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In brief

Anadon et al. demonstrate that human
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active tumor antigen recognition are

restricted to �13% of CD8+ T cells at tu-

mor beds, corresponding to�3%of CD8+

clonotypes. These clonotypes represent

TRM lymphocytes with a reservoir that

retains features of stemness.
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SUMMARY
Despite repeated associations between T cell infiltration and outcome, human ovarian cancer remains poorly
responsive to immunotherapy.We report that the hallmarks of tumor recognition in ovarian cancer-infiltrating
T cells are primarily restricted to tissue-resident memory (TRM) cells. Single-cell RNA/TCR/ATAC sequencing
of 83,454 CD3+CD8+CD103+CD69+ TRM cells and immunohistochemistry of 122 high-grade serous ovarian
cancers shows that only progenitor (TCF1low) tissue-resident T cells (TRMstem cells), but not recirculating
TCF1+ T cells, predict ovarian cancer outcome. TRMstem cells arise from transitional recirculating T cells,
which depends on antigen affinity/persistence, resulting in oligoclonal, trogocytic, effector lymphocytes
that eventually become exhausted. Therefore, ovarian cancer is indeed an immunogenic disease, but that de-
pends on �13% of CD8+ tumor-infiltrating T cells (�3% of CD8+ clonotypes), which are primed against high-
affinity antigens and maintain waves of effector TRM-like cells. Our results define the signature of relevant
tumor-reactive T cells in human ovarian cancer, which could be applicable to other tumorswith unideal muta-
tional burden.
INTRODUCTION

A recurrent goal of cancer immunotherapy is to reinvigorate an-

tigen-specific lymphocytes to promote their effector activity at

tumor beds. While tumors promote metabolic paralysis of both

activated and naive T cells (Cao et al., 2019; Song et al., 2018;

Xia et al., 2017), immunotherapies blocking inhibitory immune

checkpoints in tumor-reactive lymphocytes (Curiel et al., 2003)

have recently transformed the outcome of multiple solid tumors

(Baumeister et al., 2016).

After tumor antigen priming in lymph nodes, many tumor-reac-

tive T cells acquire residency at peripheral tissues as tissue-resi-

dent memory (TRM)-like cells (Masopust and Soerens, 2019).

TRM-like cells, typically co-expressingCD103 andCD69 (Dumau-

thioz et al., 2018), adapt to the metabolic demands of the tumor
Cancer Cell 40, 545–55
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microenvironment (TME) (Ganesan et al., 2017; Pan et al., 2017),

becoming crucial in both responses to immune checkpoint

blockade (Ganesan et al., 2017; Siddiqui et al., 2019), and in spon-

taneous protective antitumor immunity (Bourdely et al., 2020; Du-

mauthioz et al., 2018;Malik et al., 2017;Molodtsov andTurk, 2018;

Park et al., 2019; Savas et al., 2018).

Intratumoral stem-like CD8+ T cells have also been found to be

crucial drivers of immune pressure against established human

tumors (Harjes, 2020; Jansen et al., 2019). At tumor beds,

stem-like T cells expressing TCF1, previously identified as

TIM3–IL7R+CD8+ lymphocytes, coexist with exhausted (PD1+

TIM3+) lymphocytes (Hudson et al., 2019; Jansen et al., 2019).

Significant overlap of the T cell receptor (TCR) in stem-like and

terminally differentiated T cells has been identified, suggesting

that stem-like tumor-infiltrating lymphocytes (TILs) could
7, May 9, 2022 ª 2022 The Authors. Published by Elsevier Inc. 545
er the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Figure 1. Analysis of trogocytosis in CD8+

TILs from HGSOC

(A) ImageStream multi-spectral images from a

HGSOC showing CD8+ TILs including bright field

(BF), EpCAM-PE (yellow), CD8-FITC (green), and

DRAQ5 (red), and the merge showing the co-local-

ization of CD8-EpCAM. Representative images

shown from 200,000 total cells and 1,300 CD8+

analyzed.

(B) Agarose gel electrophoresis of EPCAM ampli-

cons (150 bp) obtained by PCR amplification of

cDNA from 4 different sorted CD8+ TILs paired to

the tumors. GAPDH was used as the house-

keeping gene.

(C) Dot plot of EpCAM+CD8+TILs from 18 HGSOC

(top; representative image). Dot plot (right) and

quantification (bottom) of the proportion of TRM-

like CD8+ TILs (red) and recirculating CD8+ TILs

(blue) within EpCAM+ CD8+TILs versus EpCAM�

TILs from 9 tumors with the presence of

EpCAM+CD8+ TILs.

Data are presented as means with standard errors

of the mean (SEM). Statistical analysis performed

by paired t test (n = 9). *p < 0.05, **p % 0.01, ***p

% 0.001.

See also Figure S1.
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generate waves of effectors that eventually become exhausted

(Harjes, 2020; Jansen et al., 2019). Recent evidence supports

that these TIL populations are phenotypically similar to stem-

like and exhausted T cells in chronic infections (Hudson et al.,

2019; Jansen et al., 2019).

Although both TRM-like and stem-like TILs have been associ-

ated with immune protection, TRM cells typically lack the lymph

node homing receptor CCR7 (Dumauthioz et al., 2018; Jadhav

et al., 2019), which is usually expressed in TCF7+ lymphocytes

(Siddiqui et al., 2019). In addition, TCF1, which drives T cell stem-

ness (Wu et al., 2020), inhibits transforming growth factor b (TGF-

b)-induced CD103 expression through binding to the gene locus,

and TCF7 (encodes TCF1)-deficient T cells accumulate as TRM

lymphocytes in infection models (Wu et al., 2020). Accordingly,

TCF1+PD-1+ stem-like and TRM-like TILs have been identified

as clearly distinct populations, although stem-like lymphocytes

could serve as TRM precursors (Siddiqui et al., 2019).

The failure of immune checkpoint blockade in ovarian can-

cer has recently placed in question the immunogenicity of
546 Cancer Cell 40, 545–557, May 9, 2022
this disease, despite quasi-universal

consensus about the prognostic value

of T cell infiltration. Initially using tro-

gocytosis, a bidirectional process by

which immune and target cells extract

membrane proteins from each other

(Joly and Hudrisier, 2003), as a signa-

ture of TCRs actively recognizing tumor

antigen, the goal of this study was to

define the existence and nature of TILs

actively recognizing tumor antigens in

human ovarian cancer patients. We re-

ported that protective T cell immunity

against ovarian cancer depends on a
narrow subset of clonotypes with the capacity to form a reser-

voir of stem-like TRM-like cells.

RESULTS

TRM-like CD8+ TILs show signs of trogocytosis, recog-
nize different antigens than recirculating CD8+ T cells,
and exhibit superior antitumor activity
To identify TILs that indisputably recognize tumor antigens, we

focused onCD8+ T cells exhibiting signs of trogocytosis-induced

transfer of EpCAM protein from ovarian cancer cells. Fluores-

cence-activated cell sorting (FACS) analysis and multi-spectral

imaging flow cytometry of single-cell suspensions from 18

different freshly dissociated high-grade serous ovarian carci-

nomas (HGSOC) revealed that in 9 of them, the membrane of

1%–4% of CD3+CD8+ singlets co-stained with EpCAM, an

epithelial marker that is not detected at the mRNA level in

T cells (Figures 1A, 1B, and S1A). Interestingly, EpCAM+ TILs

also expressed CD103 and CD69 (Figure 1C), phenotypic
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markers associated with TRM-like T cells, which predict better

survival in ovarian cancer (Webb et al., 2014). These cells co-ex-

pressed CD49a and represented �60% of CD8+ TILs infiltrating

7 freshly dissociated HGSOC (Figures 2A, S1B, and S1C).

To identify other hallmarks of TRM lymphocytes, we

compared the transcriptional profile of CD3+CD8+CD103+

CD69+CD49a+ TRM-like cells versus recirculating (CD3+CD8+

CD103�) T cells sorted from the same tumors (Figures 2A and

S1D). Compared to recirculating TILs, TRM-like cells expressed

>287 genes with significantly different mRNA abundance

(Figures 2B, S1E, and S1F). These cells exhibit the transcriptional

profile of TRM cells reported by independent authors (Fig-

ure S1G) (FitzPatrick et al., 2021; Mackay et al., 2013; Milner

et al., 2017; Wakim et al., 2012). These included, for instance,

the transcription factors RBPJ and EOMES (Mackay et al.,

2016; Oja et al., 2018). As reported (Blank et al., 2019; Hartana

et al., 2018), TRM-like cells showed higher expression of T cell

exhaustion markers such as PDCD-1, LAYN, CTLA4, TIGIT,

TOX, and HAVCR2 (Figures 2B, S1E, and S1F), suggestive of

prolonged exposure to cognate antigen. TRM-like cells also ex-

hibited a higher expression of effector mediators, including IFNG

andGZMB, but lower levels of stemnessmarkers, such as TCF7,

IL7R, LEF1,CCR7, andCD28 (Hudson et al., 2019; Jansen et al.,

2019). TRM-like cells also overexpressed CXCL13, associated

with B cell recruitment and neoantigen burden in human malig-

nancies (Workel et al., 2019), andCXCR6, encoding the receptor

for CXCL16, quasi-universally overexpressed in ovarian cancer

(Zsiros et al., 2015) (Figures 2B, S1E, and S1F). Further support-

ing repeated antigen engagement by TRM-like TILs, differential

pathway analysis identified a mitotic cell-cycle progression

signature, along with features of clonal expansion and exposure

to tumor hypoxia, compared to their recirculating counterparts

(Figures 2C, S1H, and S1I).

To confirm that tumor-reactive T cells reside in the TRM-like

compartment, we analyzed TCR repertoires of TRM-like versus

recirculating CD8+ TILs from 12 different HGSOCs. On average,

<12.5% of TCR-beta chains were shared between the TRM-like

and the recirculating CD8+ T cell compartments (Figure 2D). As

expected, TRM-like TILs showed higher clonality (dominance

of proportionally fewer clones; Figure 2E).

To functionally validate the protective role of TRM-like T-cells

in vivo, we transferred (intratumorally, to bypass defective traf-

ficking to tumor beds), ovalbumin (OVA)-specific OT-I T cells

into flank (p53/KRas-dependent) OVAlow-UPK10 ovarian tumors

developed in congenic mice (Rutkowski et al., 2015; Scarlett

et al., 2012; Zhu et al., 2016) (Figure 2F). After 7 days, �40% of

tumor antigen-specific TILs acquired a TRM-like phenotype,

while the rest remained as CD103neg (recirculating) lymphocytes

(Figure 2G), which were also found in blood (Figure S1J). TRM-

like formation depended on encounters with antigens because

unprimed OT-I cells could not acquire TRM-like features in

OVAneg tumors (Figure 2H), while T cell activation before intratu-

moral administration greatly enhanced the accumulation of

CD8+CD103+CD69+ TILs (Figures 2H and S1K). Most important,

CD103+CD69+ tumor antigen-specific TRM-like TILs recovered

from dissociated tumors were more effective than their

CD103neg OT-I counterparts at delaying the growth of different

OVAlow tumors, although both subsets had remained in the

same TME for the same period of time (Figure 2I). Similar results
were obtained using Pmel T cells and gp100-UPK10 tumors (Fig-

ure 2J), supporting the notion that the TRM-like phenotype

equips tumor-reactive T cells for a superior antitumor response.

Together, these results indicated that TRM-like and recirculating

TILs exhibit different phenotypes and clonotypes in human

ovarian cancer, with all of the hallmarks of tumor reactivity

primarily found in TRM-like T cells, which also exhibit superior

antitumor activity at tumor beds.

Clonal TRM-like TILs show a trajectory of differentiation
from stem-like cells to truly exhausted T cells
To further characterize TIL heterogeneity, we performed single-

cell RNA sequencing (scRNA-seq) paired to VDJ profiling with

19,193 CD103+ CD69+CD8+ TRM-like and 24,175 recirculating

T cells sorted from 4 different HGSOCs.We identified 28 clusters

in 5 major groups according to gene expression profile and TCR

similarity (Figures 3A and S2A–S2F). After scoring stemness and

exhaustion (Figure S2G), plus the transcriptional profile of

TILs sharing the same TCR, we identified a trajectory of differen-

tiation of CD103+CD69+ TRM-like cells, from a recently activated

CD103�CD69+ recirculating population that turns into TCF7low

IL7R+CCR7+CD38� lymphocytes, which retain features of stem-

ness (TRMstem). These ‘‘stem-like’’ cells differentiate into

GZMB+PRF1+GNLY+ZNF683+ effector TRM-like T cells (TRMeff),

and then into TIGITlowHAVCR2+/lowHLA-DRhighENTPD1+/low

TOX+ TILs with a highly proliferative signature (TRMprol; Fig-

ure S2H), before turning into truly exhausted PD-1high

HAVCR2highTIGIThighENTPD1highHLA-DR+TOX+ cells (TRMexh)

(Figures 3A, 3B, S2B, and S2I–S2K). In contrast, the recirculating

T cells do not parallel the evolution of TRM-like TILs (Figure S2L).

