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the mapping from data: Given a set of input 
and output data, the NN uses a backpropa-
gation algorithm [10] to learn the network 
parameters so that the input can go through 
these parameters to be mapped to the output. 
The deeper the network, the more complex a 
mapping it can learn. Once trained, the NN 
can be deployed—that is, it can perform the 
learned mapping on an unseen dataset. De-
spite its mathematic soundness, however, the 
utilization of NNs has been limited for de-
cades because of a number of practical issues 
such as the tendency to overfit, the difficul-
ty to converge, and a lack of computational 
power [3].

The late surge of deep learning can be at-
tributed to the renaissance of the convolu-
tional neural network (CNN), which facili-
tates raw image input and deep architecture 
[11–13], the development of advanced graph-
ical processing units that enable fast comput-
ing, and the accumulation of a massive da-
taset that amplifies the concept of learning 
[14, 15]. Although the classic methods strive 
to first extract meaningful features from im-
ages (e.g., those representing edges, corners, 
lines, and so on) and to then classify these 
feature ensembles, deep learning methods 
integrate the two steps into one step: Deep 
learning methods simultaneously learn the 
feature representation and classification [2, 
3] so that both are optimized by the data. To-
day, deep learning methods have shown ex-
cellent performance unmatched by classic 
machine learning methods in many areas of 
computer vision [4, 6].
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E
ver since the initial success of 
AlexNet (A. Krizhevsky) at the 
annual ImageNet competition in 
2012 [1], deep learning methods 

have unleashed AlexNet’s power and have 
swiftly swept through all areas of computer 
vision [2–4]. Medical image analysis, as a 
subfield of computer vision, has witnessed 
the same paradigm shift from traditional ma-
chine learning to deep learning [5, 6]. Cardi-
ac MRI, the state-of-the-art imaging tool for 
evaluating the heart, benefits meanwhile 
ftrom the development of deep learning tech-
niques to enhance its quantitative nature. 
This article aims to explain the concept of 
deep learning, review its current applications 
in quantitative cardiac MRI, and discuss its 
limitations for now and challenges for the 
near future.

The Concept of Deep Learning 
The current popularity of deep learning in 

radiology calls for a clear explanation of its 
rationales to the radiologists. What is deep 
learning? Deep learning refers to the set of 
machine learning methods using multilayer 
neural networks (NNs) to analyze data [2]. 
The term “deep” comes from the fact that 
there are literally many layers of neurons—
up to hundreds—between the input layer and 
output layer of a NN.

The concept of a multilayer NN [7, 8], ini-
tially conceived of to imitate the intercon-
nection of neurons in the human brain [9], 
dates back to the 1950s. An NN performs 
mapping from input to output, and it learns 
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:

OBJECTIVE. The recent advancement of deep learning techniques has profoundly 
impacted research on quantitative cardiac MRI analysis. The purpose of this article is to in-
troduce the concept of deep learning, review its current applications on quantitative cardiac 
MRI, and discuss its limitations and challenges. 

CONCLUSION. Deep learning has shown state-of-the-art performance on quantitative 
analysis of multiple cardiac MRI sequences and holds great promise for future use in clinical 
practice and scientific research. 
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Deep Learning for Quantitative 
Cardiac MRI

Cardiac MRI is an advanced and versa-
tile cardiovascular imaging modality [16–
18]. It is generally considered the reference 
standard method for evaluation of cardiac 
structure and function [19, 20]. Cardiac MRI 
is also widely used for myocardial scar as-
sessment [21]. Recent mapping techniques 
further add to its quantitative nature: The 
myocardium can be characterized in abso-
lute measures of milliseconds using T1 or T2 
mapping or percentages using extracellular 
volume (ECV) quantification [22–25]. In ad-
dition, cardiac MRI is also used to quantify 
myocardial strain [26, 27] as well as intra-
cardiac blood flow hemodynamics [28, 29]. 
Within one examination, cardiac MRI poten-
tially delivers a rich spectrum of information 
covering cardiac structure, function, tissue, 
and flow, which greatly enhances our under-
standing of cardiac abnormalities in clinical 
diagnosis and scientific research.

