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Providing maximum information on the provenance of scientific results in life sciences is getting con-

siderable attention since the widely publicized reproducibility crisis. Improving the reproducibility of data

processing and analysis workflows is part of this movement and may help achieve clinical deployment

quicker. Scientific workflow managers can be valuable tools towards achieving this goal. Although these

platforms are already well established in the field of genomics and other omics fields, in metabolomics

scripts and dedicated software packages are still more popular. However, versatile workflows for metabo-

lomics exist in the KNIME and Galaxy platforms. We will here summarize the available options of scientific

workflow managers dedicated to metabolomics analysis.

Introduction

Advances in protein and genome sequencing and structure
elucidation have exponentially increased the amount of data
generated.1,2 The human genome project was officially fin-
ished in 2003 (two years before schedule) and a draft of the
human proteome published in 2014.3,4 This burst of biological
data coincided with the development of fast and cheap compu-
ter hardware, powerful high-level programming languages and
comfortable software development environments. In turn, all
this stimulated the rapid development of the field of bioinfor-
matics. The contemporary standards of proteomics and geno-
mics data analysis require a high degree of automation.
Sophisticated software packages have been written to process
and analyze raw experimental data quickly and reliably,
exploiting the highly regular structure of the biological poly-
mers (DNA, RNA and proteins). Yet, one very important level of
biological regulation was not accommodated by these bio-
polymer analysis tools. Approximately 15% of the human
protein coding genes (of those for which the function is
known) code for products responsible for transformations of
an extremely diverse and heterogeneous family of compounds
that are commonly called metabolites. The pursuit of compre-
hensively quantifying the set of metabolites (the metabolome)
present in specific parts of the organism or in specific bio-
fluids is the field of metabolomics.5,6 Clinical metabolomics
shows great promise in the diagnostics of metabolic diseases,7

cardiovascular diseases8 and even all-cause mortality.9

The automatic processing of raw metabolomics data is far
less advanced than that of most other omics fields. The chemi-
cal heterogeneity of metabolites is mainly to blame here.
Chromatographic separation combined with mass spec-
trometry is the central technology in the field of proteomics
and is the driving force behind its successes. This is also true
for metabolomics, but the diversity of metabolites means that
only a relatively small part of the metabolome can be reliably
measured for a specific experimental setup. Only metabolites
falling into a specific charge, mass, polarity and concentration
range can be analyzed in one measurement. Thus, in contrast
to proteomics and genomics, metabolomics from its begin-
ning was never restricted to a single successful technology but
used a wider range of analytical approaches. Besides LC-MS
analysis, one of the most widely applied techniques for meta-
bolomics analysis is nuclear magnetic resonance spectroscopy
(NMR). The sensitivity of NMR is typically less than that of
mass spectrometry, but NMR has a number of unique advan-
tages, for instance the generally simple sample preparation
methods, the non-destructive nature of the measurement, and
the linear behaviour of NMR signals in response to concen-
tration changes.10

In the field of metabolomics, and especially for NMR meta-
bolomics, as much time and effort has been invested in the
development of sample preparation methods and experimental
techniques as in the processing and analysis of the data. Many
articles have been published detailing new approaches, tools
and algorithms that improve upon the various steps in the
pipeline.11 In the early days of metabolomics researchers often
were limited to software supplied by the equipment manufac-
turer and general statistical software such as TopSpin,12

Excel,13 SPSS14 and Simca.15 These software packages contain
convenient GUI interfaces and will be familiar to many scien-
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tists. However, a big issue with these software packages is the
repeatability of the data processing and analysis workflow. The
workflow consists of numerous mouse operations and manu-
ally entered parameters that are hard or impossible to retrieve
or reapply in an identical way. Importing the output of one
tool into the software that handles the next step of the work-
flow is often a manual step and unless the user is exceedingly
meticulous in his documentation it may not be clear how it
was achieved. Typically, the workflow involves steps that can
be carried out either manually or in an automated fashion.
The reproducibility of the manual parts depends heavily on
whether the software in which the steps are performed docu-
ments all the user’s operations, and how well the user docu-
ments his or her own actions. Lacking documentation affects
the reproducibility of the data processing and analysis.
According to Goodman et al.,16 there are three distinct forms
of reproducibility: methods reproducibility (the ability to
implement the experimental and computational methods),
results reproducibility (the ability to replicate the results) and
inferential reproducibility (the ability to draw identical con-
clusions). Being able to inspect and repeat the data processing
and analysis part of a study clearly concerns the methods
reproducibility. Methods reproducibility is one of multiple
factors that contribute to the reproducibility crisis that cur-
rently affects the biomedical sciences.17 Combining all steps
into a single monolithic program dedicated to metabolomics
circumvents this problem to some extent; examples of such
software packages are Chenomx18 for NMR and MAVEN19 for
LC-MS-based metabolomics studies. However, as soon as the
user wants to add new tools or new technologies to the work-
flow, the problem returns.

