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ABSTRACT
Objectives  Osteoarthritis (OA) patient stratification 
is an important challenge to design tailored treatments 
and drive drug development. Biochemical markers 
reflecting joint tissue turnover were measured in the 
IMI-APPROACH cohort at baseline and analysed using 
a machine learning approach in order to study OA-
dominant phenotypes driven by the endotype-related 
clusters and discover the driving features and their 
disease-context meaning.
Method  Data quality assessment was performed to 
design appropriate data preprocessing techniques. The 
k-means clustering algorithm was used to find dominant 
subgroups of patients based on the biochemical markers 
data. Classification models were trained to predict cluster 
membership, and Explainable AI techniques were used to 
interpret these to reveal the driving factors behind each 
cluster and identify phenotypes. Statistical analysis was 
performed to compare differences between clusters with 
respect to other markers in the IMI-APPROACH cohort 
and the longitudinal disease progression.
Results  Three dominant endotypes were found, 
associated with three phenotypes: C1) low tissue 
turnover (low repair and articular cartilage/subchondral 
bone turnover), C2) structural damage (high bone 
formation/resorption, cartilage degradation) and 
C3) systemic inflammation (joint tissue degradation, 
inflammation, cartilage degradation). The method 
achieved consistent results in the FNIH/OAI cohort. C1 
had the highest proportion of non-progressors. C2 was 
mostly linked to longitudinal structural progression, and 
C3 was linked to sustained or progressive pain.
Conclusions  This work supports the existence of 
differential phenotypes in OA. The biomarker approach 
could potentially drive stratification for OA clinical trials 
and contribute to precision medicine strategies for OA 
progression in the future.
Trial registration number  NCT03883568.

INTRODUCTION
Osteoarthritis (OA) is the most common form 
of arthritis among older people, affecting more 
than 500 million people (7% of the global popu-
lation).1 It is one of the most frequent causes of 
physical disability among older individuals and a 
major contributor to healthcare and societal costs 
globally.2 The risk factors for the development of 

OA include age, sex, obesity, previous joint inju-
ries, repeated stress on the joint, malalignment, 
genetics, bone shape (including deformities) and 
certain metabolic diseases.3 According to studies on 
the global burden of disease, knee OA represents 
the greatest burden.4 5 However, despite the ever-
increasing rise in the incidence and burden of OA, 
there is an unmet need for new therapies that target 
the underlying pathophysiologies.6 The currently 
available pharmacological treatments are only 
able to target the symptoms of OA, and they have 
adverse side effects, especially in older adults with 
common comorbidities.

The development of effective treatments and 
disease-modifying OA drugs (DMOADs) for 
this debilitating condition is extremely chal-
lenging.7 Many of the approaches that have been 
tried thus far have either failed or produced 
unsatisfactory outcomes. One of the greatest 

Key messages

What is already known about this subject?
	► There is an unmet need for new therapies that 
target the underlying pathology in osteoarthritis 
(OA).

	► Computational methods based on unsupervised 
machine learning have the potential to stratify 
OA cohorts into subsets that correspond to 
distinct molecular endotypes.

What does this study add?
	► By applying these methods to the IMI-
APPROACH cohort, we identified three 
dominant clusters and characterised them as 
inflammatory, low-repair and subchondral 
bone/articular cartilage-driven phenotypes.

	► Patients in the discovered clusters had 
statistically significant differences in clinical 
characteristics.

How might this impact on clinical practice or 
future developments?

	► The biomarker-based endotype discovery 
approach could potentially drive stratification 
for OA clinical trials and contribute in the future 
to precision medicine strategies for OA care.