To achieve this, however, each sequence 
demands quantification in its own way. Quan-
titative analysis for cardiac MRI has been a 
much loved topic in medical image analy-
sis not only because of its clinical utility, but 
also because of its technical challenges [30–
42]. The analysis methods need to tackle the 
vast variability in cardiac MRI data: the dif-
ferences in abnormalities, morphology, size, 
and orientation of the heart and also differ-
ences in contrast, luminance, artifacts, FOV, 
and signal-to-noise ratio of the image data. 
Until the recent emergence of deep learning 
techniques, no classic image analysis meth-
od has shown sufficient promise to deal with 
such a combination of complexity and vari-
ability in clinical data. Thus, today’s analy-
sis of cardiac MRI still involves substantial 
manual input from radiologists; however, the 
situation is at the verge of change [43].

In the following sections, a brief review is 
given on the current deep learning research 
activities covering a wide spectrum of quan-
tification analyses in cardiac MRI.

Structure Quantification
Cardiac MRI provides the reference stan-

dard measurement of cardiac structure, in-
cluding thickness of the myocardial wall and 
end-systolic and end-diastolic volumes of 
the left ventricular (LV) and right ventricu-
lar (RV) cavities. The steady-state free pre-
cession (SSFP) cine sequence is commonly 
acquired in cardiac MRI examinations, but 
manually identifying the systolic and dia-

stolic phases and annotating the frames (nor-
mally > 300 frames) is tedious and subjec-
tive. Automated algorithms for segmenting 
heart ventricles and blood cavities have been 
in development for decades; however, the 
last-generation algorithms are used mostly 
in the laboratory because it proved hard to 
reach the clinically acceptable accuracy and 
robustness necessary without considerable 
user interaction.

Multiple recent studies have suggested 
that deep learning methods using CNN may 
transform the situation [39, 44–47]. Initial 
studies in this direction used a pixel-classifi-
cation CNN—for example, a CNN to classify 
if a pixel belongs to myocardium by evaluat-
ing its surrounding context (patches) [31, 48]. 
Later work adopted a more powerful network 
architecture called U-Net (O. Ronneberger, 
P. Fischer, T. Brox) [49], which is an end-to-
end CNN. By learning from a high number 
of cine images with known LV and RV an-
notations, the CNN is able to formulate the 
complex mapping from the original cine im-
age to its segmentation.

For clinical use outside the laborato-
ry, however, it is important that the CNN 
trained on one particular dataset can gener-
alize well to other datasets that were not seen 
during training. The dataset varied in pub-
lished studies from a single dataset, to data 
for a big population, to multivendor and mul-
ticenter data [44–47]. With sufficient vari-
ability in the training set, a combination of 
accuracy, robustness, and generalizability 
could be reached without any user interac-
tion, showing promise for eventually enter-
ing into regular clinical use [46]. In 2017, the 
first U.S. Food and Drug Administration–ap-
proved deep learning software product was 
launched for automated cine MRI segmenta-
tion [50], and studies are ongoing to validate 
its use in the clinic.

MR angiography (MRA) is an alterna-
tive for high-resolution 3D visualization 
of cardiac structures in situations in which 
a CT examination is not preferred [51, 52]. 
Deep learning methods again showed out-
standing performance in segmenting com-
plex cardiac anatomies from MRA images 
(e.g., segmenting left atrium [LA] with pul-
monary veins [PVs] in patients with congeni-
tal heart disease) [53–56]. For the MRA im-
ages with nearly isotropic resolution, studies 
showed that a 3D variant of U-Net can take 
better advantage of the rich imaging content 
and can achieve even higher performance 
than the original 2D U-Net [53–56].

