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Background: There is a growing interest in fast and reliable assessment of abdominal visceral adipose
tissue (VAT) volume for risk stratification of metabolic disorders. However, imaging based measurement
of VAT is costly and limited by scanner availability. Therefore, we aimed to develop equations to estimate
abdominal VAT volume from simple anthropometric parameters and to assess whether linear regression
based equations differed in performance from artificial neural network (ANN) based equations.
Methods: MRI-measured abdominal VAT volumes and anthropometric parameters of 5772 subjects
(White ethnicity, age 45e76 years, 52.7% females) were obtained from the UK Biobank. Subjects were
divided into the derivation sample (n ¼ 5195) and the validation sample (n ¼ 577). Basic models (age,
sex, height, weight) and expanded models (basic model þ waist circumference and hip circumference)
were constructed from the derivation sample by linear regression and ANN respectively. Performance of
the linear regression and ANN based equations in the validation sample were compared and estimating
accuracies were evaluated by receiver-operating characteristic curves (ROC).
Results: The basic and expanded equations based on linear regression and ANN demonstrated the
adjusted coefficient of determination (R2) ranging from 0.71 to 0.78, with bias ranging from less than
0.001 Le0.07 L in comparison with MRI-measured VAT. Both basic and expanded ANN based equations
demonstrated slightly higher adjusted R2 and lower error measurements than linear regression equa-
tions. However, no statistical difference was found between linear regression equations and their ANN
based counterparts in ROC analysis. Both linear regression and ANN based expanded equations presented
higher estimating accuracies (76.9%e90.1%) than the basic equations (74.5%e87.5%) in ROC analysis.
Conclusions: We present equations based on linear regression and artificial neural networks to estimate
abdominal VAT volume by simple anthropometric parameters for middle-aged and elderly White pop-
ulation. These equations can be used to estimate VAT volume in general practice as well as population-
based studies.

© 2020 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
1. Introduction

The disease burden related to obesity has increased significantly
over the last decades, making excess body weight one of the most
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challenging public health problems of our time [1]. Body mass in-
dex (BMI) is the most widely used tool to estimate obesity-related
risks. However, previous studies suggested that people with similar
BMI may have heterogeneous obese status, with remarkably
different comorbidities and health risks [2,3]. It has been reported
that relying on BMI as a measure of obesity could lead to misclas-
sification of cardiometabolic health risks [4,5].

Several studies have shown that abdominal or central obesity,
measured by visceral adipose tissue (VAT) is a superior marker of
cardio-metabolic risk and mortality than anthropometric indices of
obesity such as BMI and waist-to-hip ratio (WHR) [6]. There is a
growing interest in fast and reliable assessment of VAT volume for
improved risk stratification in obese individuals [7]. Volumetric
VAT derived from magnetic resonance imaging (MRI) or computer
lism. All rights reserved.
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Fig. 1. Flow chart of subjects selection and random selection of the derivation and
validation sample using the UK biobank.
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tomography (CT) is generally accepted as a gold standard for VAT
estimation [8]. Cross-sectional VAT area measured in a single CT or
MRI slice at a predefined lumbar level (e.g. L3-L4 or L4-L5) is widely
used as the proxy of volumetric VAT in a number of studies.
However, CT or MRI quantifications of VAT are costly, and depen-
dent on scanner availability, limiting their application in clinical
and epidemiologic settings. The need for a simple and clinically
applicable tool to monitor visceral fat is emphasized in the latest
position statement [7].

Previous studies have developed a number of equations con-
sisting of several anthropometric variables to predict VAT area
based on linear regression models (Supplementary Table S1).
However, population-based utility of these equations were limited
by small sample size (up to N ¼ 1410), and the lack of internal or
external validation. In addition, the VAT estimation was based on
cross-sectional VAT area rather than whole abdominal VAT volume
[9,10], which could lead to estimation errors up to 14% [10]. Also,
the need for information on diverse combinations of anthropo-
metric parameters such as skinfold, thigh circumference and
sagittal diameter limited the use of these equations in clinical
practice. Moreover, predictive capacity varied among previous
equations, explaining 50%e80% of the variance in VAT areas in both
sex (Supplementary Table S1).

