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Abstract
Time-varying covariates are of great interest in clinical research since they represent
dynamic patterns which reflect disease progression. In cancer studies biomarkers
values change as functions of time and chemotherapy treatment is modified by
delaying a course or reducing the dose intensity, according to patient’s toxicity levels.
In this work, a Functional covariate Cox Model (FunCM) to study the association
between time-varying processes and a time-to-event outcome is proposed. FunCM
first exploits functional data analysis techniques to represent time-varying processes
in terms of functional data. Then, information related to the evolution of the functions
over time is incorporated into functional regression models for survival data through
functional principal component analysis. FunCM is compared to a standard time-
varying covariate Cox model, commonly used despite its limiting assumptions that
covariate values are constant in time and measured without errors. Data from MRC
BO06/EORTC 80931 randomised controlled trial for treatment of osteosarcoma are
analysed. Time-varying covariates related to alkaline phosphatase levels, white blood
cell counts and chemotherapy dose during treatment are investigated. The proposed
method allows to detect differences between patients with different biomarkers and
treatment evolutions, and to include this information in the survival model. These
aspects are seldom addressed in the literature and could provide new insights into the
clinical research.

Keywords Functional data analysis · Time-varying covariates · Survival
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1 Introduction

Osteosarcoma is a malignant bone tumour mainly affecting children and young
adults. Although osteosarcoma is the most common primary malignant bone cancer,
it is a rare disease and has an annual incidence of 3-4 patients per million (Smeland
et al. 2019). Multidisciplinary management including neoadjuvant and adjuvant
chemotherapy with aggressive surgical resection (Ritter and Bielack 2010) or
intensified chemotherapy has improved clinical outcomes although the overall 5-year
survival rate has remained unchanged in the last 40 years at 60–70% (Anninga et al.
2011). Therefore, it is extremely important to provide an effective tool to evaluate the
prognosis for osteosarcoma and to guide the diagnosis.

Time-varying (or time-dependent) covariates are often of interest in clinical and
epidemiological research: patients are followed during the study and subject-specific
measurements are recorded at each visit. Well-known examples include biomarkers
which change during follow-up or cumulative exposure to medications (Austin et al.
2020), such as chemotherapy. Depending on patients’ treatment history or
development of toxicity, biomarkers values change and chemotherapy treatment is
modified by delaying a course or reducing the dose intensity. To study the association
between time-varying responses with time-to-event outcome (e.g., death) is a
challenging task which could offer new insights into the direction of personalised
treatment.

In osteosarcoma treatment, patients usually undergo assessment of hematologic
and serum biochemical parameters (Lewis et al. 2007), such as white blood cell
(WBC) counts and alkaline phosphatase (ALP). The role of ALP as tumour marker
for osteosarcoma has not been established, although several studies suggested that
high ALP level is associated with poor overall or event-free survival and presence of
metastasis (Ren et al. 2015; Hao et al. 2017). Chemotherapy is usually modelled by
different allocated regimens, i.e., by Intention-To-Treat (ITT) analysis (Gupta 2011).
ITT ignores anything that happens after randomization, such as protocol deviations
or changes in drug intake over time, i.e., delays or dose reduction (Lancia et al.
2019). Lancia et al. (2019b) showed that there is mismatch between target and
achieved dose of chemotherapy and the impact of dosis on patients’ survival is still
unclear. A novel method to study received chemotherapy dose and biomarkers as
time-varying variables is proposed. This approach has never been applied to
osteosarcoma treatment and provides new insight in understanding the effect of
chemotherapy dosis intensity on sarcoma in childhood cancer. Moreover, as will be
clear in the following, the application is inspiring from a statistical modelling
perspective.

Models for time-to-event data which are able to deal with the dynamic nature of
time-varying responses during follow-up are not well developed. One approach for
using time-varying covariate data is the Time-Varying covariate Cox Model (TVCM)
(Therneau and Grambsch 2000; Kalbfleisch and Prentice 2002), that is an extension
of the Cox proportional hazard model (Cox 1972) accounting for covariates that can
change value during follow-up. Since time-dependent observations are only available
at the time of measurements, TVCM uses the last-observation-carried-forward
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(LOCF) approach (Tsiatis and Davidian 2004), which leads to the pitfall of
introducing bias due to the continuous nature of the process underlying the data, and
fails to account for possible measurement errors (Arisido et al. 2019). Joint models
address these issues by modelling simultaneously longitudinal and time-to-event data
using shared random effects (Henderson et al. 2000; Tsiatis and Davidian 2004; Chi
and Ibrahim 2006; Dantan et al. 2011; Rizopoulos 2012, 2016; Gould et al. 2015;
Proust-Lima et al. 2016; Hickey et al. 2016, 2018). They are parametric models that
allow for the inference on the association between the hazards characterizing the
event outcome and the longitudinal processes. However, they require additional
strong assumptions over TVCM that need to be carefully validated to avoid biased
estimates (Arisido et al. 2019). Their benefits are hence strictly linked to the correct
specification of longitudinal trajectories and baseline hazard function. In addition,
inference computations could become prohibitive, especially for approaches
developed in a Bayesian framework.

During the past two decades, Functional Data Analysis (FDA) has been
increasingly used to analyse, model and predict dynamic processes (Ramsay and
Silverman 2002, 2005; Müller 2005; Yao et al. 2005; Ferraty and Vieu 2006; Liu and
Yang 2009; Ullah and Finch 2013; Ieva et al. 2013; Ieva and Paganoni 2016; Martino
et al. 2019; Spreafico and Ieva 2021). The idea behind FDA and functional models is
to express discrete observations arising from time series, i.e., longitudinal time-
varying observations, in the form of functions (Ramsay and Silverman 2002, 2005).
Functional representation incorporates trends and variations in the evolution of the
process over time (Ullah and Finch 2013). Since functional data are infinite-
dimensional covariates, some dimensionality reduction methods are needed to
summarize and select a finite dimensional set of elements representing the most
important features of each covariate. This information can then be included into time-
to-event models. To model the relationship between survival outcomes and a set of
finite and infinite dimensional predictors Functional Linear Cox Regression Models
(FLCRM) have been recently proposed (Gellar et al. 2015; Lee et al. 2015; Qu et al.
2016; Kong et al. 2018; Li and Luo 2019). In case of an infinite dimensional process,
Kong et al. (2018) characterized the joint effects of both functional and scalar
predictors on time-to-event outcome employing Functional Principal Component
Analysis (FPCA). FPCA is one of the most popular dimensionality reduction method
in FDA and it is used to summarise each function to a finite set of covariates through
FPC scores, while losing a minimum part of the information. An extended version of
the FLCRM by Kong et al. (2018) to the case of multiple functional predictors—
named Multivariate FLCRM (MFLCRM)—was introduced by Spreafico and Ieva
(2021) to model recurrent events effect on long-term survival. However, since the
main focus of the work was to develop a methodology for effectively modelling
time-varying recurrent events in terms of the functional compensators underlying the
processes of interest, the authors have neither compared MFLCRM with other
survival models, nor considered its predictive performances over time. In case of
multiple longitudinal processes, Li and Luo (2019) exploited the multivariate FPCA
approach by Happ and Greven (2018) to extract the FPC scores from the multiple
longitudinal trajectories in order to make personalized dynamic predictions.
However, the authors did not focus on the smoothing and functional representation
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aspects of the processes realized by the observed longitudinal data, on the clinical
interpretation of the FPC scores and on their association with overall survival. Since
it is often the changing patterns of the functional trajectories rather than the actual
values that affects patients’ survival, FDA provides a novel modelling and prediction
approach, with a great potential for many applications in public health and
biomedicine (Ullah and Finch 2013).