Function Quantification
From a segmented cine MRI examina-

tion, cardiac function parameters, includ-
ing left ventricular ejection fraction (LVEF) 
and right ventricular ejection fraction, are 
readily derived. Interesting technical de-
velopment have been made beyond the U-
Net, which in its original form processes 
each cine frame separately. Notwithstand-
ing its good performance, such a CNN sees 
cine MRI in a way very different from hu-
man experts: It analyzes each frame sepa-
rately, whereas radiologists tend to view the 
frames in cine mode and pay attention to the 
cardiac motion. Deep learning CNN can be 
designed to imitate the behavior of an expe-
rienced radiologist. In a recent work [57], an 
extra module of optical flow [58] was inte-
grated into the U-Net so that the motion be-
tween frames could be extracted to enhance 
the temporal coherence of segmentation. 
The optical-flow U-Net showed further im-
proved segmentation performance over the 
original U-Net—in particular, at challeng-
ing locations such as base and apex where 
individual segmentation often goes awry. 
This work exemplifies how deep learning 
methods can integrate human experience on 
a higher cognitive level.

Another interesting technical develop-
ment is a deep CNN that maps the original 
cine MRI directly to all structural and func-
tional parameters without intermediate LV 
and RV segmentation [59]. The CNN ar-
chitecture consists of an image autoencod-
er network that extracts the low-dimension-
al features from the cine MRI study and a 
regression network that makes quantitative 
predictions from these features. The two 
networks are jointly optimized by the train-
ing data. This data-to-parameter approach 
showed the strong capability of deep learn-
ing methods to perform highly nonlinear and 
complex mapping defined by the user.

Strain and Motion Quantification
Function measurements (e.g., LVEF) are 

frequently used in clinical practice for guid-
ing cardiovascular disease treatment; how-
ever, they can be insensitive to early re-
modelling of the heart [60, 61]. Changes of 
mechanical properties in local myocardial 
muscles may occur before global manifesta-
tion of function impairment [20, 61]. Myo-
cardial strain, defined as the rate of myo-
cardial tissue contraction or relaxation, is 
widely used for quantification of the me-
chanical properties of myocardium.
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Cardiac MRI provides several possibili-
ties to quantify regional myocardial strain. 
Specific pulse sequences, such as tagging 
and displacement encoding with stimulated 
echoes (DENSE), can be used to assess myo-
cardial deformation. Use of these sequences 
in the clinic is, however, limited because of 
the need for an extra acquisition and the com-
plexity of image postprocessing. Myocardial 
deformation can also potentially be extract-
ed from a regularly acquired SSFP cine se-
quence. The feature tracking (FT) method 
similar to that for speckle echocardiography 
can be used; however, FT cardiac MRI lacks 
a firm physical ground because there are no 
random patterns (e.g., speckles) in cine MRI 
as there are in echocardiography [61].

Deep learning methods can go beyond 
semantic segmentation of cine MRI to fur-
ther address the analysis of cardiac motion 
and thereby strain in the myocardium. In a 
recent work [62], a deep learning CNN was 
designed to analyze the unenhanced cine im-
ages of patients with chronic infarction and 
to produce a map of infarction based on the 
local motion extracted from the network. 
The cine-based infarction map showed good 
agreement with infarction localization de-
rived from late gadolinium-enhanced (LGE) 
MRI, with a sensitivity of 90% and speci-
ficity of 99%. The work shows the possibil-
ity of identifying myocardial scar by motion 
analysis without administration of a contrast 
agent. Although myocardial strain was not 
explicitly addressed in this work, it can be 
extracted as an intermediate output from the 
CNN. Research works in this direction are 
in fast development [57, 63, 64], and clinical 
validation is warranted to prove the value of 
CNNs in the clinic.

Tissue Quantification
A unique strength of cardiac MRI is its 

capability to noninvasively assess myocar-
dial tissue properties. LGE MRI is the ref-
erence standard technique for assessment of 
myocardial scar [16, 21] and has significant 
diagnostic and prognostic value for a range 
of cardiovascular diseases [65–68]. Accu-
rate segmentation and quantification of LGE 
MRI are also highly relevant for advanced 
studies such as interventional procedure 
guidance and individualized risk stratifica-
tion [69–72]. In the medical literature, there 
are two established LGE MRI quantification 
methods—namely, the SD method and the 
full width at half-maximum (FWHM) meth-
od [72–74]. Both methods require manual in-