W
alaeus B

ibl./C
1-Q

64. P
rotected by copyright.

 on A
ugust 18, 2023 at Leids U

niversitair M
edisch C

entrum
http://ard.bm

j.com
/

A
nn R

heum
 D

is: first published as 10.1136/annrheum
dis-2021-221763 on 4 M

arch 2022. D
ow

nloaded from
 

http://www.eular.org/
http://ard.bmj.com/
http://orcid.org/0000-0001-8333-656X
http://orcid.org/0000-0003-4955-36530
http://orcid.org/0000-0001-6261-1286
http://orcid.org/0000-0003-3248-7039
http://orcid.org/0000-0003-4289-1393
http://orcid.org/0000-0002-7911-3205
http://orcid.org/0000-0003-1073-449X
http://orcid.org/0000-0002-9294-2307
http://orcid.org/0000-0001-9821-7635
http://orcid.org/0000-0001-7810-2216
http://orcid.org/0000-0001-8252-7815
http://orcid.org/0000-0001-8657-6219
http://orcid.org/0000-0002-1202-9287
http://orcid.org/0000-0001-7952-9297
http://orcid.org/0000-0002-2692-7205
http://dx.doi.org/10.1136/annrheumdis-2021-221763
http://dx.doi.org/10.1136/annrheumdis-2021-221763
http://dx.doi.org/10.1136/annrheumdis-2021-221763
http://crossmark.crossref.org/dialog/?doi=10.1136/annrheumdis-2021-221763&domain=pdf&date_stamp=2022-04-01
NCT03883568
http://ard.bmj.com/


667Angelini F, et al. Ann Rheum Dis 2022;81:666–675. doi:10.1136/annrheumdis-2021-221763

Osteoarthritis

challenges in OA drug development is the heterogeneity of 
the disease.8 9 However, despite being a multifaceted and 
heterogeneous syndrome, there is an opportunity to target 
different treatments to patients according to their disease 
drivers characterised by molecular endotypes (a description of 
a subset of patients with common molecular characteristics) 
and clinical phenotypes (an observable characteristic or trait 
of a disease).9 10 OA may be amenable to tailored treatments 
that target specific phenotypes, including inflammatory, low 
repair, subchondral bone, metabolic or articular cartilage-
driven phenotypes.11–17

Therefore, development of computational tools that 
includes objectively measured markers, such as biochem-
ical markers, may facilitate OA drug development through 
patient subgrouping based on endotypic characteristics.9 11 
An example of an OA endotype could be a group of patients 
with elevated bone biochemical markers, as compared with 
the remaining of the OA population. Then, based on the 
link with clinical data, this subgroup could be annotated as 

having a bone-driven disease (ie, a OA disease phenotype), 
and hypothetically, this group of patients should be enriched 
for in clinical trials testing the efficacy of a bone-modulating 
drug.18

At present, defining the appropriate outcome measures that 
are needed for OA clinical trials and the objective assessment 
of new therapies is challenging.19 Therefore, new computational 
methods based on machine learning (ML) and big data analytics 
can help advance this field of research by enabling protocols for 
patient classification into subtypes, using a combination of clin-
ical, biochemical and/or imaging data.20–22

The aim of this study was to develop a methodology based 
on unsupervised ML (specifically, clustering) to identify/discover 
OA endotypes in the IMI-APPROACH cohort of patients with 
knee OA from a panel of 16 biochemical markers related to 
different joint tissue processes (eg, degradation, formation 
or inflammation), measured at the baseline of the study. The 
properties of the discovered clusters were thoroughly analysed 
using a combination of statistical and ML techniques, and the 

Table 1  Biochemical markers analysed in the APPROACH cohort sampled from serum (S) and urine (U)

Name
Inter- and 
intra-CV Detection range Description

S_C3M <15% 1–85 ng/mL Matrix metalloproteinase (MMP)-mediated type III collagen degradation fragment. Type III collagen is a major collagen of 
connective tissues, including synovial membrane. C3M has been shown to be released from synovial membranes in the presence of 
proinflammatory cytokines which activate MMPs.43

S_CRPM <15% 1–110 ng/mL MMP-mediated C reactive protein (CRP) degradation fragment. CRP is an acute reactant elevated in chronic inflammatory diseases. 
CRPM is a metabolite of CRP.44

S_ARGS <15% 0.01–0.40 pmol/mL ADAMTS-mediated aggrecan degradation products. Aggrecan is the major proteoglycan of articular cartilage. Like MMPs, ADAMTS are 
expressed and activated in the presence of proinflammatory cytokines.45