Motivated by a clinical question concerning the effect of biomarkers and dose
variations during treatment on survival for osteosarcoma patients, an innovative FDA
approach, named Functional covariate Cox Model (FunCM), is proposed and
compared to a standard TVCM. In FunCM, FDA techniques are first exploited to
represent time-varying processes and their derivatives over time in terms of
functional data. Unlike joint models, FDA approach does not make assumptions on
the distributions of longitudinal processes being computationally advantageous (Li
and Luo 2019). Then, additional information contained into the evolution of the
functions over time are included into MFLCRMs for overall survival through FPCA.
A cross-validation method is implemented to compare MFLCRMs and standard
TVCM in terms of their predictive performances at different time horizons. Three
novelties of this work are listed here: (i) application of advanced statistical
techniques to deal with time-varying covariates in the field of osteosarcoma
treatment; (ii) reconstruction of the functional representations for biomarkers and
chemotherapy dose values, and their rates of change, to retrieve information on the
progression of processes over time; (iii) comparison between TVCM and FunCM in
terms of both clinical interpretability and time-dependent predictive performances.
This novel approach provides more information about the effect of individualized
treatment adaption on survival for osteosarcoma patients.

The rest of this article is organized as follows. In Sect. 2 TVCM and FunCM to
represent time-varying covariates by means of FDA and to include them into survival
models are discussed. MRC BO06/EORTC 80931 Randomized Controlled Trial and
longitudinal representations of time-varying covariates are described in Sect. 3.
Results are presented in Sect. 4. Section 5 ends with a discussion of strengths and
limitations of the current approach, identifying some developments for future
research.

2 Statistical methods

2.1 Time-varying covariates and survival frameworks

A time-varying (or time-dependent) process is a covariate whose value can change
over the duration of follow-up (e.g., time-varying biomarkers, current use of
medication, and cumulative dose of drugs). In this study, the main interest is in
analysing the association between patient’s survival and variations during treatment
of his/her multiple time-varying characteristics. The focus is hence on patients who
had completed the entire chemotherapy treatment protocol in a pre-defined and
clinically acceptable timing period.

123

274 M. Spreafico et al.



Follow-up starts from date of randomization T0 and is divided into a pre-defined
6-months chemotherapy treatment period ½T0; T�

0 �—also called observation period—
considered for chemotherapy treatment completion, and a post-treatment follow-up
period from T �

0 onwards (see Fig. 1).
Under the TVCM framework, the Overall Survival (OS) is measured from

randomization (T0) to the date of death or last follow-up date, and the time-varying
covariates can be defined over the entire follow-up period. Let M be a set of time-

varying processes. Let zðmÞi ¼ zðmÞil ¼ zðmÞi ðtilÞ; l ¼ 1; . . .; nðmÞi

n o
be the vector of

longitudinal values related time-varying process m 2 M for each patient i, where til
is the time of the l-th measurement, zðmÞi ðtilÞ is the value of the process at time til and

nðmÞi is the number of different measurements.
Under the FunCM framework, the observation period ½T0; T�

0 � is used to
reconstruct the functional representations of time-varying covariates. OS is then
measured from the end of the observation period (T �

0 ) to the date of death or last
follow-up date. Only patients still alive at T�

0 are included in the study cohort. To
reconstruct the functional covariates, only measurements registered during the
observation period (i.e., up to T �

0 ) are considered, namely vector

�ðmÞi ¼ zðmÞil ¼ zðmÞi ðtilÞ; l ¼ 1; . . .; mðmÞi

n o
� zðmÞi , where mðmÞi denotes the index of last

measurement of type m for patient i in ½T0; T�
0 �, with mðmÞi � nðmÞi and

t
imðmÞi

� T�
0\t

imðmÞi þ1
.

In both cases, the observed time-to-death outcome for patient i 2 f1; . . .;Ng can
be denoted as ðTi; d�i Þ, where Ti = minðT�

i ;CiÞ is the observed event time (measured
from T0 or T �

0 according to the framework), T�
i is the true event time, Ci is the

censoring time and d�i ¼ IðT�
i �CiÞ is the event indicator, with Ið�Þ being the

indicator function that takes the value 1 when T �
i �Ci, and 0 otherwise.

Fig. 1 Follow-up periods. Time-varying (LOCF/functional) representation and Overall Survival (OS) for
Time-Varying covariate Cox Model (TVCM) and Functional covariate Cox Model (FunCM). T0 is the time
of randomization. T�

0 ¼ T0 þ 180 days is the end of the 6-months chemotherapy treatment period. LOCF =
last-observation-carried-forward
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2.2 Time-varying covariate Cox model

Starting from vector of longitudinal values zðmÞi , a time-varying covariate zðmÞi ðtÞ can
be defined over the entire follow-up period, according to the LOCF approach (Tsiatis
and Davidian 2004):

● when zðmÞi ðtÞ is not observed at time t 2 T0; tinðmÞi

h i
, the most updated value is

used: zðmÞil ¼ zðmÞi ðtilÞ with til � t\tilþ1;

● from t
inðmÞi

onwards, the last available measurement zðmÞi ðt
inðmÞi

Þ is considered.

The TVCM is an extension of the proportional hazard model by Cox (1972)
accounting for covariates that can change value during follow-up (Therneau and
Grambsch 2000; Kalbfleisch and Prentice 2002). Under TVCM, the proportional
hazards model for patient i has the form

hi tjxi; ziðtÞð Þ ¼ h0ðtÞ exp cTxi þ aT ziðtÞ
� � ð1Þ

where h0ðtÞ is the baseline hazard function, xi and ziðtÞ ¼ zð1Þi ðtÞ; . . .; zðMÞ
i ðtÞ

� �
are

the vectors of baseline and time-varying covariates with regression parameters c and
a, respectively. Inference for coefficients h ¼ c; að Þ is based on maximizing the
partial likelihood (Kalbfleisch and Prentice 2002).

TVCM can also be stratified to allow for control by “stratification” of a predictor
that does not satisfy the proportional hazard assumption (Kalbfleisch and Prentice
2002). Under stratified TVCM, the hazard function hig tjxi; ziðtÞð Þ contains also a
subscript g that indicates the g-th stratum, as well as the baseline hazards h0gðtÞ,
where the strata are different categories of the stratification variable. Notice that the
baseline hazard functions are different in each stratum.

2.3 Functional covariate Cox model

FunCM approach to represent time-varying covariates by means of FDA and to
include them into survival models is now introduced. A summary of the proposed
methodology is provided in Appendix A.1.