put from the observer: first the myocardium 
region and then the ROI of infarcted or re-
mote myocardium region need to be manu-
ally annotated. The SD method defines a 
threshold of the annotated remote myocardi-
um as follows:

mean + N × SD,

where mean is the mean signal intensity in 
the annotated healthy myocardium region, 
N is the coefficient that ranges from 1 to 7, 
and SD is the SD of signal intensity in the 
annotated healthy myocardium region. The 
FWHM method defines a threshold as a per-
centage of the maximum signal intensity in 
the annotated infarcted myocardium (P) (e.g., 
50%). Myocardial regions with signal inten-
sity higher than this threshold are recognized 
as scar. The two methods are widely adopt-
ed; however, it has been difficult to reach a 
consensus value of N or P in spite of earnest 
search in multiple studies [74–76]. The right 
numbers are subject to the image noise level, 
scar pattern, ROI size, and MRI sequence pa-
rameters, all of which vary among patients, 
centers, vendors, and observers.

The problem of data-specific parameters 
can potentially be addressed by deep learn-
ing CNNs, which “see” enough annotated 
LGE images to infer the image-to-segmenta-
tion mapping. In [77], a patch-based CNN was 
developed to classify myocardial scar in pa-
tients with a history of infarction. In [78], an 
end-to-end U-Net architecture was adopted to 
simultaneously segment the LV myocardium 
and scar from the LGE MR images of patients 
with a history of infarction. The methods were 
extended to a more complicated scenario, the 
segmentation of atrial scar on LA and PVs 
[79, 80], the morphologies of which are highly 
irregular and variable. Initial work has shown 
state-of-the-art accuracy of LA and PV seg-
mentation and reasonable accuracy of scar 
segmentation [79]. Once clinically validated, 
the deep learning method can have impor-
tant clinical implications for atrial fibrillation 
treatment and management. Atrial scar extent 
is considered to be an important prognostic 
factor for patients with atrial fibrillation, and 
accurate scar delineation facilitates the inter-
ventional procedure and potentially improves 
its efficiency and efficacy [81, 82].

An important development in cardiac MRI 
is the recent development of parametric map-
ping techniques, including T1, T2, T2*, and 
ECV techniques [22–25, 83]. The mapping se-
quences can be used to detect diffuse cardio-

myopathies in the absence of focal scar and to 
identify subclinical myocardial involvement 
before structural or functional remodelling 
[83, 84]. Quantitative tissue mapping enables 
studies to be performed across different cen-
ters, vendors, and longitudinal time points. To 
report the myocardial T1, T2, T2*, and ECV 
values, however, radiologists need to perform 
manual annotation of the myocardium and 
blood pool against the varying contrast. A re-
cent study [85] showed that ROI identification 
can be automated by deep learning methods 
so that quantification of myocardial T1, blood 
T1, and ECV can be accomplished automat-
ically. In the same spirit as cine image seg-
mentation, a deep learning CNN was trained 
to segment the myocardium and blood region 
given a large set of annotated T1-weighted 
frames. The CNN achieved fast performance 
(< 0.3 second per image) with high accuracy 
(Dice index = 0.85). The method further re-
ported T1 values highly correlated to those 
obtained from manual annotation, with an 
intraclass correlation  coefficient compara-
ble to that between two expert readers [85]. 
This work again shows the high capability of 
CNNs to learn from data because T1 mapping 
sequences further a strong complication in ad-
dition to the existing cardiac MRI variability: 
At a different inversion time, the image con-
trast changes drastically because of gadolini-
um dynamics. The robustness of the CNN to 
contrast variability implies that the same ra-
tionale can be applied to T2, T2*, ECV, and 
perfusion images for automated reporting.

Other Developments
In previous sections, a number of research 

works have been reviewed, most of which in-
volved segmentation of cardiac structures. Car-
diac segmentation is a basis for further quan-
tification, and parameters of cardiac structure, 
function, strain, and tissue can be derived from 
it. Importantly, segmentation of cardiac struc-
tures also enables visual check and manual ed-
iting whenever necessary, providing an impor-
tant means of interaction to the users.