While linear regression equation is simple and interpretable, its
estimation capacity could be compromised by potential nonlinear
association between volumetric VAT and anthropometric parame-
ters. Deep learning by artificial neural network (ANN) has been
widely used in medical fields and is theoretically advantageous
over traditional linear regression for complexmedical problems. An
ANN is an emulation of biological neural network, which contains
input, hidden and output layers, with each layer consisting of
multiple neurons. The neurons are computing nodes that operate
as nonlinear summing devices [11]. Each neuron is connected by
weighted lines to all the neurons in adjacent layers. An ANN gains
functions by “training” process, during which multiple densely
connected layers and neurons are activated by input variables and
the activations are propagated in a non-linear way through multi-
ple computational stages, to make the ANN exhibit desired
behaviour [12]. ANN has been increasingly applied to various
medical fields, performing a wide range of tasks, such as clinical
classification and prediction, image analysis and postprocessing,
biochemical analysis and drug development [13]. ANN based esti-
mation equations have been developed for other medical interests
[14,15], and can yield higher accuracy than the linear regression
equation when applied to estimate maximal oxygen uptake in ad-
olescents [15]. No ANN based equation for estimation of VAT has
been reported yet.

The aim of this study was to develop equations to estimate
abdominal VAT volume (eVAT) based on simple anthropometric
parameters using large dataset of individuals with MRI-based
measurements of VAT volume. Linear regression and ANN were
utilized respectively in equation derivation and the performance of
the estimating equations were compared. We intended to involve a
basic and an expanded combination of anthropometric parameters
that adapt to different circumstances in clinical and epidemiologic
settings.

2. Methods

2.1. Subjects

The UK Biobank Study (see www.ukbiobank.ac.uk for more in-
formation) is a large population-based prospective cohort that in-
cludes 503,325 individuals aged 40e69 years old [16]. The
participants were recruited across the United Kingdom for
participation in the UK Biobank over a 5-year period beginning in
2006. The study protocol was approved by the National Health
Service Research Ethics Service (reference 16/NW/0274). All par-
ticipants gave informed consent for data provision and linkage.
Access to the UK Biobank data was provided by the UK Biobank
under application number 20666. For the current study, we only
included individuals with MRI-measured VAT volume (n ¼ 5995)
available at the release date of 30th January 2018. We selected the
subjects with White background including “White”, “British”,
“Irish” and “Any other White background”. Then 90% of the female
and male subjects were randomly selected to form the derivation
sample, while the rest 10% subjects consisted of the validation
sample. The process of subjects selection and sampling is shown in
the flow chart (Fig. 1).
2.2. Anthropometric measurements

Anthropometric measurements were obtained by trained
research clinic staff. Weight (without shoes and outdoor clothing)
was measured using the Tanita BC 418 body composition analyzer,
and height (without shoes) was measured using the wall-mounted
SECA 240 height measure. Waist circumference (WC) was
measured at a midway between the lowest rib margin and the iliac
crest, and hip circumference (HC) was measured just over the hips
at the maximum circumference. Waist-hip ratio (WHR) was
calculated by dividing the WC by the HC.

http://www.ukbiobank.ac.uk
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2.3. Volumetric VAT based on MRI

The body composition scan was made according to a protocol
described previously [17,18]. During the imaging visit participants
underwent a dual-echo Dixon Vibe protocol on a clinical wide bore
1.5 T scanner (MAGNETOM Aera, Syngo Platform VD13A, Siemens
Healthcare, Erlangen, Germany). The six minute protocol covered
neck to knees by six 3D axial slabs. Using the integrated scanner
software, fusion of the axial slabs provided a volumetric dataset
containing isolated water and fat images. VAT volume was calcu-
lated by automatic segmentation using AMRA Profiler (AMRA
Medical AB, Link€oping, Sweden) [18]. All images were inspected
and if required corrected by an analysis engineer.