Corresponding expression of selected proteins was confirmed

by flow cytometry in different tumors (Figures S3A–S3C). This

trajectory was supported by the enrichment of specific gene

sets (Figure S3D) and was further confirmed through the simulta-

neous profiling of gene expression (nuclear RNA) and open chro-

matin (assay for transposase-accessible chromatin [ATAC]) from

the same cell (Figures S3E and S3F), which shows parallel nu-

clear RNA expression and enriched peaks and gene activity at

these loci (Figures 3B–3E and S3F). These concurrent analyses

unveiled multiple modules of co-regulated genes, including

genes associated with T cell stemness (IL7R, CD28, CCR7,

CD27, CXCR5), mediators associated with T cell effector

activity (GZMB, GNLY, PRF1, IFNG), programs linked to T cell

proliferation (STMN1,MCM7, TOP2A, CDK1, DNMT1), and mol-

ecules associated with T cell exhaustion/dysfunction (PDCD1,

HAVCR2, TIGIT, CTLA4). We also identified novel markers

differentially expressed in specific TRM-like subsets. For

instance, our analysis unveiled gradual increases in the expres-

sion of ETV1 throughout TRMeff/TRMprol/TRMexh differentia-

tion. In contrast, GZMK expression levels were maximal in

TRMstem cells and progressively decreased during the process

of exhaustion (Figures 3B and S3F). This analysis also showed

an enrichment of zinc finger DNA-binding domains (ZNF, KLF,

SP) in TRMstem cells, while motifs associated with nuclear recep-

tors and homeodomains such as POU domains were enriched in

more differentiated TRM-like subsets, with FOX and HOX do-

mains increased in TRMexh cells (Figure 3F).

Further scVDJ profiling/RNA-seq analysis showed that �13%

of TCRs in recently activated (CD69+) recirculating (CD103�)
Cancer Cell 40, 545–557, May 9, 2022 547



Figure 2. Hallmarks of active tumor recognition are found on TRM-like CD8+ TILs, but not in their recirculating counterparts

(A) Dot plot (left panel) of the proportions of TRM-like and recirculating CD8+ TILs in HGSOC. Representative dot plot shown from seven tumors. Histograms (right

panel) show the expression of CD49a (MFI shown).

(B) Heatmap showing differentially expressed genes between TRM-like vs re-circulating CD8+ TILs sorted from 7 HGSOCs. Genes with log2-fold change >1 (fold

change > 2) and false discovery rate (FDR) controlled p < 0.05 (N = 163) were considered upregulated. Genes with log2-fold change < �1 and FDR-controlled

p < 0.05 (N = 124) were considered downregulated. Signature genes are labeled by function.

(C) Gene Ontology (GO) enrichment analysis for differentially expressed genes in TRM-like versus recirculating CD8+ TILs from the same tumors. Bar plot

shows �log10(p value) of the pre-ranked gene set enrichment analysis (see STAR Methods).

(D) TCR-b repertoire of sorted TRM-like and re-circulating CD8+ TILs from 12HGSOCs. Bar plot (left) shows the percentage of unique TCRs and overlapped TCRs

in TRM-like versus recirculating CD8+ TILs in each tumor. Venn diagram (right) shows the average of unique TCRs in TRM-like (red), recirculating (green), and

overlapped TCRs (orange) among the 12 tumors.

(E) Productive clonality (Shannon entropy). Data show means with SEMs Paired t test. *p < 0.05, **p % 0.01, ***p % 0.001.

(F) Experimental setting.

(G) Representative FACS dot plot of TRM-like and recirculating CD8+ TILs obtained from OVAlow-UPK10 tumors, 7 days after purified CD8+ OT-I T cells were

injected intratumorally, ex vivo activated 2 days prior.

(H) Percentage of recovered TRM-like fromUPK10 tumors transducedwith OVAlow (red) or empty vector (mock, blue) 7 days after intratumoral injection of purified

CD8+ OT-I T cells, activated 2 days prior with SIINFEKL or maintained with IL-2 (control). Pooled from 5 independent experiments.

(I) Fold change of OVAlow-UPK10 tumor volume 5 days after injection with TRM-like or recirculating TILs sorted from OVAlow-UPK10 tumors, injected 7 days

before with purified, SIINFEKL-activated, CD8+ OT-I cells. Pooled from 3 independent experiments.

(J) Fold change of gp100-UPK10 tumor volume 5 days after injection with TRM-like or recirculating TILs sorted from gp100-UPK10 tumors, injected 7 days before

with purified Gp100(25-33)-activated CD8+ Pmel cells. Pooled from 3 independent experiments.

For (H–J), the data presented show means with SEMs Each dot represents 1 mouse. Unpaired t test non-parametric (Mann-Whitney test). *p < 0.05, **p% 0.01,

***p % 0.001.

See also Figure S1 and Table S1.
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Figure 3. Matched single-cell gene profile and single-cell chromatin accessibility analysis reveal a trajectory of differentiation from TRMstem

cells to TRMexh TILs

(A) Left: Uniformmanifold approximation and projection (UMAP) of 24,175 recirculating TILs and 19.193 TRM-like CD8+ TILs sorted from 4 HGSOCs showing 27

colored clusters. CD3+CD8+CD103�vs CD3+CD8+CD103+ CD69+CD49a+ TILs were sorted and sequenced separately and then merged for analysis. Each dot

represents 1 unique cell. Right: Cells are colored by 5 major groups.

(B) Relative expression bubble plot of selected genes known to be associated with different stages of TRM-like differentiation. The color of each dot represents

the average normalized expression from high (red) to low (blue). The size of each dot represents the percentage of positive cells for each gene.

(C) UMAP projection of 4,251 TRM-like and 16,615 re-circulating TILs sorted from 4 HGSOCs showing 22 color-coded cell clusters, using chromatin accessibility

and nuclear RNA data (top), or the major 5 cell class annotations (bottom).

(D–F) Heatmap of class-specific (D) peaks, (E) gene activity scores, and (F) TF motifs enriched in peaks. Each column represents 1 group of the trajectory of the

TRM-like differentiation. Each row represents differentially accessible peak regions (N = 57,555) (D), genes showing differential activity across the major groups

(E) and transcription factor motifs (F). For (D and E), color represents row-wise z-transformed average scores with values thresholded at�2 and +2 for each peak

and gene. For (F), the color represents normalized enrichment (�log10(FDR adjusted p value) of the TF motifs within the differentially accessible peaks of each

major group.

(G) TCR sharing between the 5 major groups obtained by single-cell VDJ profiling. The bar on the left shows the number of unique clonotypes in each group. The

bar in the top panel shows the number of clonotypes shared for the groups with a black dot under the bar.

(H) Normalized scATAC-seq-derived pseudo-bulk accessibility tracks of specific genes showing unique chromatin accessibility profiles for each major group.

Tracks are normalized to the total number of reads aligned to transcription start site (TSS) regions.

See also Figures S2–S4 and Tables S2 and S3.
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T cells were shared with TRM-like TILs, while 9.2% were ex-

pressed by TRMstem cells (Figure 3G; Table S2). These recirculat-

ing cells exhibit a distinct transcriptional profile, compared to

other recirculating lymphocytes, supportive of a transitional

phenotype between recent priming and tissue residency differ-

entiation (Figure S4A). Accordingly, we also identified clonotypes

that lack a recirculating counterpart, suggestive of older priming

and complete TRM-like differentiation (Figures 3G and S4B–

S4E). As expected, 24% of TRMstem clones shared TCRs with

other TRM-like clusters. However, 35% of TILs in these samples

differentiated into TRMeff and TRMexh cells without a TRMstem

pool (Figure 3G; Table S2). Accordingly, TRMexh lymphocytes,

but not other TRM-like cells, exhibited the typical chromatin

signature and HAVCR2/TOX/ENTPD1/CTLA-4 expression of

truly exhausted T cells (Khan et al., 2019; Pauken et al., 2016)

(Figures 3H and S4J). A total of 16% of TCRs shared between

TRMexh cells and other non-stem TRM-like lymphocytes were

also found in TRMstem cells, which showed no signs of exhaus-

tion in their chromatin and ATAC-seq profiles, similar to stem-

like T cells in infection models (Jadhav et al., 2019) (Figure 3H).

TRMstem TILs, but no TCF1+CD103neg TILs, predict the
outcome of patients with ovarian cancer
To independently confirm the TRMstem/TRMeff/TRMprol/

TRMexh trajectory of differentiation, and to gain additional insight

into the heterogeneity of TRM-like TILs in ovarian cancer, we

conducted additional scRNA-seq (cytoplasmic + nuclear),

coupled to VDJ profiling, with 60,010 TRM-like CD8+ T cells

from 8 HGSOCs (Figures 4A and S5). Overall, they expressed

typical genes of TRM-like cells previously published for other

groups (Figure S5B). As expected (Wu et al., 2020), TCF1+

TRMstem cells exhibited lower TGF-b-dependent CD103 expres-

sion (Figures 4B, 4C, and S5D), compared to other TRM-like

subsets. However, they also expressed markers of TRM-like dif-

ferentiation, including ITGA1 (encodes CD49a), RUNX3, plus

ITGAL and ITGB2, which encode the 2 subunits of LFA-1.

TRMstem cells also expressed markers of stem-like cells

described in viral infections, including IL7R, CD28, and CCR7.

Consistent with prolonged responses against specific tumor an-

tigens, TRMexh cells exhibited the highest clonality (Figures 4D

and 4E). In these tumors, 57.7% of TRM-like clonotypes shared

998 TCRs with TRMstem cells (Figures 4F, 4G, and S5K).

Including TRMstem clonotypes without a detectable differentia-

tion trajectory in our analysis, 36.6% of TCRs in TRM-like cells

(11,448 unique TRM-like clonotypes in 8 tumors) are represented

in the TRMstem compartment (Figures 4G and S5K). Given that

only 40% of the non-redundant TCR repertoire is contained in

TRM-like TILs (as opposed to 67% in recirculating lymphocytes;

Table S2), clonotypes with a progenitor TRMstem reservoir plus

differentiated TRM-like cells only represent�3% of TCRs (equa-

tes to 13.4% of CD8+ TILs). Together, these results implied that

only a narrow subset of recirculating TILs transition to acquire a

TRMstem reservoir, which can produce waves of TRMeff/

TRMprol/ TRMexh, T cells, and identifies clonotypes with clear

signs of active tumor antigen recognition.

To confirm that these enriched clonotypes were indeed

tumor reactive, we expressed 5 of these TCRs from 2 different tu-

mors in TCR-b chain-negative Jurkat76 cells. As shown in Fig-

ure 5A, incubation with the autologous dissociated tumor elicited
550 Cancer Cell 40, 545–557, May 9, 2022
interleukin-2 (IL-2) production by TCR-transduced (but not

control, mock-transduced) Jurkat76 cells, indicative of tumor anti-

gen recognition,which represent truly tumor-reactive lymphocytes.

To verify the protective role of TRMstem TILs in human ovarian

cancer, we next performed multiplex immunofluorescence on

122 different annotated HGSOCs (Figure 5B). Supporting previ-

ous reports (Webb et al., 2014), high ratios of TRM-like versus re-

circulating CD8+ TILs were associated with improved overall

survival, both in total tumor and specifically in PCK+ tumor islets

(Figures 5C and S6A). However, the improved survival associ-

ated with CD3+ TILs was only significant for intra-epithelial

lymphocytes (Figure S6A). Notably, TRM-like TILs were predom-

inantly located inside tumor islets, while their recirculating coun-

terparts were scattered throughout the stroma as well as tumor

cells (Figure 5D). Tumor infiltration by CD3+CD8+CD103low

CD69+ TRM-like cells expressing the TRMstem markers TCF1

was also strongly associated with superior outcome (Figure 5E).

In contrast, the accumulation of TCF1+CD103�CD8+ (stem-like

recirculating) T cells (Figure 5F), or TCF1+CD103�CD8+CD69�

(resting recirculating) T cells (Figure 5G) was not. Similarly, the

density of TCF1�CD103+CD69+CD8+ (differentiated TRM-like)

TILs in histological sections without detectable TRMstem cells

(Figure 5H) was not significantly associated with outcome,

although it had predictive value when TRMstem cells were not

segregated (Figure S6B).

Unexpectedly, we found that CLEC9A+ dendritic cells prefer-

entially cluster with recirculating TILs, compared to TRM-like

cells (Figure S6C). Future studies should determine whether

this illustrates a transient, recently activated phenotype (Du-

raiswamy et al., 2021; Menares et al., 2019).

Spatial analyses of interactions between different cell types

showed a strong association between TRMstem cells and other

TRM-like cells, although TRMstem cells also clustered with CD69+

recirculating T cells (Figures 5I and S6D–S6F). Accordingly,

2-dimensional t-distributed stochastic neighbor embedding (2D

t-SNE) rendering of all of the tumors analyzed showed distinct

clusters of TRMstem cells and more differentiated TRM-like cells,

in addition to interactions between downstream TRM-like cells

and recirculating T cells (Figure 5J). Together, these experiments

confirmed the linear trajectory of differentiation of TRM-like cells

and indicated that the association betweenTRM-likeTILs andbet-

ter outcomes depends on the density of TRMstem cells.