2.3.1 From longitudinal to functional representation

To model the continuous longitudinal vectors �zðmÞi defined over ½T0; T�
0 � as functions

~xðmÞi ðtÞ, FDA techniques can be exploited, as discussed by Ramsay and Silverman

(2002, 2005). The observed data zðmÞil are assumed as noisy measurements of the

latent processes ~X
ðmÞ
i ðtÞ, where time t 2 ½T0; T�

0 � and i is the patient’s index.
For each process m, first the time-scale t 2 Sm � ½T0; T�

0 � is chosen. There are no
restrictions on the choice of unit of measurement for t, though the specific choice can
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simplify the computational process. According to the type of observed data (i.e.,

periodic or open-ended data) and the number of measurements mðmÞi , the basis

function system /
ðmÞ
i ðtÞ (e.g., polynomials, B-spline, Fourier, wavelets) is selected,

with a number of basis less or equal to mðmÞi . Functional data objects are usually
expressed by a general functional form as linear combination of the basis functions

W ðmÞ
i ðtÞ ¼ /

ðmÞ
i ðtÞTcðmÞi , where cðmÞi is the vector of coefficients for patient i. Other

functional forms can be used to take into account the nature of the process itself (e.g.,
positive, increasing, decreasing). For example, for an increasing process, the

functional data object can be defined using the monotone functional form W ðmÞ
i ðtÞ ¼

b0i þ b1i
R t
t0
exp½/ðmÞ

i ðuÞTcðmÞi �du (Ramsay and Silverman 2005). Once selected the

type of basis functions and the functional form, data can be smoothed by regression
analysis minimizing the (penalized) sum of squared errors, obtaining functions

~xðmÞi ðtÞ ¼ Ŵ
ðmÞ
i ðtÞ.

In the presence of constrain due to the specific application, data can be
alternatively smoothed by regression analysis using the transformation
gðxÞ ¼ log x�Lm

Um�x, where Lm and Um denote the lower and upper bounds respectively.

For each patient i the customized functional predictor m is defined as:

~xðmÞi ðtÞ ¼ Lm þ Um � exp ½Ŵ ðmÞ
i ðtÞ�

1þ exp ½Ŵ ðmÞ
i ðtÞ�

: ð2Þ

Starting from the customized functional datum, the FDA approach also allows to

reconstruct its derivative d~xðmÞi ðtÞ as function of the derivatives of the basis functions

d/ðmÞ
i ðtÞ. The derivative of the functional process, indicated as ~xðdmÞi ðtÞ, represents the

rate of change of process values over time. Both functional data ~xðmÞi ðtÞ and

derivatives ~xðdmÞi ðtÞ can be incorporated as functional predictors into a functional Cox
regression model for overall survival by taking into account that they are correlated.

2.3.2 Multivariate functional linear Cox regression model

MFLCRM extends the functional Cox regression model by Kong et al. (2018) to the

case of multiple functional predictors (Spreafico and Ieva 2021). Let ~X
ð1Þ
i ; . . .; ~X ðMÞ

i

be a set of M functional predictors for individual i. MFLCRM includes the multiple
functional predictors in the classical Cox model (Cox 1972) as:

hi tjxi; ~x
ð1Þ
i ; . . .; ~xðMÞ

i

� �
¼ h0ðtÞ exp cTxi þ

XM
m¼1

Z
Sm

~xðmÞi ðsÞaðmÞðsÞds
( )

ð3Þ

where h0ðtÞ is the baseline hazard function, xi is the vector of scalar (non functional)

covariates with regression parameters c. The vector ~xð1Þi ; . . .; ~xðMÞ
i

� �
is a realization of

the M-variate functional data for individual i; aðmÞðsÞ are the functional regression
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parameters respectively. Sets Sm � ½T0; T�
0 � are compact sets in R and can be different

(both in period length and time scale) among between different types m of functional
predictors.

By applying FPCA, each functional trajectory ~xðmÞi ðsÞ can be approximated with a

finite sum of Km orthonormal basis nðmÞ1 ; . . .; nðmÞKm

n o
:

~xðmÞi ðsÞ � lðmÞðsÞ þ
XKm

k¼1

f ðmÞik nðmÞk ðsÞ ð4Þ

where lðmÞðsÞ is the functional mean and f ðmÞik is the FPC score of individual i related

to the k-th orthonormal base nðmÞk . To select the truncation parameters Km, repre-
senting the number of FPCs to be considered, Spreafico and Ieva (2021) chose the
model with the highest Concordance index (Pencina and D’Agostino 2004), that is an
overall measure of discrimination in survival analysis. In this work, the truncation
parameters Km are selected in terms of predictive discrimination and calibration
performances at different time horizons through the cross-validation procedure
introduced in Sect. 2.3.3. From (4) the integrals in (3) can be approximated:Z

Sm

~xðmÞi ðsÞ � lðmÞðsÞ
h i

aðmÞðsÞds �
Z
Sm

XKm

k¼1

f ðmÞik nðmÞk ðsÞaðmÞðsÞds

¼
XKm

k¼1

f ðmÞik

Z
Sm

nðmÞk ðsÞaðmÞðsÞds

¼
XKm

k¼1

f ðmÞik aðmÞk

ð5Þ

where aðmÞk is the scalar representing the quantity
R
Sm
nðmÞk ðsÞaðmÞðsÞds. Introducing

approximation (5) in Eq. (3), the hazard function becomes:

hi tjxi; ~x
ð1Þ
i ; . . .; ~xðMÞ

i

� �
¼ h0ðtÞ exp cTxi þ

XM
m¼1

Z
Sm

lðmÞðsÞaðmÞðsÞdsþ
XKm

k¼1

f ðmÞik aðmÞk

" #( )

¼ h�0ðtÞ exp cTxi þ
XM
m¼1

XKm

k¼1

f ðmÞik aðmÞk

( )
ð6Þ

where h�0ðtÞ ¼ h0ðtÞ exp
PM

m¼1

R
Sm
lðmÞðsÞaðmÞðsÞds

n o
is the baseline hazard function

and aðmÞk ¼ R
Sm
nðmÞk ðsÞaðmÞðsÞds is the regression parameter related to the k-th FPC

score related to process m. Therefore, defining the following quantities:
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h ¼ cT ; að1Þ1 ; . . .; að1ÞK1

� �
; ::: ; aðMÞ

1 ; :::; aðMÞ
KM

� �h iT
wi ¼ xT

i ; f ð1Þi;1 ; . . .; f ð1Þi;K1

� �
; . . .; ; f ðMÞ

i;1 ; . . .; f ðMÞ
i;KM

� �h iT
and substituting them in Eq. (6), through FPCA the MFLCRM can be expressed as
Cox model with hazard function

hiðtÞ ¼ h0ðtÞ exp hTwi

� �
where the vector of coefficients h can be estimated by maximising the partial like-
lihood function (Cox 1972). Notice that even in this case the hazard function in
Eq. (6) could be stratified.

2.3.3 Selection of truncations parameters

The truncation parameters Km in Eq. (6) can be chosen in different ways: (i) the
Proportion of Variance Explained (PVE) (Ramsay and Silverman 2005), (ii) Akaike
Information Criterion (AIC) or Bayesian Information Criterion (BIC) or (iii) data-
adaptive methods, such as cross-validation (Yao et al. 2005). In this analysis, a
combination of these three methods is used. Let the sets of baseline and functional
predictors be fixed. First, different combinations of increasing values of the
truncation parameters Km for different time-varying processes m are considered and
the best models according to both AIC and BIC criteria are selected. Then, models
according to five different thresholds for PVE (Km such that
PVE	 80; 85; 90; 95; 99%) are identified. Finally all the selected models are
compared in terms of their predictive performances at different time horizons
through cross-validation to identify the best one.