2.4. Analysis in the derivation sample

Considering that the expediency and simplicity of the equation
is crucial for clinical application, we developed a basic model that
can estimate VAT with the knowledge of age, sex, height and
weight, and an expandedmodel requiringWC and HC in addition to
the four basic parameters. Both linear regression and artificial
neural network (ANN) were used to develop the basic model and
the expanded model.

2.5. Derivation of linear regression equation

Multivariable linear regression models were built using
anthropometric parameters as the predictor variables, and MRI-
measured VAT volume as the response variable, within the deri-
vation sample. Age, sex, height, weight, BMI and BSAwere involved
in the stepwise procedure for the basic model, while WC, HC and
WHR were involved additionally for the expanded model. Stepwise
Akaike information criterionwas adopted to select variables for the
final models [19]. Coefficients in the final models were used to
construct the equations. The goodness-of-fit between estimated
VAT (eVAT) and MRI-measured VAT volumes was evaluated by
BlandeAltman plot, mean difference (bias), adjusted coefficient of
determination (R2), root mean squared errors (RMSE) and mean
absolute error (MAE) for each model. All the analyses were carried
out by RStudio [20], version 1.1.463.

2.6. ANN modelling procedure

The ANN modelling was performed in RStudio using the keras
package [21]. The estimation models for VAT were built and trained
by several steps: 1. Data pre-processing. The derivation sample was
used to train the neural network. All the variables for the con-
struction of ANN were recorded in their original units. VAT was
coded as the training target, and the anthropometric variables
formed the input dataset. 2. Neural network design. In construction
of the neural network, we used a sequential model with several
densely connected hidden layers. The input layer contained four
neurons (age, sex, height and weight) for the basic model, and six
neurons (age, sex, height, weight, WC and HC) for the expanded
model. The output layer returned a single continuous value of VAT
volume. Each hidden layer could be activated by different activation
function, which was decided in training process. 3. Learning algo-
rithm. The loss function for learning algorithm was “MSE” (mean
squared error), and the metrics as “MAE” (mean absolute error),
which were in concordance with the goodness-of-fit evaluation for
the regression models. The optimizer and learning rate for each
model were decided in training process. 4. Training of the network.
Tuning of each model was based on the shape of the learning curve
and the value of adjusted R2, RMSE and MAE. The numbers of
hidden layers and neurons, the activation functions, the learning
algorithms, and several parameters of the training process,
including epochs, batch size and validation split, were tuned to
achieve the highest possible adjusted R2 as well as the lowest
possible RMSE and MAE.

The neural network model with the highest adjusted R2 and the
lowest RMSE and MAE in the derivation sample was selected as the
final model. BlandeAltman plot and mean difference (bias) were
also evaluated for the final ANN models. We developed an inter-
activewebpage based on the final ANNmodels for the estimation of
VAT, using the shiny package in RStudio.

2.7. Analysis in the validation dataset

The linear regression equations and the ANN models were
applied in the validation sample. BlandeAltman plots, bias,
adjusted R2, RMSE and MAE were demonstrated to evaluate the
performances. The eVATs by different models were compared using
the paired Student t test.

Receiver-operating characteristics (ROC) curves were computed
for measured-VAT volume less than 2 L, 2 L � VAT < 5 L, and
VAT � 5 L. Sensitivity, specificity and accuracy (percentage of the
concordance of eVAT and measured-VAT) were calculated to pre-
sent how well each model can predict eVAT that falls in the same
interval of the measured-VAT. Accuracy was calculated by the
following formula: Accuracy ¼ (number of correct estimations/
number of cases) � 100%. The area under the ROC (AUC) were
compared among all the equations by using the DeLong's test.

The characteristics of the derivation sample and the validation
sample were presented as mean ± standard deviation with ranges
in parentheses. Correlations between VAT volume and anthropo-
metric parameters were assessed by Pearson's correlation coeffi-
cient. Overview of the methods in this study is shown Fig. 2.