Generating and maintaining a reservoir of protective
tumor-reactive TRMstem cells depends on the quality of
T cell priming and persistence of cognate antigen at
tumor beds
Tounderstandwhatdetermines thegenerationofaTRMstem reser-

voir byonly some tumor-reactiveTcells,we focusedon themagni-

tude of antigen priming (Figure 6A). For adoptive transfer, de novo

stimulation of CD8+ OT-I cells using antigen-pulsed syngeneic

dendritic cells generated CD69+CD103- OT-I T cells (Figure S6G).

As shown in Figure 6B, activating OVA-specific T cells in vitrowith

different doses of cognate (SIINFEKL) antigen did not affect their

accumulation at OVA+ tumor beds, the subsequent density of tu-

mor-reactive TRM-like cells, or the balance of TRMstem/TRMeff.

cells (Figure 6C). However, tumor antigen-specific T cells

required activation by antigen-pulsed antigen-presenting cells

(APCs) to accumulate at tumor beds, suggesting T cell



Figure 4. Clonal enrichment of TILs with TCRs shared by TRMstem and downstream TRM-like phenotypes

(A) Left: UMAP of 60,010 TRM-like CD8+ TILs sorted from 8 HGSOCs showing 25 clusters according to the gene expression. Right: Cells are colored by 4 major

groups.

(B) Bubble plot of the relative expression emphasizing the same genes highlighted in Figure 3. The color of each dot presents the average expression from high

(red) to low (blue). The size of each dot represents the percentage of positive cells for each gene.

(C) Violin plot showing the normalized gene expression of genes involved in TRM-like differentiation in the 4 major groups.

(D) TCR sharing between TRMstem, TRMeff, TRMprol, and TRMexh. Yellow dots represent clones dominated by TRMstem/TRMeff cells (>60%). Red dots represent

clones dominated by TRMprol/TRMexh cells (>60%). Gray dots represent clones shared between TRMstem/TRMeff and TRMprol/TRMexh cells. The size of the dots

represents the number of clones with the same number of cells. X axis denotes the log2-scale of cell count within each clone. TRMexh/TRMprol have more larger

clones and thus higher clonality than other groups.

(E) Clonal composition of TRM-like CD8+ TILs in the 8 HGSOCs. From top to bottom, the number of different clones per tumor, the number of TRM-like TILs with

productive VDJ sequences colored by group, the distribution of the clones by size (color in the bars show = 1, 2–3, 4–10, 11–50, >50 cells), and the piecharts show

the TRM-like group composition of clones stratified by size (color represents the TRM-like group) in each tumor.

(F) Clonotypes showing different trajectories. Each UMAP contain 1 unique clonotype and the cells belonging to the clonotype are colored by TRM-like groups.

Left: Clonotypes only expressed in TRMstem; center: clonotypes showing the full trajectory; and right: clonotypes that have lost the TRMstem reservoir.

(G) TCR sharing between the TRM-like groups obtained by scVDJ profiling. The bar on the left shows the number of unique clonotypes in each group. The bar at

the top panel shows the number of clonotypes shared by the groups.

See also Figure S5 and Table S4.
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unresponsivenessafter undergoingmetabolicparalysis in theTME

(Figure 6D) (Song et al., 2018).

To elucidate the role of antigen affinity in TRMstem differentia-

tion, we next compared phenotypic differences between OT-I

T cells activated in vitro in response to the cognate antigen for
the OT-1 TCR (SIINFEKL) versus low-affinity ligands Q4H7

(SIIQFEHL) and G4 (SIIGFEKL) (Mallaun et al., 2008). Activating

with low-affinity SIIQFEHL or SIIGFEKL diminished the capacity

of tumor-reactive OT-I cells to accumulate at tumor beds (Fig-

ure 6E) and to undergo TRM-like differentiation (Figure 6F),
Cancer Cell 40, 545–557, May 9, 2022 551



Figure 5. TRMstem cell recognize specific tumor antigens and correlate with better survival

(A) Jurkat76 cells co-transduced with CD3 complex and 5 different TCRs identified from 2 different tumors or with CD3 complex and empty vector (mock) were

co-cultured with the corresponding immortalized tumor cells (tumor-sorted CD45�EpCAM+ primary HGSOC cells) at a ratio of 1:5 (tumor:Jurkat). IL-2 levels in the

supernatant were measured by ELISA after 48 h. Jurkat76 co-transduced with CD3 complex and NY-ESO-1-TCR were co-cultured with artificial APCs (aAPCs)

(K32) expressing HLA:A2 and NY-ESO-1 peptide as a positive control (top). Representative from 2 independent experiments. Data show means with SEMs Sta-

tistical analysis was performed by unpaired t test non-parametric (Mann-Whitney test). *p < 0.05, **p % 0.01, ***p % 0.001. To increase IL-2 production by

Jurkat76, PMA was added at 10 ng/mL to the co-culture (bottom).

(B) Representative images from tumor sections (n = 122) of multiplex immunohistochemistry of combined staining of CD3, CD8, CD69, CD103, TCF1, and DAPI

(top left). Magnified images of the combined staining of the same colors (center) and without CD69 (right) indicating the presence of TRMstem (white arrows) and

TCF1+ recirculating (red arrows) CD8+ TILs. Images of single staining from each marker in the bottom. Scale bar, 50 mm.

(C) Overall survival associated with higher ratios of TRM-like/recirculating CD8+ TILs in HGSOCs, as assessed by multiplex immunofluorescence.

(D) Distribution (in number of cell counts) of TRM-like (CD3+CD8+CD69+CD103+) and recirculating CD8+ TILs (CD3+CD8+CD103-) in tumor islets and stroma. Data

show means with SEMs of 122 HGSOCs. Statistical analysis performed by paired t test non-parametric (Wilcoxon test). *p < 0.05, **p % 0.01, ***p % 0.001.

(E) Survival outcome associated with the presence of TRMstem (CD3+CD8+CD69+CD103+TCF1+) in 122 HGSOCs from 3 independent tumor tissue microar-

rays (TMAs).

(F) Higher density of stem-like recirculating (TCF1+CD103�CD8+) or (G) resting recirculating TILs (TCF1+CD103�CD8+CD69�) is not associated with better

outcomes.

(H) In sections in which TRMstem were not detected, the presence of differentiated TRMs-like (CD69+CD103+TCF1neg) was not significantly associated with

improved survival. *p % 0.05, **p % 0.01, 2-sided log rank (Mantel-Cox) test.

(I) A spatial interaction network was fitted to the spatial distribution of cells, which was subsequently simplified via community detection. Negative values (blue)

indicate spatial repulsion, while positive values (red) indicate spatial attraction. Gray boxes contain cell types found within the same community.

(J) Left box: t-SNE rendering showing distribution of the 3 TMAs used in this analysis. Top: 2D t-SNE rendering showing distinct clusters of TRM-like cells and

recirculating T cells where TRMstem clusters exclusively with other TRM-like cells, while other populations exist as distinct clusters of their own. Bottom: t-SNE

(legend continued on next page)
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Figure 6. Strong priming and persistence of the antigen at tumor beds are required for the generation andmaintenance of TRMstemCD8+ TILs

(A) Experimental setting.

(B) FACS analysis of CD45.2+ and TRM-like CD8+ TILs fromOVAlow-UPK10 tumors 7 days after intratumoral injection with purified CD8+ OT-I T cells, activated for

2 days with SIINFEKL at 1/0.5/2 mg/mL.

(C) Percentage of TRMstem (CD45.2+CD3+CD8+CD69+CD103+IL7R+TCF1+) or TRMeff. (CD45.2
+CD3+CD8+CD69+CD103+MHC-II+CXCR6+) within TRM-like

CD8+ OT-I TILs in OVAlow-UPK10 tumors, 7 days after intratumoral injection with purified, SIINFEKL-activated CD8+ OT-I T cells (1/0.5/2 mg/mL).

(D) Proportion of intratumoral transferred OT-I T cells, activated 2 days before with SIINFEKL versus incubated with control IL-2.

(E–H) Quantification of CD45.2 (E); (F) TRM-like OVA-specific CD8+ TILs; (G) TRMstem; and (H) TRMeff, within TRM-like TILs from OVAlow-UPK10 tumors, after

activation with SIINFEKL or lower affinity peptides, Q4H7 (SIIQFEHL) and G4 (SIIGFEKL).

(I and J) FACS analysis of CD45.2+ (I) and J) TRMstem and TRMeff cells within OT-I TRM-like TILs sorted fromUPK10 tumors transduced with OVAlow (red) or empty

vector (mock, blue). SIINFEKL-activated OT-I cells and OT-I cells maintained with IL-2 (control) are shown. Pooled from 3 independent experiments.

For (E, F, and I), pooled from 5 independent experiments. Data are represented as means with SEMs Each dot represents 1 mouse. Unpaired t test non-

parametric (Mann-Whitney test). *p < 0.05, **p % 0.01, ***p % 0.001.

See also Figure S6.
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compared to SIINFEKL activation, in an affinity-dependent

manner. However, OT-I cells activated in vitro with the different

peptides, maintained in culture for longer periods, did not

become TRM-like cells (Figure S6H). Furthermore, fewer TRM-

like TILs activated with low-affinity Q4H7 or G4 retain TCF1

expression, which is indicative of defective TRMstem formation
image showing the distribution of the 4 phenotypes, TRMnon-stem (CD3+CD8+CD6

lating (CD3+CD8+CD69+CD103�), and CD69� recirculating (CD3+CD8+CD69�CD
with red depicting the highest distribution of a particular phenotype.

See also Figure S6.
(Figure 6G). In contrast, higher proportions of TRMeff. TILs were

found with suboptimal priming (Figure 6H).

Besides the quality of priming, antigen persistence at tumor

beds was also required for the optimal formation of a TRMstem

pool. Thus, although optimally in vitro-activated OT-I cells effec-

tively accumulated at OVA� tumors (Figure 6I), including as
9+CD103+TCF1�), TRMstem (CD3+CD8+CD69+CD103+TCF1+), CD69+ re-circu-

103�) TILs. The color bar from yellow to red indicates the distribution depth,

Cancer Cell 40, 545–557, May 9, 2022 553
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TRM-like cells (Figures 2H and S1K), significantly lower TRMstem/

TRMeff ratios were identified in the absence of cognate antigen

(Figure 6J). Taken together, these results suggested that thequal-

ity of T cell priming and persistence of tumor antigen in the TME,

are required for the formation and maintenance of a TRMstem cell

poolwith hybrid features of stemness and tissue residency, which

generates waves of TRM-like cells that, through the active recog-

nition of tumor antigen, progressively reach exhaustion.

DISCUSSION

Here, we reported that clonotypes showing obvious features of

active recognition of ovarian cancer antigen represent 3%of total

TCRs in CD8+ T cells at ovarian cancer beds (285 of 9,422 TCRs

in our analyses). These sequences could be identified based on

their shared expression between TRMstem and other differenti-

ated TRM-like cells. Supporting reactivity against contemporarily

expressed tumor antigens, these clonotypes were (1) clonally en-

riched, (2) exhibited a proliferative signature, and 3) expressed

markers of effector activity. In addition, the prognostic value of

CD8+ TILswasdependent on TRMstem cell infiltration, whilemain-

taining a TRMstem phenotype required the active expression of tu-

mor antigen. Accordingly, 5 different TCRs shared between

TRMstem cells and other downstream TRM-like subsets recog-

nized autologous tumor. Therefore, beyond prognostic associa-

tions for TILs and despite the paucity of tumor-reactive T cells

and poor response to current immunotherapies, human ovarian

cancer is indeed a T cell immunogenic disease.

Based on the consistent evolution of transcriptional and chro-

matin structure patterns in TILs sharing the same TCR, TRMstem

cells arose from distinct CD103- T cells, and progressively differ-

entiated into effector, proliferating/pre-exhausted, and truly

exhausted TRM-like cells. However, 77% of TRMstem clones

lacked a detectable clonally expanded TRMeff or TRMexh coun-

terpart. Some could represent T cells responding to recently ex-

pressed neoantigens (i.e., arising from newmutations), which are

in the process of generating new waves of differentiated TRM-

like cells. Alternatively, theremay be differentiated TRM-like cells

in other areas of the tumor or in frequencies that cannot be de-

tected through single-cell analyses, or the antigens that they

recognize could be disappearing from that tumor location.