The predictive performance of the models is assessed in terms of discrimination
and calibration. Discrimination is assessed through the time-dependent area under the
curve (AUC), estimated through the nonparametric method by Li et al. (2018).
Calibration is assessed by the weighted version of the Brier score under the
assumption of independent censoring (Graf et al. 1999). Higher AUC and lower Brier
score indicate better discrimination and calibration, respectively.

3 MRC BO06 randomized clinical trial data

3.1 Sample cohort selection and baseline characteristics

Clinical studies usually collect information about baseline characteristics and
multiple time-varying processes to measure the disease progression. Data from the
MRC BO06/EORTC 80931 Randomized Controlled Trial for patients with non-
metastatic high-grade osteosarcoma recruited between 1993 and 2002 (Lewis et al.
2007) were analysed. Patients were randomized between conventional (Reg-C) and
dose-intense (Reg-DI) regimens. Details concerning the trial protocol are provided in
Appendix A.2.
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The dataset included 497 eligible patients; 19 patients who did not start
chemotherapy (13) or reported an abnormal dosage of one or both agents (6) were
excluded. Motivated by the clinical research question concerning the effect of doses
intensity on survival, only patients who completed all six cycles within 180 days (i.
e., T �

0 of the observation period) were included in the analyses. TVCM analysis was
carried out on 377 patients (75.9% of the initial sample). Among them, one subject
presented Ti\T �

0 and was excluded from the FunCM cohort (376 patients—75.7%
of the initial sample). The final cohorts for both TVCM and FunCM analyses are
shown in Fig. 2.

Follow-up starts from date of randomization (T0) and the observation period
½T0; T �

0 � is given by the first 180 days after randomization (i.e., the 6-months
chemotherapy treatment period). Patients’ characteristics at baseline are provided in
Table 1. Three age groups were defined according to Collins et al. (2013): child
(male: 0–12 years; female: 0–11 years), adolescent (male: 13–17 years; female: 12–
16 years) and adult (male: 18 or older; female: age 17 years or older). Median follow-
up time, computed using the reverse Kaplan–Meier method by Schemper and Smith
(1996), was 62.19 months (IQR = [38.93; 87.46]) and 245 patients (65%) were alive
at the last follow-up visit.

3.2 Time-varying characteristics

Due to the skewed nature of the longitudinal trajectories of both ALP and WBC
biomarkers, their logarithmic transformations shifted by one were considered. The

Fig. 2 Flowchart of cohorts selection
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vectors of longitudinal values of ALP and WBC measurements for patient i are given
as

zðALPÞi ¼ zðALPÞi ðtilÞ; l ¼ 1; . . .; nðALPÞi

n o
ð7Þ

zðWBCÞ
i ¼ zðWBCÞ

i ðtilÞ; l ¼ 1; . . .; nðWBCÞ
i

n o
ð8Þ

where til is the time of the l-th laboratory ALP or WBC test, zðALPÞi ðtilÞ ¼
logðALPil þ 1Þ and zðWBCÞ

i ðtilÞ ¼ logðWBCil þ 1Þ are the logarithmic values of ALP

and WBC measurements at time til , n
ðALPÞ
i and nðWBCÞ

i are the number of different
ALP and WBC laboratory tests, respectively. Left and central panels of Fig. 3 show

the longitudinal trajectories over time of zðALPÞi and zðWBCÞ
i respectively. Each line

represents the time-varying logarithmic biomarker values for a specific patient
coloured by event status (black: Censored, red: Dead). Observed longitudinal data
can be sparse and irregularly measured among patients and different biomarkers.

ALP point-measurements zðALPÞi ðtilÞ observed among all patients over time ranged
from a minimum of 2.708 to a maximum of 8.211 (corresponding to ALP values of

14 and 3680 IU/L, respectively). WBC point-measurements zðWBCÞ
i ðtilÞ observed

among all patients over time ranged from a minimum of 0.095 to a maximum of
4.771 (corresponding to WBC values of 0.1 and 117.0 
109=L, respectively). The
presence in both biomarkers of extremely high/low levels compared to normal ranges

Table 1 Patients’ characteristics
at baseline

Baseline characteristic

Patients 377

Age [years]

Median (IQR) 15 (11; 18)

Minimum/maximum 3/40

Child 109 (28.9%)

Adolescent 154 (40.9%)

Adult 114 (30.2%)

Gender

Female 148 (39.3%)

Male 229 (60.7%)

Allocated treatment

Regimen-C 180 (47.7%)

Regimen-DI 197 (52.3%)

White Blood Count [
 109/L]

Median (IQR) 7.65 (6.30; 9.13)

Minimum/maximum 3.60/16.20

Alkaline Phospathase [IU/L]

Median (IQR) 311.5 (190.0; 551.5)

Minimum/maximum 49.0/3680.0
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is due to the presence of conditions usually experienced by patients in childhood
cancer therapies, such as bone growth, tumour necrosis, inflammatory states, infec-
tions or toxicity (see Williamson et al. 2015).

The time-varying standardized cumulative dose of chemotherapy is now
introduced. Let j 2 f1; . . .; 6g be the cycle index and tij the time of the j-th cycle
for the i-th patient. The standardized cumulative dose of chemotherapy (DOX?
CDDP) for the i-th patient at time tij is defined as:

zðdÞi ðtijÞ ¼ Cumulative dose of DOX þ CDDP until cycle j½mg=m2�
Total target dose at the end of six cycles ½mg=m2�

¼ 1

175 ½mg=m2� � 6 �
Xj

k¼1

DOXik þ CDDPik

surface areaik

mg

m2

h i
:

ð9Þ

This can be interpreted as the regulated Received Dose Intensity (rRDI) introduced
by Lancia et al. (2019) evaluated over real time and not over cumulative time on
treatment. For each patient i, the vector of longitudinal values of standardized
cumulative dose of chemotherapy over time is defined as

zðdÞi ¼ fzðdÞi ðtijÞ; j ¼ 1; . . .; 6g. The right panel of Fig. 3 shows the longitudinal tra-

jectories zðdÞi over time. Each line represents the individual time-varying standardized
cumulative chemotherapy dose coloured by allocated regimen (pink: Reg-DI, purple:
Reg-C). Patients - also within the same regimen - reported different values of stan-
dardized cumulative dose during time, depending on the delays and dose reductions
required during chemotherapy due to toxicity. In particular, the lines form a tight
bundle in the early phase of the treatment, but later they open up in a hand-fan shape
because treatment adjustments are generally more frequent towards the end of the

protocol. Median value of total standardized cumulative dose zðdÞi ðti6Þ was 0.998

Fig. 3 Time-varying covariates for each patient. Left panel: longitudinal logarithmic values of ALP
biomarker over time coloured by event status (black: Censored, red: Dead). Central panel: longitudinal
logarithmic values of WBC biomarker over time coloured by event status (black: Censored, red: Dead).
Right panel: longitudinal values of standardized cumulative dose of chemotherapy coloured by allocated
regimen (pink: Reg-DI, purple: Reg-C) (colour figure online)
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(IQR = [0.901; 1.000]), with minimum and maximum final values equal to 0.613 and
1.056, respectively. Median value of time from randomization to last cycle ti6 was
127 days (IQR = [114; 179]), with minimum and maximum periods of 85 and 179
days, respectively.