Metabolite diversity is also the reason that both in mass
spectrometry and in NMR peak assignment can sometimes be
quite difficult. A single LC-MS run or 1D NMR spectrum is
often not enough to assign peaks with 100% certainty. These
analyses can then be complemented by MS/MS and 2D NMR
experiments, but in both cases these experiments are more
complex, more time-consuming and less sensitive than the
simpler experiments. The difficulty with peak assignment and
quantification led many researchers to avoid this altogether as
a first step and use the raw spectra for constructing statistical
models that relate the metabolome to a specific phenotype.
This approach, also called untargeted metabolomics, was
often the only approach that was used in earlier metabolomics
projects. In theory, a machine learning model that successfully
distinguishes cases and controls based on the NMR/MS
spectra of the metabolome may be useful even without infor-
mation on exactly what metabolites drive the model. For
example, a machine model that successfully distinguishes
urinary tract infection from other ailments could be very
useful in a clinical context. However, the equipment that is
used for metabolomics is expensive both in purchase and in
use, making it hard to apply in a clinical setting. Knowing
which limited set of metabolites is associated with the pheno-
type in question allows for the design of simpler and cheaper
methods that achieve the same result. Moreover, the identities

of the associated metabolites and the fold changes of their
concentrations could shine light on the biochemistry behind
the phenotype.20 Combining targeted and untargeted methods
is therefore important. This generates multiple data pipelines
that need to be properly handled and finally combined.

To bring the field of metabolomics to the same level as its
fellow -omics fields, and help solve the reproducibility crisis,
what is needed is software that is capable of managing the
entire data processing pipeline all the way from the raw data to
publishable results. A software platform that achieves this is
called a scientific workflow system. This review will look at the
available scientific workflow systems for metabolomics and
how well they succeed in contributing to reproducible
research, among other features. Solutions for scientific data
management that satisfy the FAIR guiding principles21 already
exist in the MetaboLights22 and Metabolomics Workbench23

repositories; with the establishment of scientific workflow
systems the data processing could be integrated with those
services.

Traits of a scientific workflow system

Scientific workflow systems integrate multiple steps of a data
processing and analysis pipeline, ideally in its entirety. Tools
that perform only one or a few of these steps and are not flex-
ible enough for the integration of additional steps cannot be
regarded as workflow platforms. Instead, they are just the con-
stituent parts that can potentially be assembled into a
workflow.

Ideally, a workflow platform should stimulate and support
the user in achieving the following goals:

1. It should as much as possible achieve methods reprodu-
cibility for the data processing and analysis. Both the user
himself and other scientists should be able to inspect, retrace
and rerun the data analysis process from start to finish even
years after the project has ended. Intermediate results should
be stored at appropriate points in the workflow to allow for
this inspection. Ideally, the state of an executed workflow at
every point should be preserved and remain consistent with
the rest of the workflow.

2. Likewise, it should be easy to extend the workflow with
new tools; this allows the time invested into developing the
workflow to not go to waste while possibly extracting new
insights from the data that were hidden before. New algor-
ithms for spectral analysis and machine learning may be devel-
oped in the future. The workflow should be able to absorb
these new methods without these being specifically designed
for the workflow platform. Likewise, the current standard set
of technologies may be extended in the future with new NMR
pulse sequences or new mass spectrometry methods, or even
totally new inventions such as metabolomics by electron diffr-
action measurements. Extending the workflow with these new
technologies should be accessible to everyone, not just the
prime developers of the workflow.

