
A survey of recent developments in testability, safety and security of
RISC-V processors
Anders, J.; Andreu, P.; Becker, B.; Becker, S.; Cantoro, R.; Deligiannis, N.; ... ; Zidaric, N.

Citation
Anders, J., Andreu, P., Becker, B., Becker, S., Cantoro, R., Deligiannis, N., … Zidaric, N.
(2023). A survey of recent developments in testability, safety and security of RISC-V
processors. Ieee European Test Symposium (Ets), 1-10.
doi:10.1109/ETS56758.2023.10174099

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3633957

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3633957

A Survey of Recent Developments in Testability,
Safety and Security of RISC-V Processors
Jens Anders∗∗ , Pablo Andreu¶, Bernd Becker∗ , Steffen Becker∥ , Riccardo Cantoro† ,

Nikolaos I. Deligiannis† , Nourhan Elhamawy‡ , Tobias Faller∗ , Carles Hernandez¶, Nele Mentens§ ,
Mahnaz Namazi Rizi§, Ilia Polian‡ , Abolfazl Sajadi§ , Mathias Sauer††, Denis Schwachhofer‡ ,

Matteo Sonza Reorda† , Todor Stefanov§ , Ilya Tuzov¶, Stefan Wagner∥ , Nuša Zidarič§
∗Dpt. of Computer Science, University of Freiburg, Freiburg, Germany

‡Institute of Computer Architecture and Computer Engineering, University of Stuttgart, Stuttgart, Germany
†Dpt. of Control and Computer Engineering, Politecnico di Torino, Turin, Italy

§LIACS, Leiden University, Leiden, Netherlands
¶Universitat Politècnica de València, Spain

∥Institute of Software Engineering, University of Stuttgart, Stuttgart, Germany
∗∗Institute of Smart Sensors, University of Stuttgart, Stuttgart, Germany

††Advantest Europe, Boeblingen, Germany

Abstract—With the continued success of the open RISC-V archi-
tecture, practical deployment of RISC-V processors necessitates
an in-depth consideration of their testability, safety and security
aspects. This survey provides an overview of recent developments
in this quickly-evolving field. We start with discussing the
application of state-of-the-art functional and system-level test
solutions to RISC-V processors. Then, we discuss the use of RISC-
V processors for safety-related applications; to this end, we outline
the essential techniques necessary to obtain safety both in the
functional and in the timing domain and review recent processor
designs with safety features. Finally, we survey the different aspects
of security with respect to RISC-V implementations and discuss
the relationship between cryptographic protocols and primitives
on the one hand and the RISC-V processor architecture and
hardware implementation on the other. We also comment on the
role of a RISC-V processor for system security and its resilience
against side-channel attacks.

Index Terms—RISC-V, functional and system-level test, safety-
related applications, cryptography, secure execution

I. Introduction

RISC-V is an open, load-store instruction set architecture
(ISA) based on well-known and established RISC principles
that is provided under open source licenses. RISC-V was
developed by the researchers of the Berkeley Architecture
Research laboratory and began with a goal to make a practical
ISA that is open-source, usable academically, and deployable in
any hardware or software design without royalties. In the past
decade, the RISC-V universe expanded and started conquering
markets beyond personal computers, such as transportation and
industrial [1]. One of the greatest advantages is the open ISA,
which allowed a strong RISC-V community to emerge [2].

The ISA specification defines XLEN = 32/64/128 address
space variants and “mandates" a convenient, modular processor
design, consisting of alternative base parts with added optional
extensions. Although there are standard open and ratified
ISA extensions, RISC-V allows custom extensions to be
defined as well, e.g., PULP extension. The RISC-V ISA of an

implementation, as shown in Table I, is abbreviated as: (i) the
base (e.g., RV32I, RV32E etc.) and (ii) the extensions that are
supported (each letter represents an extension [3]). For instance
the PicoRV32 core implements the base integer ISA of 32-bits
(RV32I) and the base integer ISA of 32-bits, using 16 registers
(RV32E) and supports the integer multiplication and division
(M) extensions and the compressed instructions (C), hence the
ISA string RV32IEMC.

Table I: Selected RISC-V cores: academic and open source

Core ISA # st. Comments Interface Tech. Ref.
Rocket RV64G,C 5 variable cache, opt. L2, Tilelink Crossbar, RoCC ASIC✓ [4]

MMU, b.p. [5]
BOOM RV64G,C variable cache, opt. Tilelink Crossbar, RoCC, ASIC✓ [6]
(v1/v2/v3) 6/9/11 L2, MMU, b.p., OoO integrated RoCC FPGA [7]
Ibex RV32 I/E, 2 + 1 opt. b.p., OpenHW eXtension, FPGA [8]
(Zero−RI5CY) C,M,B opt. L0, LSU PULP AXI4, APB, crossbar ASIC✓ [9]
CV32E40P RV32IMC 4 opt. L0, LSU, AXI4, APB, crossbar ASIC✓ [10]
(RI5CY) F opt. L2, ‡ PULP
CVA6 RV64GC 6 variable cache, AXI4, APB, ASIC✓ [11]
(Ariane) RV64IMC LSU, b.p., ⊕ PULP
VexRiscv RV32I 2 + 3 opt. I/D cache, AXI4, Avalon, wishbone FPGA [12]

MAFDC opt. LSU, OoO ASIC✓ [13]
PicoRV32 RV32I 1 opt. I/D cache AXI4, MM, PCPI FPGA [14]

EMC ASIC [15]
SCARV RV32IMC 5 side-channel hardened, mem. mapped FPGA [16]

LSU, ASIC
SweRV RV32IMC 4 ultra-low-power core, AXI4, AHB-Lite, FPGA [17]
(VeeR EL2) I cache mem. mapped ASIC [18]

st. – number of pipeline stages + optional stages opt. – optional features
b.p. – branch prediction OoO – Out-of-Order
‡ – manycore possible or only manycore ⊕ – in-Order issue, commit, OoO write back
L0 – prefetch buffer for I cache ✓ – fabricated

In Table I we list selected RISC-V cores, with focus on
academic and open source designs. In the first two columns we
list the core and supported base ISA and possible extensions.
Then we list number of pipeline stages and some of the
implemented core features, e.g., branch prediction or out-
of-order execution, and available interfaces; the latter is of
importance for System-on-Chips (SoCs), ISA extensions and
coprocessor designs. Finally we provide technology with ✓
denoting fabricated ASIC chips.

Recently, several surveys have emerged to cover the current
state-of-the-art in RISC-V developments and features. For
a comparative survey of selected open-source cores listing

2023 28th IEEE European Test Symposium (ETS)
- Special Session Paper -

979-8-3503-3634-4/23/$31.00 ©2023 IEEE

20
23

 IE
EE

 E
ur

op
ea

n
Te

st
 S

ym
po

si
um

 (E
TS

) |
 9

79
-8

-3
50

3-
36

34
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

ET
S5

67
58

.2
02

3.
10

17
40

99

Authorized licensed use limited to: Universiteit Leiden. Downloaded on August 01,2023 at 10:49:10 UTC from IEEE Xplore. Restrictions apply.

benchmark and maximum frequency, core area, and power
consumption for both FPGA and ASIC technologies see [2].
The survey in [19] is focusing on open-source hardware inte-
gration of machine learning applications (ML). Authors of [1]
classified the RISC-V software ecosystem into four categories:
application fields (space systems, IIoT, AI-based heterogeneous
systems), RISC-V implementations (soft-cores, System-on-
Chip (SoC), emulators and simulators), software architecture
(bare-metal, OS, development tools), and deployment features
(security, reliability, low-power). The survey in [20] presents
ISA extensions designed by the RISC-V community and the
progress of official RISC-V ISA extension specifications. Abella
et al. [21] provided an overview of why RISC-V is successful
and some contributions on RISC-V and security against side-
channel attacks, a dual core LockStep system with diverse
redundancy, and System-Level Test.