Our results provided multiple insights into the immunobiology

of human ovarian cancer, giving new opportunities to improve

the immunotherapy that has not been effective for most ovarian

cancer patients for several reasons such as the presence of

other dominant immunosuppressive signals that prevent T cell

reactivation, metabolic restrictions of the tumor ascites and the

peritoneal cavity, and stronger accumulation of immunosup-

pressive myeloid cells than in other diseases. First, we provided

evidence that trogocytic (antigen-specific) T cells can be identi-

fied at tumor beds. It is therefore tempting to speculate that

personalized therapies using selected TIL expansion, or T cells

transduced with specific TCRs, could be implemented in a

personalized manner without knowing the precise target. This

could include a range of clonotypes that overcome inter-meta-

static heterogeneity in terms of antigenic drivers. Second, we

found that TRM-like CD8+ TILs and their recirculating counter-

parts represent very distinct compartments in terms of pheno-

type and antigen recognition. The narrow set of common TCRs
554 Cancer Cell 40, 545–557, May 9, 2022
clones was randomly distributed among different TRM-like clus-

ters, strongly suggesting that most recirculating TILs (�40% of

CD8+ TILs and 67% of CD8+ T cell clonotypes) are primarily by-

standers in the TME. Third, we identify pivotal TRMstem cells as

an intermediate cell type sharing the determinants of both stem-

ness and tissue residency. Previous studies identified TRM-like

cells and stem-like TILs in cancer as distinct cell types, although

the former can arise from the latter (Siddiqui et al., 2019). Our re-

sults supported recent studies from suggesting that TRM-like

precursors eventually turn into terminally differentiated cells

(Gueguen et al., 2021). Interestingly, the effectiveness of immune

checkpoint blockade has been attributed to the proliferation of a

stem-like TIL subset that is different from TRM cells in some

studies (Siddiqui et al., 2019), while others found that it depends

on TRM cells (Ganesan et al., 2017). Considering that several

factors influnce survival, such as the variability of antigenic

drivers between patients and the heterogeneity of expression

of the chemokines that recruit T cells, our data supported that,

at least in ovarian cancer, the density of a subset of CD103low

TRM-like lymphocytes that retains features of stemness while

differentiating into TRM-like cells, but not CD103�TCF1+CD8+

TILs, predicts ovarian cancer survival. However, 9.2% of stem-

like recirculating T cell clones were shared by TRMstem clones.

They likely represented recently primed tumor-reactive T cells

transitioning to acquire attributes of tissue-resident differentia-

tion before becoming TRMstem TILs. Because only 24% of

TRMstem clones shared TCRs with TILs showing features of an-

tigen recognition (i.e., intratumoral clonal expansion), it seems

plausible that the active recognition of tumor antigen in untreated

ovarian cancers depends on�3%of CD8+ clones at tumor beds.

Another important aspect of our study was the demonstration

that TRM-like differentiation equips tumor-reactive T cells to

exert superior immune pressure at tumor beds, compared to

clonal TILs that remain as recirculating cells. Interestingly,

TRM-like differentiation did not require re-encounter with an an-

tigen in the TME, further suggesting that most TILs are either

bystander cells or TRM-like cells that remain at tumor beds after

tumor antigen clearance through immuno-editing.

In summary, our results, supported by bioinformatical analysis,

point to a model in which a small subset of recently primed recir-

culating T cells undergo TRMdifferentiation. Depending on the in-

tensity of activation and the myeloid microenvironment, some

lymphocytes turn into TRMstemTILs,with the capacity to generate

new waves of effector lymphocytes and exert effective immune

pressure, while others will directly advance to exhaustion after

repeated exposure to antigens, without a TRMstem reservoir.
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Antibodies

Mouse anti-human CD3 ThemoFisher Scientific Thermo Fisher Scientific Cat# MA5-14524,

Clone SP7; RRID: AB_10982026

Mouse anti-human CD8 DAKO Agilent Cat# M7103, Clone C8/144B; RRID:

AB_2075537

Rabbit monoclonal anti-human CD69 ABCAM Clone EPR21814, Cat# ab233396

Rabbit monoclonal anti-human CD103 ABCAM Clone SP301, Cat# ab227697

Rabbit monoclonal anti-human TCF1/7 CST Cell Signaling Technology Cat# 2203, Clone

C63D9; RRID: AB_2199302

Mouse anti-human PCK DAKO Agilent Cat# M3515, Clone AE1/AE3; RRID:

AB_2132885

Rabbit anti-human CLEC9A Abcam Abcam Cat# ab223188, Clone EPR22324;

RRID: AB_2884022

anti-mouse CD45.1 BioLegend BioLegend Cat# 110736, Clone A20; RRID:

AB_2562564

anti-mouse CD45.2 Tonbo Biosciences Tonbo Biosciences Cat# 65-0454, Clone

104; RRID: AB_2621894

Hamster anti-mouse CD3e BD Biosciences BD Biosciences Cat# 563565, Clone 145-

2C11; RRID: AB_2738278

Rat anti-mouse CD8a BD Biosciences BD Biosciences Cat# 551516, Clone

53-6.7; RRID: AB_398512

Anti-mouse CD69 Tonbo Biosciences Tonbo Biosciences Cat# 60-0691, Clone

H1.2F3; RRID: AB_2621856

Rat anti-mouse CD103 BD Biosciences BD Biosciences Cat# 557495, Clone M290;

RRID: AB_396732

Rat anti-mouse CD127 BD Biosciences BD Biosciences Cat# 612841, Clone SB/

199; RRID: AB_2870163

Rat anti-mouse CD186 (CXCR6) BioLegend BioLegend Cat# 151117, Clone SA051D1;

RRID: AB_2721700

Mouse anti-human CD45 BD Biosciences BD Biosciences Cat# 563716, Clone H130;

RRID: AB_2716864

Mouse anti-human CD3 Tonbo Biosciences Tonbo Biosciences Cat# 65-0037, Clone

OKT3; RRID: AB_2621873

Mouse anti-human CD8 BD Biosciences BD Biosciences Cat# 564628, Clone SK1;

RRID: AB_2744464

Mouse anti-human CD69 BioLegend BioLegend Cat# 310942, Clone FN50;

RRID: AB_2564277

Mouse anti-human CD103 (Integrin alpha E) BioLegend BioLegend Cat# 350205, Clone Ber-ACT8;

RRID: AB_10642026

Mouse anti-human CD49a (Integrin

a1 chain)

BD Bioscience BD Biosciences Cat# 742360, Clone SR84;

RRID: AB_2740718

Mouse anti-human CD326 (Ep-CAM) BioLegend BioLegend Cat# 324244, Clone 9C4; RRID:

AB_2750489

Mouse anti-human CD326 (Ep-CAM) BioLegend BioLegend Cat# 324205, Clone 9C4; RRID:

AB_756079

Mouse anti-human CD27 BD Biosciences BD Biosciences Cat# 560612, Clone

M-T271; RRID: AB_1727457

Mouse anti-human CD279 (PD-1) BioLegend BioLegend Cat# 367422, Clone NAT105;

RRID: AB_2721517
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Mouse anti-human CD279 (PD-1) BioLegend BioLegend Cat# 329951, Clone EH12.2H7;

RRID: AB_2566363

Mouse anti-human CD127 (IL-7Ralpha) BioLegend BioLegend Cat# 351310, Clone A019D5;

RRID: AB_10960140

Mouse anti-human CD38 BD Biosciences BD Biosciences Cat# 560677, Clone HIT2;

RRID: AB_1727473

Mouse anti-human CD366 (Tim-3) BioLegend BioLegend Cat# 345028, Clone F38-2E2;

RRID: AB_2565829

Mouse anti-human CD39 BD Biosciences BD Biosciences Cat# 563681, Clone TU66;

RRID: AB_2738370

Rat anti-human CD197 (CCR7) BD Biosciences BD Biosciences Cat# 740267, Clone 3D12;

RRID: AB_2740009

Rat anti-human TOX Thermo Fisher Scientific Thermo Fisher Scientific Cat# 50-6502-82,

Clone TXRX10; RRID: AB_2574265

Rabbit anti-humna TCF1/TCF7 CST Cell Signaling Technology Cat# 6709, Clone

C63D9; RRID: AB_2797631

Mouse anti-human TCRalpha/beta BioLegend BioLegend Cat# 306718, Clone IP26; RRID:

AB_10612569

Mouse anti-human HLA-A2 BioLegend BioLegend Cat# 343320, Clone BB7.2;

RRID: AB_2566767

Mouse anti-human CD8 BioLegend BioLegend Cat# 344704, Clone SK1; RRID:

AB_1877178

Anti-mouse H-2kb bound to SIINFEKL

antibody

BioLegend BioLegend Cat# 141603, Clone 25-D1.16;

RRID: AB_10897938

Rat anti-mouse I-A/I-E BD Biosciences BD Biosciences Cat# 742894, Clone M5/

114.15.2; RRID: AB_2734759

Rat IgG2a kappa Isotype Control Thermo Fisher Scientific Thermo Fisher Scientific Cat# 50-4321-82,

Clone eBR2a; RRID: AB_10598503

Rabbit IgG Isotype Control CST Cell Signaling Technology Cat# 3452; RRID:

AB_10695811

Bacterial and virus strains

One ShotTM TOP10 Chemically

Competent E.coli

ThermoFisher Scientific Cat# C404010

Biological samples

Human ovarian carcinoma tissues H. Lee Moffitt Cancer Center N/A

Human ovarian carcinoma tissues Darmouth-Hitchcock Medical Center N/A

Ovarian tumor tissue microarrays (TMAs) Tissue Core at Moffitt Cancer Center N/A

Ovarian tumor tissue microarrays (TMAs) TriStar Technology Group, LLC TA-1966

Ovarian tumor tissue microarrays (TMAs) US BioMax, Inc. Ov401sur

Chemicals, peptides, and recombinant proteins

DMEM Medium ThermoFisher Scientific Cat# 11965092

Blasticidin S HCl, powder ThermoFisher Scientific R21001

RPMI 1640 Medium Gibco� Cat# 11875093

Penicillin/Streptomycin Lonza Cat# 17602E

L-glutamine Genesee Scientific Cat# 25509

Sodium pyruvate ThermoFisher Scientific Cat# 11360070

0.25% Trypsin-EDTA Gibco� Cat# 25200056

Dulbecco’s Phosphate Buffered Saline 1X VWR Life Science Cat# 0201190500

jetPRIME Transfection reagent Polyplus Cat# 101000015

OVA-Q4H7 Peptide, pQ4H7, SIIQFEHL AnaSpec Cat# AS-64405

OVA-G4 Peptide, SIIGFEKL AnaSpec Cat# AS-64384

OVA Peptide (257-264), SIINFEKL AnaSpec Cat# AS-601931
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hgp100(25-33) GenScript Cat# RP20344

Recombinant Human IL-2 PeproTech Cat# 200-02-50

Gamma-Globulins from Human Blood Sigma Cat# G4386

DAPI Sigma Cat# 8417

eBioscience� Foxp3 / Transcription

Factor Staining Buffer Set

Invitrogen Cat# 00552300

SuperScript� IV Reverse Transcriptase Invitrogen Cat# 18090010

PlatinumII Taq Hot-Start DNA Polymerase Invitrogen Cat# 14966001

POLYBRENE, 10MG/ML AQUEOUS

SOLUTION

ThermoFisher Scientific Cat# AB01643-00001

LipofectamineTM 3000 Transfection reagent Invitrogen Cat# L3000015

RetroNectin reagent Takara Bio Cat# T100B

PMA Invivogen Cat# tlrl-pma

SYBRTM Select Master Mix Applied Biosystems Cat# 4472897

Zombie Yellow Fixable Viability Kit BioLegend Cat# 423104

TruStain FcXTM (anti-mouse CD16/CD32) BioLegend BioLegend Cat# 101320, Clone 93; RRID:

AB_1574975

DRAQ5 BioLegend Cat# 424101

Critical commercial assays

Human IL-2 ELISA MAX Deluxe BioLegend Cat# 431804

EasySep� Mouse CD8+ T Cell Isolation Kit STEMCELL Cat# 19853

Tumor Dissociation Kit, mouse Miltenyi Cat# 130096730; Miltenyi Mouse Tumor

Dissociation Kit, RRID: SCR_020285

RNeasy Mini kit Qiagen Cat# 74106

DNeasy Blood & Tissue Kit Qiagen Cat# 69504

ImmunoSEQ humanTCRB kit Adaptive Biotech N/A

KAPA Library Quantification Kits Roche N/A

NuGEN Ovation SoLo RNA-Seq library

preparation kit

Tecan N/A

Chromium� Next GEM Single Cell 5’

