
On sharing information between sub-populations in
MOEA/S
Ribeiro de Almeida, L.; Emmerich, M.T.M.; Da Silva Soares, A.;
Woerle de Lima, T.; Bäck, T.M.T.; Preuss, M.; ... ; Trautmann, H.

Citation
Ribeiro de Almeida, L., Emmerich, M. T. M., Da Silva Soares, A., &
Woerle de Lima, T. (2019). On sharing information between sub-
populations in MOEA/S. Parallel Problem Solving From Nature, 2,
171-185. doi:10.1007/978-3-030-58115-2_12
 
Version: Publisher's Version

License: Licensed under Article 25fa Copyright
Act/Law (Amendment Taverne)

Downloaded from: https://hdl.handle.net/1887/3632276
 
Note: To cite this publication please use the final published version
(if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3632276


On Sharing Information Between
Sub-populations in MOEA/S

Lucas de Almeida Ribeiro1,2(B), Michael Emmerich3,
Anderson da Silva Soares1, and Telma Woerle de Lima1
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Abstract. This work investigates the effect of information exchange
in decomposition methods that work with multi-membered populations
as sub-problems. As an algorithm framework, we use the Multi-objective
Evolutionary Algorithm based on Sub-populations (MOEA/S). This algo-
rithm uses parallel sub-populations that can exchange information via
migration and/or recombination. For this work, each sub-population
is constructed by a few weighted utility functions, grouped by dis-
tance between their weighting vectors. The question investigated in this
paper is: How is the distance between sub-populations and the mecha-
nism of information exchange influencing the performance of MOEA/S?
The study considers two ways of transferring information: (1) migra-
tion of individuals, (2) recombination using parents from two differ-
ent sub-populations. A matrix describing the linkage patterns between
sub-populations governs migration and recombination mechanisms. This
work conducts a systematic study using the multi-objective knapsack
problem (MOKP) and multi-objective traveling salesperson (MOTSP)
for two and three objectives test problems. The results motivated a
restriction policy for sharing information. We compare an algorithm
using this policy with other state-of-the-art MOEAs, including NSGA
III, MOEA/D, and the previous version of MOEA/S.

Keywords: Decomposition-based multi-objective optimization ·
Cellular genetic algorithm · Sub-population based MOEAs · Migration
operator · MOEA/S

1 Introduction

Multi-objective optimization is the task of finding solutions in a search space
with the best quality concerning multiple objective functions. Decomposition-
based multi-objective evolutionary optimization deals with these problems by
defining a collective, population-based, search. The main idea of decomposition-
based methods is to decompose the problem into sub-problems targeting
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different regions on the Pareto front. The search is done simultaneously and while
continuously exchanging information between the sub-populations [7,10,16].

One crucial matter in decomposition-based methods for multi-objective prob-
lems is how to exchange information among sub-populations to speed up the con-
vergence to the Pareto front based on shared search and to improve Pareto front
coverage. The mechanism used for this purpose covers mating individuals from
different sub-populations and migrating individuals among sub-populations.

Zhang et al. propose a straightforward and commonly used implementa-
tion of decomposition-based methods. [29], called the Multi-Objective Evolu-
tionary Algorithm based on Decomposition (MOEA/D). MOEA/D explicitly
decomposes the multi-objective optimization problem into N (size of the pop-
ulation) scalar optimization sub-problems. Then, MOEA/D optimizes the N
sub-problems simultaneously. Each sub-problem is optimized by only using infor-
mation from its neighboring sub-problems, where the neighborhood is defined
a priori based on the neighborhood of reference directions. MOEA/D uses the
same aggregation function for all sub-problems; a unique combination of weight-
ing vectors defines each sub-problem. Thus, the neighborhood of a sub-problem
is assumed as the neighborhood of its weighting vector.

Another family of decomposition-based methods, used in the literature, splits
the population into several sub-populations where each one of them can use a
distinct multi-objective strategy [2–5,9,11,22–25]. In this work, we formulate
this approach as MOEA/S (Multi-objective Evolutionary Algorithm based on
Sub-populations). Although this method has obtained good results, only a very
general rule is defined for exchanging information among sub-populations. In
contrast to MOEA/D, which uses a neighborhood definition, the simple rule
is that every sub-population is exchanging information with every other sub-
population at the same rate.