Critical Review Analyst

3802 | Analyst, 2020, 145, 3801–3808 This journal is © The Royal Society of Chemistry 2020

Pu
bl

is
he

d 
on

 2
8 

A
pr

il 
20

20
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ite
it 

L
ei

de
n 

/ L
U

M
C

 o
n 

8/
10

/2
02

3 
2:

50
:5

4 
PM

. 
View Article Online

https://doi.org/10.1039/d0an00272k


3. Related but not identical to the previous point is that a
workflow should stimulate creativity. Each metabolomics
project has its own peculiarities, and the exploratory data ana-
lysis of the data may profit by deviating from the standard
workflow. A good workflow platform should easily allow this,
and not try to force the user into a straitjacket. This can
happen at any point in the workflow; the spectra may require
an alternative processing method, the project may need an
alternative normalization approach, or it may require an
unconventional statistical analysis. The requirement for these
changes may only become apparent when using the workflow,
and the user should be able to adapt the workflow to his or
her needs without leaving the workflow platform itself (which
would harm reproducibility) or without begging the developers
of the workflow platform. The platform should allow for a
quick and easy edit-run-debug cycle, not to hamper this
creativity.

4. A workflow should be accessible to both experts and
novices, expert coders and non-programmers. Scientists with
expertise in sample preparation, performing measurements
and/or the biological background of the project should still be
able to execute the workflow and study the results of their
efforts. At the same time, the workflow should not limit power
users.

5. A workflow should be scalable. Many metabolomics pro-
jects start small, with perhaps a few tens of samples as a pilot
project. The results then inspire the collection of a larger
cohort of a few hundred or thousand samples. If the effects
are subtle but the implications important, it may be decided
to assemble a cohort of more than ten thousand people.
Ideally, it should be possible to recycle the pilot workflow for
the analysis of the giant cohort, perhaps on a larger desktop
computer or server. Alternatively, the processing can be trans-
ferred to the cloud, but this is only necessary in extreme cases;
metabolomics data cannot yet be regarded as big data since it
rarely comprises more than 20 GB,24 although it should be
noted that the computing power offered by a cloud environ-
ment can also benefit smaller datasets.

6. It should be easy to troubleshoot workflows that raise
errors or produce nonsense results. A workflow in the hands of
a new user or applied to a new project may end up in a state
that was not envisioned or considered by the workflow
designer. The workflow platform should allow the user to
investigate and correct the problem himself.

7. The workflow should be easily archivable and shareable.
The data and the algorithms should be tightly associated with
each other, so that if the project is retrieved from the archive,
reevaluating the workflow again should be trivial; neither the
algorithms nor the data should get “lost” during the archiving
and retrieval process. Likewise, it should be easy to hand over
the workflow to a different user who may wish to check the
workflow (for example, a supervisor checking the work of a
student) or a user who wishes to continue the project of his
predecessor; a workflow should allow this user to continue
exactly where his predecessor left off. For this reason, it is
desirable that the algorithms that constitute the workflow and

the workflow management system itself are free open-source
software so that there are no licensing problems when sharing
a workflow outside an organization, extremely important in
academia where research is often conducted in the context of
international consortia.

Workflows and workflow systems used
in metabolomics

Workflows can be assembled in two different ways: either by
calling the tools from some type of scripting language, or by
integrating them in a dependency graph (or DAG, directed
acyclic graph). The prototypical scripting language is the
Bourne shell that is common in the world of Unix-type operat-
ing systems. Today, however, these scripts are usually written
in the R or Python languages.25,26 The scientific notebook
systems provided by RStudio and Jupyter enable a convenient
combination of code with documentation and data visualiza-
tions. Data processing pipelines constructed with scripts are
very flexible and the R and Python ecosystems provide a huge
number of libraries covering a wide range of functionalities.
This also allows for advanced collaboration and version man-
agement by using version control systems such as Git. It is
possible to call R from Python or Python from R, combining
the two ecosystems. However, while RStudio and Jupyter are
very good development platforms, they do not manage data.
The state of the system at a certain point in the workflow is not
stable; if lines of code are executed out of sequence during the
exploratory phase of the data analysis, the same line of code at
the same point in the script does not always produce the same
result. Also, it is easy for a script-based workflow to become
obscured by the programming logic. This also limits the acces-
sibility to people with little programming experience.
Therefore, RStudio- and Jupyter-based platforms are develop-
ment environments but not scientific workflow managers.