Library and Gel Bead Kit v1.1

10x Genomics Cat#1000165

Chromium� Single Cell V(D)J Enrichment

Kit, Human T Cell

10x Genomics Cat#1000005

Chromium� Single Cell 5’ Library

Construction Kit

10x Genomics Cat# 1000020

Chromium� Next GEM Chip G Single

Cell Kit

10x Genomics Cat# 1000127

Chromium Next GEM Single Cell Multiome

ATAC + Gene Expression Reagent Bundle

10x Genomics Cat# 1000285

Chromium Next GEM Chip J Single Cell Kit 10x Genomics Cat# 1000230

Automated OPAL 7-Color IHC kit Akoya Biosciences Cat# NEL821001KT

Deposited data

Raw and processed bulk-RNAseq data in

TRM vs. re-circulating CD8+ TILs sorted

from 7 HGSOC patients

This paper GEO: GSE194383

Raw and processed single cell RNA-seq

and VDJ data in TRM vs. re-circulating

CD8+ TILs sorted from 4 HGSOC patients

This paper GEO: GSE193371

Raw and processed single cell multiome

ATAC+GEX data in TRM vs. re-circulating

CD8+ TILs sorted from 4 HGSOC patients

This paper GEO: GSE192780

Raw and processed single cell RNA-seq

and VDJ data in TRMCD8+ TILs sorted from

8 HGSOC patients

This paper GEO: GSE194105

(Continued on next page)

ll
OPEN ACCESS Article

e3 Cancer Cell 40, 545–557.e1–e13, May 9, 2022



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Cell lines

K-562 ATCC ATCC Cat# CCL-243; RRID: CVCL_0004

HEK293T ATCC ATCC Cat# CRL-3216; RRID: CVCL_0063

Phoenix-AMPHO ATCC ATCC Cat# SD-3443; RRID: CVCL_H716

Jurkat76 Dr. Mirjam H. Heemskerk

(University of Leiden)

N/A

UPK10 PMID: 22351930 N/A

Tumor1-sorted CD45�EpCAM+ primary

HGSOC cells

This manuscript N/A

Tumor2-sorted CD45�EpCAM+ primary

HGSOC cells

This manuscript N/A

293GP N/A RRID: CVCL_E072

Experimental models: Organisms/strains

Mouse: B6.SJL-PtprcaPepcb/BoyCrCrl Charles River Laboratory RRID: IMSR_CRL:564

Mouse: C57BL/6-Tg(TcraTcrb)1100Mjb/J The Jackson Laboratory Cat# JAX:003831; RRID:

IMSR_JAX:003831

Mouse: B6.Cg-Thy1a/Cy Tg(TcraTcrb)

8Rest/J

The Jackson Laboratory Cat# JAX:005023; RRID:

IMSR_JAX:005023

Oligonucleotides

Forward Cloning GP100: 50- AAAAAAA
AGAATTCGCCGCCACCATGGGTGTCC

AGAGAAGGAGC-30

Integrated DNA Technologies IDT N/A

Reverse Cloning GP100: 50-AAAAAAA
AGTTAACTCAGACCTGCTGTCC -30

Integrated DNA Technologies IDT N/A

Forward Cloning Ova: 50- AAAAAA
AAGAATTCGCCGCCACCATGG

GCTCCATCGG-30

Integrated DNA Technologies IDT N/A

Reverse Cloning Ova: 50- AAAAAAAA
GTTAACTTAAGGGGAAACACATC-30

Integrated DNA Technologies IDT N/A

PCR-Forward for GAPDH: 50-GAAGG

TGAAGGTCGGAGTC-30
Integrated DNA Technologies IDT N/A

PCR-Reverse for GAPDH: 50- GAA

GATGGTGATGGGATTTC-30
Integrated DNA Technologies IDT N/A

PCR Forward for EPCAM: 50-TGCAG

GGTCTAAAAGCTGGT-30
Integrated DNA Technologies IDT N/A

PCR Reverse for EPCAM: 50- CCC
TATGCATCTCACCCATC-30

Integrated DNA Technologies IDT N/A

Recombinant DNA

pLV-EF1a-IRES-Blast Addgene Cat# 85133; RRID: Addgene_85133

pcDNA3-deltaOVA Addgene Cat# 64595; RRID: Addgene_64595

pLVX-IRES-mCherry Takara Bio Cat# 631237

pLVX-IRES-ZsGreen Takara Bio Cat# 632187

pBMN-I-GFP Addgene Cat# 1736; RRID: Addgene_1736

pBMN-V19J20-I-GFP GenScript N/A

pBMN-V21J21-I-GFP GenScript N/A

pBMN-V26J26-I-GFP GenScript N/A

pBMN-V54J17-I-GFP GenScript N/A

pBMN-V45J40-I-GFP GenScript N/A

ORF of CD3 Complex: CD3D-T2A-CD3E-

P2A-CD3G-E2A-CD3Z

Integrated DNA Technologies IDT N/A

ORF of HLA-A2-restricted TCR for NY-ESO Integrated DNA Technologies IDT N/A

ORF of HLA-A2 Integrated DNA Technologies IDT N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pVLX-CD3Comple-IRES-mCherry This manuscript N/A

pLVX-HLAA2-IRES-ZsGreen This manuscript N/A

pBMN-NY-ESO-I-GFP This manuscript N/A

pMD2.G Addgene Cat# 12259; RRID: Addgene_12259

psPAX2 Addgene Cat# 12260; RRID: Addgene_12260

RD114 Addgene Cat# 17576; RRID: Addgene_17576

Software and algorithms

FlowJo v10.7.2 FlowJo LLC N/A

GraphPad Prism v9 GraphPad Software Inc. N/A

Adobe Photoshop 2022 Adobe N/A

Adobe Illustrator 2022 Adobe N/A

ImmunoSEQ Analyzer software Adaptive Biotechnologies https://www.immunoseq.com/analyzer/

STAR v2.5.3a Dobin et al., 2013 http://code.google.com/p/rna-star/

cutadapt v1.8.1 Martin, 2011 https://cutadapt.readthedocs.io/en/v1.8.1/

featureCounts v1.5.3 Liao et al., 2013 http://subread.sourceforge.net/

R 4.0.2 R Core Team, 2019 https://www.r-project.org/

ComplexHeatmap v2.7.8 (R package) Gu et al., 2016 https://www.bioconductor.org/packages/

release/bioc/html/ComplexHeatmap.html

EnhancedVolcano v1.9.13 (R package) Bioconductor https://github.com/kevinblighe/

EnhancedVolcano

CellRanger v5.0 10x Genomics http://10xgenomics.com/

Seurat v4.0 (R package) Stuart et al., 2019 https://satijalab.org/seurat/

AUCell (R package) Aibar et al., 2017 https://github.com/aertslab/AUCell

Scanpy 1.8.2 Wolf et al., 2018 https://github.com/theislab/Scanpy

Cell Ranger VDJ v3.0 10x Genomics http://10xgenomics.com/

UpsetR (R package) Conway et al., 2017 https://github.com/hms-dbmi/UpSetR

fossil (R package) Vavrek, 2011 https://cran.r-project.org/web/packages/

fossil/index.html

Signac v1.3.0 (R package) Stuart et al., 2020 https://docs.signac.io/projects/core/en/v1.

3.0/

harmony (R package) Korsunsky et al., 2019 https://github.com/immunogenomics/

harmony

JASPAR2020 v0.99 (R package) JASPAR http://bioconductor.org/packages/release/

data/annotation/html/JASPAR2020.html

TFBStools v1.31.2 (R package) Tan and Lenhard, 2016 https://github.com/ge11232002/

TFBSTools

fgsea (R package) Korotkevich et al., 2021 https://github.com/ctlab/fgsea

GSEA 4.0.2 Subramanian et al., 2005 https://www.gsea-msigdb.org/gsea/

index.jsp

spatstat (R package) Baddeley and Turner, 2006 https://spatstat.org/

Python Python 3.7 https://www.python.org/downloads/

leidenalg (Python package) Traag et al., 2019 https://github.com/vtraag/leidenalg

Scipy (Python package) Virtanen et al., 2020 https://docs.scipy.org/doc/

scikit-learn (Python package) Pedregosa et al., 2011 https://scikit-learn.org/stable/

matplotlib (Python package) Hunter, 2007 https://matplotlib.org/

seaborn (Pythonpackage) Waskom et al., 2017 https://seaborn.pydata.org/

tifffile (Python package) https://pypi.org/project/tifffile/ https://github.com/cgohlke/tifffile/
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jose R.

Conejo-Garcia (jose.conejo-garcia@moffitt.org).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Raw and processed bulk-RNAseq data of this study can be obtained from Gene Expression Omnibus (GEO) with an accession num-

ber of GEO: GSE194383. Raw and processed single cell RNA-seq and VDJ data (from both analysis, 4 HGSOC and 8HGSOC) can be

obtained from GEO with an accession numbers of GEO: GSE193371 and GSE194105. Raw and processed single cell multiome

ATAC+GEX data of this study can be obtained from GEO with an accession number of GEO: GSE192780. The 4 datasets can be

found with the accession number of SuperSeries GEO: GSE195486. Microscopy data reported in this paper will be shared by the

lead contact upon request. This paper does not report original code; the modified scripts used for the spatial analysis are available

upon request. Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human samples
Human high grade serous ovarian carcinoma (HGSOC) tissues were procured under protocols approved by the Committee for the

Protection of Human Subjects at Dartmouth–Hitchcock Medical Center (no. 17702); under a protocol approved by the H. Lee Moffitt

Cancer Center (MCC no. 18974). Patients were female in gender and their ages ranged from 23-85 with a median value of 57.

Informed consent was obtained from all them. Tumor chunks were either freshly dissociated and cryopreserved; or freshly dissoci-

ated, sorted (CD45�EpCAM+ primary HGSOC cells) and cultured continuously in R10 medium (RPMI-1640, 10% FBS, penicillin/

Streptomycin (100 mg/mL Lonza), l-glutamine (2 mM, Genesee Scientific), sodium pyruvate (0.5 mM) (ThermoScientific)) until they

adhered to establish primary HGSOC cell lines. Established cell lines were used for subsequent experiments.

Ovarian tumor tissue microarrays (TMAs) were obtained from 3 different resources: the Tissue Core at Moffitt Cancer Center (MCC

cohort; approval MCC no. 50264) which include 93 HGSOC and some control tissues; TriStar Technology Group, LLC (TA-1966,

Rockville, MD), which include 51 HGSOC; and US BioMax, Inc. (Ov401sur; Derwood, MD) with 8 HGSOC.

Cell lines
K562 cells (ATCC Cat# CCL-243, RRID:CVCL_0004), HEK293T cells (ATCC Cat# CRL-3216, RRID:CVCL_0063) and Phoenix-

AMPHO cells (ATCC Cat# SD-3443, RRID:CVCL_H716) were purchased from ATCC (Manassas, VA). Jurkat76 cells were provided

by Mirjam H. Heemskerk (Department of Hematology, University of Leiden, Leiden, Netherlans). UPK10 cells are a p53/Kras-driven

ovarian carcinosarcoma cell line (Rutkowski et al., 2015; Scarlett et al., 2012; Zhu et al., 2016).

K562, UPK10, Jurkat76 and established tumors were routinely cultured in R10 medium. For transduced UPK10, Blasticidine

(ThermoFisher, R21001) was added to the medium (6ug/mL). HEK293T cells and Phoenix-AMPHO were cultured in D10 medium

(DMEM, 10% FBS, penicillin/Streptomycin (100 mg/mL Lonza), l-glutamine (2 mM, Gen Clone), sodium pyruvate (0.5 mM)).

Animal models
For mouse models, three different strains were used. B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J (Pmel) mice (RRID:IMSR_JAX:005023),

8-12 weeks old females, purchased from the Jackson Laboratory; C57BL/6-Tg(TcraTcrb)1100Mjb/J (OT-I) mice (RRID:IMSR_

JAX:003831), 8-12 weeks old females, also purchased from Jackson Laboratory; and C57BL/6-Ly5.1/Cr mice (RRID:IMSR_

CRL:564), 6-8 weeks old female, purchased from Charles River Laboratory. All animals were maintained by the animal facility of

the Moffitt Cancer Center, housed in cages of up to 5 mice per cage, in a temperature controlled (18-23�C), 40-60% humidity,

12 h light/dark cycle facility. Animal studies were performed in accordance with Institutional Animal Care and Use Committee at

the University of South Florida Research Integrity and Compliance department (IACUC protocols#IS00006655 and #IS00009457).

METHOD DETAILS

Constructs
The sequence of GP100 was obtained by PCR amplification from cDNA of B16 melanoma cell line using primers flanked by 50EcoRI
(50- AAAAAAAAGAATTCGCCGCCACCATGGGTGTCCAGAGAAGGAGC-30) and 30HpaI (50-AAAAAAAAGTTAACTCAGACCTGCT

GTCC -30) restrictions sites to clone it into pLV-EF1a-IRES-Blast backbone (Addgene #85133; RRID: Addgene 85133). The OVA-

deltaN lacking the first 49 amino acids was cloned from pcDNA3-deltaOVA (Addgene 64595; RRID:Addgene_64595) into

pLV-EF1a-IRES-Blast backbone by PCR amplification and using 50EcoRI (50- AAAAAAAAGAATTCGCCGCCACCATGGGCTC
Cancer Cell 40, 545–557.e1–e13, May 9, 2022 e6
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CATCGG-30) and 30HpaI (50- AAAAAAAAGTTAACTTAAGGGGAAACACATC-30) restrictions sites.