In this paper, we survey the recent developments around
RISC-V with focus on the following aspects: test, safety,
and security. More specifically, in the area of functional
test in Section II, we focus on test generation methods for
Software-Based Self-Test, Burn-In and System-Level Test
and the first steps in the development of a model of non-
functional properties of hardware. Then, in Section III, we
describe the potential and existing solutions of RISC-V for
safety-related applications, with focus on functional correctness
and timing verification. Finally, in Section IV, we provide an
overview of RISC-V security from the cryptographic, hardware
and ISA perspective, focusing on the granularity of added
hardware and added custom ISA extensions in the context of
hardware/software co-design, and conclude the section with
RISC-V system security.

II. RISC-V and Functional Test

In this section we present how RISC-V is able to support
research on generating functional tests. In Section II-A we
start with the challenges of generating Software-Based Self-
Test (SBST) and Burn-In (BI) programs and how the RISC-V
specification and ecosystem can help there.

Afterwards, we move from SBST to System-Level Test
(SLT) in Section II-B, where we show how the open-source
nature of RISC-V and the tools it spawned support research
in automated test program generation. Here we explain why
it is difficult to use traditional testing methods for SLT and
why a greybox approach to generating tests becomes necessary.
Then, we go into detail on how an open-source SoC generation
framework supports the development of a high-level model of
non-functional properties of hardware.

A. RISC-V and Functional Test Development

Software-Based Self-Test (SBST) [22] allows at-speed, native
in-field testing of processors with respect to permanent faults
by running software programs on the processor core, requiring
no Design for Testability (DfT) infrastructure and averts over-
testing of manufactured chips. It is well known that the manual
development of SBST programs (also known as Self Test
Libraries, or STLs) is an arduous task that requires in-depth

knowledge of the underlying architecture and expensive project
time - often months - to achieve a satisfying test coverage. In
many instances, specific test details have to be derived from
the hardware architecture implementation. Depending on the
test, these details span from register initialization sequences
up to reasoning about fault propagation paths.

RISC-V offers a modular and fully customizable ISA
specification that features a variety of pre-defined extensions.
Combining the base ISA with a set of extensions enables de-
signs ranging from power-efficient embedded microcontrollers
to high-performance chip designs. This modular structure of
the RISC-V ISA leads to an incremental processor design.
Consequently, the development of SBSTs is led alongside the
incremental implementation of each ISA extension. As the
ISA extensions form defined boundaries of SBST modules the
reuse of those software modules for other RISC-V cores is
encouraged.

For example, both RI5CY and Zero-RI5CY cores (see
Table I) implement the RV32I base specification and the M
extension. Hence, it is reasonable to assume that some parts
and test structures of the same STLs can be re-used for both
cores as shown in Figure 1. Though, when re-using the tests
for a different implementation a loss in test coverage is to
be expected. Nevertheless, with reduced effort a test engineer
can extend and port the existing tests and merely develop
additional tests for the remaining, not yet-covered C and F
extensions supported by the RI5CY core. Although porting
is possible, the reader should note that even though the two
systems implement the same ISA extensions, hard-to-test faults
are architecture-dependent [23].

RV32I
M

RV32I
M C F

Test
Programs

Figure 1: Reuse of SBSTs for designs with overlapping ISAs

The architecture dependency of hard-to-test faults implies a
high complexity for test generation. For each new architecture,
the development effort for testing hard-to-test faults has to
be repeated. On top of that, the non-intuitive fault behavior
and propagation make manual development unfeasible. There-
fore, tool-aided, automatic SBST development is required for
targeting these faults.

In the context of test generation, formal methods like
bounded model checking (BMC) provide a facility to find test
sequences for hard-to-test faults under functional constraints.
The test engineer formalizes these functional constraints in
a test specification. This test specification models the set
of valid test behaviors that are allowed to be generated by
the BMC solver. This test specification, among other things,

Authorized licensed use limited to: Universiteit Leiden. Downloaded on August 01,2023 at 10:49:10 UTC from IEEE Xplore. Restrictions apply.

includes the set of allowed instructions as specified by the
ISA, allowed Control and Status Registers (CSRs) accesses
and configurations, and the memory model.

Except for the most recently developed extensions, all parts
of the official RISC-V ISA exist as formal specifications
and build a ground truth for the RISC-V ecosystem of tools.
According to the use case, these specifications are combined
and inserted into various processes exploiting their reusability.
Similarly, these formal specifications are reusable for test
generation and allow for the automatic derivation of large
parts of the test specification. Hence, RISC-V’s open-source
and openly available ISA specifications lay the groundwork
for automated SBST generation per extension module.

It has been shown that SBST generation embedding parts
of the formal RISC-V specification allows for rapid tool-aided
SBST development targeting hard-to-test faults in scalar, single-
issue pipelined processor core modules [24]. Depending on
the supported ISA extensions of the processor core, a test
specification is derived in a modular fashion. By transforming
the required specification parts into a test specification and
combining them with comparatively few additional constraints,
a test procedure can be developed incrementally. The additional
constraints are SoC architecture-specific and include parameters
like memory regions and exception handling. Additionally, the
test procedure type is specified depending on the environment
the SBST is run. This environment can be a small-scale test
after tape-in during development where the SoC is embedded
into a custom test bench and the SoC’s outputs are accessible;
or an at-speed end-of-manufacturing test under harsh conditions
to test for infant mortality of chips by artificially aging them
(Burn-In test); or a timed self-test of chips in-field during
operation to detect degradation due to electromigration and
fatigue caused by external stress.

Burn-In test (BI) [25], is omnipresent in the safety-critical
domain. More specifically, dynamic BI methodologies require
functional stress-inducing stimuli. For the case where the
devices under test (DUTs) are RISC-V processors [26], the
stimuli generation process can be greatly aided and guided by
the incremental ISA structure. For instance, such a process
requires the identification of the appropriate vectors (i.e.,
assembly instructions) in order to compose a typically short
and stress-effective program for the DUT. That is, a program
that is able to maximize the number of logical switches in short
periods of time. By having a clear reference of the implemented
sub-set of instructions then we can rely on strategies (e.g., SAT-
solvers [27], evolutionary algorithms [28]) to identify such
sequences and an efficient stress program for the DUT.

Overall, RISC-V’s formal specifications are a cornerstone
for functional test constraint derivation e.g., the ISA itself,
CSR behavior, and the memory model, directly providing the
transition from a specification to functional test generation.
RISC-V eases the complexity of STL development by pro-
viding an open, modular, well-organized ISA as well as an
ecosystem of tools (e.g., compiler, instruction set simulator,
virtual prototype) that can be used alongside electronic design
automation (EDA) software to develop and validate RISC-V

functional test programs.

B. How RISC-V supports research in System-Level Test

Figure 2: Test flow including System-Level Test (SLT) [29]

System-Level Test (SLT) has emerged as an additional
test step in the last decade [30]. It is used to improve the
quality assurance of complex SoCs, as traditional testing is not
sufficient anymore. Figure 2 shows that SLT is executed as the
very last step after Final Test.

SLT tries to approximate the end-user environment of the
DUT as closely as possible. For example, a smartphone
SoC might be placed into a board that resembles an actual
smartphone, plus some monitors and sensors to observe the
non-functional properties of the SoC. A test engineer or a
system then boots an operating system, in the above example,
it might be Android or iOS, and checks for unexpected behavior.
If that is not the case, more applications that are typical in the
DUT’s mission mode are executed, e.g., a video is streamed
onto the device or a browser is started. The DUT is considered
defective if, at any point, unusual events such as a crash or
unexpected errors occur. During SLT, the DUT is considered a
blackbox. This is due to the complexity of these SoCs but also
due to the fact that some Intellectual Properties are locked, and
only I/O interfaces and behavioral descriptions are provided.

There are some issues with this approach. In particular, these
test suites are currently manually composed by test engineers.
Furthermore, the quality of those cannot be determined be-
forehand, as the only available metric is a simple pass/fail.
So the defect level and diagnosis of returned ICs are used to
determine the quality of the suite after the fact. Finally, typical
testing times for SLT are ranging from 15 min to up to 2 h and
SLT programs are also very large compared to structural tests
or SBST.