A commonly applied decomposition-based algorithm is the new version of
the Non-dominated Sorting Genetic Algorithm (NSGA-III) [7], which places ref-
erence points on a simplex the size of which is adapted according to the current
best information on the boundaries of the true Pareto front. NSGA-III does not
take into account neighborhood among sub-populations in exchanging informa-
tion, although it uses a niching method for selection.

Murata et al. [17] studies the behavior of restricting mating and replacement
based on the neighborhood in a cellular version of Multi-Objective Genetic Algo-
rithm (MOGA). Using different neighborhood sizes, they conclude that neither
the closest neighbor nor the farthest sub-population is the best option in sharing
information (using mating and replacement). Whether such strategies are better
than not sharing information remains open in their analysis.

Ishibuchi et al. [12] studies the use of different size of neighborhoods (T s)
for mating and replacement selection in many-objective problems in MOEA/D.
They obtain as a result that an appropriate specification of the two neighbor-
hoods is problem-dependent. But in all the cases, a small neighborhood for
replacement might lead to a well-distributed Pareto front, in many-objective
problems. Wang et al. [28] suggest new replacement strategies where the solution
is compared in all weight vectors and replace the solutions in the neighborhood
of its best suitable weight vector.
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These previous works have shown good results in exploring the relation
between neighborhood size and performance. Thus, the exploitation of infor-
mation obtained in similar sub-problems is useful to improve the speed of con-
vergence to the Pareto front. Nevertheless, these results are not extended for
non-cellular approaches, since the neighborhood of one sub-population with mul-
tiple individuals is not as easy to define as the neighborhood of a singleton
sub-population as it is used in MOEA/D and c-MOGA.

Our work will investigate the effectiveness of exchanging information between
sub-populations based on their distance using the non-cellular decomposition
method, MOEA/S. MOEA/S decomposes a problem into N scalar optimization
sub-problems. Each sub-problem is solved simultaneously using a population-
based multi-objective evolutionary algorithms (MOEA) - in accordance with
previous research, the N populations used by these MOEAs will be called sub-
populations. In contrast to MOEA/D, each sub-population can consist, in gen-
eral, of more than one individual. In order to exchange information, a connection
between sub-populations must be established. The connection definition is based
on the distance between the centroids of the sub-populations. Different operators
for information exchange will be compared for MOEA/S in this paper.

This paper is organized as follows: Sect. 2 introduces MOEA/S and explains
the main conceptual ideas of the method. Section 3 shows experimental setup;
Sect. 4 explores the results on test problems and in Sect. 5 the paper is concluded
with a summary of our main findings1.

2 Methods

2.1 MOEA/S Algorithm

The Multi-objective Evolutionary Algorithm based on Sub-populations
(MOEA/S) is a decomposition-based MOEA which supports non-singleton sub-
population based MOEAs to solve, simultaneously, the sub-problems of a prob-
lem decomposition. In principle, each sub-problem can be solved by a different
MOEA, in terms of the selection processes. A global ‘master algorithm’ con-
trols the interplay and information exchange between the MOEAs that address
sub-problems.

MOEA/S splits the (global) population into a constant number of μ sub-
populations, which are managed by different selection processes. One can design
a process using Pareto based strategies, indicator-based methods, scalarization
based algorithms, and so on. To be eligible as a MOEA, for solving a sub-
problem in MOEA/S, the selection operator must obey a particular framework.
The framework interface requires: limited population size of at most N i

limit or
N i(i = 1 . . . μ) individuals; moreover, it must define a method for mating selec-
tion; and a method for environmental (or truncation) selection.

In MOEA/S, it is an essential principle that sub-problems are not solved
independently, but in general, it is possible to exchange information between

1 Additional data is made available in the web-repository http://moda.liacs.nl.

http://moda.liacs.nl
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sub-populations. The idea is, roughly speaking, to exploit synergies between
different sub-problem solution processes.

Sub-populations can exchange information in two stages: the first stage, the
mating stage, is using the mating operator. Via a mating matrix, a coupling
between the sub-populations is established. The rows (index i ∈ {1, . . . , μ})
indicate the populations in the mating pool (deme) of the i-th sub-population
Pi. Secondly, in the migration stage, a migration matrix (destination matrix) is
set up to decide to which other populations, individuals of sub-population Pi

can migrate (for each i = 1, ..., μ).
In summary, MOEA/S contains a list of sub-populations, (P1, . . . , Pμ), each

of which containing a limited number Ni, i = 1, ..., μ of individuals, a method
for selecting parents (mating selection), and a method for discarding or selecting
individuals; a population (P =

⋃μ
i=1 Pi); a structure which stores the connections

between sub-populations for mating (deme - M ∈ B
μ×μ); and for destination

sub-populations (destination matrix - D ∈ B
μ×μ) used in the environmental

selection; environmental selection maintains an adjacency matrix to associate
each individual with its sub-populations (adjacency matrix - A ∈ B

ξ×μ, where
ξ = |P |); a method for creating new individuals; and a method for initialization.