3. Results

The demographic and anthropometric characteristics and MRI-
measured VAT volumes for the whole dataset were shown in
Table 1. There was no statistic difference between the derivation
sample and the validation sample in age, height, weight, BMI, BSA,
WC, HC, WHR and VAT. The total study population had a mean age
of 61.9 years (range 45e76), mean VAT of 3.73 L (range 0.12e14.41)
and 52.7% (n ¼ 3039) was female.

Pearson's correlation coefficients between VAT and main
anthropometric parameters were: weight (r¼ 0.80), BMI (r¼ 0.68),
WC (r¼ 0.83), HC (r¼ 0.53), andWHR (r¼ 0.73), all with p < 0.001.

3.1. Description of the estimation models

The final basic linear regression model of the stepwise analysis
included all the tested variables, which were age, sex, height,
weight, BMI and BSA (F ¼ 2152, p < 0.001). The final expanded
linear regression model of the stepwise analysis also included all
the tested variables, which were age, sex, height, weight, BMI, BSA,
WC, HC andWHR (F¼ 1872, p< 0.001). Table 2 shows the equations
generated from the final models.

Similar to linear regression models, we also developed a basic
model and an expanded model by ANN. The final basic ANN model
was constructed by six hidden layers containing 120, 80, 50, 24, 12,
6 neurons respectively. The final expanded ANN model was con-
structed by five hidden layers containing 100, 50, 24, 12, 6 neurons
respectively. The activation function for each hidden layer and the
output layer was rectified linear unit (ReLU) in both two models.
The optimizer and learning rate was “optimizer_adm (lr ¼ 0.001)”
for the basic model and “optimizer_rmsprop (lr ¼ 0.001)” for the
expanded model. The final basic model was trained with



Fig. 2. Overview of the methods in this study. The image with colored overlay is adopted from an open access publication [17], and shows the central coronal MRI slice of a subject
from UK Biobank. Both linear regression and ANN were utilized to estimate abdominal VAT volume from anthropometric parameters, based on MRI-measured VAT. The eVATs
generated by regression equations and ANN models were then compared and evaluated in the validation sample.

Table 1
Characteristics of the included participants of the UK biobank, all values are presented as mean ± standard deviation.

Characteristics Total (n ¼ 5772) Derivation sample (n ¼ 5195) Validation sample (n ¼ 577)

Age (year) 61.9 ± 7.4 62.0 ± 7.4 61.2 ± 7.2
Height (cm) 163.5 ± 6.5 169.9 ± 9.4 170.1 ± 9.8
Weight (kg) 68.6 ± 12.7 75.7 ± 15.0 76.7 ± 15.6
BMI (kg/m2) 26.2 ± 4.3 26.1 ± 4.3 26.4 ± 4.4
Females 25.7 ± 4.6 25.7 ± 4.6 25.7 ± 4.6
Males 26.7 ± 3.8 26.6 ± 3.8 27.2 ± 3.9

BSA (m2) 1.88 ± 0.22 1.88 ± 0.22 1.90 ± 0.23
Females 1.76 ± 0.17 1.76 ± 0.17 1.75 ± 0.17
Males 2.03 ± 0.18 2.02 ± 0.18 2.06 ± 0.17

WC (cm) 87.5 ± 12.1 87.4 ± 12.0 88.4 ± 12.4
Females 82.1 ± 11.4 82.1 ± 11.3 82.4 ± 11.6
Males 93.6 ± 9.8 93.4 ± 9.8 95.0 ± 9.7

HC (cm) 101.4 ± 8.5 101.3 ± 8.5 102.2 ± 8.8
Females 101.1 ± 9.7 101.1 ± 9.7 101.6 ± 9.7
Males 101.7 ± 7.1 101.6 ± 7.0 102.9 ± 7.7

WHR 0.86 ± 0.08 0.86 ± 0.08 0.86 ± 0.08
Females 0.81 ± 0.07 0.81 ± 0.07 0.81 ± 0.06
Males 0.92 ± 0.06 0.92 ± 0.06 0.92 ± 0.05

VAT (L) 3.73 ± 2.25 3.72 ± 2.25 3.76 ± 2.26
Females 2.63 ± 1.50 2.63 ± 1.50 2.61 ± 1.52
Males 4.95 ± 2.31 4.94 ± 2.32 5.04 ± 2.26

BMI: body mass index; BSA: body surface area; WC: waist circumference; HC: hip circumference; WHR: waist-hip ratio; VAT: visceral adipose tissue.