The ORF of CD3 complex was purchased from IDT (Coralville, IA) as a sequence of CD3D-T2A-CD3E-P2A-CD3G-E2A-CD3Z

flanked by 50 EcoRI and 30 Not-I restrictions sites. They sequence was then ligated into pLVX-IRES-mCherry (Takara Bio USA) by

standard cloning techniques. The sequence corresponding to an HLA-A2-restricted TCR that recognizes SLLMWITQC, correspond-

ing to residues 157 to 165 of NY-ESO-1 (publicly available http://www.google.com/patents/US8143376) was purchased from IDT

and ligated into pBMN-I-GFP (Addgene # 1736; RRID: Addgene 1736). The retroviral vectors for expressing the ab-TCRs obtained

from the VDJprofile analysis from 2 different HGSOCs (TRAV26-2/TRAJ26/TRAC, TRBV2/TRBD2/TRBJ2-3/TRBC2; TRAV17/

TRAJ54/TRAC, TRBV4-1/TRBD1/TRBJ2-3/TRBC2; TRAV40/TRAJ45/TRAC,TRBV4-1/TRBD1/TRBJ2-3/TRBC2; TRAV19/TRAJ20/

TRAC, TRBV2/TRBD2/TRBJ2-3/TRBC2; and TRAV21/TRAJ11/TRAC,TRBV28/TRBD2/TRBJ2-7/TRBC2), were purchased from

Genscript (Piscataway, NJ) using pBMN-I-GFP as a backbone. Sequences corresponding to the ORF of HLA-A2 were purchased

from IDT and ligated into pLVX-IRES-ZsGreen (Takara Bio USA). The sequence integrity and accuracy of all constructs was assessed

and confirmed by sequencing services from GeneWiz.

The corresponding empty vectors (Mock) were used as a control in the different experiments.

Tumor models
UPK10 cells were lentivirally transduced to expressOvalbumin (OVA; OVAlow-UPK10), GP100 protein (GP100-UPK10), or the control

vector (Mock, empty vector) and were used to establish subcutaneous flank tumors in C57BL/6-Ly5.1/Cr mice (B6.SJL-Ptprca-

Pepcb/BoyCrCrl) by injecting 123106 cells in 200ul PBS. Tumors establishment was allowed for 9 days. This was followed by intra-

tumoral infusion of 2.5 x106 purified Pmel-CD8+ or OT-I CD8+ T cells that were activated 2 days prior with different peptides (gp100

(25-33) peptide, SIINFEKL, SIIQFEHL or SIIGFEKL), with SIINFEKL at different doses (0.5, 1 or 2mg/mL) or maintained with IL-2 (50U/

mL) as a control. These tumors were allowed to grow for an additional 7 days before dissociation into a homogeneous single cell

suspension using a Tumor Dissociation Kit from Miltenyi Biotech (CAT#130-096-730; RRID:SCR_020285). For analysis of TRM-

like and re-circulating populations in peripheral blood, 400uL of blood was extracted by cardiac puncture in anesthetized mice prior

to sacrifice. For analysis of draining lymph nodes, the lymph node closest to the tumor was taken. Blood and lymph nodes were pro-

cessed into a single cell suspension and analyzed by FACS. Dissociated tumors were analyzed by FACS, sorted or frozen. TRM-like

or re-circulating Pmel TILs or OT-I TILs were sorted and 2.5-3.03104 cells were intratumorally injected in similar tumors to study tu-

mor growth. The number of injected animals per experiment depended on the number of sorted cells, to inject comparable number of

cells per tumor. Animals bearing subcutaneous tumors were randomized to ensure a similar size variability per group before injection

of TRM-like or re-circulating TILs. To remove bias, a blind tumor measurement was done. Length, width, and height of tumors were

measured (L,W, H) and volumes were calculated according to the ellipsoid volume formula (V= 4/33p3 (L/2)3(W/2)3(H/2).

C57BL/6-Tg(TcraTcrb)1100Mjb/J (OT-I) mice were used to isolate splenocytes. The splenocytes were maintained in R10 medium

and supplementedwith IL-2 (control) 50 U/mL (PeproTech), or activatedwith 1 mg/mLSIINFEKEL, Q4H7 (SIIQFEHL) or G4 (SIIGFEKL)

for 2 days for studies to compare activation by the different peptides, or with 0.5, 1 or 2mg/mL of SIINFEKL to study the differences

between peptide concentrations. Then, the cultured CD8+ OT-I cells were purified using EasySep�Mouse CD8+ T Cell Isolation Kit

(Catalog # 19853) and intratumorally injected. The number of tumors injected depended on the number of isolated CD8+ T cells to

inject 2.53106 purified CD8+ OT-I cells/tumor.

B6.Cg-Thy1a/Cy Tg(TcraTcrb)8Rest/J (Pmel) mice were used to isolate splenocytes. The splenocytes were activated in vitro for

2 days using Gp100 (25-33) peptide and Pmel CD8+ T cells were purified and intratumorally injected, 2.5 x106 cells/tumor.

Flow cytometry, sorting and ImageStream
Dissociated HGSOC were stained with DAPI, blocked with g-globulin (Sigma, 4mg/mL in PBS) and stained for 60min at 4�C with the

following antibodies: CD45 (BD Bioscience, HI30, 1:200, RRID:AB_2716864), CD3 (Tonbo, OKT3, 1:200, RRID:AB_2621873), CD8

(BD Bioscience, SK1, 1:200, RRID:AB_2744464), CD69 (Biolegend, FN50, 1:200, RRID:AB_2564277), CD103 (Biolegend, Ber-

ACT8, 1:200, RRID:AB_10642026), CD49a (BD OptiBuild, SR84, 1:200, RRID:AB_2740718) and sorted on BD FACS ARIA. Cells

were gated for TRM-like TILs (CD45+CD3+CD8+CD69+CD103+) and for re-circulating TILs (CD45+CD3+ CD8+CD103-). The same an-

tibodies that were used for sorting were used for FACS analysis. In addition, the following antibodies/reagents were used for flow

cytometry analysis: Zombie Yellow (BioLegend) viability dye, EpCam (Biolegend, 9C4, 1:100, RRID:AB_2750489), CD27 (BD Biosci-

ence, M-T271, 1:200, RRID:AB_1727457), CD39 (BD Biosciences, TU66, 1:200, RRID:AB_2738370), CD279 (PD-1, Biolegend,

NAT105, 1:200, RRID:AB_2721517 and RRID:AB_2566363), CD127 (IL7Ra; Biolegend, A019D5, 1:200, RRID:AB_10960140),

CD38 (BD Bioscience, HIT2, 1:200, RRID:AB_1727473), CD366 (TIM3; Biolegend, F38-2E2, RRID:AB_2565829), CD197 (CCR7;

BD Bioscience, 3D12, 1:200, RRID:AB_2740009).

For intracellular staining we used eBioscience� Foxp3 / Transcription Factor Staining Buffer Set (Invitrogen) and

followed the instructions according to the manufacturer. The following antibodies were used: TOX (Invitrogen, TXTR10, 1:50,

RRID:AB_2574265), and Rat IgG2a kappa Isotype (Invitrogen, eBR2a, 1:50, RRID:AB_10598503), TCF1/TCF7 (Cell signaling,

C63D9, 1:50, RRID:AB_2797631) and Rabbit IgG Isotype Control (Cell signaling, 1:50, RRID:AB_10695811).

Ovalow-UPK10 tumors or GP100-UPK10 tumors were stained with Zombie Yellow (BioLegned) viability dye, blocking with anti-

mouse CD16/32 (BioLegend, RRID:AB_1574975), and staining for 60 min at 4�C with the following anti-mouse antibodies:

CD45.1 (Biolegend, A20, 1:200, RRID:AB_2562564), CD45.2 (Tonbo, 104, 1;200, RRID:AB_2621894), CD3 (BD Biosciences,

145-2C11, 1:200, RRID:AB_2738278), CD8 (BD Biosciences, 53-6.7, 1:200, RRID:AB_398512), CD69 (Tonbo, H1.2F3, 1:200,
e7 Cancer Cell 40, 545–557.e1–e13, May 9, 2022
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RRID:AB_2621856), CD103 (BDBiosciences, M290, 1:200, RRID:AB_396732) for sorting. For analysis by flow cytometry we included

CD127 (BD Biosciences, SB/199,1:200, RRID:AB_2870163), CXCR6 (BioLegend, SA051D1,1:200, RRID:AB_2721700), I-A/I-E (BD

Biosciences, M5/114.15.2, 1:200, RRID:AB_2734759) and TCF1/TCF7 for intracellular staining.

For sorting OVAlow expression in UPK10 we used the antibody to detect SIINFEKL bound to H-2kb (Biolegend, 25-D1.16, 1:200,

RRID:AB_10897938). The sorting of HLA:A2 aAPC was done using ZsGreen and with additional staining with antibody detecting

HLA-A2 (Biolegend, BB7.2, 1:200, RRID:AB_2566767). For sorting of Jurkat76 expressing ab-TCRs and CD3complex GFP was

used and mCherry in addition to the antibody detecting ab-TCR (Biolegend, IP26, 1;200, RRID:AB_10612569).

Anti-mouse and anti-human antibodies were directly fluorochrome-conjugated. Data was collected using BD FACS Diva v.8.0.1

and analyzed using FlowJo v.10.7.1. Gating strategies for mouse experiments were: TRM-like CD8+ TILs (CD45.2+CD3+CD8+CD69+

CD103+); re-circulaiting TILs (CD45.2+CD3+CD8+CD103-); TRMstem TILs (CD45.2+CD3+CD8+CD69+CD103+IL7R+TCF1+); TRMeff

TILs (CD45.2+CD3+CD8+CD69+CD103+CXCR6+MHCII+).

For Trogocytosis analysis and imaging the Amnis Image Stream X MkII was used. Cells were stained with Dapi, CD45 (BD Biosci-

ence, HI30, 1:200), CD3 (Tonbo, OKT3, 1:200), CD8(Biolegend, SK1, 1:200, RRID:AB_1877178), DRAQ5 (Biolegend, 1:1000), Ep-

Cam (Biolegend, 9C4, 1:100, RRID:AB_756079).

EPCAM expression analysis
Quantification of EPCAM expression was performed in sorted EpCAM+CD3+CD8+ TILs and their corresponding tumors. The quan-

tification was done by isolating total RNA using RNeasy Plus Micro Kit (Qiagen). RNA was reverse transcribed to cDNA using Super-

Script-IV (Invitrogen) with random hexamers. Quantification of EPCAM and GAPDH mRNA levels was performed by PCR using

PlatinumII Taq Hot-Start DNA Polymerase (Invitrogen) and the following primers: Forward GAPDH: 50-GAAGGTGAAGGTCG

GAGTC-30; Reverse GAPDH: 50- GAAGATGGTGATGGGATTTC-30; Forward EPCAM: 50-TGCAGGGTCTAAAAGCTGGT-30; Reverse
EPCAM: 50- CCCTATGCATCTCACCCATC-30. PCR products were run in an agarose gel.GAPDHmRNAwas used as a house-keep-

ing gene. EPCAM expression was also quantified by quantitative reverse-transcriptase real-time PCR in: 1) sorted CD3+CD8+ TILs

and tumor cells from 3 independent tumors; 2) in sorted TRM-like CD8+ TILs, re-circulating CD8+ TILs and tumor cells from another 3

independent tumors. The reaction was performed using SYBRGreenmaster mix reagent (Applied Biosystems) and the same primers

and house-keeping gene, GAPDH.

T-cell receptor beta chain sequencing
TRM-like and re-circulating CD8+ TILs were sorted form 12 different HGSOCs. Genomic DNA was isolated using DNeasy Blood &

Tissue Kit (Qiagen) according to manufacturer recommendations. TCRb sequencing was performed by the Moffitt Cancer Center

Molecular Genomics facility. Survey level T-cell receptor repertoire analysis was carried out with the use of the Adaptive Biotechnol-

ogies immunoSEQ assay v3, which employs bias-controlled multiplex PCR amplification and high-throughput sequencing to target

rearranged T-cell receptor genes. Briefly, the manufacturer’s protocol was followed in order to utilize the immunoSEQ hsTCRB kit to

amplify the CDR3 locus from genomic DNA extracted from TRM-like and re-circulating CD8+ TILs sorted from 12HGSOCs. Following

the confirmation of amplification and a successful final library preparation, sequencing was performed on the Illumina NextSeq 500 to

a targeted depth of 2 million sequencing reads per sample. The data were analyzed using the Adaptive Biotechnologies Immunoseq

Analyzer software, which identifies the V, D, and J genes, filters non-productive sequences, and reports and tracks T cell clonality.

Productive clonality is derived from the standard Shannon Entropy. Specifically for Adaptive Biotechnologies ImmunoSEQ

Analyzer software, Entropy as shown in the Analyzer = -1 * the sum over all unique productive (in-frame) sequences of [(sequence

count/total productive count) * log2(sequence count/total productive count)] normalized entropy (not shown in the Analyzer) = en-

tropy / log2(productive unique in-frame sequences). Clonality as shown in the Analyzer = 1 - normalized entropy.