The MOEA/S procedure starts with the initialization of the sub-population
structure. This phase distributes all individuals from the initial population into
the sub-populations. The evolutionary loop consists of: (1) selection of the par-
ents (or mating pool), (2) creating new individuals by mutation and crossover
operators, (3) environmental selection, (4) migration. In more detail:

(1) select p1 as the first sub-population. Then, the first parent (sp1) is selected
from a designated sub-population (Pp1) and the second one (sp2) is selected
from a population Pp2. Index p2 is chosen according to the mating pool of
Pp1 defined by the mating matrix.

(2) generate new individuals (snew1 and snew2) by crossover and mutation oper-
ators from sp1 and sp2

(3) evaluates the new individuals in the sub-populations of their parents.
(4) migrate the new individuals to the destination sub-populations of their par-

ents’ sub-populations, according to the migration matrix.

An individual snew is accepted in the sub-population Pi if the size of Pi

satisfies |Pi| < Ni or in case |Pi| = Ni it can be chosen by the selection of the
destination sub-population, for instance, a tournament selection. In the latter
case, an individual of the destination sub-population snew replaces sold in Pi.

2.2 MOEA/S Instance

Next, we will discuss the specific instance of MOEA/S used in this paper, which
targets different regions on the Pareto front by different sub-populations:

First, N (size of the population) scalar optimization functions are defined
differed by their weighting vector, as in MOEA/D. Each one of these functions is
associated with one sub-problem (Ri, 1, ..., N). Then, sub-problems are clustered
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into sub-populations, further called Region sub-populations (Ri, 1, ..., μ), using
their weighting vectors. Thus, each individual in the population is associated
with one sub-problem, and its fitness is assessed by one utility function.

Figure 1 exemplifies how weighting vectors distributions for two and three-
objective spaces are spatially located. Figure 1(a) presents the regions on 3-
objective spaces with 120 points and 5 Regions. Figure 1(b) presents the regions
on 2-objective spaces, with 20 points and 3 regions. The clustering method is k
-means clustering [1] which groups each sample around a centroid, where here
the number of clusters corresponds to the number of regions.

(a) Regions on 3-objectives
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(b) Regions on 2-objectives

Fig. 1. Distribution of solution targets based on their weighting vectors.

As weighting or utility function Chebychev scalarization is used: Given a
solution s, an lower bound point slb (where slb

i = min(fi(X ′)), being X ′ the
explored search space so far)), and a weight vector (w1

1, . . . , w
1
k) associated to

a problem with k objective functions (f1, . . . , fk), then the Chebychev utility
function reads uCheb = maxk

i=1 wi(fi(s) − slb
i ).

The mating selection in a Region Sub-population selects one individual based
on binary tournament selection. This selection method picks two individuals
randomly and chooses the one with the best fitness, where the fitness of a solution
is its fitness-value regarding the sub-problem which it is associated.

The environmental selection in a Region Sub-population (Ri) for a new solu-
tion (snew) is accomplished by evaluating snew in each one of the sub-problems
from this region. This process goes until all sub-problems (rj ∈ Ri) have been
visited, or snew is accepted by some sub-problem in Ri.

For each Region Sub-population (say i) a list of all other regions (say j, j �= i)
is created and the list is sorted by the distance to the centroid of Ri. This way
we establish nearest neighboring region, second neighboring regions of different
radius. This collection of lists will be treated as a matrix L ∈ B

μ×μ where the
L(i, j) equals to the ranking distance between i and J . This structure is used to
construct matrices D and M .
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2.3 Sharing Information by Migration

Locality is a fundamental resource when using guided search methods, assuming
that the structure of the fitness landscape leads search algorithms to high qual-
ity solutions [19]. Where low locality degenerate the performance of the search
algorithm in a random search [21]. This principle provides two results: small
changes in solutions cause small changes in fitness values; solutions with high
fitness values are spatially localized.