Technical developments have been made 
beyond cardiac segmentation. Deep learn-
ing networks can be trained to reconstruct 
high-quality cardiac MR images from seri-
ously undersampled (up to 9 times) k-space 
data [86]. This capability implies the pos-
sibility of substantially accelerated cardiac 
MRI acquisitions in the future. Learning-
based methods were also developed to per-
form quality control for cardiac MRI ac-
quisition, to detect incomplete or corrupted 
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images [87], and interestingly to control the 
quality of automated segmentation [88]. Ex-
periments on the large UK Biobank database 
[89] showed the feasibility to automate qual-
ity control steps that are conventionally per-
formed by expert observers.

Deep learning research has also extend-
ed to clinical diagnosis. In 2017, a technical 
challenge was organized by a medical imag-
ing society [39] with the dual goal of heart 
segmentation and disease classification; that 
is, based on a cine MRI acquisition, the goal 
was to classify a heart into one of five class-
es: normal, heart failure, dilated cardiomy-
opathy, hypertrophic cardiomyopathy, and 
abnormal right ventricle. Not surprising-
ly, deep learning methods achieved the best 
performance, and an accuracy of 96% was 
reported for fully automated diagnosis [90]. 
In the same light, a more recent work devel-
oped a dedicated CNN to learn the motion 
between cine frames and synthesized the 
shape and motion features to classify car-
diac abnormalities [64]. Deep learning fur-
ther shows the capability to predict survival 
in population studies. Bello et al. [63] devel-
oped a deep learning network named 4Dsur-
vival to predict subject survival in 12 years 
on the basis of cardiac motion extracted from 
cine MRI. The 4Dsurvival network reported 
higher predictive accuracy than the human 
benchmark (Harrell C-index, 0.75 vs 0.59).

This article has highlighted a number of in-
teresting developments in quantitative cardiac 
MRI using deep learning techniques and does 
not intend to be complete; the field remains 
young and fast evolving. Exciting new devel-
opments are being made and to be expected.

Discussion
Implications for Clinical Practice and 
Scientific Research

To date, deep learning has found many 
successful applications in quantitative cardi-
ac MRI. Existing studies show the unprec-
edented capability of deep learning meth-
ods to automatically process the complex 
multisequence cardiac MRI data and pro-
duce clinically relevant quantitative mea-
surements. When extensively and thoroughly 
validated, deep learning methods will fur-
ther empower cardiac MRI, the unique tool 
for cardiac imaging.

Deep learning can be the radiologists’ aid 
for reading cardiac MRI examinations. Cardi-
ac MRI typically is a lengthy examination, in 
terms of both acquisition and reporting. Even 
for experienced radiologists, it takes more than 

15 minutes to report a cardiac MRI study. The 
quantification of LVEF alone, for example, in-
volves exhaustive visual inspection and man-
ual annotation. Deep learning may speed up 
this process: It can provide segmentation and 
quantification in a few seconds for almost all 
sequences of cardiac MRI, and the radiologist 
may only need a few minutes to inspect the in-
termediate segmentation and to approve the 
results. Because the fatigue of manual analysis 
is taken away, radiologists can focus on more 
patient-oriented issues such as history and di-
agnosis. By automating cardiac MRI reading, 
deep learning can also allow cardiac MRI to 
be offered at more centers with radiologists 
with less experience or centers with a high vol-
ume of patients and not enough radiologists.

The integration of deep learning with car-
diac MRI has significant implications for sci-
entific research. Deep learning opens new pos-
sibilities for cardiac MRI quantification. For 
example, the difficulty of atrial scar analysis 
(either manually or automatically) has been a 
bottleneck to further develop and validate the 
clinical concepts related to scar in manage-
ment of atrial fibrillation. Accurate, objective, 
automated atrial scar segmentation by deep 
learning can play an important role in future 
research in this direction. Population studies 
such as the UK Biobank [89], in which tens 
of thousands of participants are recruited, can 
also benefit from deep learning. Whereas man-
ual analysis for tens of thousands of cardiac 
MRI data was practically impossible in the 
past, deep learning can handle them now in a 
batch and can yield valuable quantitative pa-
rameters for generating and testing hypotheses. 
Meanwhile, the improved accuracy, precision, 
and objectivity of deep learning have positive 
effects on clinical trials that use cardiac MRI to 
monitor treatment effects. Increased precision 
in quantification, when incorporated into the 
power calculation, implies that fewer partici-
pants are needed. The staffing requirements 
from core laboratories can also be reduced with 
deep learning tools that are always precise and 
never weary. Both can reduce the cost of these 
typically expensive trials.