A web-based tool that has achieved a considerable level of
popularity in the field of metabolomics is MetaboAnalyst.27 It
provides a convenient web-based interface to the most com-
monly used methods used for metabolomics analysis. One par-
ticularly nice feature is that it gives the equivalent R code for
all the browser-operations, so that the analysis can be easily
repeated in a properly configured R environment elsewhere.
The MetaboAnalystR library28 that these scripts rely on is free
open-source software. But as such, MetaboAnalyst should be
considered as a very user-friendly (but less flexible) version of
an RStudio notebook and not really a workflow manager.
MetaMS29 is also an R library that aims to provide a full pipe-
line for LC-MS/GC-MS data processing and connects well with
the MetaboLights repository, but lacks a convenient webinter-
face. Other web-based tools, such as Bayesil,30 only live on the
server of its designers and the reproducibility of the analysis
depends on the entirely on the maintainers. Newer versions
may behave differently from older ones, making it impossible
the fully reproduce older results. In some cases the web-based
tool may be entirely inaccessible.31
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The alternative to a script is to define the data processing
by a dependency graph of individual processing steps. In this
context, a dependency graph defines for every step what other
processing steps are required to generate its required input.
This also typically includes a mechanism that stores inter-
mediate results and that in the event of a configuration change
in one step automatically and exclusively recalculates those
steps that are dependent on it. One of the oldest and most
basic tools to manage dependency graphs is the “make” utility,
commonly used to call the compiler in a large software devel-
opment project. “Make” speeds up software build times by
only compiling those files of the software development project
that have been edited since the previous build, and parts that
are linked to the edited files. However, “make” is very general,
and any set of tools that depend on each other’s input and
output can be handled by make. “Make” works by supplying it
with a collection of individual dependencies in a so-called
“makefile”. From the “makefile” make internally builds the
dependency graph. This graph is usually not visible to the user
of make. This is fine for a software development project, but
for a data processing workflow, a visual representation of the
workflow is nearly essential. There are also dedicated scientific
workflow tools such as Snakemake32 that follow the make phil-
osophy. Pegasus33 also relies on DAGs but is designed in a way
that that workflows can be easily moved between and opti-
mized for various execution environments. Hyperflow34 is a
workflow system that allows JavaScript code to be integrated
with the workflow implementation and is specifically aimed at
experienced programmers. Nextflow35 is another text-based
tool, but it follows a more dataflow-like approach, in which
multiple steps can execute simultaneously for increased per-
formance and reduced storage space requirements. The depen-
dency graph of these can be visualized, but not manipulated,
by the Graphviz tool.36 More domain-specific, Global Natural
Products Social Molecular Networking (GNPS)37 is an environ-
ment that, among other services, uses workflows based on the
ProteoSAFe engine.38 However, the workflow construction
process is not well-documented.

Ideally, a workflow manager would allow the user to build,
rearrange and extend the workflow dependency graph in a
graphical environment. There are a number of workflow man-
agers with a graphical user interface (GUI). Apache Taverna,39

a Java-based workflow manager, is very good in combining
various web services and has an automatic graph layout
system. Orange,40 a Python-based workflow manager/data
mining platform, allows the user to assemble Python tools
into graphical data flow graphs. Kepler41 is a workflow system
that works particularly well together with R and has a custo-
mized version specifically aimed at bioinformatics,
BioKepler.42 Rapidminer,43 Pipeline Pilot44 and Alteryx,45 com-
mercial options, are used a lot in industry. To our knowledge
only two free open-source workflow managers have been used
to build general metabolomics workflows. Those are Galaxy46

and KNIME.47,48

Galaxy is a scientific workflow manager that operates as a
webserver. Consequently, the UI is accessed through a web
browser where the workflow graph and configuration UI
elements are presented (see Fig. 1). The Galaxy engine can
then be run locally or in the cloud. Galaxy basically operates as
the “make” command with a GUI, calling R scripts, Python
scripts and other command line tools using carefully config-
ured recipes that describe the inputs and outputs of said com-
mands. Adding new tools to the platform involves developing
those tools in an external development environment. After the
development is done and the tool works as desired, an XML
file is written that provides the recipe on how the tool can be
invoked from Galaxy. Tools provided by the community can be
installed through the Galaxy Tool Shed.