Bulk RNA-seq library and sequencing
TRM-like and re-circulating CD8+ TILs were sorted form 7 different HGSOCs. Total RNA was isolated from sorted cells using RNA

isolation kit (Qiagen) and analyzed for RINe. Next gen RNA sequencing was performed by the Moffitt Cancer Center Molecular Ge-

nomics facility.

One nanogram of RNAwas processed for RNA-seq using the NuGENOvation SoLo RNA-Seq system. This low-input kit generates

strand-specific libraries rRNA depleted libraries using an inline probe-based depletion step referred to as AnyDeplete. The cDNAwas

generated and libraries were prepared according to the manufacturer’s protocol, including the optional inline DNase digestion step.

Final libraries were quantitated with the Kapa Library Quantification kit and were sequenced on the Illumina NextSeq 500 in order to

generate 8-10 million pairs of 75-base paired-end reads per sample.

Bulk RNA-seq data processing, normalization, differential expression, and gene set enrichment analysis
Paired-end RNA-seq reads were aligned to the GRCh37 human reference genome using STAR v2.5.3a (Dobin et al., 2013) following

adaptor trimming by cutadapt v1.8.1 (Martin, 2011). Uniquely mapped reads were counted by featureCounts v1.5.3 (Liao et al., 2013)

using Gencode V30 transcript annotations for human. Differential expression analysis was performed to compare TRM-like (n=7) vs

re-circulating (n=7) TILs using DESeq2 with library size taken into consideration. Heatmaps were generated with R package

ComplexHeatmap v2.7.8 (Gu et al., 2016) using z-score transformed log 2 (1 + normalized count). Bar plots were generated to

visualize expression of individual genes in Transcripts Per Million (TPM) values. Volcano plot was generated with R package
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EnhancedVolcano v1.9.13 using log 2 (1 + normalized count). Genes were further ranked based on –log10(p-value)*(sign of log2(fold-

change)). The ranked gene list was used to perform pre-ranked gene set enrichment analysis (GSEA v4.0.2 (Subramanian et al.,

2005)) to assess the enrichment of hallmarks, curated gene sets, and gene ontology (Ashburner et al., 2000) terms in MSigDB.

The resulting normalized enrichment score (NES) and FDR controlled p-values were used to assess the transcriptome differences

between TRM-like and re-circulating CD8+ cells.

Single cell RNA-seq and VDJ profiling library and sequencing
TRM-like and re-circulating CD8+ TILs were sorted form 4 different HGSOCs for TRM+re-circ scRNA-seq analysis. TRM-like CD8+

TILs were sorted from 8 HGSOCs for TRM scRNA-seq analysis. Single-cell RNA-sequencing as performed using the 10X Genomics

Chromium by the Moffitt Cancer Center Molecular Genomics facility. A single-cell suspension derived from dissociated tissue was

sorted for Tumor-infiltrating lymphocytes and analyzed for viability using the Nexcelom Cellometer Auto 2K. The cell suspension was

loaded onto the 10X Genomics Chromium Single Cell Controller at a concentration of one thousand cells per microliter in order to

encapsulate between 2400 and 12,500 cells per sample. Briefly, the single cells, reagents, and 10x Genomics gel beads were encap-

sulated into individual nanoliter-sized Gelbeads in Emulsion (GEMs) and then reverse transcription of poly-adenylated mRNA was

performed inside each droplet. The cDNA and VDJ-enriched libraries were completed in a single bulk reaction using the 10X Geno-

mics Chromium NextGEM Single Cell 50 v 1.1 and V(D)J Reagent Kits. 50,000 or 5,000 sequencing reads per cell for scRNA-seq or

VDJ libraries, respectively, were generated on the Illumina NextSeq 500 instrument. Demultiplexing, barcode processing, alignment,

and gene counting were performed using the 10X Genomics CellRanger v5.0 software.

Single-cell RNA-seq data processing, filtering, batch effect correction, and clustering
Rawsequencing reads fromscRNA-seqwereprocessed usingCell Ranger (v5.0, 10XGenomics). Briefly, the basecall (BCL) files gener-

ated by Illumina sequencers were demultiplexed into fastq files based on the sequences of the sample index, and aligned against

GRCh38 human transcriptome using STAR (Dobin et al., 2013). Cell barcodes and UMIs associated with the aligned reads were sub-

jected to correction and filtering. Filtered gene-barcodes matrices containing only barcodes with UMI counts passing threshold for

cell detectionwere imported toSeurat v4.0 (Stuart et al., 2019) for downstreamanalysis. Barcodeswith fewer than200 genes expressed

or more than 10% UMIs originated from mitochondrial genes were filtered out; genes expressed in fewer than 3 barcodes were also

excluded. This process resulted in 43,368 cells for TRM+re-circ scRNA-seq from 4 tumors, and 60,010 cells for TRM scRNA-seq

from 8 tumors. For each sample, standard library size and log-normalization was performed on raw UMI counts using NormalizeData(),

and top 5000 most variable genes were identified by the ‘‘vst’’ method in FindVariableFeatures(). Variable T cell receptor and immuno-

globulin genes were removed from the variable gene list to prevent clustering based on V(D)J transcripts. S and G2/M cell cycle phase

scores were assigned to cells based on previously defined gene sets(Tirosh et al., 2016) using CellCycleScoring() function.

In each study, individual data were further integrated to remove batch effects using an anchor-based method (Stuart et al., 2019)

implemented in Seurat v4.0 using FindIntegrationAnchors() and IntegrateData() functions in Seurat with 10,000 ‘‘anchors’’ and top 40

principal components. Briefly, dimension reduction was performed on each data using diagonalized canonical correlation analysis

(CCA) and L2-normalization was applied to the canonical correlation vectors to project the datasets into a shared space. The algo-

rithms then searched for mutual nearest neighbors (MNS) across cells from different datasets to serve as ‘‘anchors’’ which encoded

the cellular relationship between datasets. Finally, correction vectors were calculated from ‘‘anchors’’ and used to integrating

datasets.

From the integrated data, scaled z-scores for each genewere calculated using ScaleData() function in Seurat by regressing against

the percentage of UMIs originated from mitochondrial genes, S and G2/M phases scores, and total reads count. A shared nearest

neighbor (SNN) graph was constructed based on the first 40 principal components computed from the scaled integrated data. Lou-

vain clustering (Blondel et al., 2008) was performed using the FindClusters() function at resolution 1.2 for TRM+re-circ scRNA-seq

data (28 clusters) and resolution 1.0 for TRM scRNA-seq data (26 clusters). Uniform manifold approximation and projection

(UMAP) was used to visualize single-cell gene expression profile and clustering, using RunUMAP() function in Seurat with default set-

tings. TRM module scores for individual cells were calculated from TRM-like core genes (Amsen et al., 2018; Corgnac et al., 2018;

Hombrink et al., 2017; Kumar et al., 2017; Mueller and Mackay, 2016; Parga-Vidal et al., 2021; Szabo et al., 2019) using AddModule-

Score() function in Seurat. Core up-regulated gene-set used: ITGAE,CD69, ITGA1,CXCR3,CXCR6,CCR5,CCR6,CTLA4,HAVCR2,

LAG3, EGR1, NR4A2, BATF, NAB1, RUNX3, NOTCH1, ZNF683, PRDM1, IFNG, GZMA, GZMB, SEMA7A, KLRB1, CCL3, STAT1,

RAB27A, IL21R, FKBP1A, PRF1, TNF, NFKB1, CD44, BHLHE40, RBPJ, AHR, FABP1, PDCD1, GADD45A, TIGIT, CXCL10,

NR4A3, FASLG,NR4A1,NR4A2. Core down-regulated gene-set used:CX3CR1,CCR7, SELL, S1PR1,KLF2, EOMES, TCF7, TBX21.

Differential gene expression analysis and cluster annotation
Differential expression analysis was performed using FindAllMarkers() function in Seurat with logfc.threshold=0.25, min.pct=0, and

test.use=’’wilcox’’. Cells within each cluster were compared against all other cells. Genes with Bonferroni-corrected p-value <0.05

and an average log-fold change > 0.25 and were considered differentially expressed. Results from differential gene expression anal-

ysis were provided in Tables S2 and S4. Clusters were annotated by comparing differential genes withmarkers previously associated

with T cell stemness/memory (SELL, TCF7, IL7R, CD28, CCR7, CD27, CXCR5), effector activity (GZMB, GNLY, PRF1, IFNG), prolif-

eration (STMN1, CDK1, DNMT1), and exhaustion/dysfunction (PDCD1, HAVCR2, TIGIT, CTLA4). Enrichment scores of T cell

exhaustion gene set (TOX, LAG3, PDCD1, HAVCR2, ITGAE, TIGIT, CXCL13) and T cell stemness gene set (TCF7, CDCR5, CD28,
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GZMK, CCR7, IL7R, BCL6, SELL, CD27) were calculated using AUCell algorithm implemented in SCENIC(Aibar et al., 2017). Cell

proliferation scores were assessed based on the percentage of UMIs originated from genes related to the G2/M cell cycle phase

(Tirosh et al., 2016). Briefly, a density distribution was fitted for proliferation scores across all cells and a cut-off value that separated

the two density peakswas identified. Then, the percentage of cells with proliferation scores > the cutoff was calculated and evaluated

for each cluster to identify proliferative clusters. After annotation, clusters were further merged into major groups based on cluster

annotations and cell types (TRM-like vs re-circulating cells) for further analysis (see Figure S2 for TRM+re-circ scRNA-seq data and

Figure S6 for TRM scRNA-seq data).

Visualization of marker genes on singe cell RNA-seq clusters and groups
Marker genes were visualized on UMAP projections or violin plots using log-normalized counts. For bubble plot of marker genes, the

average expression of each gene was calculated for each cluster/group and then normalized by mean and standard deviation

(z-scores).

Trajectory analysis
A partition-based graph abstraction (PAGA) algorithm (Wolf et al., 2019) implemented in single cell RNA-seq analysis package

Scanpy (Wolf et al., 2018) was used to assess the differentiation trajectory for CD8+ TRM-like cells. UMAP dimensionality reduction

was performed on batch effects corrected PCs extracted from Seurat and a kNN-like graph at the major group level was constructed

using the default settings. High-connectivity edges with weights higher than 0.1 were drawn on the graph.

Gene set enrichment analysis of major groups
To systematically identify differences between major groups on the trajectory, we performed gene set enrichment analysis utilizing

the differential expression results of each group. For each group, genes were ranked based on -log10(p-value)*(sign of log2(fold-

change)), with most up-regulated genes at the top and most down-regulated genes at the bottom. Pre-ranked gene set enrichment

analysis (GSEA) was performed on ranked genes using R package fgsea (Korotkevich et al., 2021) with 10,000 permutations. The

Hallmarks, KEGG, BIOCARTA, REACTOME, PID, Gene Ontology, ImmuneSigDB databases from MsigDB (Godec et al., 2016;

Liberzon et al., 2011, 2015; Subramanian et al., 2005) were used as gene sets.

Single cell TCR-seq clonotype analysis
TCR reads sequenced by V(D)J assay were aligned to GRCh38 reference transcriptome using Cell Ranger VDJ (v3.0, 10XGenomics).

T cells were assigned with productive CDR3 regions for TCR alpha and TCR beta chains. Each clonotype was assigned with a unique

identifier based on amino acid sequences of the CDR3 regions and V(D)J genes of the two chains, which were then used to match

clonotypes across samples. Clonotypes overlapped between major groups were visualized using R package UpsetR (Conway et al.,

2017). Trajectory of the top clonotypes was visualized on UMAP projection generated from the paired scRNA-seq data (Figures 4F

and S3I).

Within-cluster, within-group, and within-sample clonalities were calculated from normalized Shannon index: Shannon Clonality =

1� �
PR

i =1
Pi log2 ½Pi �

log2R
, where R= the total number of clonotypes; i= each clonotype; Pi = percentage of cells with clonotype i among all

cells. The Shannon Clonality ranges from 0 – 1, and the higher the value the more oligoclonal the sample.

Between-cluster and between-group clonotype similarity was measured by Morisita-Horn similarity index (Rempala and Seweryn,

2013) using R package fossil (Vavrek, 2011). This index compares overlap between clonotypes of two samples and ranges from 0 (no

overlap) and 1 (complete overlap).

Single cell multiome ATAC+GEX library and sequencing
TRM-like and re-circulating CD8+ TILs were sorted from 4 different HGSOCs. Paired single-cell RNA-sequencing and ATAC-

sequencing was performed using the 10X Genomics Chromium system by the Moffitt Cancer Center Molecular Genomics facility.