With the above issues, it is unfeasible to use traditional
methods such as fault simulation to gauge the quality of
the test suite. Instead, different metrics and approaches for
generating shorter SLT programs are developed [29]. One
important factor in generating these tests is that we want
to control non-functional properties, such as temperature or
power consumption, of our DUT because some defects that
are assumed to be detected exclusively by SLT are marginal
defects [31]. The detection of this kind of defects depends on
certain requirements, such as having a component at a specific

Authorized licensed use limited to: Universiteit Leiden. Downloaded on August 01,2023 at 10:49:10 UTC from IEEE Xplore. Restrictions apply.

temperature or a temperature gradient between components or
a specific sequence of interactions that can only happen in the
mission mode of the DUT.

Writing SLT programs that control non-functional properties
by hand requires a lot of time and knowledge about the archi-
tecture of the DUT, which makes it infeasible in practical use.
Instead, there is ongoing research on methods to automatically
generate program snippets that are able to reliably control these
properties. To develop these methods, it is necessary to analyze
multiple different architectures. This is where an open-source
SoC generator framework called Chipyard [5] can help.

Furthermore, in Section II-A, we already showed how we
can easily derive constraints for methods such as evolutionary
algorithms from the freely-available specification. This is useful
for SLT program generation as well. For example, we can use
greybox-based methods that are guided by feedback to generate
program snippets that optimize a specific non-functional
property of our DUT [32]. These methods include genetic
programming [33] or mutation-based greybox fuzzing [34].

Chipyard has the distinct advantage that it allows us to
freely configure SoCs based on either an in-order (Rocket [4],
CVA6 [11] Ibex [8] and an educational core called Sodor)
or out-of-order (BOOM [35]) core or even mix both. For
example, we can add or remove caches and change their size
or modify aspects of the cores themselves, such as the number
of issues in the BOOM core, the size of the return order
buffer, and much more. We can also freely enable or disable
extensions and choose between a 32-bit and 64-bit architecture.
The flexible configurability allows us to examine multiple
configurations for real-world different scenarios, e.g., embedded
processors or high-end smartphone SoCs, and identify common
and architecture-specific features to derive a generic model of
non-functional properties to use for SLT program generation.

Additionally, there is a wide range of well-tested periphery
available that we can utilize as well to test interactions between
the core and the periphery. And, due to the open-source nature
of Chipyard, we are able to add our own periphery and make
changes to existing ones, such as, for example, bus monitors,
to observe activity on all the buses in the DUT. We can use
this as feedback for a fuzzer to, for example, maximize the
contention on each bus or cover all the possible transactions
with all possible sources and destinations.

Chipyard already supports many of the designs listed
in Table I. As several of these designs are also compatible with
traditional ASIC design flows, it is possible to extract more
information such as power simulations, map them to an FPGA
to speed-up simulation time and get hardware measurements,
and extract additional insight by adding output of bus monitors
as feedback for the aforementioned greybox monitors.

Moreover, the RISC-V tools and cores are easy to set
up with other commercial tools for further development and
investigation. This allows us to work on new, more elaborate
metrics to evaluate the performance of the different SLT
snippets. Not just for non-functional properties but also for
standard fault models (e.g., stuck-at or transition fault delays).
Thus, we have some insights into possible causes for marginal

defects and can figure out a way to imitate the conditions
in which they manifest themselves. Causes of these marginal
defects are still unknown, but by having such insights we might
be able to find solutions to mitigate them and generalize the
behavior of these.

On top of that, by having this transparency of the architecture,
we can develop the SLT snippets to target specific peripherals
or specific areas in the core that we believe to be problematic.
Therefore, the SLT snippets can be developed as compact
as possible, reducing the test times but maintaining the fault
coverage or even achieving a higher fault coverage.

We also had a chance to compare a RISC-V design with
and without DfT structures. We draw the conclusion that DfT
structures are needed to facilitate the traditional structural test
insertions as well as the SLT test insertion by speeding up the
simulation process, having full controllability and observability
of the DUT and resulting in much higher fault coverages than
without DfT structures. This visibility is what helps to identify
more faults and gives the insight on possible causes of a defect.

The freely available RISC-V specification and the rich
ecosystem of open-source cores and tools allow researchers to
work on functional program generation easily by, on the one
hand, enabling them to easily derive constraints to automatically
generate valid assembly snippets, and, on the other hand,
allow to analyze and use architectures for different application
scenarios to extract common and architecture-specific features
to guide test program generation.

III. RISC-V for Safety-related Applications

In the context of safety-critical systems several different
ISAs are widely used in different applications domains. Some
illustrative examples are the case of the SPARC [36] for space,
the Tricore [37] in the automotive domain, and the PowerPC
in avionics and aerospace. Recently, ARM processors [38]
have also increased their presence in safety-critical domain
applications allowing safety-critical application developers
enjoying from the wide ARM software ecosystem.

In this context, RISC-V arises as a great opportunity to break
the existing safety-critical system fragmentation, and many
industrial players in the safety-critical domain have shown their
interest in RISC-V. The modularity, openness, and flexibility
of RISC-V are the key features for its potential success in
safety-critical systems. However, the adoption of RISC-V is
also subject to having processor architectures that meet the
stringent needs for certification of functional safety products.
Currently, the RISC-V functional safety special interest group
is working on a white-paper covering the best practices for
the design of RISC-V processors safety-related applications.
The following two subsections about functional correctness
(Section III-A) and timing verification (Section III-B) elaborate
on the impact of the functional safety in the design of RISC-V
based processors. Finally, in the last Section III-C, we review
some of the existing RISC-V processors targeting safety-critical
applications.

Authorized licensed use limited to: Universiteit Leiden. Downloaded on August 01,2023 at 10:49:10 UTC from IEEE Xplore. Restrictions apply.

A. Functional Correctness

The functional safety measures at hardware level commonly
include fault tolerance, error detection and correction mecha-
nisms. First of all, the processor internal memory structures,
such as register files and L1/L2 caches, must be protected
with error correction codes (ECC) [39]. Single-error correction
and double-error detection (SECDED) Hamming codes are
commonly considered in this context because of their moderate
resource and performance overheads [40]. Likewise, the internal
interconnect and external communication buses are subject to
ECC protection.

The replication of entire on-chip components is another
widely-used technique to detect and correct hardware faults.
The basic fault detection capabilities are achieved by dual
modular redundancy. In multicore processors it is typically
implemented in the form of dual-core lockstep (DCLS) [41], a
mechanism that executes the same program on two CPU cores
in parallel, compares cores outputs at each clock cycle and
signals any discrepancies. Some lockstep processors allow
flexible usage of the redundant (slave) cores, providing a
lock mode for reliable execution of critical applications, and
split mode for high-performance execution of non-critical
applications [42]. The triple-modular redundancy (TMR) or
higher multiplicity replication schemes, for instance triple-core
lockstep [43], enable real-time error correction.

The diverse execution of the replicated cores plays an
important role in any replication scheme, whenever it is
supposed to prevent common-mode failures. Diversity can
be introduced at ISA and/or microarchitectural levels, resulting
in heterogeneous fault-tolerant CPU architectures [44]. These
solutions, however, are often considered impractical due to
their increased cost and complexity of software running on
top of heterogeneous cores. A more affordable (low-overhead)
approach for diverse redundancy is time staggering mecha-
nism, which introduces controlled inter-core delay to ensure
that replicated (homogeneous) CPU cores execute different
instructions at any given time instant.

Additional fault detection mechanisms, commonly provi-
sioned in dependable CPU architectures, include watchdog
timers, performance monitoring (profiling), trace and debug
support units.