S_C10C <15% 500–7500 ng/mL Cathepsin K-mediated type X collagen degradation fragment. Type X collagen is a minor collagen expressed by the cartilage cells 
called chondrocytes.46

S_C2M <15% 0–10 ng/mL MMP-mediated type II collagen degradation fragment. Type 2 collagen is the major fibrillar protein of cartilage and C2M is released 
on activation of MMPs.47

S_COLL2_1 <15% 200–2200 nM Type II collagen degradation fragment similar, but from a different domain compared with C2M.48

S_COLL2_1NO2 <15% 150–6000 pg/mL Inflammation-related (nitrated) type-II collagen degradation fragment. Nitrosylation is a post-translational modification induced by an 
increase in oxidative stress associated with inflammation.48

S_COMP <15% 1–50 units/L Cartilage oligomeric matrix protein. COMP is articular cartilage protein, which is released when cartilage is turned over.49

S_CTXI <10% 0–3 ng/mL Cross-linked, isomerised and cathepsin K-generated fragment of type I collagen C-terminal telopeptide. Type I collagen is the major 
fibrillar protein of bone and some connective tissues. Cathepsin K is mainly expressed by osteoclast, making CTX-I a marker of bone 
resorption.50

S_HA <15% 10–800 ng/mL Hyaluronic acid is a glycosaminoglycan distributed widely across connective, epithelial and neural tissues, including articular cartilage. 
It is released as part of tissue remodelling and turnover induced by, for example, inflammation.50

S_hsCRP <10% 0–60 mg/L High-sensitive C reactive protein (hsCRP) is an acute reactant elevated in chronic inflammatory diseases and used as a diagnostic 
marker in different rheumatic diseases.51

S_PRO_C2 <10% 5–1000 ng/mL Type IIB collagen propeptide (synthesis). When new type II collagen is expressed by cartilage cells, PRO-C2 is released and is a 
reflection of cartilage formation.12

S_NMID <10% 1–180 ng/mL Bone gamma-carboxyglutamic acid-containing protein.52

S_RE_C1M <15% 10–500 ng/mL MMP-mediated type I collagen degradation. See S_C3M and S_CTX-I.53

U_CTXI_ALPHA <15% 0–10 μg/mmol Cathepsin K-generated fragment of type I collagen C-terminal telopeptide (corrected for creatinine) is a non-isomerised version of 
S_CTX-I and therefore believed to reflect degradation of young bone in contrast to the isomerised which measures old bone.54

U-CTXII <15% 10–2500 ng/mmol MMP- and cathepsin K-mediated type II collagen degradation fragment (corrected for creatinine). See CTX-I and C2M as well.50

Coefficient of variation (CV) and detection range are shown; for further assay validation, see references.

Figure 1  Overview of the data analysis pipeline. PCA, principal component analysis.
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consistency of the discovered clusters was validated using data 
from an external cohort.

METHODS
Cohort description and data collection
Applied Public-Private Research enabling OsteoArthritis Clinical 
Headway funded by the Innovative Medicines Initiative (IMI-
APPROACH, trial registration number: NCT03883568) is a 
prospective cohort study including 297 patients with tibiofem-
oral OA according to the American College of Rheumatology 
classification criteria. Patients were (pre)selected from existing 
cohorts using ML models, developed on data from the CHECK 
cohort, to display a high likelihood of radiographic joint space 
width (JSW) loss and/or knee pain progression.23 24 The ultimate 
objective of APPROACH is to use real-world data to develop 
analysis methodologies to define disease subtypes and iden-
tify different knee OA clusters/phenotypes, to allow targeted 
treatment.

The IMI-APPROACH cohort screened 433 patients with 
OA (at five centres: Utrecht and Leiden, The Netherlands; A 
Coruña, Spain; Paris, France; Oslo, Norway) and enrolled 297 
patients most likely to be pain and/or structural progressors 
at 2-year follow-up.24 Enrolled patients were predominantly 

1 2 3 4 5 6 7 8

patients: 295, features: 16, clusters: 3

6

7

8

9

10

11

12

13

Cluster 1 (93 patients)

Cluster 2 (109 patients)

Cluster 3 (93 patients)

Figure 2  Clustering visualisation (k=3) obtained with UMAP (Uniform 
Manifold Approximation and Projection).

