict regulations

on the processing of personal data in 2016, especially with regard to

health data.53 Similar protection is found in some African countries,

such as in Ivory Coast.58 African Union members adopted in 2014 the

African Union Convention on Cybersecurity and Personal Data Pro-

tection to develop guidelines on the protection of personal data.59

3.4 | Future of surgery

Objectively, one could aim to develop the surgical planning and skills

for autonomous navigation through a human cadaver, and today, tem-

plates already exist for certain surgical and endovascular procedures.

For this objective, the robotic system will learn how to (a) plan the

steps to reach a desired location inside the human body; and

(b) implement the skills required to execute the plan.

During the planning phase, the system will provide a sequence of

dissection steps and decide which organs (tissue or group of tissues

thereof), growth or foreign objects, etc, must be moved (or removed)

to expose something specific, or alternatively, perform advanced nee-

dle biopsy with a simple robot so that whole organs/tissues do not

need to be moved (or removed).

For autonomous surgery, tasks can include planning and execut-

ing procedures such as cutting, moving (or removing), sampling, and

immunohistochemical tissue analysis. In the case of sampling and anal-

ysis without moving (or removing) organs/tissues, one may merely

need to accurately place the needle in coordinates defined in a pre-

interventional image. The moving (or removing) of each organ/tissue

will follow standard surgical plans to expose and access other organs/

tissues. This is somewhat similar to classic AI planning (STRIPS and

ADL programming), where a sequence of milestones must be achieved

in a specific order to reach a goal state. The main difference here is

that the application domain relates to moving (or removing) human

organs/tissues instead of geometric figures. Although the best prac-

tices in work on cadavers will provide general guidelines, one could

develop a system that will learn from surgeons on how to adjust the

plan when facing unconventional cases by using more advanced learn-

ing algorithms.

Furthermore, the specific procedures for the removal of each

organ will be implemented by studying and adapting surgeons'

methods to the reality of the sensors and hardware. Much like the

way STAR adapted anastomosis and electro-cautery techniques to its

hardware and sensors, this proposed research will focus on

implementing basic dissection skills that will be used in the context of

moving (or removing) organs/tissues.

Like the STAR, this new research will rely on exogenous and

endogenous fiducials, for example, external trackers, blood vessels,

and bones. These fiducials in conjunction with 3D medical imaging

data will facilitate the segmentation of relevant organs/tissues to be

spared/removed or planning of the needle trajectory (one may use a

flexible needle). Depending on the circumstances, one could simply

use one arm or instead perform bimanual techniques by using two

arms: one equipped with a forceps for manipulating tissues, and the

other with an electro-cautery probe for cutting tissues.

The system can be evaluated on the successful harvesting of spe-

cific organs inside the body with little or no human assistance. For

cadaver studies, we are not concerned with toxicity of agents/tracers

(used with a perfusion device) or even radiation effects and dizziness

from excessive medical imaging. However, hacking or the cybersecu-

rity of these autonomous robots is still an important issue. We take

into consideration that new developments for phantoms (such as syn-

thetic human models, for example, SynDaver60) may also bring new

opportunities for training autonomous surgical robots.

4 | CONCLUSION

The human anatomy is far more complex than textbook knowledge.

Nevertheless, cadaver studies facilitate a “personalized” environment

for the further development of the emerging field of “Explainable AI

Robotics.” We discussed specific examples of potential gender, racial,

or social biases in AI, and in so doing, we articulated the benefits that

transparency would provide for training autonomous surgical robots.

However, robotics is a field that is only ideal for large study groups,

and it is a field that may need some decades to be successful with

machine learning approaches. One of the most commonly cited short-

comings of AI/machine learning in the medical robotics community is

scarcity of data, or the cost and effort to generate it. Cadaver research

addresses generating hundreds of datasets from surgical procedures

with a surgeon-in-the-loop. These data can be made available to the

community to develop novel methods and algorithms and benchmark

results to existing ones, similar to the purpose of JIGSAWS for sur-

geon motion.61

We recommend “a procedure/skill template” for teaching AI that

can be used by a surgeon. Similar existing methodologies show that

when this metric-based approach is used for training surgeons, cardi-

ologists, and anesthetists, it results in a >40% error reduction in objec-

tively assessed intraoperative procedures.28-30,42-45,62-64 Nowadays,

authors reviewing surgical robotics are putting much emphasis on

comparing surgical skills of “humans” vs “robots.” We submit that

cadaver studies that involve morphological and molecular imaging can

be used to advance the ability to objectively evaluate the results of

autonomous robotic performance. Students learn their skills by
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dissecting cadavers. The state of this art can be greatly enhanced

through the use of today's ground-breaking technologies by “training”

autonomous robots to undertake such dissections with superior skill.

It can be extrapolated that, in time, cadavers can be substituted by liv-

ing patients.

While we envision autonomous robotic “surgery” as a long-term

goal. It is not tabled as an immediate solution with practical implica-

tions. The expert-in-the-loop65 emphasizes that computers should do

what they can do good, and that humans should do what they can do

good, so augmenting human intelligence with artificial intelligence

(AI)—but not replacing humans by AI—is important because, particu-

larly in medicine (and in many other domains), the ultimate responsi-

bility lies with the human (eg, surgeon). This requires that the human-

in-the-loop is able—ondemand—tore-trace to re-enact and to under-

stand the machine decisions, having a chance to interact with the AI,

which needs effective human-AI interactions and measurements for

causal reasoning.66

We do acknowledge that there are some limits of surgical training

on cadavers including, for example, that the skills required to work

with a living body, such as managing bleeding, working around pulsing

arteries, etc, are not present in the cadaver. In itself, the removal of

organs/tissues will require a systematic plan for dissecting arteries,

veins, and bronchus. Planning algorithms will combine surgeon exper-

tise with the constraints imposed by mechanical and sensing limita-

tions. For the execution phase, the robot may implement skills for

incisions, exposing, and moving (or removing) organs/tissues, growth,

or foreign objects, etc. Successful execution may rely on using tracing

agents to highlight the areas of interests and guide the motion of the

robot. Methods, devices, or systems, tested with cadavers, will also be

easier to translate to in vivo surgeries and medical robotics in

general—the second fastest growing market in robotics and is

predicted to increase 5-fold over the next 3 years.67
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