The RISC-V implementation with integrated fault tolerance
and error detection mechanisms can be verified by means of
fault injection (FI) experiments. FI is a well-known testing
technique [45], used to verify the behaviour of critical system
in presence of faults, evaluate the efficiency of integrated
safety mechanisms, identify safety vulnerabilities and error
propagation paths. In fact, the usage of FI testing during the
system design is recommended by ISO 26262 standard [46]. At
the early design stages, the simulation-based FI allows to verify
safety mechanisms implemented in high-level HDL model of
the system, e.g. ECC, lockstep execution, etc. Whereas at the
late design stages the FPGA-based FI and physical FI are useful
to evaluate safety features with all implementation details taken
into account, including synthesis-place-route optimizations and

impact of implementation technology.

B. Timing Verification

Functional safety certification processes impose several
requirements to the software development and validation
processes [47]. Several of these requirements are related to the
timing behaviour of applications and are tightly coupled with
the characteristics of the processor in which the software is
executed. In general, and regardless of the functional safety
application domain, the execution time of software needs to be
bounded at the unit level and to enable a reliable integration
of such elements the hardware/software architecture must
ensure freedom from interference at the scheduling level. These
software requirements are usually translated into the need
of deriving the worst-case execution time (WCET) for each
software unit and the need for temporal and spatial isolation
between the different software items.

WCET derivation is challenged by the presence of hardware
features that introduce execution time variability such as caches
and shared resources. Thus, processor designs targeting safety-
critical applications need to implement specific features targeted
to control, reduce or completely remove such execution time
variability and achieve a predictable behaviour. For instance,
execution time predictability can be attained by replacing
caches by scratchpads or by implementing restrictive policies
for resource sharing such as time-division multiplexing [48].
However, in general, achieving constant execution time in
specific resources comes at the expense of computing per-
formance and/or flexibility which is not acceptable in many
application domains. Thus, the current trend towards attaining
predictability in complex hardware platform relies on the use
of timing monitoring and quota enforcement policies [49].

Resource partitioning can be implemented with software only
means and with both hardware and software support. How-
ever, fine-grain and performance efficient partitioning requires
specific hardware support. In that respect, the RISC-V ISA
has defined the H extension for virtualization. The H extension
enables the execution of unmodified OS as hypervisor guests
and thus, the co-existence of applications with heterogeneous
needs in terms of performance and criticality. Unfortunately,
the partitioning implemented at the H-extension level does not
prevent the execution time interference originated at micro-
architectural features like caches, queues and interconnects. For
that, additional hardware support such as cache partitioning,
time-predictable arbitration policies, and dedicated hardware
for fine-grain isolation is needed [50].

C. Existing RISC-V Solutions for Safety-related Applications

Several RISC-V processors have been adapted or designed to
meet functional safety requirements. The NOEL-V [51] from
FrontGrade Gaisler is a processor for the space domain that
implements the RV64GCH ISA configuration. However, the
GPL version of the NOEL-V core does not implement fault-
tolerant features. The NOEL-V has also been used to build the
SELENE platform [52]. The SELENE platform is a multicore
SoC that implements hardware-based diverse redundancy in

Authorized licensed use limited to: Universiteit Leiden. Downloaded on August 01,2023 at 10:49:10 UTC from IEEE Xplore. Restrictions apply.

the form of non-intrusive light-lockstep [53], the safeSU [54]
hardware monitors for timing verification and enforcement, and
provides virtualization support for partitioning hypervisors such
as Jailhouse [55] and XNG, both already supporting RISC-V.

RISC-V based systems from the PULP project [56] have also
been adapted to ease its adoption in safety-related applications.
For instance, a RISC-V cluster based on the PULP project [57]
implement hybrid modular redundancy to select between dual
and triple redundancy with lockstep execution in a flexible
manner.

Other RISC-V processors targeting safety-related applica-
tions that are commercially available (not open-source) are
the SiFive P550 Application class processor with configurable
dual-core lockstep, RAS capabilities, and ECC in interconnect
and memories, and the Fraunhofer EMSA5-FS which has been
certified as ASIL-D ready according to ISO 26262:2018 for
functional safety in vehicles. A RISC-V processor tailored
for high-energy physics applications (e.g. particles detectors
at CERN) based on Fraunhofer AIRISC core [58] combines
radiation-hardened fabrication technology with several archi-
tectural protection measures, including fine-grain TMR and
extensive memory scrubbing.

IV. RISC-V for Security Applications

In this section, we discuss recent developments concerning
RISC-V cores with respect to security. We begin with a
conceptual overview of these developments from cryptographic,
hardware, and ISA perspectives in Section IV-A, where we use
secure communication applications running on RISC-V as an
example. In Section IV-B, we further support our conceptual
overview by presenting selected RISC-V cores with or without
custom ISA extensions and cryptographic hardware, added as
co-processors to the RISC-V core or integrated in the main
datapath of the core. In Section IV-C, we highlight some recent
approaches to secure RISC-V implementations that prevent
or hinder Side-Channel Attacks. Finally, in Section IV-D, we
briefly cover specific RISC-V security topics from a system
point of view.

A. Conceptual Overview

In this section, we present RISC-V features, supporting
secure communication, from three perspectives. We begin the
discussion by categorizing the security features based on the
type of cryptographic computation they support. This is pre-
sented as the cryptographic perspective (Figure 3 – right). The
pyramid shows examples of basic building blocks, primitives,
and protocols required to provide information security. They
are placed in a pyramid to express the hierarchical dependency
among them, i.e., the basic building blocks are used to construct
(composed) primitives that are used to construct security related
protocols. The hardware perspective (Figure 3 – middle) shows
hardware design decisions distinguishing between dedicated
hardware added to the main RISC-V core and a coprocessor
interfaced with the main core. Finally, the ISA perspective
distinguishes between Base ISA, Standard Extensions, and
Custom Extensions (Figure 3 – left).

primitives

composed
primitives

basic
building
blocks

protocols

SubBytes
ShiftRows

MixColumns
AddRoundKey

AES

AES_GCM

DTLS

ECDHE
ECDSA

KEM
KDF

CBC,CBF,OFB

stream/block
hash

functions

Elliptic Curve
Permutations

cryptographic
perspective

hardware
perspective

ISA
perspective

B
a
se

IS
A

 +
 S

ta
n

d
a
rd

 E
x
t.

 +
+

 C
u

s
to

m
 E

x
te

n
s
io

n
s

B
a
se

 I
S

A
 +

 S
ta

n
d
a
rd

 E
x
t.

 o
n
ly

H
W

 a
d
d
e
d
 t

o
th

e
 m

a
in

 c
o
re

co
p
ro

ce
ss

o
r

in
te

rf
a
ci

n
g

w
it

h
 t

h
e
 m

a
in

 c
o
re

Permutations

PQC

SHA-3

SHA-2

NTT

LWC

Field Arith.

sampler

LBC IBC

AEAD LWE

ciphers RNGs

Extension
Binary

Point Arithmetic

Keccak

Figure 3: Supported security features in RISC-V based architectures, catego-
rized from three different perspectives.

1) The cryptographic perspective: The pyramid in Figure 3
shows, in a top-down fashion, some main building components
needed to assure secure communications. Cryptographic proto-
cols providing secure communication channels (for example the
DTLS protocol) are designed as challenge-response handshakes
with appropriate steps to assure confidentiality, data integrity,
authentication and non-repudiation, and furthermore to prevent
known attacks such as replay, man-in-the-middle, etc. These
protocols require several cryptographic primitives, a.o. digital
signatures (like ECDSA) for authentication. Such cryptographic
primitives are composed of basic building blocks. For example,
the round function of the block cipher AES is composed of
blocks such as SubBytes, ShiftRows, MixColumns, AddRound-
Key, and relies on finite field arithmetic.