Figure 3  Impact of biomarker values on classification models decisions. Biomarkers are ordered by importance (most important on top). The SHAP 
values on the x-axis represent strength and direction of impact (positive value indicates increased probability of belonging to the cluster) for each 
patient. The colour represents the biomarker value (blue if low, red if high).
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women (n=230), predominantly Caucasian/white (n=283), 
aged 44–82 years (median age: 67.5, IQR 62–71 years) and 
mostly overweight (median body mass index (BMI): 27 kg/m2, 
IQR 24.4–31.6). At baseline, serum (S) and urine (U) samples 
were collected for analyses of 16 biochemical markers (table 1). 
The biomarkers were measured in International Organization for 
Standardization-certified laboratories at Nordic Bioscience (S_
RE_C1M, S_C2M, S_C3M, S_C10C, S_CRPM, S_PRO_C2, U_
CTXII, S_CTXI, U_CTXI_ALPHA, S_NMID, S_HA, S_COMP 
and S_hsCRP), Artialis (S_COLL2_1 and S_COLL2_1NO2) and 
Lund University (S_ARGS). The list of biomarkers was selected 
based on present knowledge of joint tissue turnover and OA.

In addition to the biochemical markers data (﻿‍B‍), extra 
information (﻿‍E‍) was collected as part of the IMI-APPROACH 
cohort.23 These included assessment of radiographs of knees and 
hands, MRIs and CT scans of the knees, and outcomes of phys-
ical examinations and questionnaires: Function Index of Hand 
OA (FIHOA), Hip Disability and Osteoarthritis Outcome Score, 
Intermittent and Constant Osteoarthritis Pain Score, Knee-Injury 
and Osteoarthrosis Outcome Score (KOOS) and the 36-Item 
Short Form Health Survey. See online supplemental table B1. All 
data used in this paper were collected at the baseline visit of the 
study, except for the data on progression (Relation of clusters to 
progression section).

Data preprocessing
The biochemical markers data (﻿‍B‍) were log transformed to 
account for long-tailed distributions. Missing data in ﻿‍B‍ (<0.01% 
of values) were estimated (imputed) using either random Forest 
(RF) or k-nearest neighbour (KNN) regression models (see 
online supplemental appendix A, section 1.1).

As not all patients fasted before the sample collection, the 
fasting sensitivity of the biomarkers had to be assessed. The 
Spearman rank correlation with the patient’s fasting status was 
found to be weak, except for U_CTXI (r=0.41). The values for 
this biomarker were corrected with an imputation approach 
(see online supplemental appendix A, section 1.2). We opted 
for a model-agnostic correction (ie, correcting the data rather 
than altering the analysis model) because it is more suitable for 
the downstream ML analysis we performed. ﻿‍

−
B‍ identifies the 

processed biomarkers data.

Clustering process
The extremes values of ﻿‍

−
B‍ were trimmed with a combination of 

Tukey and Winsor methods25 to reduce the effect of outliers. 
Afterwards, principal component analysis was used to elimi-
nate correlated biomarkers (see online supplemental appendix 
A, section 1.4). This resulted in 13 principal components which 
were found to explain 95% of data variance. These components 
were clustered using the ﻿‍ k‍-means algorithm.26 The optimum 
value for ﻿‍ k‍ (number of clusters) was identified from the 
consensus of silhouette score, the j-score and adjusted mutual 
information score. To obtain a robust estimate of these metrics, 
for each ‍k = 1, . . . , 9‍ the k-means algorithm was run ‍10‍ times 
with different random seeds (see online supplemental appendix 
A, section 1.5). The clustering with the highest quality was found 
for ‍k = 2, 3‍. We chose ‍k = 3‍ for the rest of the analysis in this 
paper as we aimed to investigate the highest number of mean-
ingful clusters. The final cluster membership was taken from the 
algorithm run with the highest silhouette score for ‍k = 3‍.