The KNIME Analytics Platform, on the other hand, behaves
more like a database, in which the workflow graph (Fig. 2)
describes how data tables are filtered, transformed and other-
wise manipulated. KNIME also provides various loop con-
structs, including recursive loops (and hence is not purely a
DAG). Instead of only relying on external tools, KNIME pro-
vides hundreds of KNIME-specific nodes written in Java within
the KNIME framework. R and Python scripts can be integrated

Fig. 1 An example of a Workflow4Metabolomics Galaxy workflow for NMR data. The workflow can either be assembled by dragging and connect-
ing the tools, or by consecutively calling the tools on an imported dataset after which the workflow can be automatically generated from the data
processing history.
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when they accept an R/Pandas dataframe as input and return
the result as a new dataframe. These scripts can be developed
in the KNIME workflow itself as KNIME provides small IDEs
for those languages. Therefore, while Galaxy is a pure workflow
manager, KNIME is both a workflow manager and a develop-
ment platform. KNIME AG, the commercial entity behind the
free open-source KNIME Analytics Platform, also produces the
KNIME Server, through which workflows can be edited, config-
ured and executed remotely or in the cloud. However, in con-
trast with the KNIME Analytics Platform, KNIME Server is a
non-free product. It should be noted that both KNIME and
Galaxy recently acquired the ability to edit and integrate
Jupyter notebooks inside the workflow.49,50

Workflow4Metabolomics (W4M)51 and PhenoMeNal52

(which incorporates a large part of W4M) are metabolomics
workflows built on top of the Galaxy platform. The organiz-
ations behind these workflows provide infrastructure to run
the workflows in the cloud, but they can also be run from a
local virtual machine or Docker container. Since Galaxy orig-
inates from the field of genomics, it is well suited to handle
huge amounts of data in a reproducible manner. It is very well-
suited for handling established workflows, i.e. workflows and
toolsets that have achieved a certain level of maturity and
general acceptance in the scientific community so that deviat-
ing from it is generally unnecessary or even strongly discour-
aged except for expert users. PhenoMeNal includes many
established metabolomics tools for both NMR and MS-based
metabolomics provided by a multitude of research groups.
Furthermore, it provides facilities for distributed processing of
workflows by managing multiple containers, leading to excep-
tional workflow scalability.53 In general, Galaxy is very well-
suited for handling containers, and an overview of this topic
was given in a recent review.54 Galaxy-M55 is another Galaxy-
based metabolomics workflow that relies on code compiled
with the commercial Matlab environment.

KIMBLE56 and KniMet57 are based on the KNIME analytics
platform, with KIMBLE focusing on NMR-based metabolomics
and KniMet handling metabolomics data from MS measure-
ments. A node library specifically for handling NMR data does
not yet exist in KNIME, therefore KIMBLE uses Python script
nodes that rely on the NMRGlue58 library for handling NMR-
specific processing. KNIME can automatically install KNIME
node libraries required by the workflow, but it cannot do this
with the Python environment and the necessary Python
libraries. To get around this inconvenience, KIMBLE is pro-
vided as a virtual machine image that includes the KNIME
Analytics platform, the Python environment and the Python
libraries. Likewise, R and various R libraries relevant for meta-
bolomics are also included in the virtual machine. This has
the added benefit of improving reproducibility by making it
possible to archive the software environment of the work-
flow.59 The KniMet KNIME workflow can be extended with
OpenMS60 node library, a collection of KNIME nodes for hand-
ling mass spectrometry data. KIMBLE and KniMet can be
easily combined by copying the workflows to the same work-
flow canvas.

How do Galaxy and KNIME compare with respect to the list
of desirable workflow features?

1. Being workflow managers, both the Galaxy-based and
KNIME-based workflows achieve data processing reproducibil-
ity by storing the workflow steps and the input and output
data, as well as the intermediate results. Consistency is main-
tained in KNIME by resetting all subsequent nodes upon a
configuration change, and in Galaxy by creating a new entry at
the bottom of the history.