2) The hardware perspective: In the past decades, it became
clear that security is a necessity for many embedded software
applications. However, introducing security-related features in
a system induces a communication and computational overhead.
Such overhead can be reduced by adding dedicated hardware to
a general-purpose embedded processor in order to accelerate the
security-related computations in an application. In the middle
of Figure 3, we show the hardware perspective of security-
related features existing in RISC-V based cores and distinguish
between dedicated co-processors tightly/loosely coupled with
the main core and dedicated hardware additions to the main
core. For example, attaching a cryprographic co-processor, such
as the DTLS Cryptographic Engine [59], is a common solution.
Alternatively, dedicated hardware, such as the AES functional
unit [63], can be added to the datapath of the main core. The
work presented in [73] analyzes the building blocks of the
Lightweight Cryptography (LWC) finalists to find the most
suitable acceleration granularity, e.g., their smallest hardware
addition is for the Xoodyak parity plane manipulation (xorrol)
with only a 1.155× increase in the area of the main core.

3) The ISA perspective: The RISC-V ISA is designed to
be modular including a relatively small stable base ISA and
multiple standard extensions while it also allows the design
of custom instruction extensions. The distinction based on
the presence of custom extensions is shown on the left of
Figure 3. For example, the aforementioned DTLS engine
interacts with the main core via a memory-mapped interface

Authorized licensed use limited to: Universiteit Leiden. Downloaded on August 01,2023 at 10:49:10 UTC from IEEE Xplore. Restrictions apply.

Table II: Cryptographic applications and granularity of added hardware and added custom ISA extensions in the context of hardware/software co-design

RISC-V RISC-V HW perspective Application and
Main add to co- control granularity (Figure 3), Implementation Technology

ISA core core proc. details Cryptographic perspective comments CAD tools Ref.
RV32 BlueSpec ✓ memory mapped entire DTLS as coprocessor: SPA-hardened configurable 65nm LP CMOS, [59]
I RISC-V interrupts (wfi) ECDHE & ECDSA prime field ECC accelerator, fabricated

FSM in coproc. AES-128-GCM, SHA2-256 stand-alone crypto possible
RV32 BlueSpec ✓ memory mapped, entire LWE-PQC as Sapphire modular ALU with config. 40nm LP CMOS, [60]
IM RISC-V interrupts (wfi), coprocessor: Frodo, NewHope prime, SRAM-based NTT fabricated

Sapphire insn. qTESLA, CRYSTALS-Kyber butterfly unit, Keccak core SPA on fabricated chip
decode+control CRYSTALS-Dilithium distribution sampler

RV32 Rocket ✓ RoCC entire crypto coprocessor: 4-stage pipelined 28nm CMOS, [61]
I AES, ECC, SHA-256 coprocessor, finite post-layout, Synopsys

field multiplier VCS and PrimeTime PX
RV32 Ibex ✓ AES IP AES coprocessor with AES IP in decode stage Nexys Artix-7, [62]
IMC + connected one custom instruction mode as insn. parameter Xilinx Vivado 2018.1
Custom to CSRs (ECB, CBC, CFB, OFB) post-P&R simulation
RV32/64 SCARV ✓ main core AES-GCM with custom insns AES-FUs for 4 32-bit exten- Yosys post-synthesis [63]
IMC + 32-bit decoder for: SubBytes, MixColumns, sion sets and 1 64-bit set, RISC-V Cryptography
Custom Rocket ✓ RoCC and SubBytes + MixColumns carry-less mult. for GCM Extension K proposals
RV32 CV32E40P ✓ Accelerator finite field accelerator, Montgomery Muliplier, Xilinx ZedBoard, [64]
IMCF (RI5CY) connected used for IBC (PQC): SIKE Modular Adder and Xilinx Vivado 2017.4

to FPR Subtractor
RV32 VexRiscv ✓ APB decoder prime field coprocessor, Modular arithmetic: adder, Xilinx Virtex-7, [65]
I connected to used for IBC (PQC): SIKE dual Montgomery multi- post-P&R

the main core plier for all SIKE primes
RV32 CV32E40P ✓ 32-bit AHB NTT accelerator, hash, DMR hardened NTT and Xilinx ZedBoard [66]
IM (RI5CY) Intecrconnect accelerator, used for LBC NTT-LUT core, hash core Zynq-7000,

(PQC): NewHope with Keccak FI simulation
RV32 VexRiscv ✓ Flexible prime field accelerator, w/ 4 2 variants: synthesized with Artix-35T, Xilinx [67]
IM+ pipeline: custom insn, used for LBC a fixed prime, and flexible Vivado 2019.1, iCE40
Custom plugins (PQC): Kyber, NewHope prime as parameter UltraPlus, Icestorm
RV32 CV32E40P ✓ main core finite field accelerator, w/ 4 PQ-ALU, ternary multi- Xilinx ZCU102 [68]
IM+ (RI5CY) decoder custom insns. used for LBC plier, Chien module, modu- Zynq UltraScale+
Custom (PQC): LAC lar reduction , SHA256
RV32 SCR1 ✓ 32-bit AHB-Lite vector coprocessor w/ 12 NTT core, Keccak core, TSMC 28nm HPC, [69]
IMC+ Interconnect custom insns. used for LBC binomial sampler, Random fabricated
Custom (PQC):Kyber, NewHope, LAC Number Generator
RV32 Ibex ✓ Vector Instru- vector coprocessor, w/ 16 NTT, CWM, modular arith- Xilinx Alveo U250 [70]
IMC+ ction Interface custom insns. used for LBC metic for each exLane, Vivado 2019.2
Custom (PQC): CRYSTALS-Kyber register pooling, automatic

index generation
RV32 SweRV-EL2 ✓ main core finite filed accelerator,w/ 4 carry-less multiplication, Nexys Artix-7, [71]
IMC+ decoder custom insns. used for: polynomial reduction, para- Verilator v4.032
Custom AES, Reed- Solomon codes metrized degree, irred. poly.
RV32 CV32E40P ✓ main core various accelerators, w/ 29 NTT, modular arithmetic, Xilinx Zynq-7000, [72]
IMCF+ (RI5CY) decoder custum insn., used for LBC Keccak in decode stage UMC 65nm,
Custom (PQC): NewHope, Kyber, binomial sampling, Kara- Cadence Incisive

Lightsaber , Firesaber, Saber tsuba, Toom-Cook multi- Enterprise Simulator,
pliers in execute stage Joules

RV32 Rocket ✓ main core LWC finalists: separate main core, Zbkb/x FU, SASEBO-GIII board [73]
GC + decoder extensions for each candidate ans ISE-specific LWC FU Kintex-7 target,
Custom by benchmarking, e.g., Ascon for each candidate, also Xilinx Vivado 2019.1

sigma.lo, sigma.hi insns, e.g., implementing AES-GCM
XOODYAK xorrol insn for reference

RV32 CV32E40P ✓ main core Ascon-p with a custom insn: Ascon-p in Decode stage, 65nm LL CMOS [74]
IMC+ (RI5CY) decoder permutation with number of Internal state in GPR Cadence Encounter RTL
Custom rounds as parameter Ascon, Ascon-hash, ISAP Compiler, NanoRoute
PQC = Post-Quantum Crypto, IBC = Isogeny Based Crypto., LBC = Lattice-Based Crypto, LWE = Learning With Errors, ECC = Elliptic Curve Crypto.
LWC = Light-Weight Crypto., SPA = Simple Power Analysis, FI = Fault Injection, DMR = Dual Modular Redundancy
CSR = Control and Status Registers, FPR = Floating Point Registers, GPR = General Purpose Registers

and does not require any (custom) additions to the ISA [59].
In contrast, the work in [62], [63] presents a design of custom
AES instructions for RISC-V. In general, with custom ISA

extensions, ISA and hardware designers can choose a suitable
level of granularity of the instructions and dedicated hardware
added to the RISC-V based architecture. For example, the

Authorized licensed use limited to: Universiteit Leiden. Downloaded on August 01,2023 at 10:49:10 UTC from IEEE Xplore. Restrictions apply.

authors of [62] implemented the entire AES primitive with
different modes, including ECB, as a custom instruction, while
[63] presents separate RISC-V ISA instructions for utilizing
the SubBytes and MixColumns basic blocks as well as a single
instruction for utilizing both SubBytes + MixColumns.