Cluster interpretation
Using data in ﻿‍

−
B‍, we trained three RF classification models 

predicting membership to each cluster (one cluster vs the rest) and 
then interpreted the model decisions using the SHAP (SHapley 
Additive exPlanations) TreeExplainer method,27 to understand 
which variables determine the cluster membership. RF hyper-
parameters were tuned through a nested cross-validation proce-
dure with recursive feature elimination (RFE-CV). See online 
supplemental appendix A, section 1.6 for more details.

Statistical analysis of cluster differences
To further describe the clusters, statistical tests were conducted 
for each feature in ﻿‍

−
B‍ and ﻿‍E‍, to assess whether the clusters had 

statistically different distributions for individual markers. The 
Mann-Whitney U test was used for continuous and ordinal 
features, and the χ2 test for categorical ones. The clusters 
were compared pairwise, and the null hypothesis was rejected 
following the Benjamini-Hochberg correction procedure for 
multiple comparisons applied across features.28 The features in 
‍
−
B‍ were inverse log transformed to operate on actual biomarker 
concentrations (see online supplemental appendix A, section 
1.3, for normality tests).

Figure 1 shows an overview of the entire data analysis pipe-
line described in this section, including data preprocessing, clus-
tering, cluster’s interpretation and the statistical analysis.

Validation on an external cohort
The proposed clustering pipeline was also applied to FNIH/
OAI. The FNIH/OAI is the largest available OA cohort that was 
similar to IMI-APPROACH in terms of biomarkers.29 The two 
cohorts had 11 biomarkers in common. Incurrent sample remea-
surement for the adjustment of technical batch effects could not 

Figure 4  Radar plot showing the median biomarker concentrations 
for each cluster. When the difference between the medians is 
statistically different, it is marked with a circle (instead of a dot). 
The axes show values between the 10% and 90% quantile and are 
expressed as percentages. The black arcs on the outside show the 
pathology associated with each biomarker.
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be performed, as no samples were left and available from the 
FNIH/OAI cohort for this purpose. Therefore precise data align-
ment on the absolute mean concentrations and variance between 
the two cohorts was not possible to conduct.30 31 As a result, 
the only possible type of external validation consisted in repli-
cating the clustering pipeline for the two cohorts restricted to 
the common set of 11 biomarkers and evaluating the consistency 
of the identified clusters across cohorts.

Potential age and sex-based bias
To investigate the potential bias of age and gender in the clus-
tering process, we statistically analysed the differences in age 
and sex across clusters, and we applied our clustering pipeline 
separately to the male and female subcohorts for both IMI-
APPROACH and FNIH/OAI, to assess the consistency across 
clusters.

Relation of clusters to progression
To verify a relation between the clusters and disease progression, 
we used 2-year follow-up data to decide for each patient whether 
and how they have progressed, available only for a subset of 221 
IMI-APPROACH participants. We defined one non-progressive 
category and three progressive categories related to pain, struc-
ture, and combined pain and structure.23 24 Then we analysed 
the distribution of progressors in each cluster. See online supple-
mental appendix E for more details.

RESULTS
Cluster interpretation
Our clustering pipeline identified three clusters. These are shown 
in figure 2 as a two-dimensional projection obtained with UMAP 
(Uniform Manifold Approximation and Projection).32 UMAP 
hyperparameters were optimised via grid search to maximise the 
two-dimensional silhouette score. The projection preserves the 
local neighbourhood structure and gives an idea of the strength 
of the global separation between the clusters in the original 
multidimensional space.

The classification models trained to predict patient’s cluster 
membership achieved high F1 scores (C1 vs rest: 0.85, C2 
vs rest: 0.91, C3 vs rest: 0.88). As a result, the subsequently 
performed model interpretation was expected to be meaningful. 
Figure 3 shows which biomarkers were predominantly used by 
each model to decide the cluster membership. Figure 4 compares 
the median biomarker concentrations for each cluster in a radar 
plot. Figure 5 shows the differences in biomarker value distribu-
tions across clusters. Bringing all these results together, the three 
clusters were interpreted as follows:

	► Cluster 1 represents a low tissue turnover phenotype: 
patients have all the inflammation and structural damage 
related biomarkers in the mid/low ranges.