4 Results

Since the role of received chemotherapy dose and biomarkers on patient’s survival is
still unclear for osteosarcoma (Ren et al. 2015; Hao et al. 2017; Lancia et al. 2019b),
a new time-varying/functional perspective may help in understanding their relation-
ship, providing new insights for childhood cancer. In this regard, the methodologies
proposed in Sect. 2 were applied to the MRC BO06 osteosarcoma trial. Statistical
analyses were performed in the R-software environment (Core Team 2020).

4.1 Time-varying covariate Cox model

To study the effect of time-varying biomarkers and doses on survival, a TVCM was
fitted on the cohort of 377 patients (see Fig. 2). In particular, the hazard function in
Eq. (1) was adjusted for gender at randomization ðxiÞ and stratified by age group
g 2 fchild; adolescent; adultg, as follows:

hig tjxi; ziðtÞð Þ ¼ h0gðtÞ exp
(
c1 � genderi þ a1 � zðALPÞi ðtÞ

þ a2 � zðWBCÞ
i ðtÞ þ a3 � 100zðdÞi ðtÞ

) ð10Þ

where h0gðtÞ is the baseline hazard function for the g-th age stratum, zðALPÞi ðtÞ,
zðWBCÞ
i ðtÞ and zðdÞi ðtÞ are the time-varying covariates of ALP and WBC biomarkers
and standardized cumulative dose (multiplied by 100 due to its different values

scale), obtained applying LOCF method to longitudinal vectors zðALPÞi , zðWBCÞ
i and zðdÞi

respectively. In Table 2 hazard ratios along with their 95% confidence interval are
shown. Gender at randomization and time-varying WBC were associated to survival,
whereas time-varying ALP biomarker and chemotherapy dose showed no effects on
survival. Being a male was associated to a 1.5-times faster experience of the event.

Table 2 Estimated hazard ratios
(HR) along with 95% confidence
intervals (CI) from the stratified
time-varying covariate Cox
model (TVCM) in Eq. (10)

Covariates HR 95% CI

Gender (male) 1.539 [1.046; 2.263]

zðALPÞi ðtÞ 0.991 [0.711; 1.383]

zðWBCÞ
i ðtÞ 0.647 [0.477; 0.877]

zðdÞi ðtÞ � 100 1.005 [0.984; 1.027]
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The higher the value of WBC at time t, the higher the risk of death. This model
ignored the continuous nature of the processes underlying the data.

4.2 Functional covariate Cox model

4.2.1 Functional representation of time-varying biomarkers and chemotherapy dose

To convert the longitudinal values of ALP and WBC biomarkers registered during

the observation period, �zðALPÞi and �zðWBCÞ
i , into the functions ~xðALPÞi ðtÞ and ~xðWBCÞ

i ðtÞ,
measurements by cycles were used. This implies that all time-varying values were on
the same temporal domain, i.e., t 2 SALP ¼ SWBC ¼ ½1; 6� cycles. For both ALP and

WBC biomarkers (m ¼ fALP;WBCg), B-spline basis functions /ðmÞ
i ðtÞ (ALP: 2 or 3

basis of order 2 or 3; WBC: 6 or 7 basis of order 5, according to each patient i) and a
general functional form were used. Clinical bounds ½Lm;Um� (ALP: [0;9]; WBC:
[0;5]) were employed in order to include the extremely high/low levels experienced
by patients during treatment. Lower bounds equal to 0 were chosen to ensure the
non-negativity of the functional values. A data driven approach was used to select the

upper bounds defined as Um ¼ maxi;l z
ðmÞ
i ðtilÞ

l m
. For each patient i the following

functional ALP and WBC predictors were provided:

~xðALPÞi ðtÞ ¼
9 � exp /

ðALPÞ
i ðtÞTbcðALPÞi

h i
1þ exp /

ðALPÞ
i ðtÞTbcðALPÞi

h i ; ð11Þ

~xðWBCÞ
i ðtÞ ¼

5 � exp /
ðWBCÞ
i ðtÞTbcðWBCÞ

i

h i
1þ exp /

ðWBCÞ
i ðtÞTbcðWBCÞ

i

h i ð12Þ

where bcðmÞi (m ¼ fALP;WBCg) are the vectors of coefficients estimated by regres-
sion analysis using the transformation gðxÞ ¼ log x�Lm

Um�x. Starting from the customized

functional data in Eqs. (11) and (12), the derivatives ~xðdmÞi ðtÞ (m ¼ fALP;WBCg),
which represents the rate of change in the biomarkers values over time, were
reconstructed. A graphical representation of functional biomarkers curves and their
derivatives are shown in Figs. 4 and 5, respectively (left panels: ALP biomarker;
central panels: WBC biomarker). Each line represents the functional predictor for
patient i coloured according to the death-event status.

To convert the longitudinal values of standardized cumulative chemotherapy dose

zðdÞi into the functional form ~xðdÞi ðtÞ, measurements in days were considered since
different duration in treatment is a key-point in the chemotherapy protocol. Based on
clinical motivations, the interval Sd ¼ ½0; 180� days was selected, since all the
patients completed the therapy within 180 days from randomization. B-spline basis

functions /ðdÞ
i ðtÞ (5 basis of order 5), a monotone functional form and clinical bounds
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Ld ¼ 0 and Ud ¼ 1:1 were used. For each patient i a functional predictor of
standardized cumulative dose of chemotherapy was obtained:

~xðdÞi ðtÞ ¼
1:1 � exp bb0i þ bb1i

R t
0 exp /

ðdÞ
i ðuÞTbcðdÞi

h i
du

� �
1þ exp bb0i þ bb1i

R t
0 exp /

ðdÞ
i ðuÞTbcðdÞi

h i
du

� � ð13Þ

where bcðdÞi is the vector of coefficients estimated by penalized regression analysis

using the transformation gðxÞ ¼ log x�Ld
Ud�x. Finally, starting from the customized
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Fig. 4 Left panel: functional representations of ALP biomarker over cycles coloured by status (black:
Censored, red: Dead). Central panel: functional representations of WBC biomarker over cycles coloured
by status (black: Censored, red: Dead). Right panel: functional representations of standardized cumulative
dose of chemotherapy over time coloured by allocated regimen (pink: Reg-DI, purple: Reg-C). Each line is
the graphical representation of the functional predictor of a patient (colour figure online)
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Fig. 5 Left panel: functional representations of the rate of change of ALP biomarker over cycles coloured
by status (black: Censored, red: Dead). Central panel: functional representations of the rate of change of
WBC biomarker over cycles coloured by status (black: Censored, red: Dead). Right panel: functional
representations of the rate of change of standardized cumulative dose of chemotherapy over time coloured
by allocated regimen (pink: Reg-DI, purple: Reg-C). Each line is the graphical representation of the
functional predictor of a patient (colour figure online)
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functional data in Eq. (13), the derivatives ~xðddÞi ðtÞ, which represents the rate of
change of chemotherapy dose over time, were reconstructed. A graphical represen-

tation of functional standardized cumulative dose curves ~xðdÞi ðtÞ and their derivatives

~xðddÞi ðtÞ are shown in right panels of Figs. 4 and 5, respectively. Each line represents
the functional predictor for patient i coloured according to the allocated regimen.