Finally, there exists an ongoing effort to propose and stan-
dardize RISC-V cryptography ISA extensions containing two
orthogonal sets of specific instructions: first, scalar & entropy
source instructions [75], and second, vector cryptographic
instructions [76]. The scalar & entropy source instructions
are cryptographic instruction proposals for smaller cores
that do not implement vector extensions. They include a
subset of "constant-time" instructions with data-independent
execution time to prevent timing side-channels. In contrast,
vector cryptographic instructions are proposed to be used
in large and high performance cores that have large vector
registers that are reused. Some examples are AES and SHA-2,
with instructions on different granularity, for example single-
round (building block) and all-round (primitive). It is also
possible to vectorize SHA-3 using a number of general-purpose
instructions, allowing for simultaneous processing of multiple
pieces of data to increase the performance of SHA-3 [76].

B. Selected RISC-V Cores with Security-related Features

In this section, we present selected state-of-the-art proposals
for RISC-V implementations with security support. These
proposals are shown in Table II where the order of the
rows roughly follows the top-down cryptographic perspective
illustrated with the pyramid in Figure 3. The columns in Table II
are organized starting with the ISA perspective and the RISC-V
main core, in the first two columns, followed by three columns
summarizing the hardware perspective, with checkmarks for
dedicated hardware added to the main core and co-processor
designs. When custom extensions are present, indicated in the
ISA column, the instruction decoder in the main core has to be
modified but we do not consider this as an addition to the main
core in Column 3. Column 5 lists some implementation details
to show the relationship between the dedicated hardware and
the main core. For example, the Sapphire co-processor in Row
3 has its own instructions decoder and controller, and could
be reused with any main core.

Column 6 provides some application details from the
cryptographic perspective, illustrated with the pyramid in
Figure 3, together with the granularity of the ISA extensions
and corresponding hardware additions. Column 7 provides
very brief implementation comments, such as expensive cryp-
tographic computations, i.e. sub-modules illustrated with the
pyramid in Figure 3, and architectural decisions. Finally, in
Column 8, we provide some information on the technology
and CAD tools used to design the RISC-V cores, focusing
mostly on fabricated ASIC and configured FPGA designs.

C. Towards Side-Channel Attack Resilience for RISC-V

During cryptographic operations, computations are per-
formed using sensitive data such as cryptographic keys. It
has been shown that such sensitive data can be revealed by

exploiting side-channel leakage, such as power consumption
or electromagnetic emanations. Thus, in the past two decades,
we have seen the rise of side-channel analysis (SCA) for
cryptographic circuits and systems. More recently, such SCA
trend could be witnessed for RISC-V based systems featuring
support for security-related applications. We briefly discuss
some side-channel hardened RISC-V solutions, aiming to
prevent, or at least to hinder, the extraction of sensitive data
from RISC-V based systems.

As mentioned earlier, the DTLS Cryptographic Engine [59] is
often attached as a co-processor to a RISC-V core. This engine
implements countermeasures to prevent simple power analysis
(SPA) from distinguishing point addition and point doubling.
Similarly, the Sapphire co-processor implements constant-time
SPA-hardened sub-modules [60]. The designers of Sapphire
also conducted simple power analysis on the fabricated chip to
verify the constant-time execution. The Sapphire co-processor
has no differential power analysis (DPA) countermeasures, but
its designers have discussed how to include such countermea-
sures using the Sapphire’s programmability.

The authors of [77] propose a secure RISC-V ISA and
architecture by including an additional secure pipeline which is
completely separated from the unprotected (original) pipeline.
The instruction decode stage disables the unprotected pipeline
during execution of protected instructions to prevent leakage.
The secure pipeline executes a set of instructions protected
by Domain-Oriented Masking (DOM) with multi-cycle non-
linear operations, e.g., 4-cycle 1-bit ADD instruction with two
fresh random numbers per share. The idea of custom ISA
instructions to mitigate SCA has been extended in [78] to
include DOM and other masking approaches. The authors
have presented 22 custom instructions such as conversion
of operands (Boolean to/from Arithmetic masking), Boolean
masking operations, arithmetic masking operations, and masked
finite field arithmetic for GF(28). They place a masked ALU
containing dedicated hardware, including random bit generators,
in parallel to the unprotected ALU in the SCARV core, with a
1.45× area increase for the ASIC implementation. Additional
randomness and re-masking are used to compensate for not
duplicating the datapath. The work in [78] also provides
preliminary SCA results on FPGA implementations of the
SCARV core by running and comparing unmasked AES using
only the base ISA and masked AES using the aforementioned
custom extensions.

Finally, the authors of [79] have used formal verification
methods to design a secure Ibex core with additional features,
preventing leakage, such as secure register file, AND-gated
computation unit, and clear for the hidden LSU buffer. The
security features increase the total Ibex core area by only 9.9%.

D. RISC-V System Security

This section briefly discusses selected RISC-V security
topics, such as Root-of-Trust (RoT), trusted boot, memory
protection and isolation, and trusted execution environment
(TEE), from the perspective of added (cryptographic) hardware.
Some of these topics are also covered in [1], [20], [80].

Authorized licensed use limited to: Universiteit Leiden. Downloaded on August 01,2023 at 10:49:10 UTC from IEEE Xplore. Restrictions apply.

A secure bootloader is considered to be the smallest RoT,
on top of which the chain of trust and trusted code base are
built. For example, Sanctum [81] uses trusted on-chip ROM
to hold the bootloader. In addition, the system includes a
hardware TRNG and PUF, and software SHA-3, ECDSA and
AES implementations [82] to provide strong isolation using
enclaves and to protect against software attacks, such as cache
timing attacks and passive address translation attacks. Sanctum
has been designed for Rocket RISC-V with minimal hardware
extensions and implemented on Xilinx Zynq 7000 FPGA.

Keystone [83] is an open-source framework for building
customized TEEs with only basic primitives implemented in
hardware. The framework is comprised of a device-specific
secret key available only to the trusted boot process, a hardware
source of randomness, and a trusted boot process. The Keystone
RoT can be either a hardware crypto engine or tamper-proof
software. It uses physical memory protection (PMP) and a
security monitor running in machine mode to enforce memory
isolation. For example, a SoC with two Rocket cores using
Keystone implements two hardware accelerators, SHA-3 and
ECDSA, connected via Tilelink [84]. Another example is the
ITUS RISC-V based secure SoC [85] which includes two
Rocket cores and integrates Keystone-enclaves for TEE. The
SoC, implemented on Xilinx Kintex 705, also includes a
hardware key management unit with one-time programmable
memory, TRNG and PUF, a hardware signature verification
unit with boot sequencer, SHA3, the XMSS and ECDSA digital
signature schemes, and a memory protection unit with AES-
GCM. In addition, [85] also considers countermeasures for
side-channel attacks. Keystone has been also modified to run
on the CVA6 core and on a GPU-scale accelerator with 4096
cores, divided into clusters of 8 [86].

V. Conclusion

The RISC-V ISA and processors implementing it are
receiving an ever-increasing attention from both the scientific
community and the industry. The test, safety and security
aspects discussed in this survey are key prerequisites for RISC-
V processor being useful for actual products. While many basic
concepts and approaches previously developed for different
architectures can be reused with minor modifications, the
open nature of RISC-V ISA calls for new and more universal
solutions for some of the problems mentioned. Therefore, this
survey can only provide a snapshot of recently obtained results,
and the scientific work will continue in the foreseeable future. In
order to obtain the best solutions, it is important to establish and
maintain connection between RISC-V architects and specialists
in test methods, safety and hardware-oriented security.