The creation of a new offspring consists of the subsequent application of the
recombination operator and the mutation operator:

– Recombination operators perform search exchanging information among solu-
tions. In this operator, the information content of multiple individuals (nor-
mally two) are combined in order to generate a new individual with mutual
information from its parents. Recombination operators generate offspring,
where the distances between offspring and parents are usually equal to or
smaller than the distance between parents.

– A mutation operator generates a solution snew from sold by a small random
change in sold. Mutation operators do not use the neighborhood lists.

Together, a search step combining recombination and subsequent mutation
produces an offspring in a neighbourhood, which encloses the parents. A search
step is useful if it generates a solution in an area of interest regarding a sub-
population. Once two sub-populations can overlap a common area of interest,
sharing offspring solutions can be beneficial. The process of sharing offspring
between sub-populations is known as migration.

This migration operator demands a topology defining links between source
and target sub-populations. Sprave [26] presents a formal model of population
structures in evolutionary algorithms based on hypergraphs. This model allows
using an individual hypergraph matrix as migration topology or mating selection
topology. Here, we use this idea defining the migration topology by means of
destination matrix (D) where dij = 1 if i is a source sub-population and j is a
target sub-population, and dij = 0 otherwise. In this work only newly created
individuals are submitted for migration.

2.4 Sharing Information by Recombination

Next to migration, MOEA/S also allows sharing information by mating parents
from different sub-populations. An essential step in recombination methods is
selecting the right combination of mates in order to generate useful descendants.
This step is called mating selection. The problem in mating selection can be
stated as: given a first parent solution sp1 from Pp1, which other sub-population
Pp2 should be selected in order to find a good matching (sp2) for the first parent?

Multi-objective problems deal with highly conflicting objectives, and hence
the search in each sub-population leads to different specialized region. Therefore,
combining solutions from sub-populations located on extremely different parts of
the Pareto front becomes unreasonable as they evolve. In contrast, solutions in
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similar sub-problems have similar information content; combining these solutions
leads to exploiting small regions, degrading the search in the first generations.

3 Experiments

The multi-objective 0-1 knapsack problem based on [31] is defined for 2 and
3 objectives with 500 items, we call it MOKP-2 or MOKP-3 according to the
number of objectives. The second problem is a multi-objective formulation of
traveling salesperson problem (MOTSP) [6] defined for 2 and 3 objectives with 30
cities, we call it MOTSP-2 or MOTSP-3 according to the number of objectives.
These problems were chosen because in these problems the similarity of solutions
reflects to some extend the similarity of the obtained results. As opposed to
many problems in continuous multi-objective optimization, such as ZDT [30]
and DTLZ [8], spread and convergence are both influenced by all variables.
In other words, there is no separation of variables that influence only spread
or only convergence. Moreover, the problems have practical relevance and are
structurally similar to real world problems.

The hypervolume indicator and R2-indicator were used to assess the per-
formance of the population. The hypervolume indicator has been the most
used quality indicator in the performance assessment of Pareto front approx-
imations [18,20]. The hypervolume indicator measures the size of the region
dominated by an approximation set [31], and bound from above by a reference
point. R2-indicator is defined as an integral over a weight space for a family of
distance to a reference point utility function (typically weighted Chebychev dis-
tance to the ideal point). Thus, R2-indicator is very suitable for decomposition
problems (which uses also utility functions).

In this paper we also propose two metrics: number of useful migrations (α)
and number of useful mating (β). α results from: given distance rank2, denoted
with (ρ ∈ 1, . . . , μ), αρ counts how many useful migrations occurs between sub-
populations in distance ρ; thus, for instance, α1 counts how many individu-
als from Ri are accepted by Rj , with Rj being the nearest neighboring sub-
population from Ri. Second metric, β states: given a distance rank ρ (∈ 1, . . . , μ),
βρ counts useful offspring resulted from mating between sub-populations in
this distance; thus, β1 counts how many individuals are accepted (in any sub-
population) from matches between Ri and Rj , once Rj is the nearest neighboring
sub-population from Ri; β0 counts how many individuals are accepted (in any
sub-population) from a mating of parents from the same sub-population.

3.1 Experiment Settings

The MOEA/S setting in the research study on the benefits of sharing informa-
tion (Experiments 1 and 2) is given by: μ - number of sub-populations equals

2 Note, as a detail, that in the case of ties, that is two sub-populations share the same
distance, the distance rank will be randomly assigned.
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to 6; N - number of individuals set as 36; set of problems defined as MOKP-2,
MOKP-3, MOTSP-2, MOTSP-3; and number of generations is (120000/N)-2.