	► Cluster 2 represents a structural damage phenotype: patients 
have high values of the bone and cartilage markers: S_CTXI, 
U_CTXIALPHA, S_NMID and U_CTXII.

	► Cluster 3 represents a systemic inflammation phenotype: 
patients have high values of the inflammatory and MMP-
driven markers: S_hsCRP, S_RE_C1M, S_CRPM and S_
C3M. In contrast, these patients show low values of bone 
and cartilage related markers: U_CTXIALPHA, S_NMID, 
and S_CTXI.

Clustering stability
The clustering stability was investigated by comparing the results 
obtained for ‍k = 3‍ with those obtained for ﻿‍k = 4‍ and ‍k = 5‍. We 

found that clusters and interpretation were reasonably preserved 
at least until ‍k = 5‍. This demonstrates that the three clusters 
analysed in this work are well-defined in the data space and 
robust with respect to finer clustering (see online supplemental 
appendix A, section 1.7).

Statistical analysis of differences between clusters
Several statistically significant differences in clinical scores were 
found. Full results are provided in online supplemental appendix 
B, and here we only present highlights of those findings. All 
figures cited in this section are provided in online supplemental 
appendix B.

	► Clusters 2 and 3 had a higher percentage of women than 
cluster 1, and cluster 3 had a higher mean BMI (online 
supplemental figure B15).

	► There was no difference in median age and range, smoking 
status, comorbidities and use of OA medication (online 
supplemental figure B14) across the clusters.

	► Cluster 3 had statistically more patients experiencing 
substantial pain when standing (KOOS_P09, online supple-
mental figure B9), burning sensation (pain detect 09, online 
supplemental appendix B, B14) and more pain now and on 
average over the past 4 weeks (pain detect 01 and 03, online 
supplemental figure B14) than clusters 1 and 2. Patients in 
cluster 2 also experienced more pain in the past week than 
those in cluster 1 (pain detect 03, B14). Maximum Numeric 
Rating Scale (NRS) pain for hands were higher in cluster 3 
(online supplemental figure B15), as well as having worse 
overall health self-assessment (SF36_11d, online supple-
mental figure B17).

	► Cluster 1 has higher knee JSW (mean) than cluster 2 and less 
severe carpometacarpal Kellgren-Lawrence scores compared 
with cluster 3 (online supplemental figure B17).

External validation using FNIH/OAI data
We reduced the set of data features to the common subset of 
11 biomarkers across the IMI-APPROACH and FNIH/OAI 
cohorts and applied the same clustering pipeline to both data-
sets. Figure 6 shows the comparison of obtained clusters. Despite 
the removal of five biomarkers, the IMI-APPROACH clusters 
still corresponded to structural damage, inflammatory and low 
tissue turnover endotypes. The FNIH/OAI clusters were found 
to consistently exhibit the same patterns, demonstrating cross-
cohort robustness of our approach (see online supplemental 
appendix C).

Analysis of age and gender-based bias
We found no statistical difference between clusters in terms of 
age, as well as no statistical difference between male and female 
subcohorts in terms of age (see online supplemental figure 
D1). However, the male and female subcohorts had statisti-
cally different distributions for the following eight biomarkers: 
S_ARGS, S_C10C, S_COLL2_1, S_COLL2_1NO2, S_CTXI, S_
NMID, U_CTXII and U_CTXI_ALPHA. Moreover, the clusters 
were significantly different in terms of gender, suggesting that it 
plays an important role in driving the clustering results (online 
supplemental figure D4). Similar patterns could be found for the 
FNIH/OAI cohort (see online supplemental appendix D).