Limitations and Future Directions
Deep learning started to be an important 

concept in radiology not long ago. Debate on 
its future role in radiology is still ongoing. To 
fully embrace deep learning and tap its pow-
er, it is important to recognize its advantages 
as well as its limitations.

From a theoretic point of view, deep learn-
ing is a statistical method that learns only the 

statistics of the training dataset. It can work 
extremely well on the training set, thanks 
to its capability to learn arbitrarily complex 
mapping, and it can also generalize well to a 
testing dataset with identical or similar statis-
tical distributions. However, given a testing 
dataset with different statistical distributions 
(e.g., different MRI device and different pa-
tient cohort), it can fail in an unexpected way. 
The scarcity of publically available cardiac 
MRI data with annotation also contributes 
to the difficulty and uncertainty for a deep 
learning model to generalize. For clinical use 
of the developed deep learning tools, there-
fore, it is very important that they go through 
rigorous multivendor and multicenter valida-
tion. Even so, close supervision from radiolo-
gists remains necessary.

A common criticism on deep learning is 
its black-box nature. A deep learning CNN 
can contain millions of parameters (neuron 
connections) that are simultaneously opti-
mized by the backpropagation algorithm, 
but their contributions to the final results are 
beyond interpretation or control. A promi-
nent research area, adversarial learning, ac-
tually shows that by adding carefully calcu-
lated, visually indiscernible disturbances to 
the input, one can make the CNN produce 
arbitrarily wrong output (e.g., the famous 
gibbon-panda example). The possibility of 
abuse of deep learning–based systems—es-
pecially in a clinical scenario, at the cost of 
patients and radiologists—is alarming. Inter-
pretability and controllability are essential 
for clinical use; deep learning systems with 
intermediate output such as segmentation 
that can be visually inspected and edited are 
preferred over a complete black box that only 
produces a quantitative report.

Deep learning does not equal deep think-
ing, as its name may imply; instead, it can 
be superficial because it is dogmatic, faith-
ful only to data. When the data are biased, 
the deep learning algorithm is biased. Deep 
learning systems are also inferior to human 
vision because the black box is much more 
susceptible to adversarial attacks than hu-
mans are. Higher-level thinking, generaliza-
tion, and cognition in presence of disturbanc-
es are exactly what radiologists are trained 
on and good at. To combine the merits of 
machines and humans in future work would 
bring the most benefits to patients, clinicians, 
and health care systems.

Deep learning for quantitative cardi-
ac MRI is not merely a technical problem; 
it is ultimately a clinical problem. Thus, in 
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future work, the use of deep learning to de-
fine and solve clinically relevant problems 
is essential. For example, deep learning can 
extract an accurate map of infarction from 
cine MRI in patients with chronic infarc-
tion, but the same concept may not apply to 
patients without a history of ischemia. Like-
wise, a deep learning CNN may be able to 
accurately delineate ischemic scar from LGE 
MRI, but it may encounter difficulties when 
the scar pattern changes to be subepicardial, 
patchy, or diffused as can occur in patients 
with nonischemic cardiomyopathy. Future 
deep learning research on quantitative cardi-
ac MRI calls for close collaboration between 
computer scientists, radiologists, cardiolo-
gists, and MRI physicists.

Conclusion
Deep learning is state-of-the-art for auto-

mated quantitative cardiac MRI analysis. It 
has shown excellent performance on multi-
ple cardiac MRI sequences and shows great 
promise for clinical use. Deep learning algo-
rithms can provide useful information to the 
radiologists and will enhance the value of car-
diac MRI in clinical practice and scientific re-
search. Meanwhile, research effort should be 
devoted to further improve its generalizabil-
ity, interpretability, and controllability.
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