Table 2
The regression equations and the webpage based on ANN models for estimating VAT (L).

Linear
Regression

Equation

Basic 0.04∙age þ1.22∙sex e 0.32∙height þ0.17∙weight e 5846∙weight/height2 þ 0.21∙(height∙weight)0.5 þ 33.15
Expanded 0.03∙age þ 0.40∙sex e 0.26∙height þ 0.09∙weight e 4518∙weight/height2 þ 0.22∙(height∙weight)0.5 þ 0.24∙WC e 0.20∙HC e 15.16∙WC/HC þ 37.74

ANN See webpage for automatic estimation using the basic and expanded models

https://radi-evat.lumc.nl

Units for the variables: age (year), sex (female ¼ 0, male ¼ 1), height (cm), weight (kg), WC (cm), HC (cm).
ANN: artificial neural network; VAT: visceral adipose tissue.
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epochs ¼ 100, batch size ¼ 32, and validation split ¼ 0.1, while the
final expanded model was trained with epochs ¼ 200, batch
size ¼ 32, and validation split ¼ 0.1. Based on the ANN models
trained in our study, we built an webpage, in which the estimation
volume of VAT can be obtained interactively (Table 2).

The performance parameters including adjusted R2, RMSE, MAE
and bias are presented in Table 3. The scatter plots and
BlandeAltman plots of the eVAT and measured-VAT are shown in
Supplementary Figs. S1 and S2.

3.2. Model performance in the validation sample

The performance parameters of the four equations in the vali-
dation sample were also demonstrated in Table 3. There was no

https://radi-evat.lumc.nl


Table 3
Performance of the linear regression and ANN based equations in the derivation sample and the validation sample.

Derivation sample Validation sample

Linear Regression ANN Linear Regression ANN

Basic Expanded Basic Expanded Basic Expanded Basic Expanded

Adjusted R2 0.71 0.76 0.73 0.78 0.72 0.76 0.73 0.78
RSME (L) 1.20 1.09 1.16 1.05 1.20 1.10 1.18 1.04
MAE (L) 0.92 0.83 0.88 0.78 0.94 0.84 0.90 0.79
Bias (L) <0.001 <0.001 �0.07 �0.05 0.05 0.07 0.01 0.04

ANN: artificial neural network; RMSE: root mean sum of squared errors; MAE: mean absolute error.

L. Lin et al. / Clinical Nutrition 39 (2020) 3182e31883186
statistical difference between basic and expanded linear regression
eVATs. The basic and expanded ANN based eVATs were statistically
different with mean difference ¼ � 0.17 L (p < 0.001). The basic
linear regression eVAT was different from basic ANN based eVAT
with mean difference ¼ 0.04 L (p ¼ 0.003). The expanded linear
regression eVAT was different from expanded ANN based eVAT
with mean difference ¼ � 0.12 L (p ¼ 0.003).

The AUCs and accuracies of each equation in estimating VAT
<2 L, 2 L � VAT <5 L and VAT �5 L were presented in Table 4. The
ROC curves of the basic ANN based equation to estimate 2 L � VAT
<5 L and VAT �5 L were statistically different from those of the
expanded ANN equation (p¼ 0.01, P < 0.001), while the ROC curves
to estimate VAT less than 2 L did not differ between the two ANN
based equations (p ¼ 0.464). The ROC curves to estimate VAT �5 L
were also different between the basic and the expanded linear
regression equations (p ¼ 0.04). There was no statistical difference
in the ROC curves to estimate VAT less than 2 L and 2 L < VAT <5 L
between the two linear regression equations (p ¼ 0.883, p ¼ 0.57).
Comparisons between linear regression equations and their ANN
based counterparts did not reveal statistical significance.