Acknowledgment

This work was supported in part by the German Federal
Ministry of Education and Research (BMBF) within the
project Scale4Edge under contract no. 16ME0132 and by the
Italian ICSC National Research Centre for High Performance
Computing, Big Data and Quantum Computing within the
NextGenerationEU program. UPV researchers have received

funding from the ECSEL Joint Undertaking (JU) under grant
agreement No 877056, Agencia Estatal de Investigación from
Spain under grant agreement no. PCI2020-112092 within
the NextGenerationEU program. Furthermore, this research
was supported by Advantest as part of the Graduate School
"Intelligent Methods for Test and Reliability" (GS-IMTR) at
the University of Stuttgart. For this work, Leiden University
received funding from the Dutch Research Council (NWO)
through the PROACT project (NWA.1215.18.014).

References
[1] B. W. Mezger et al., “A Survey of the RISC-V Architecture Software

Support,” IEEE Access, vol. 10, pp. 51 394–51 411, 2022.
[2] A. Dörflinger et al., “A comparative survey of open-source application-

class RISC-V processor implementations,” in CF, 2021, pp. 12–20.
[3] RISC-V ISA, Unprivileged Specification, https://riscv.org/technical/

specifications/.
[4] K. Asanović et al., “The Rocket Chip Generator,” EECS Department,

University of California, Berkeley, USA, Tech. Rep. UCB/EECS-2016-
17, Apr. 2016.

[5] A. Amid et al., “Chipyard: Integrated Design, Simulation, and
Implementation Framework for Custom SoCs,” IEEE Micro, vol. 40,
no. 4, pp. 10–21, 2020.

[6] C. Celio et al., “BROOM: An Open-Source Out-of-Order Processor
With Resilient Low-Voltage Operation in 28-nm CMOS,” IEEE Micro,
vol. 39, no. 2, pp. 52–60, 2019.

[7] J. Zhao et al., “SonicBOOM: The 3rd Generation Berkeley Out-of-
Order Machine,” 2020.

[8] Ibex documentation, https : / / readthedocs . org / projects / ibex - core /
downloads/pdf/latest/, May 2023.

[9] P. Davide Schiavone et al., “Slow and Steady Wins the Race? a
Comparison of Ultra-Low-Power RISC-V Cores for Internet-of-Things
Applications,” in PATMOS, 2017, pp. 1–8.

[10] M. Gautschi et al., “Near-Threshold RISC-V Core With DSP Exten-
sions for Scalable IoT Endpoint Devices,” IEEE Trans. VLSI Syst.,
vol. 25, no. 10, pp. 2700–2713, 2017.

[11] F. Zaruba et al., “The Cost of Application-Class Processing: Energy
and Performance Analysis of a Linux-Ready 1.7-GHz 64-bit RISC-V
Core in 22-nm FDSOI Technology,” IEEE Trans. VLSI Syst., vol. 27,
no. 11, pp. 2629–2640, Nov. 2019.

[12] GitHub - SpinalHDL/VexRiscv: A FPGA friendly 32 bit RISC-V CPU
implementation, https://github.com/SpinalHDL/VexRiscv, 2018.

[13] T.-T. Hoang et al., “Low-power high-performance 32-bit RISC-
V microcontroller on 65-nm silicon-on-thin-BOX (SOTB),” IEICE
Electronics Express, vol. 17, no. 20, pp. 1–6, 2020.

[14] GitHub - YosysHQ/picorv32: PicoRV32 - A Size-Optimized RISC-V
CPU, https://github.com/YosysHQ/picorv32.

[15] K. P. Ghosh et al., “Technology mediated tutorial on RISC-V CPU core
implementation and sign-off using revolutionary EDA management
system (EMS) - VSDFLOW,” in CSTIC, 2018, pp. 1–3.

[16] B. Marshall et al., “Implementing the Draft RISC-V Scalar Cryptog-
raphy Extensions,” in HASP, 2020, pp. 1–8.

[17] W. Digital, EL2 SweRV RISC-V CoreTM 1.4, http://www.azhothot.
com/risc-v.html, Jan. 2020.

[18] T. Kruiper, “Area-Optimized RISC-V-Based Control System for 22nm
FDSOI Analog and Mixed-Signal Test Chips,” M.S. thesis, University
of Twente, Jan. 2023.

[19] S. Kalapothas et al., “A Survey on RISC-V-Based Machine Learning
Ecosystem,” Information, vol. 14, no. 2, p. 64, 2023.

[20] E. Cui et al., “RISC-V Instruction Set Architecture Extensions: A
Survey,” IEEE Access, vol. 11, pp. 24 696–24 711, 2023.

[21] J. Abella et al., “Security, Reliability and Test Aspects of the RISC-V
Ecosystem,” in ETS, 2021, pp. 1–10.

[22] M. Psarakis et al., “Microprocessor Software-Based Self-Testing,”
IEEE Des. Test. Comput, vol. 27, no. 3, pp. 4–19, 2010.

[23] M. Prabhu et al., “Functional test generation for hard to detect stuck-at
faults using RTL model checking,” in ETS, 2012.

[24] T. Faller et al., “Constraint-Based Automatic SBST Generation for
RISC-V Processor Families,” in ETS, 2023.

[25] R. Vollertsen, “Burn-In,” in IIRW, 1993.
[26] M. Pietzsch, “RISC-V Processor for Network Platforms According

to ISO 26262,” ATZelectronics worldwide, vol. 16, no. 11, pp. 8–13,
2021.

Authorized licensed use limited to: Universiteit Leiden. Downloaded on August 01,2023 at 10:49:10 UTC from IEEE Xplore. Restrictions apply.

[27] N. I. Deligiannis et al., “Automating the Generation of Programs
Maximizing the Repeatable Constant Switching Activity in Micropro-
cessor Units via MaxSAT,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., 2023.

[28] N. I. Deligiannis et al., “Automating the Generation of Programs
Maximizing the Sustained Switching Activity in Microprocessor units
via Evolutionary Techniques,” Microprocessors and Microsystems,
vol. 98, 2023.

[29] I. Polian et al., “Exploring the Mysteries of System-Level Test,” in
ATS, 2020, pp. 1–6.

[30] S. Biswas et al., “An Industrial Study of System-Level Test,” IEEE
Des. Test. Comput, vol. 29, no. 1, pp. 19–27, 2012.

[31] H. H. Chen, “Beyond structural test, the rising need for system-level
test,” in VLSI – DAT, 2018, pp. 1–4.

[32] D. Schwachhofer et al., “Automating Greybox System-Level Test
Generation,” in ETS, 2023.

[33] F. Corno et al., “Automatic Test Program Generation for Pipelined
Processors,” in SAC, 2003, pp. 736–740.

[34] A. Zeller et al., The Fuzzing Book. CISPA Helmholtz Center for
Information Security, 2021.

[35] P.-F. Chiu et al., “An Out-of-Order RISC-V Processor with Resilient
Low-Voltage Operation in 28nm CMOS,” in Proc. IEEE Symp. VLSI
Circuits, 2018, pp. 61–62.

[36] C. Gaisler, Quad core LEON4 SPARC V8 processor - LEON4-NGMP-
DRAFT - data sheet and users manual, 2011.

[37] Infineon, AURIX Multicore 32-bit Microcontroller Family to Meet
Safety and Powertrain Requirements of Upcoming Vehicle Generations.

[38] X. Iturbe et al., “Addressing Functional Safety Challenges in Au-
tonomous Vehicles with the Arm Triple Core Lock-Step (TCLS)
Architecture,” IEEE Design and Test, vol. PP, no. 99, pp. 1–1, 2018.

[39] A. Dörflinger et al., “ECC Memory for Fault Tolerant RISC-V
Processors,” in ARCS, 2020, pp. 44–55.

[40] E. B. Annink et al., “Preventing Soft Errors and Hardware Trojans in
RISC-V Cores,” in DFT, 2022, pp. 1–6.

[41] M. Peña-Fernández et al., “Dual-Core Lockstep enhanced with
redundant multithread support and control-flow error detection,”
Microelectronics Rel., vol. 100, p. 113 447, 2019.

[42] F. Kempf et al., “An Adaptive Lockstep Architecture for Mixed-
Criticality Systems,” in ISVLSI, 2021, pp. 7–12.