Functional standardised cumulative dose curves ~xðdÞi ðtÞ (right panel in Fig. 4) also
provide information on treatment adjustments. Dose reductions are represented by
final standardised cumulative dose smaller than 1. For patients with a similar final
dose, the slope displays information on the duration of treatment: the lower the slope,
the longer the duration of treatment, reflecting delays compared to protocol (see
Appendix A.2).

Figures 4 and 5 show that, taking into account the continuous nature of the
processes underlying the data, a customized functional representation of the time-
varying covariates and their derivatives highlights trends and variations in the shape
of the processes over time.

4.2.2 Functional principal component analysis for time-varying biomarkers
and chemotherapy

The functional trajectories provided in Eqs. (11), (12) and (13) and their derivatives
were summarised into a finite set of covariates by applying Functional Principal
Component Analyses (FPCAs). Only results of FPCA on functional predictors

~xðALPÞi ðtÞ and ~xðdÞi ðtÞ are presented. In both cases, two principal components were
enough to account for at least 95% of the observed variability.

Fig. 6 FPCA for functional Alkaline Phosphatase ~xðALPÞi ðtÞ Left panel: Functional PC scores plot

f ðALPÞi1 ; f ðALPÞi2

� �
with boxplots (black: Censored, red: Dead) Central panel: Interpretation of first FPC

nðALPÞ1 —average standardized cumulative dose lðALPÞðtÞ � c
ffiffiffiffiffiffiffiffiffiffiffiffi
kðALPÞ1

q
� nðALPÞ1 , with

ffiffiffiffiffiffiffiffiffiffiffiffi
kðALPÞ1

q
¼ 1:48 and

�c ¼ �1;�2;�3 Right panel: Interpretation of second FPC nðALPÞ2 —average standardized cumulative

dose lðALPÞðtÞ � c
ffiffiffiffiffiffiffiffiffiffiffiffi
kðALPÞ2

q
� nðALPÞ2 , with

ffiffiffiffiffiffiffiffiffiffiffiffi
kðALPÞ2

q
¼ 0:23 and �c ¼ �1;�2;�3 (colour figure online)
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Results of FPCA on functional ALP predictors ~xðALPÞi ðtÞ are provided in Fig. 6.

Left panel reports the FPC scores plot f ðALPÞi1 ; f ðALPÞi2

� �
with relative boxplots, which

show the distributions of the estimated FPC score values among censored and dead
patients. Each point represents a patient coloured by status (black: Censored, red:
Dead). Central and right panels displays how to interpret the first two Principal

Components nðALPÞk , showing the average ALP curve lðALPÞðtÞ � c
ffiffiffiffiffiffiffiffiffiffiffiffi
kðALPÞk

q
� nðALPÞk

where kðALPÞk is the is eigenvalue related to the k-th component and c are constants
chosen in order to let the scores values lie within one, two or three

(�c ¼ �1;�2;�3) standard deviations (i.e., square roots of kðALPÞk ). The first

component nðALPÞ1 explained 83.8% of the variability and a positive (negative) score
reflected higher (lower) values of ALP trajectories during treatment compared to the

mean (left panel). The second component nðALPÞ2 explained 13.1% of the variability
and positive scores reflected “flat” curves, whereas negative score reflected curves
with highly negative slopes in the first cycles (right panel). The lower the score, the
higher the ALP levels during the first two cycles of the treatment. FPC scores thus
summarize the different patterns of the functional biomarker trajectories between
patients during treatment, being a more informative representation than the baseline
value or the last available measure used through LOCF.

Results of FPCA on functional standardized cumulative dose ~xðdÞi ðtÞ are shown in

Fig. 7. Left panel reports the FPC scores plot f ðdÞi1 ; f ðdÞi2

� �
with relative boxplots,

which show the distributions of the estimated FPC score values among the two
regimens. Each point corresponds to a patient. Different colours represent the two
regimens. Central and right panels displays how to interpret the first two Principal
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Fig. 7 FPCA for functional standardized cumulative dose ~xðdÞi ðtÞ Left panel: Functional PC scores plot

f ðdÞi1 ; f ðdÞi2

� �
with boxplots (pink: Reg-DI, purple: Reg-C) Central panel: Interpretation of first FPC nðdÞ1 —

average standardized cumulative dose lðdÞðtÞ � c
ffiffiffiffiffiffiffi
kðdÞ1

q
� nðdÞ1 , with

ffiffiffiffiffiffiffi
kðdÞ1

q
¼ 1:31 and �c ¼ �1;�2;�3

Right panel: Interpretation of second FPC nðdÞ2 —average standardized cumulative dose

lðdÞðtÞ þ �c
ffiffiffiffiffiffiffi
kðdÞ2

q
� nðdÞ2 , with

ffiffiffiffiffiffiffi
kðdÞ1

q
¼ 0:15 and �c ¼ �1;�2;�3 (colour figure online)
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Components nðdÞk , showing the average curve lðdÞðtÞ � c
ffiffiffiffiffiffiffi
kðdÞk

q
� nðdÞk where kðdÞk is the

is eigenvalue related to the k-th component and c are constants chosen in order to let
the scores values lie within one, two or three (�c ¼ �1;�2;�3) standard deviations

(i.e., square roots of kðdÞk ). The first component nðdÞ1 explained 86.9% of the variability
and reflects information on treatment administration and adjustments with respect to
protocol. Positive scores (i.e., curves above the average lðdÞðtÞ in the left panel)
indicate patients without dose-reduction (i.e., their final standardized cumulative dose
is greater or equal to 1) and with possible delays in treatment: the lower the positive
score, the higher the time needed to end the treatment. Negative scores (i.e., curves
below the average lðdÞðtÞ) represent patients with both time-delays and dose-
reduction: the lower the negative score, the higher the total dose-reduction. The

second component nðdÞ2 explained 9.8% of the variability and a positive score
indicated a faster growth in the chemotherapy assumption in the first period
compared to the second one, with respect to the mean (right panel). Every two
patients reported different values of FPC scores, reflecting delays or dose reductions
during chemotherapy. This representation illustrates different treatment dynamics,
also among patients allocated to the same regimen. Summarizing differences in both
trends and variations related to the shape of chemotherapy doses consumption
processes over time, the use of FPC scores is more informative than an IIT analysis
by different allocated regimens or a LOCF approach that considers only the last
available value.