Relation of clusters to progression
Table 2 summarises the progression status of the clusters. While 
we found progressors in all clusters, they were not distributed 
uniformly by progression type. There was more pain-related 
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progressors and combined pain and structure progressors in the 
inflammation cluster (C3). Similarly, there were more structure-
related progressors in the structural damage cluster (C2). The 
highest relative number of non-progressive patients was found in 
the low tissue turnover cluster (C1) and the lowest in the inflam-
mation cluster (C3).

DISCUSSION
The aim of this work was to test if ML techniques can be used to 
identify biologically meaningful subgroups of patients with OA in 

the APPROACH cohort based on selected biochemical markers. 
By using clustering, that is, an unsupervised ML approach that 
does not exploit domain knowledge, we were able to identify 
molecular endotypes from 16 well-defined biochemical markers 
reflecting different molecular pathways and ongoing pathophys-
iological processes. We discovered three distinct OA pheno-
types associated with the clusters (endotypes): C1—a low tissue 
turnover phenotype, C2—a structural damage phenotype and 
C3—systemic inflammation phenotype. The clustering reflects 
well the current biological and mechanistic understanding of 

Figure 5  Comparison of biochemical markers’ distributions in each cluster, and the statistical relevance of differences between them.

W
alaeus B

ibl./C
1-Q

64. P
rotected by copyright.

 on A
ugust 18, 2023 at Leids U

niversitair M
edisch C

entrum
http://ard.bm

j.com
/

A
nn R

heum
 D

is: first published as 10.1136/annrheum
dis-2021-221763 on 4 M

arch 2022. D
ow

nloaded from
 

http://ard.bmj.com/


672 Angelini F, et al. Ann Rheum Dis 2022;81:666–675. doi:10.1136/annrheumdis-2021-221763

Osteoarthritis

the respective biomarkers, in that distinct patterns could be 
identified for the subtypes. In particular, the combination of 
different markers describes the underlying biology in the clus-
ters. This result is in line with published results from the FNIH/
OAI biomarker initiative,29 33 and the progression status of the 

members of each cluster is consistent with the cluster inter-
pretation provided above: C1 has the highest proportion of 
non-progressors, C2 has the highest proportion of structural 
progressors and C3 has the highest proportion of pain-related 
progressors, and those progressing both in pain and in struc-
ture. However, although the proportions varied (ranging from 
43% to 56%) progressive patients were found in all clusters. 
This means that the clusters represent different disease subtypes, 
within which the progression may occur.

Putting this in context of the work conducted on markers in 
clinical interventional trials, a few things can be learnt. Oral 
salmon calcitonin was tested as an antiresorptive treatment 
for OA. The phase III clinical trials failed to meet their clin-
ical endpoints. Interestingly, calcitonin did significantly modu-
late CTX-I and CTX-II.34 There are likely several reasons why 
this study failed, however, it begs to wonder what would the 
outcome have been if the study was enriched for C2 patients? 
Another failed trial was testing the efficacy of the IL-1 mono-
clonal antibody in OA and found markers from C3 modulated by 
treatment.35 Would it still fail if it was enriched for C3 patients?

Despite a large and growing disease burden in OA, many phar-
maceutical companies have de-emphasized or even abandoned 
OA drug development due to perceived hurdles. Crucial in this 
is the lack of appropriate predictive and outcome measures that 
can robustly identify patients early in the disease, which may 
benefit from a specific therapy. The lack of specific and sensitive 
baseline characteristics and subsequent endpoints to differen-
tiate between responders and non-responders, both at the level 
of pain and tissue structure modification (ie, DMOAD), has led 
to trials that included hundreds of patients in each arm with at 
least 3-year follow-up. Despite these enormous trials, European 
Medicines Agency and Food and Drug Administration have not 
approved any DMOAD yet.36 There is a general lack of under-
standing of OA pathogenesis which appears rather variable and 
likely reflects different phenotypes with fundamental differences 
in disease aetiology, tissue alterations, clinical manifestations 
(pain/mobility) and disease progression. Although the current 
mindset for drug treatment in the field is moving to a more 
personalised medicine and patient stratification approach, there 
are no accepted methods or guidelines to classify patients with 
OA, for example, to predict the underlying pathophysiology, to 
select patients according to their prognosis or to differentiate 
between patients in terms of diagnosis methodology and treat-
ment plan. However, several initiatives have been initiated to 
generate more focus on the development of projects for identi-
fying endotypes. For example, a framework for conducting and 
reporting phenotyping research was provided37—this may very 
well be the first step toward integrating the concept of pheno-
typing in research.