[43] X. Iturbe et al., “The Arm Triple Core Lock-Step (TCLS) Processor,”
TOCS, vol. 36, no. 3, pp. 1–30, 2019.

[44] I. Marques et al., “Lock-V: A heterogeneous fault tolerance architecture
based on Arm and RISC-V,” Microelectronics Rel., vol. 120, p. 114 120,
2021.

[45] A. Benso et al., Fault Injection Techniques and Tools for Embedded
Systems Reliability Evaluation. Springer Science & Business Media,
2003, vol. 23.

[46] L. Pintard et al., “Fault Injection in the Automotive Standard ISO
26262: An Initial Approach,” in EWDC, 2013, pp. 126–133.

[47] J. Abella et al., “WCET Analysis Methods: Pitfalls and Challenges
on their Trustworthiness,” in SIES, 2015, pp. 1–10.

[48] M. S. et al., “T-CREST: Time-predictable multi-core architecture for
embedded systems,” J. Syst. Architecture, vol. 61, no. 9, pp. 449–471,
2015.

[49] H. Yun et al., “MemGuard: Memory bandwidth reservation system
for efficient performance isolation in multi-core platforms,” in RTAS,
2013, pp. 55–64.

[50] M. Chisholm et al., “Cache Sharing and Isolation Tradeoffs in
Multicore Mixed-Criticality Systems,” in RTSS, 2015, pp. 305–316.

[51] Cobham Gaisler, NOEL-V Processor, https://www.gaisler.com/index.
php/products/processors/noel-v, 2020.

[52] C. Hernàndez et al., “SELENE: Self-Monitored Dependable Platform
for High-Performance Safety-Critical Systems,” in DSD, 2020, pp. 370–
377.

[53] F. Bas et al., “SafeDE: a flexible Diversity Enforcement hardware
module for light-lockstepping,” in IOLTS, 2021, pp. 1–7.

[54] G. Cabo et al., “SafeSU: an Extended Statistics Unit for Multicore
Timing Interference,” in ETS, 2021, pp. 1–4.

[55] R. Ramsauer et al., “Static Hardware Partitioning on RISC-V –
Shortcomings, Limitations, and Prospects,” arXiv:2208.02703, 2022.

[56] PULP Platform, https://pulp-platform.org/.
[57] M. Rogenmoser et al., “Hybrid Modular Redundancy: Exploring

Modular Redundancy Approaches in RISC-V Multi-Core Computing
Clusters for Reliable Processing in Space,” arXiv:2303.08706, 2023.

[58] A. Walsemann et al., “STRV – a radiation hard RISC-V microprocessor
for high-energy physics applications,” J. of Instrum., vol. 18, no. 02,
p. C02032, 2023.

[59] U. Banerjee et al., “An energy-efficient reconfigurable DTLS crypto-
graphic engine for securing Internet-of-Things applications,” IEEE J.
of Solid-State Circuits, vol. 54, no. 8, pp. 2339–2352, 2019.

[60] U. Banerjee et al., “Sapphire: A Configurable Crypto-Processor for
Post-Quantum Lattice-based Protocols,” TCHES, vol. 2019, no. 4,
pp. 17–61,

[61] W. Wang et al., “An energy-efficient crypto-extension design for
RISC-V,” Microelectronics J., vol. 115, p. 105 165, 2021.

[62] A. Zgheib et al., “Extending a RISC-V core with an AES hardware
accelerator to meet IOT constraints,” in SMACD / PRIME, 2021,
pp. 1–4.

[63] B. Marshall et al., “The design of scalar AES Instruction Set Extensions
for RISC-V,” TCHES, vol. 2021, no. 1, pp. 109–136,

[64] D. B. Roy et al., “Efficient Hardware/Software Co-Design for Post-
Quantum Crypto Algorithm SIKE on ARM and RISC-V Based
Microcontrollers,” in ICCAD, 2020.

[65] R. Elkhatib et al., “Accelerated RISC-V for Post-Quantum SIKE,”
IEEE Trans. on Circuits and Syst. I: Regular Papers, vol. 69, 2022.

[66] T. Fritzmann et al., “Towards Reliable and Secure Post-Quantum
Co-Processors based on RISC-V,” in DATE, 2019, pp. 1148–1153.

[67] E. Alkim et al., “ISA Extensions for Finite Field Arithmetic: Accel-
erating Kyber and NewHope on RISC-V,” TCHES, vol. 2020, no. 3,
pp. 219–242, 2020.

[68] T. Fritzmann et al., “Extending the RISC-V Instruction Set for
Hardware Acceleration of the Post-Quantum Scheme LAC,” in DATE,
2020, pp. 1420–1425.

[69] G. Xin et al., “VPQC: A Domain-Specific Vector Processor for Post-
Quantum Cryptography Based on RISC-V Architecture,” IEEE Trans.
on Circuits and Syst. I: Regular Papers, vol. 67, no. 8, pp. 2672–2684,
2020.

[70] H. Li et al., “A scalable SIMD RISC-V based processor with
customized vector extensions for CRYSTALS-Kyber,” in DAC, 2022,
pp. 733–738.

[71] Y.-M. Kuo et al., “Versatile RISC-V ISA Galois Field arithmetic
extension for cryptography and error-correction codes,” in CARRV,
2021.

[72] T. Fritzmann et al., “RISQ-V: Tightly Coupled RISC-V Accelerators
for Post-Quantum Cryptography,” TCHES, vol. 2020, no. 4, pp. 239–
280,

[73] H. Cheng et al., “RISC-V Instruction Set Extensions for Lightweight
Symmetric Cryptography,” TCHES, vol. 2023, no. 1, pp. 193–237,

[74] S. Steinegger et al., “A Fast and Compact RISC-V Accelerator for
Ascon and Friends,” in CARDIS, 2020, pp. 53–67.

[75] B. Marshall, Ed., The RISC-V Cryptography Extensions, Volume I:
Scalar & Entropy Source Instructions. RISC-V Foundation, Feb. 2022.

[76] K. Dockser, Ed., The RISC-V Cryptography Extensions, Volume II:
Vector Instructions. RISC-V Foundation, Mar. 2023.

[77] P. Kiaei et al., Domain-Oriented Masked Instruction Set Architecture
for RISC-V, Cryptology ePrint Archive, Paper 2020/465, 2020.

[78] S. Gao et al., “An Instruction Set Extension to Support Software-Based
Masking,” TCHES, vol. 2021, no. 4, pp. 283–325,

[79] B. Gigerl et al., “COCO: Co-Design and Co-Verification of Masked
Software Implementations on CPUs,” in USENIX, 2021, pp. 1469–
1468.

[80] T. Lu, “A survey on RISC-V security: Hardware and Architecture,”
arXiv:2107.04175, 2021.

[81] V. Costan et al., “Sanctum: Minimal Hardware Extensions for Strong
Software Isolation,” in USENIX, 2016, pp. 857–874.

[82] I. Lebedev et al., “Invited Paper: Secure Boot and Remote Attestation
in the Sanctum Processor,” in CSF, 2018, pp. 46–60.

[83] D. Lee et al., “Keystone: An Open Framework for Architecting Trusted
Execution Environments,” in EuroSys, 2020, pp. 1–16.

[84] T.-T. Hoang et al., “Quick Boot of Trusted Execution Environment
With Hardware Accelerators,” IEEE Access, vol. 8, pp. 74 015–74 023,
2020.

[85] V. B. Kumar et al., “Towards Designing a Secure RISC-V System-on-
Chip: ITUS,” J. of Hardware and Syst. Secur., vol. 4, pp. 329–342,
2020.

[86] M. Schneider et al., “Composite Enclaves: Towards Disaggregated
Trusted Execution,” arXiv:2010.10416, 2020.

Authorized licensed use limited to: Universiteit Leiden. Downloaded on August 01,2023 at 10:49:10 UTC from IEEE Xplore. Restrictions apply.