Single-cell suspensions of TRM-like and re-circulating TILs were analyzed for viability using the Nexcelom Cellometer K2. Cells

were lysed and nuclei were isolated and diluted in buffer according to the manufacturer’s protocol. The nuclei were transposed in

bulk and the nuclei suspension was loaded onto the 10X Genomics Chromium Single Cell Controller in order to encapsulate between

400 and 20,000 nuclei per sample. Briefly, the nuclei, reagents, and 10xGenomics gel beadswere encapsulated into individual nano-

liter-sized Gelbeads in Emulsion (GEMs) and then reverse transcription of poly-adenylated mRNA and 10X barcode attachment of

transposed DNAwere performed inside each droplet. Following pre-amplification, the cDNA and ATAC-seq libraries were completed

in a single bulk reaction using the 10X Genomics Chromium NextGEM Single Cell Multiome ATAC + Gene Expression Reagent Kit.

50,000 or 25,000 sequencing reads per cell for scRNA-seq or ATAC-seq libraries, respectively, were generated on dedicated Illumina

NextSeq 500 sequencing runs according to the vendor protocol. Demultiplexing, barcode processing, alignment, and gene counting

were performed using the 10X Genomics CellRanger v6.0 software.

Single cell multiome ATAC + GEX data processing, filtering, batch effect correction and clustering analysis
Raw sequencing reads generated from 10X multimode assay were processed by cellranger-arc workflow with default settings to

generate mapping and chromatin accessibility data for ATAC and filtered UMI count data for GEX. The UMI count data for gene
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expression was imported to Seurat v4.0 (Stuart et al., 2019). Filtering, batch effect correction, normalization, clustering, and

differential expression analysis were performed as described above (see STAR Methods for scRNA-seq analysis). A total of 25 clus-

ters were identified from 20,866 TRM-like+re-circ cells from 4 tumors by FindClusters() function in Seurat with resolution = 1. These

clusters were further matched to the major groups identified in TRM+re-circ scRNA-seq data based on their marker gene expression

(see Figure S4).

The mapping and chromatin accessibility data generated from Multiome ATAC were imported to R package Signac v1.3.0 (Stuart

et al., 2020) for downstream analysis. The low-quality cells with total number of fragments in peaks < 3000 or > 20,000, fraction of

fragments in peaks < 15%, ratio of mononucleosomal to nucleosome-free fragments > 4, or transcriptional start site (TSS) enrichment

score < 2 were filtered out. A latent semantic indexing (LSI) dimension reduction was performed on the filtered cells. Briefly, peaks

data were normalized by the frequency-inverse document frequency (TF-IDF) method using RunTFIDF() function in Signac to correct

for differences in sequencing depth across cells and across peaks. Only peaks presented in more than 20 cells were selected for

dimension reduction. Then a singular value decomposition (SVD) dimension reduction was performed on the TF-IDF matrix using

the selected peaks followed by Harmony batch correction using RunHarmony() function implemented in R package harmony (Kor-

sunsky et al., 2019). Next, a UMAP projection was generated using the first 40 reduced dimensions as input. Cells were assigned into

major groups based on their grouping information obtained from multiome GEX data (see above).

Gene activity scores
The concept of gene activity is based on the observation that gene expression level is often correlated with chromatin accessibility at

the gene body, promoter, and distal regulatory elements (Granja et al., 2019; Pliner et al., 2018). A gene activity matrix was created by

counting reads mapped to gene body and promoter regions (extended 2kb upstream from gene coordinates) using GeneActivity()

function in Signac, and further log-normalized using NormalizeData() function in Seurat with default settings. Differential expression

analysis was performed on the normalized gene activity scores for each group. Genes with Bonferroni-corrected p-value < 0.05 and

an average log-fold change > 0.25 were considered differentially expressed (Table S3) and visualized by R package

ComplexHeatmap v2.7.8 (Gu et al., 2016).

Identification of group-specific peaks and TF motifs
The differential accessible peaks between groups were identified by logistic regression with the total number of fragments as a latent

variable to correct for differential sequencing depth. Region satisfying the following criteria were considered differentially accessible:

1) Bonferroni-corrected p-value < 0.05, 2) an average log-fold change > 0.25, 3) and at least 5% of the cells accessible at the region

(Table S3). Differentially accessible regions were further annotated to their closet genes using ClosestFeature() function in Signac,

and visualized by R package ComplexHeatmap v2.7.8 (Gu et al., 2016). To visualize individual accessible regions across different

groups, pseudo-bulk accessibility tracks were generated by averaging signals from all cells within a group and plotted with

CoveragePlot() function in Signac.

Transcription factor motif enrichment in differentially accessible regions between groups was performed in Signac. Frist,

human motif position frequency matrices were retrieved from JASPAR database using R packages JASPAR2020 v0.99 and

BSgenome.Hsapiens.UCSC.hg38 v1.4.3, and getMatrixSet() function in R package TFBStools v1.31.2 (Tan and Lenhard, 2016).

Then a hypergeometric test was performed to test for motif enrichment by considering GC content in the accessible regions, and

p-values were adjusted with Benjamini– Hochberg. The enrichment scores were calculated as �log10 (adjusted p-value) and visual-

ized by R package ComplexHeatmap v2.7.8.

Virus production and transduction
Lentiviral particles were generated by co-transfecting HEK 293T/17 (ATCC) with pLV-EF1a-IRES-Blast, pLVX-IRES-ZsGreen or

pLVX-IRES-mCherry and packaging/envelope vector pMD2.G (RRID:Addgene_12259) and psPAX2 (RRID:Addgene_12260) using

JetPrime reagents and the viral supernatant was harvested 48h after. 5x105 UPK10, K562 or Jurkat76 cells were seeded in a

6-well plate with 3mL of the corresponding viral supernatant including 10 mg/mL polybrene (Millipore). The plates were spined for

90min at 32�C and 1200g. 12h after transduction the medium was changed to R10 and 48h later the expression of the target

gene was verified by FACS analysis or immunoblotting.

Retrovirus was generated by co-transfecting 293GP (RRID:CVCL_E072) with pBMN-I-GFPvector and the RD114 (RRID:Addg-

ene_17576) envelope vector using Lipofectamine 3000 (Invitrogen). We collected the supernatant containing the retroviral particles

at 48h and 72h after transfection and used the supernatant for two repeated spin infections with Retronectin coated 6 well plates

(Takara). 2x106 Jurkat 76 were transduced per well and 12h after the transduction supernatant was removed and medium was

changed to R10. Selection of Jurkat76 positive cells was performed by FACS sorting using GFP as a marker.

Co-culture of Jurkat76 and measurement of IL-2 production by ELISA
Jurkat76 cells were lentivirally transducedwith CD3complex (pLVX-IRES-mCherry-CD3 complex) and retrovirally transducedwith an

abTCR (pBMN-I-GFP-abTCR). Then, they were co-cultured with the corresponding immortalized tumor cells (tumor-sorted

CD45�EpCAM+ primary HGSOC cells) or with NY-ESO-peptide using K562 cells lentivirally transduced to express HLA-A2 as arti-

ficial APCs (aAPC), at ratio of 5:1. Where indicated PMAwas added to the co-culture at 10ng/mL to increase the IL-2 production. 48h
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after seeding, the supernatant was harvested, and used for IL-2 detection using ELISA MAX� Deluxe Set Human IL-2 (Biolegend)

and absorbance at 450nm was measured with Gen5 Microplate reader and Image Software (Biotek).

Multiplex staining procedure
FFPE TMAs were immunostained using the PerkinElmer OPAL TM 7-Color Automation IHC kit (Waltham, MA) on the BOND RX au-

tostainer (Leica Biosystems, Vista, CA) with the following anti-human antibodies: CD3 (ThermoFisher, SP7, 1:400, Thermo Fisher Sci-

entific Cat#MA5-14524, RRID:AB_10982026), CD8 (DAKO, C8/144B, 1:100, Agilent Cat# M7103, RRID:AB_2075537), TCF1/7 (CST,

C63D9, 1:100, Cell Signaling Technology Cat# 2203, RRID:AB_2199302), CD103 (Abcam, SP301, 1:100, Cat# ab227697), CD69 (Ab-

cam, EPR21814, 1:300, Cat# ab233396), CLEC9A (Abcam, EPR22324, 1:100, Cat#ab223188, RRID:AB_2884022), PCK (DAKO,

M3515, 1:200, Agilent Cat# M3515, RRID:AB_2132885). DAPI was used to stain nuclei. Tissues were heated at 65�C for 2h then

transferred to the BOND RX (Leica Biosystems) followed by automated deparaffinization and antigen retrieval using OPAL IHC pro-

cedure (PerkinElmer). As a negative control autofluorescence slides were included. Slides were scanned and imaged with the

PerkinElmer Vectra�3 Automated Quantitative Pathology Imaging System. For quantitative image analysis multi-layer TIFF images

were exported from InForm (PerkinElmer) and loaded into HALO (Indica Labs, New Mexico). Each fluorescent fluorophore was as-

signed to a dye color and positivity thresholds were determined per marker based on published nuclear or cytoplasmic staining

patterns.

Spatial analysis for proximity analysis
For proximity analysis, wemeasured howmany TRM-like cells (CD3+CD8+CD103+CD69+) were within 50mmof a dendritic - CLEC9A

positive cell (DC). Then, the analysis was repeated to measure how many re-circulating TILs (CD3+CD8+CD69+CD103-) were within

50mm of DC. Finally, a third proximity analysis to measure how many re-circulating TILs (CD3+CD8+CD103-) were within the same

distance. We repeated the analysis for DCs located within stroma vs tumor islets. The total number of interactions (counts) between

DCs and each of the other populations were considered 100%. From that, we estimated the percentage of interactions between

DC-TRM-like, DC-recirculating (CD3+CD8+CD69+CD103-) and DC-re-circulating (CD3+CD8+CD103-) TILs separately for stroma

and tumor islets.

Spatial analysis and spatial association network
Spatial model fitting was conducted using the spatstat package for the R programming language (Baddeley and Turner, 2005). For

each sample, the cell positions and phenotypes were used to create a marked point pattern dataset, and a convex hull was used to

define the observation window for each TMA core. The original units of the datasets were pixels, but the unit was rescaled to be 1 mm.

The set of 118 samples was treated as a replicated point pattern, allowing us to create a single interaction network that describes all

samples (Baddeley and Turner, 2006).

Multitype Strauss hard core processes require the estimation two irregular parameters: hard core radii and interaction radii. Hard

core radii were determined for each core by finding the minimum interpoint distances between each pair of cell phenotypes in that

core(Baddeley and Turner, 2006). Interaction radii for each core were estimated by finding the radii that maximized the pseudolikeli-

hood of a multitype Strauss hardcore process model fit to that core’s point pattern dataset, as described in (Baddeley and

Turner, 2006).

Following the estimate of the irregular parameters, each core was thus associated with a point pattern dataset, amatrix of hardcore

radii, and a matrix of interaction radii. A single multitype Strauss hardcore process was then fit to all cores, using each core’s asso-

ciated point pattern dataset, interaction radii, and hardcore radii.

Community detection was performed on the fitted interaction, using the Leiden community detection algorithm (one graph of pos-

itive interactions, and second graph of negative interactions) (Mucha et al., 2010; Traag et al., 2019). Before community detection was

performed, the interaction network was adjusted to be 1-interactions, as hardcore Strauss coefficients less than 1 indicate spatial

repulsion, thus making spatial repulsion have negative values, and spatial attraction positive values.

Spatial clustering and t-distributed Stochastic Neighbor Embedding (t-SNE)- We extracted cell segments per core to build a count

matrix with cells as rows and known phenotypes as columns. The known phenotypes are defined as follows: TRMstem (CD3+CD8+

CD69+CD103+TCF1+), TRMnon-stem (CD3+CD8+CD69+CD103+ TCF1-), naı̈ve re-circulating (CD3+CD8+CD69-CD103-) and recently

activated re-circulating (CD3+CD8+CD69+CD103-) TILs.

A Euclidean distancematrix of dimension cells x cells is generated from this count matrix to compute the neighboring cells for each

cell. We then build a spatial neighborhood for each cell where the phenotype expression of each cell is the average of six of its

spatially nearest neighbors in Euclidean space. The Cellular Neighborhood approach is inspired from (Schurch et al., 2020), and

the subsequent clustering is performed using a Gaussian mixture model to extract heterogeneous cell types. In this manner, we

can extract clusters that are both spatially distinct and functionally similar. In effect, a sample can be viewed as a collection of

such cellular neighborhoods where the same functional cluster can exist in multiple spatial locations.

The differentially expressed phenotypes used to annotate each cell type are those phenotypes with the highest z-score values

for the log-normalized expression per cell type. The cells are further embedded in reduced 2D space using tSNE (Kobak and Berens,

2019).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical details of experiments, number of repeats performed, and statistical tests used can be found in the figure legends or in

method details of STAR Methods. Unless mentioned otherwise, all data presented shows mean with SEM (standard error of the

mean). Two-tailed t-tests (Unpaired or paired, as appropriate) were performed unless indicated otherwise.

Survival analysis was performed by two-sided log-rank (Mantel–Cox) considering R3 and up to 60 months. Analysis and visual-

ization were carried out in Graph Pad Prism 9.1.1 software. A significance threshold of 0.05 for P values and FDR-adjusted P value

was used and P-values are denoted with asterisks as follows (*p<0.05, **p%0.01, ***p%0.001).
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