A better understanding of disease stratification and acceptance 
of a guideline to classify patients with OA will provide clear 
phenotype-directed protocols for DMOAD trials that enable us 
to target subgroups with OA that have uniform disease charac-
teristics, thereby increasing the chances of success. We propose 
that the biomarker clustering analysis performed herein can 
be used to stratify patients with OA into groups with distinct 
molecular endotypes. This approach could potentially drive OA 
clinical trials stratification and serve as the basis for precision 
medicine strategies for OA progression in the future. Although 
there are limited data publicly available, there have been a few 
attempts to identify multimarker endotypes in OA. Sonh et al 
showed that several cytokines were elevated in synovial fluid 
and serum of patients with OA compared with normal samples 
when looking at an average level; however, it was also obvious 

Figure 6  Radar plots comparing clusters found in the IMI-APPROACH 
and FNIH/OAI cohorts, using common subset of biomarkers. The median 
biomarker concentration for each cluster is shown. When the difference 
between the medians is statistically significant, it is marked with a circle 
(instead of a dot).

Table 2  Distribution of progressive IMI-APPROACH patients across 
clusters.

Cluster (members) No progression Only pain Only structure Both

C1 (69) 39 (57%) 20 (29%) 7 (10%) 3 (4%)

C2 (84) 45 (54%) 21 (25%) 16 (19%) 2 (2%)

C3 (68) 30 (44%) 25 (37%) 7 (10%) 6 (9%)
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that the pattern was very heterogeneous.38 Werdyani et al identi-
fied three distinct endotypes using metabolomics.39 One of those 
clusters showed some association with muscle weakness. These 
data suggest that a subset of patients could belong to an inflam-
matory endotype.

Moreover, we focused on biochemical markers measured at 
the baseline of the study, and not their longitudinal changes, 
as this analysis would be more useful to inform future clinical 
trials. Longitudinal monitoring of biomarkers can give insight 
in the pharmacodynamic effects or provide early proof of effec-
tiveness of a compound in interventional clinical trials, however 
often fail to predict progression in the study population in these 
trials.34 40–42 Therefore, although longitudinal monitoring of 
individual biomarkers are only modestly predictive (if at all) of 
knee OA progression, they might have some utility as patient 
stratification like described herein for enriching OA trials for 
progressors.29

As more longitudinal data of the IMI-APPROACH cohort 
becomes available (currently an ongoing process), future inves-
tigations could explore the longitudinal data on biomarkers, 
imaging and other markers in IMI-APPROACH to further refine 
the description of the phenotypes and possibly explore more 
detailed stratifications. This analysis could take many different 
directions, for example, analyse cluster membership differences 
between visits or on comparison of the entire patient trajectories 
over 2 years of the study.

The main limitations of this work were the small numbers 
of patients in the IMI-APPROACH cohort and being able to 
perform only a partial validation with an external cohort, limited 
to a common subset of biomarkers. It would be beneficial for 
the field if future biomarker studies use a superset of the FNIH/
OAI and IMI-APPROACH biomarkers, to allow for a complete 
validation of the discovered clusters. The use of predefined set 
of biochemical markers limits the discovery potential to certain 
molecular mechanisms. This could be avoided if clustering was 
performed on data generated by an untargeted platform (eg, 
RNA-seq); however, the analysis of such high-dimensional 
data is often much less robust, especially on small sample sizes. 
Finally, more research should be conducted on more abundant 
cohorts to fully evaluate the gender bias in clustering analysis of 
OA-related biochemical markers. From our analysis in the IMI-
APPROACH and FNIH/OAI cohorts, we believe it is advisable 
for future studies to consider male and female patients separately 
and possibly draw conclusions that are gender based, if sample 
sizes are large enough.
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