For MOKP problems, we used binary representation, one-point crossover
as in [31], and 2/500 bit-flip mutation rate. For MOTSP problems, we used
permutation representation with order crossover and swap mutation. Crossover
and mutation rates of 1. The presented results are average performance metrics
obtained by the populations at a given time; this average considers 20 runs of
the algorithm (generation vs. quality measure). Thus, we can study the sharing
process between the sub-populations according to the time (generation number).

Experiment 1: Sharing Information by Migration Between Indepen-
dent Sub-populations. First experiment explores the relationship between
neighborhood of a sub-population and the effectiveness of sharing its descen-
dants by migration. Destination Matrix: D(i, j) = 1, for all i and j. The mating
matrix now reads M(i, j) = 1 if i = j; 0, otherwise. We compare the different α
over the generations. That is, we assess the success that is attributed to migra-
tion of different radius. For statistical smoothing purposes, we report cumulative
values of α over ranges of distance ranks.

Experiment 2: Sharing Information by Recombination. In the second
experiment there is no restriction on mating or migration selection process.
The destination matrix is set to D(i, j) = 1, for all i and j. Thus, the mat-
ing matrix reads M(i, j) = 1, for all i and j. The other parameters are set as
in Sect. 3.1. This experiment aims at understanding how the distance between
sub-populations of parents is related with producing successful offspring. We
used a scheme selection that guarantees all β range are assessed. For statistical
smoothing purposes, we report cumulative values of β over ranges of distance
ranks.

Experiment 3: Using Local vs. Global Sharing in MOEA/S. Last experi-
ment compares three MOEA/S designs (MOEAScan, MOEAS0 and MOEAS1)
with MOEA/D [29] and NSGA-III [7] implementations found in PlatEMO [27].
Here we compare approaches with global and local sharing policies. All algo-
rithms in this experiment use the same maximum size of population and search
operators. Here: N = 120 is the (maximum) population size. As specific param-
eters MOEA/D uses neighborhood size T = N/10; NSGA-III uses N accumula-
tion points; and MOEA/S implementations work with μ = 10 sub-populations.

The MOEA/S implementations are detailed as follows:

– Global Sharing MOEAScan (‘can’ stands for canonical) defines no restric-
tion over mating parents from different sub-populations. A new solution can
migrate to all sub-populations. M and D are set as Experiment 2.

– No Sharing MOEAS0 each sub-population works independently and there
is no sharing, i.e. the sub-populations work in parallel without migration; M
is as in Experiment 1 (no mating across sub-populations) and D = M .
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– Local Sharing In MOEAS1 the distance between two sources of parents
is restricted to 1 and solutions can migrate only for the three closest neigh-
borhoods; thus, M(i, j) = 1 if L(i, j) ≤ 1, 0 otherwise; and D(i, j) = 1 if
L(i, j) ≤ 3, 0 otherwise. Here L is the sorting matrix defined in Sect. 2.2.

The reference points for Hypervolume-indicator was set as (26098, 28367)
and (27576, 27483, 27367) for MOKP-2 and MOKP-3 test problem, respectively;
for MOTSP-2 and MOTSP-3 problems it was set as (296.88, 295.32) and (288.8,
288.54, 284.15), respectively. R2 was implemented using Chebychev scalarization
based utility function with the N (maximun size of the population) number of
points. As Hypervolume-based and R2 indicators have obtained similar results
(same ranking position when comparing the algorithms), therefore, we just show
Hypervolume-indicator.

4 Results and Discussion

4.1 Sharing Information by Migration Between Sub-populations

Figure 2 illustrates the success rate of sharing information, by migration opera-
tor, between sub-populations based on their distance.
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Fig. 2. Migration rate success grouped by distance between source and destination.
Average α is the cumulative counting of accepted offsprings in a given distance.

Migrating information with the first neighbour is the best option for 3-
objective problems, and it is the second best option for 2-objective problems
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(the best option is in the 40% closest neighboring sub-populations). In all cases,
sharing information with the furthest sub-population is unlikely to be successful,
in particular in later stages of the search when it becomes specialized. Although
the success rate is low, migration does not affect the generation, i.e., a bad migra-
tion try is not a waste in execution count. Thus, without taking care the effort
of validating a solution, sharing with all sub-populations is the best option.