4.2.3 Multivariate functional linear Cox regression model

To study the effect of risk factors on survival, several MFLCRMs based on different
sets of baseline and functional predictors (see Table 3) were estimated. Since
functional trajectories and their relative derivatives are correlated, in each MFLCRM
only one type was considered. Each model was adjusted for gender and stratified by

Table 3 Selected truncation parameters Km and integrated AUC (iAUC) for different sets of baseline and
functional predictors

Model Baseline Truncation parameters Km iAUC

xi ALP dALP WBC dWBC d dd

1 ðgenderiÞ 2 – 7 – 1 – 0.650
2 ðgenderiÞ 2 – 7 – – 1 0.635
3 ðgenderi;wbciÞ 2 – – 4 2 – 0.666
4 ðgenderi;wbciÞ 2 – – 4 – 3 0.664
5 ðgenderi; alpi;wbciÞ – 2 – 4 2 – 0.650
6 ðgenderi; alpi;wbciÞ – 2 – 4 – 3 0.647
7 ðgenderi; alpiÞ – 1 7 – 1 – 0.645
8 ðgenderi; alpiÞ – 1 7 – – 1 0.641
TVCM 0.592

iAUC for stratified time-varying covariate Cox model (TVCM) in Eq. (10)
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age group at randomization g 2 fchild; adolescent; adultg. When functional rate of
changes of ALP or WBC biomarkers were included in the models, the values of
logarithmic ALP or WBC levels at randomization were also considered as adjusting
baseline covariates. Cross-validation with five folds was employed to select the
truncation parameters Km for each set of covariates (see Table 3). Time-dependent
AUCs and Brier scores were estimated with R packages tdROC (function tdROC)
by Li and Wu (2016) and ipred (function sbrier) by Peters and Hothorn (2019),
respectively. Figure 8 shows the cross-validated mean values of time-dependent
AUC and Brier score over different time horizons for all estimated models (solid
lines) and for TVCM in Eq. (10) (dashed black lines). All functional models
outperformed TVCM and showed similar Brier score measures over time, therefore
time-dependent AUC was used to select the final model. Weighted averages of the
several time-dependent AUCs over time, estimated through the integrated AUCs
(iAUC) by Heagerty and Zheng (2005), are reported in Table 3. According to the
highest iAUC, the best MFLCRM was Model 3, defined as follows:

hig

�
tjxi; ~x

ðALPÞ
i ðtÞ; ~xðdWBCÞ

i ðtÞ; ~xðdÞi ðtÞ
�

¼ h0gðtÞ exp
	
c1 genderi þ c2 wbci þ

X2
k¼1

f ðALPÞik aðALPÞk

þ
X4
k¼1

f ðdWBCÞ
ik aðdWBCÞ

k þ
X2
k¼1

f ðdÞik aðdÞk



ð14Þ

where h0gðtÞ is the baseline hazard function for the g-th age stratum, xi ¼
ðgenderi;wbciÞ is the vector of baseline covariates; ~xðALPÞi ðtÞ, ~xðdWBCÞ

i ðtÞ and ~xðdÞi ðtÞ
are the functional predictors of ALP biomarker, rate of change of WBC and
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Fig. 8 Left panel: time-dependent AUC over different time horizons (from 1 to 7 years after
randomization) for Models 1–8 of Table 3 (solid coloured lines) and TVCM in Eq. (10) (dashed black line).
Right panel: Brier score over different time horizons (colour figure online)
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standardized cumulative dose, respectively, with relative FPC scores f ðmÞik

(k ¼ 1; . . .;Km; m 2 fALP; dWBC; dg;KALP ¼ 2;KdWBC ¼ 4;Kd ¼ 2).
To estimate the effect of the selected functional predictors on survival, MFLCRM

(14) was fitted on the FunCM cohort of 376 patients (see Fig. 2). In Table 4 hazard
ratios along with their 95% confidence interval are shown. Level of WBC at

randomization and the FPC scores related to alkaline phosphatase f ðALPÞi1 ; f ðALPÞi2 were
associate to survival. The higher the value of WBC at randomization the higher the
risk of death, whereas no effects were observed due to the rate of change in WBC
during the protocol observation period. Patients with high ALP trajectories had poor
survival, especially in case of curves with highly negative slopes during the first
cycles of chemotherapy protocol. FPC scores related to functional chemotherapy
dose showed no effects on survival. Estimated survival probabilities are shown in
Fig. 9. High values of baseline WBC corresponded to poor survival (top-left panel).

The score f ðdÞi1 related to the first PC of functional chemotherapy indicated that there
was no improvement on survival due to dose-intense profiles (top-right panel). The
effect of functional ALP biomarker suggested that patients with high ALP trajectories

over time (i.e., high value of f ðALPÞi1 —bottom-left panel), especially during the first

cycles of the chemotherapy protocol (i.e., low value of f ðALPÞi2 - bottom-right panel),
had poor survival.

5 Discussion

To study the association between time-varying processes and time-to-event data is a
challenging problem in clinical research and the development of models and methods
able to deal with dynamic time-varying covariates is of statistical interest and of
clinical relevance. Research into functional modelling have received considerable
attention in recent years. In this work, a novel approach based on FDA techniques to
investigate the dynamics of time-varying processes over time and to include

Table 4 Estimated hazard ratios
(HR) along with 95% confidence
intervals (CI) from the
multivariate functional linear
Cox regression model

Covariates HR 95% CI

gender (male) 1.431 [0.964; 2.123]

wbc 3.169 [1.525; 6.585]

f ðALPÞ1
1.210 [1.018; 1.437]

f ðALPÞ2
0.554 [0.399; 0.768]

f ðdÞ1
0.869 [0.719; 1.051]

f ðdÞ2
0.885 [0.547; 1.432]

f ðdWBCÞ
1

0.990 [0.889; 1.102]

f ðdWBCÞ
2

0.916 [0.789; 1.062]

f ðdWBCÞ
3

1.161 [0.892; 1.512]

f ðdWBCÞ
4

1.219 [0.898; 1.655]
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additional information that may be related to the survival into the time-to-event
model was presented. Data from the MRC BO06/EORTC 80931 randomized clinical
trial for osteosarcoma treatment were analysed. Biomarkers and chemotherapy dose
were incorporated as time-varying covariates into time-to-event models using both a
TVCM and a FunCM approach. The standard TVCM with LOCF approach ignored
the continuous nature of the processes underlying the data. To overcome this issue,
FunCM exploited FDA techniques to represent time-varying characteristics in terms
of functions, enriching the information available for modelling survival with relevant
time-varying features related to the evolution of the processes over time. These
features were included into MFLCRMs by FPCA to study the effects of functional
risk factors on patients’ overall survival.

Differences in results for TVCM and MFLCRM were due to the different nature
of the information incorporated in the two models. TVCM considered as constants
the last biomarkers/dose levels over different time points (expressed in days). In
practice, among the measurements recorded during the observation period, only the
last value had any real impact on overall survival, as only one patient presented with
a time-to-event of less than 180 days. This discarded both information about the
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Fig. 9 Estimated survival probability based on the multivariate functional linear Cox regression model
(14). Time t0 ¼ 0 corresponds to T�

0 in Fig. 1. Top-left panel: patients with different values of WBC [

109/L] at randomization (green: WBC ¼ 4; blue: WBC ¼ 8; red: WBC ¼ 12). Top-right panel: patients

with different values of the first PC score for functional chemotherapy (purple: f ðdÞ1 ¼ �0:8; pink:

f ðdÞ1 ¼ 0:8). Bottom-left panel: patients with different values of the first PC score for functional ALP

biomarker (red: f ðALPÞ1 ¼ 1; blue: f ðALPÞ1 ¼ �1). Bottom-right panel: patients with different values of the

second PC score for functional ALP biomarker (red: f ðALPÞ2 ¼ 0:5; blue: f ðALPÞ2 ¼ �0:5). When not
specified, the other risk factors are fixed to the most frequent class for categorical covariates, i.e.,
adolescent males, and to the median value for continuous ones, i.e., WBC ¼ 7:65
 109=L at

randomization, f ðdÞ1 ¼ 0:08, f ðdÞ2 ¼ �0:03, f ðALPÞ1 ¼ �0:10, f ðALPÞ2 ¼ 0:07, f ðdWBCÞ
1 ¼ �0:12,

f ðdWBCÞ
2 ¼ �0:02, f ðdWBCÞ

3 ¼ �0:07 and f ðdWBCÞ
4 ¼ �0:08 (colour figure online)
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continuous nature of the processes and the history of the actual levels measured.
MFLCRM included information related to different levels variations and timing
during the entire observation period, and functional biomarkers were defined over
cycles. Thanks to the introduction of relevant dynamic features related to the
continuous functional nature of the processes, MFLCRM resulted more informative
than TVCM, outperforming it both in terms of calibration and discrimination over
time. MFLCRM results suggested that osteosarcoma patients with high ALP
trajectories during treatment, especially during the first cycles of the chemotherapy
protocol, have poor overall survival. Dose-intense profiles were not associated with
survival, even if functional chemotherapy representations were able to capture
individual realisations of the intended treatment, detecting differences between
patients randomised to the same regimen. This suggested that considering only the
assumed dose as treatment proxy is not enough. Chemotherapy presents some
particular aspects, such as latent accumulation of toxicity, which must be taken into
account (Lancia et al. 2019).

The proposed FunCM focused on the representation and the reconstruction of the
functional trajectories related to the time-varying processes of interest. Such data are
usually considered in a very simplistic way in cancer prediction models, where they
act as fixed baseline or as time-dependent LOCF covariates. In this way the amount
of information they may provide is not considered, as it is often the changing patterns
of the functional trajectories rather than the baseline/last value that affects patients’
survival. The strength and innovation of FunCM was the ability to capture the
individual realisations of the process over time through a customized functional
reconstruction. The developed techniques allowed (i) to account for the continuous
time-varying nature of the processes underlying the data and their properties, such as
nonlinearity, positivity, constraints, monotonicity, (ii) to move from sparse and
irregular longitudinal data to functions defined over a common continuous domain,
overcoming the issues of values missingness and different temporal grids, and (iii) to
reconstruct and provide derivatives information in a tailored way. The use of
derivatives is important both in extending the range of simple graphical exploratory
methods and in the development of more detailed methodology (Ramsay and
Silverman 2005). In fact, interesting patterns are often much more apparent in
derivatives than in the original curves. Furthermore, through a proper dimensionality
reduction technique, this methodology allowed to extract additional information
contained in the functions. This result is an effective exploratory and modelling
technique to highlight trends and variations in the evolution of the processes over
time.

In contrast to a TVCM approach, the use of FunCM requires that patients survived
for a period at least equal to the length of the observation period used to compute the
functional predictors. This might imply a loss of information in situations with high
rate of mortality during the observation period (that is not the case under study as
only one of the cohort patients who had completed the chemotherapy treatment
protocol died during the first 6-months after randomization—see Fig. 2). In those
cases, a joint modelling approach can be used to overcome both LOCF and selection
bias issues, since its allows the simultaneous modelling of longitudinal and time-to-
event outcomes. However, joint models are computational expensive in case of
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multiple longitudinal outcomes and require assumptions on the distributions of the
processes that need to be carefully validated to avoid biased estimates.

This work opens doors to many further developments, both in the field of
statistical methods and in cancer research. The dimensionality reduction via FPCA is
just one way to work with these data in order to use them within inferential contexts.
In fact, the reconstruction via FDA allows to properly use the functional data to
address relevant clinical research questions, according to the needs of the analysis
and the outcomes of interest. From a clinical point of view, it will be necessary to
simultaneously consider chemotherapy treatment modifications and the occurrence of
adverse events. This aspect need to be taken into account into the representation of
the dynamic evolution of these processes. To model them simultaneously is not a
trivial task.

The complexity of the chemotherapy treatment asks for the developments of new
methodologies. This study shows that working in this direction is a difficult but
profitable approach, which could lead to new improvements for subject-specific
survival predictions and personalised treatment.

Appendix

A.1. Functional covariate Cox model: summary of the procedure

The developed Functional covariate Cox Model (FunCM) may be summarized in
four steps. Steps 1 and 2 are devoted to reconstruct the functional trajectories. Steps 3
and 4 provide a suitable framework for including such time-varying covariates in a
time-to-event model.

1. Data preprocessing and time-varying characteristics Cohort of patients is
selected. For each process m and patient i, longitudinal time-varying character-

istics �zðmÞi during the observation period ½T0; T�
0 � (see Fig. 1) under study are

identified.
2. Reconstruct functional predictors For each process m and patient i, the functional

data ~xðmÞi ðtÞ and their derivatives ~xðdmÞi ðtÞ are reconstructed, applying the FDA
techniques introduced in Sect. 2.3.1.

3. Summarize functional trajectories through FPCA Functional Principal Compo-
nent Analysis (FPCA) is applied in order to perform a dimensionality reduction
and summarise information emerging from the functional predictors to a finite set

of covariates, i.e., the FPC scores f ðmÞik (k ¼ 1; . . .;Km) in Eq. (6).
4. Multivariate functional linear Cox regression model (MFLCRM) K-fold cross

validation is applied to select the best set of covariates and the number of
principal components Km to consider for each process m, according to time-
dependent AUC and Brier score as mentioned in Sect. 2.3.3. Finally, the
MFLCRM given by Eq. (6) is fitted on the whole dataset in order to quantify the
association between time-varying processes and patients’ overall survival.
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A.2. MRC BO06/EORTC 80931 randomized controlled trial protocol

Data from the MRC BO06/EORTC 80931 Randomized Controlled Trial for patients
with non-metastatic high-grade osteosarcoma recruited between 1993 and 2002 were
analysed (Lewis et al. 2007). The trial randomised patients between conventional
treatment with doxorubicin (DOX) and cisplatin (CDDP) given every 3 weeks (Reg-
C) versus a dose-intense regimen of the same two drugs given every 2 weeks (Reg-
DI), supported by granulocyte colony-stimulating factor. Chemotherapy was
administered for six cycles (a cycle is a period of either 2 or 3 weeks depending
on the allocated regimen), before and after surgical removal of the primary
osteosarcoma. In both arms, DOX (75 mg/m2) plus CDDP (100 mg/m2) were given
over six cycles. Surgery to remove the primary tumour was scheduled at week 6 after
starting treatment in both arms, that is, after 2 cycles (2 
 [DOX?CDDP]) in
regimen-C and after 3 cycles (3 
 [DOX?CDDP]) in regimen-DI. Postoperative
chemotherapy was intended to resume 2 weeks after surgery in both arms. Figure 10
shows the trial design. Planned total cumulative dose was 1,050 mg/m2 in both
regimens. Planned treatment time from beginning first cycle was 140 and 98 days for
Reg-C (6 cycles � 3 weeks/cycle � 7 days/week ? 14 days of surgery period) and Reg-
DI (6 cycles � 2 weeks/cycle � 7 days/week ? 14 days of surgery period),
respectively. Laboratory tests were usually performed before each cycle of
chemotherapy (in some cases also during and after the cycle) in order to monitor
patient’s health status and the development of toxicities or adverse events. Delays or
chemotherapy dose reductions during treatment were possible in case of toxicity.
Additional details can be found in the primary analysis of the trial by Lewis et al.
(2007).
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