4. Discussion

In the current study, we developed and validated new equations
to estimate abdominal visceral adipose tissue from simple
anthropometric parameters in 5772 of the UK Biobank. We
compared the performances of linear regression with artificial
neural network based equations for estimating abdominal VAT
volume.

Both the basic and the expanded linear regression and ANN
based equations in this study yielded favourable performances in
both the derivation sample and the validation sample. Although the
eVATs generated by ANN based equations were statistically
different from those based on linear regression, the mean
Table 4
Areas under the ROC curves (AUC), sensitivities, specificities and accuracies of the four e

AUC

VAT <2 L (n ¼ 147)
Linear Regression Basic 0.80

Expanded 0.80
ANN Basic 0.80

Expanded 0.84
2 � VAT < 5 L (n ¼ 277)
Linear Regression Basic 0.75

Expanded 0.77
ANN Basic 0.75

Expanded 0.80
VAT � 5 L (n ¼ 153)
Linear Regression Basic 0.85

Expanded 0.87
ANN Basic 0.83

Expanded 0.87

ROC: receiver-operating characteristic; AUC: area under ROC curve; VAT: visceral adipo
differences were minor. Considering the adjusted R2 and error
measurements, ANN based equations exhibited moderately
improved performances over the linear regression equations, with
higher adjusted R2, lower RMSE andMAE. However, themoderately
superior performance of the ANNmodels over regression equations
were not evident enough to demonstrate statistical significance in
comparisons of ROC curves. ANN models demonstrated limited
increases in estimating accuracies with similar AUCs compared
with linear regression equations. Similar phenomenon was re-
ported in a recently published systematic review showing no per-
formance benefit of machine learning over logistic regression for
clinical prediction models [22]. Therefore, based on adjusted R2 and
error measurements, the ANN based equations might provide the
theoretically best estimation of VAT, whereas linear regression
equations could yield competent estimation according to ROC
analysis. Taken this into account, we suppose either equation can be
adopted in clinical practice.

Although ANN-based equations did not demonstrate substantial
improvement in accuracy when compared with linear regression in
this study, this does not undermine the potential value of applying
ANN to other medical purposes. An ANN-based equation developed
in a previous study to estimate maximal oxygen uptake demon-
strated higher accuracy than the conventional linear regression
equation [15]. The extent of improvements generated by ANN
model in comparison with linear regression is largely determined
by the proportion of non-linearity in the association between the
dependent and independent variables, as well as the characteristics
of the training data. For clinical parameters that lack sufficient
estimation accuracy by linear regression, ANN might serve as a
promising alternative.

As presented above, the basic linear regression and ANN based
equations showed slightly less favourable performance than the
expanded ones. However, the addition of WC and HC to the
expanded equations did not substantially improve the performance
quations in the validation sample.

Sensitivity (%) Specificity (%) Accuracy (%)

64.6 95.1 87.3
64.6 95.6 87.7
66.0 94.4 87.2
70.7 96.7 90.1

78.3 71.7 74.9
79.8 74.3 76.9
79.1 70.3 74.5
83.4 76.3 79.7

78.4 90.8 87.5
83.7 91.3 89.3
74.5 92.0 87.3
81.7 92.5 89.6

se tissue; ANN: artificial neural network.
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of the equations. Although WC and WHR were strongly correlated
with VAT (r ¼ 0.83, r ¼ 0.73), there were substantial differences in
WC, WHR and VAT between females and males. Therefore, the
variance of VAT related to WC and WHR was mostly explained by
the larger coefficient of “sex” in the basic equation. Meanwhile, it is
possible that the performance of the expanded equations could be
compromised by intra- and inter-observer variability ofWC and HC.
Previous studies suggested that circumference measurements are
less reliable than weight and height indexes [23], due to tissue
composition (e.g. amount of subcutaneous fat, intestines, etc.) [24],
measurement site [25] and abdominal wall tension [26].