4.2 Sharing Information by Recombination Between
Sub-populations

The second study (Fig. 3) analyzes the behavior of the population quality dur-
ing the evolutionary process when applying both of the operators, recombination
and migration. This results reinforce the idea from Ishibuchi and Shibata [13–
15] about using similarity indicators in mating selection. Crossing individuals
between sub-populations can be as useful as crossing neighboring individuals.
However, as the search progresses, the probability of generating good offspring by
crossbreeding sub-populations decreases. Crossbreeding with the nearest neigh-
bouring sub-populations remains successful also in the later stage of search.
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Fig. 3. Mating rate effectiveness grouped by distance between source sub-population
of parent 1 and source of parent 2. Average β is a cumulative value during the search.

As result from Fig. 3, the highest probability of generating useful offspring
is obtained by crossing individuals from the same region. This result is shown
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in both problems. The only exception is Fig. 3(a) where the recombination with
the first neighboring region has similar (to better) behavior. As the search pro-
gresses the probability of finding useful individuals from apart sub-populations
decreases. The best mating selection (between sub-populations) scenario occurs
in the first neighborhood. Only β1 and β2 continue increasing over time in all
test cases.

4.3 Using Local vs. Global Sharing in MOEA/S

From previous results (Sects. 4.1 and 4.2), most of information needed for
improving search performance in a sub-population comes from the nearest sub-
populations. Thus, the last experiment studies the behavior of the evolutionary
process when defining mating and migration rules, by comparing global shar-
ing (MOEAScan), no sharing or independent sub-populations (MOEAS0), and
local sharing (MOEAS1) versions of MOEA/S. We also compare its behavior
with MOEA/D and NSGA III implementations. Figure 4 presents the search
behavior of these algorithms regarding Hypervolume indicator.
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Fig. 4. Performance of MOEA/S using mating and migration restriction compared
with other MOEAs implementations including NSGA III and MOEA/D.

As result, from Fig. 4, sharing information has been demonstrated as the
right choice for improving the convergence rate on MOEA/S. Sharing informa-
tion with all sub-populations is one of the best options in the beginning of the
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search, where MOEAScan is the best option for MOKP test problems (Fig. 4(a)
and 4(b)) until ca. generation 100. However, as the search progresses MOEAS0

and MOEAS1 continue improving search performance, while MOEA/D and
MOEAScan prematurely converge. Only in Fig. 4(c) MOEA/D has a similar
performance when compared to MOEAS1 even after generation 500 (no signif-
icant difference by Wilcoxon rank sum test, p = 0.05).

Once MOTSP-3 takes advantage on neighboring recombination (as shown in
experiments Sects. 4.1 and 4.2), Fig. 4(d), MOEAS0 shows its best ranking per-
formance. NSGA-III performs better with two-objective problems as compared
to three-objective test problems. Thus, sharing information can be considered
beneficial for mating and migration selection.

5 Conclusion and Outlook

Our study has investigated sharing in multi-objective optimization across sub-
populations that explore different regions of the Pareto front. Both, sharing by
migration and by mating has found to be useful tool for improvement of combi-
natorial multi-objective optimization. Diversity is achieved by exchanging infor-
mation between dissimilar sub-populations, which influences the performance of
the firsts generations. On the other hand, focusing on similar sub-populations
can improve exploitation in the search. Consequently, mating neighboring par-
ents leads to better final results. Another important finding is, that the radius
of sharing and the type of sharing has a crucial influence on its beneficial effect.
Moreover, long radii have found to more benefit early stages of search, whereas
in later stages short, but non-zero, radii for sharing are more beneficial.

The study points out and confirms some interesting phenomena regarding
sharing and paves the way to future work taking these novel findings into
account: Adaptive selection schemes could be considered once the effectiveness
of distance-based migration, and mating selection depends on the stage of the
search. In the final stages, there is no need to migrate solutions or mating solu-
tions between sub-populations. The selection scheme proposed by Ishibuchi [15]
can be the right choice if we consider the panmictic population. However, this
selection scheme is not extensible for parallel populations.

Since our study suggests that mating selection is highly related with neighbor-
hood of solutions, future work on designing MOEA/S should take neighborhood
adaptation measures for mating into account. Moreover, there is room for discus-
sion on neighborhood/deme representations using hypergraphs (see Sprave [26]).
In particular, such considerations might be of relevance for theoretical analysis
using Markov chain techniques.
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