2. Both KNIME and Galaxy have repositories (KNIME has
the KNIME Hub while Galaxy has the Galaxy Tool Shed) that
can be used to extend existing workflows. KNIME allows the
development of new KNIME-nodes, although this requires
knowledge of the KNIME framework. Alternatively, KNIME’s

Fig. 2 This KIMBLE KNIME workflow shows native KNIME nodes for data plotting and export, and Components that are a workflow abstraction
mechanism and contain more basic nodes. Green “traffic lights” indicate that output is available and can be inspected. The window shows the
output of the second outport of the analysis node.

Analyst Critical Review

This journal is © The Royal Society of Chemistry 2020 Analyst, 2020, 145, 3801–3808 | 3805

Pu
bl

is
he

d 
on

 2
8 

A
pr

il 
20

20
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ite
it 

L
ei

de
n 

/ L
U

M
C

 o
n 

8/
10

/2
02

3 
2:

50
:5

4 
PM

. 
View Article Online

https://doi.org/10.1039/d0an00272k


capabilities can be extended by running Python or R scripts.
The script code itself is embedded in the workflow. However,
this does not apply to the libraries these scripts rely on. Galaxy
is completely based on managing external tools. Galaxy also
takes care of the dependencies of the tools in the Tool Shed or
uses Conda for that.

3. The extent to which a workflow manager allows creativity
is given by how quickly different processing and analysis
methods can be tried out. In KNIME, new processing and ana-
lysis methods can be easily attempted by writing and executing
R and Python scripts in KNIME nodes themselves. It also
allows algorithms to be implemented with KNIME nodes itself,
thanks to the availability of flow variables and various loop con-
structs. Loops are not available in Galaxy, there it is rec-
ommended to experiment with new analysis methods in exter-
nal software such as RStudio or Jupyter and import the final
code as a new Galaxy tool and attach that to the workflow.

4. Both KNIME and Galaxy allow the workflow to be config-
ured through configuration panels designed by the workflow
creator. These panels form the user interface for that workflow.
When these are well-annotated, it will provide a powerful clue to
the novice about the details of the data processing and analysis.

5. KNIME nodes typically execute one or a few rows of the
input table at a time, so that when the spectra and other
project data are stored in a row-oriented fashion, it is not
necessary to load the whole table into memory. This means
that large projects can be handled by relatively modest hard-
ware. In the case of Galaxy it depends on the implementation
of the tools themselves how much computer resources are
required.

6. Troubleshooting in KNIME involves checking the input,
configuration and output of each node in the workflow and
correct these if necessary. Data can be inspected directly by
looking at the data table, which can be sorted in various ways.
The code in R and Python nodes can be tweaked if necessary.
Troubleshooting a Galaxy workflow is harder. While Galaxy is
a lot more flexible with the types of data that can be passed
from node to node, it relies on the tools themselves to present
the data in a useful way. Although the tool configuration can
be tweaked, code needs to be altered in external development
tools.

7. KNIME allows the export and import of workflows, which
can be easily archived or shared with other scientists.
Alternatively, the virtual machine KIMBLE operates in can be
shared with anyone with a VirtualBox installation. Similarly,
Galaxy can be run from a Docker container which can be easily
shared. Containers are typically considerably smaller than
virtual machines, although running a (typically Linux-based)
Galaxy container in Windows requires a Linux virtual machine
to be running in the background.

Conclusions

The advance of workflow platforms provides highly needed
reproducibility to the data processing and analysis pipeline.

While workflows are already widely used in other omics fields,
in metabolomics many scientists process their data with elab-
orate scripts in Jupyter or RStudio notebooks. It can be argued
that these should not be considered workflow platforms, as
code and data in these systems are separate entities so that the
link between the raw source data and the final results can be
easily lost. In contrast, KNIME and Galaxy are two workflow
platforms that provide a close connection between data and
algorithms. Both are the basis of versatile metabolomics work-
flows; in the case of KNIME these are KniMet and KIMBLE,
while Workflow4Metabolomics and PheNoMeNal are built on
top of Galaxy. Galaxy is a pure workflow platform and is
already well established in the genomics field, while KNIME is
also a development platform for R and Python scripts and
allows for easy exploratory data analysis.
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