Nevertheless, within ANN based equations in this study, the
expanded equation demonstrated higher accuracies than the basic
one in estimating VAT�5 L and 2 L�VAT <5 L, which accounted for
75% of the validation sample. Within linear regression equations,
the expanded equation was superior to the basic one in estimating
VAT �5 L with statistical difference in ROC curves, which is
potentially more important for clinical application in obesity. Thus
the expanded equation is recommended whenever WC and HC can
be obtained without disproportionate burden.

Several equations for estimation of VAT have been developed
previously (Supplementary Table S1), of which only one equation
predicted abdominal VAT volume based on volumetric MRI of the
abdomen (adjusted R2 ¼ 0.47) [9]. However, this equation was
derived from a population of 200middle-aged Japanese obese men,
which limits the use of this equation in other populations. The
majority of previous equations were based on cross-sectional VAT
areas of various measurement sites (e.g. lumbar vertebra L3-L5).
Although cross-sectional VAT area is widely used as the proxy of
volumetric VAT in a number of studies, single-slice image may not
accurately represent individual's VAT [27,28], and VAT volume is
more strongly associated with the risk factors of metabolic syn-
drome than VAT area at L4-L5 level [29,30]. Moreover, none of the
previous studies evaluated the performance of the estimation
equation by ROC analysis.

It has been revealed that the determination coefficient (R2) of
cross-sectional VAT area in estimation of whole abdominal VAT
volume varies with anatomy sites, and no concordance has been
reached upon the best reference site. The R2 was 0.31 for VAT area
at the level of L2-L3, and 0.58 for L4-L5 in a study of 59 healthy
female volunteers [27]. In a study of 200 participants from the
Framingham Heart study, R2 ranged from 0.76 to 0.98 for VAT
areas measured at multiple vertebral levels from L1 to S1 [31].
Another study reported R2 from 0.78 to 0.97 for VAT areas
measured at multiple lumbar vertebral levels from L1 to L5 in 142
healthy Caucasians [32]. A study of 197 overweight to severely
obese patients reported R2 from 0.58 to 0.95 for single-slice VAT
volumes and 0.63 to 0.92 for five-slice VAT volumes at multiple
lumbar intervertebral levels from L1 to S1 [33]. It is worth noticing
that all four equations in this study demonstrated the adjusted R2

> 0.71, in which 0.78 was the best, indicating that our equations
might achieve similar estimation of VAT volume with that from
suboptimal cross-sectional VAT areas measured in single CT/MRI
slice. Thus for studies in which CT/MR examinations are only for
the measurement of cross-sectional VAT area, our equation could
be a cost-efficient alternative.

Our study has several limitations. Considering the age distri-
bution and ethnicity of the UK Biobank participants, our estimation
equations are developed using data from participants aged 45e76
years and white participants only, which compromises the appli-
cation of our equations in other age groups and ethnicities. Due to
inter- and intra-variability of the anthropometric parameters, as
well as inter-study disagreement of MRI/CT-derived VAT volumes,
it is also possible that the estimation capacity of our equations
varies in external samples, which remains area for future research.
Another limitation is that eVATs calculated by linear regression
equations were below zero in 16.7% of very lean females (BMI<20
kg/m2) in the validation sample. This is inevitable due to the nature
of linear regression, and no such defect is observed in ANN based
equations. Finally, several parameters (e.g. dual-energy X-ray ab-
sorptiometry android per cent fat, bioelectrical impedance analysis,
skinfold and sagittal diameter) that might improve the accuracy of
the estimation according to previous studies were not used in this
study, due to controversial estimating capacity for VAT [34,35],
concerns regarding their accuracies [36,37], and requirement of
dedicated equipment for measurement.

5. Conclusion

In this study, linear regression and artificial neural network-
based equations were built to estimate abdominal VAT volume by
simple anthropometric parameters. The presented equations can
be used in general practice as well as population-based studies,
especially worth considering when imaging modalities are applied
only for the measurement of cross-sectional VAT area. Further in-
vestigations are required to assess the association between eVAT
and clinical outcomes, and to determine the cut-off values of eVAT
for metabolic risk.
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