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ABSTRACT
After several field campaigns between 2007 and 2018 in the northwestern region of 
the Dominican Republic, more than 300 archaeological sites have been registered and 
revisited. While several of these sites were identified through the scatter of surface 
material culture, others show terrain modifications in the form of anthropogenic 
mounds and levelled areas. Researchers have gathered valuable information 
regarding these features’ functionality and construction processes through large-scale 
excavations in archaeological sites with anthropogenic mounds, paleoenvironmental 
studies and remote sensing analyses. These anthropogenic mounds represent a 
long-term process of formation and were used for a variety of purposes ranging from 
agricultural to ritual activities. While excavations and small-scale remote sensing can 
provide a myriad of data to improve our understanding of these archaeological sites, 
a regional perspective is needed to map the relationship among archaeological sites 
with and without terrain modifications, to better understand the Indigenous cultural 
patterns in their regional environment. In this regard, the primary objective of this 
paper is to explore to what extent these archaeological sites were related to the 
environment and each other. This was achieved by correlating archaeological data 
with a set of archaeologically recognized important environmental variables using 
advanced spatial statistics. The results provide important insights to understand the 
underlying pattern of archaeological sites in this region and its relationship with the 
environmental setting.
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1. INTRODUCTION

During several field campaigns between 2007 and 2018 
in the northern region of the Dominican Republic, we were 
able to register and revisit more than 300 archaeological 
sites showing a wide range of cultural contexts (Hofman 
et al., 2018; Ulloa Hung and Herrera Malatesta, 2015; De 
Ruiter, 2012; Ulloa Hung, 2014; Herrera Malatesta, 2018). 
While several of these sites were identified through 
the scattering of surface material culture, others show 
terrain modifications in the form of anthropogenic 
mounds and levelled areas. Their anthropogenic nature 
was identified by either studying looter pits in already 
damaged mounds, revealing their stratigraphy, or by 
performing test pits and/or small excavations combined 
with large-scale excavations on a small number of sites 
(Ulloa Hung, 2014; Herrera Malatesta, 2018; Hofman 
et al., 2020; Hofman and Hoogland, 2015). In addition, 
UAV photogrammetry was used to study the intrasite 
topographic structure of a sample of sites with terrain 
modifications (Sonnemann, Herrera Malatesta and 
Hofman, 2016; Sonnemann, Ulloa Hung and Hofman, 
2016). From the resulting digital terrain models (DTM) 
and the excavations, we observed that artificial mounds 
were spatially associated with levelled areas in all 
cases. From small- and large-scale excavations on the 
levelled areas of different sites, we identified patterns 
of postholes. Our current hypothesis is that these areas 
were purposely levelled out by the Indigenous people to 
provide even ground for settlement structures (Hofman 
and Hoogland, 2015). The soil from the areas was swept 
aside and together with the accumulated dirt from 
domestic and planting activities began to form mounds 
next to the houses. Such mounds could reach up to three 
meters in height and twelve meters in diameter, and 
in some cases also served as burial locations (Pagán-
Jiménez et al., 2020; van Dijk, 2019; Sonnemann, Ulloa 
Hung and Hofman, 2016; Hofman and Hoogland, 2015). 
Furthermore, we were able to perform palaeoecological 
analysis at two of the excavated sites, as well as at key 
places along one of the major rivers, the Yaque, that has 
provided fundamental information about the human 
impact on the surrounding environment (Castilla-Beltrán 
et al., 2018; Castilla-Beltrán et al., 2020). The recent 
identification of some of the crops that were cultivated 
on the mounds and/or eaten by the Indigenous people 
on the site further contextualized this environmental  
setting (Pagán-Jiménez et al., 2020). These studies 
highlight that the Indigenous people were active agents 
in modifying their surroundings to establish a variety of 
settlements.

Furthermore, the terrain modifications had a wide 
range of functions for the Indigenous people, from small-
scale agriculture, and dumping of garbage, to ritual 
activities (Pagán-Jiménez et al., 2020; van Dijk, 2019; 
Herrera Malatesta, 2018; Hofman et al., 2018; Hofman 

et al., 2020). However, owing to limited resources and 
time, work has been concentrated on a selection of 
archaeological sites. As a result, most archaeological 
sites with terrain modifications have not been extensively 
excavated. Based on the available data and field 
observations, we know that mounds usually occur on the 
foothills and hills of the Cordillera Septentrional. Although 
there are a few sites on the Yaque river valley that also 
contain mounds, these do not present recognizable 
levelled areas. As the valley is a floodplain of the Yaque 
river, its soils are quite fertile, more so than those of the 
Cordillera Septentrional. This difference between sites 
with terrain modifications in the hills and the valley 
brings up the main aim of this paper of exploring the 
relationship between the archaeological sites with and 
without terrain modifications and the environmental 
setting and assessing if the environmental setting had an 
influence on the location of these terrain modifications.

2. ARCHAEOLOGICAL BACKGROUND

The recently available regional archaeological database 
has permitted a more comprehensive exploration of how 
Indigenous people inhabited, used, and transformed this 
landscape (Hofman et al., 2018). In particular, it allows 
the discernment of multiscalar regional patterns. Broadly 
said, the settlement pattern in the study region, i.e., the 
Puerto Plata, Valverde and Montecristi provinces, shows 
a wide range of archaeological sites located in different 
environmental and topographical settings, with a 
potential tendency towards the coast (Figure 1). Based on 
their archaeological contexts and the number of materials 
distributed on the surface, these sites were grouped into 
size categories. The size division was done using Jenks 
Optimization, which is a statistical method that attempts 
to find clusters in the data. To do this, it determines the 
‘natural breaks’ in a dataset by minimizing the sum of 
the squared deviations from class means, in this case, 
the sites’ area sizes in square meters (Conolly and Lake, 
2006, p. 142). Four size categories were defined. First, the 
small sites (≤10,000 m2), have a low diversity of material 
remains, consisting of undecorated ceramics, few stone 
tools, usually axes and/or hammerstones, and scarce 
mollusk shells. Second, the medium-sized sites (10,001–
30,000 m2) tend to be more complex, presenting a wider 
range of material culture, consisting of undecorated and 
decorated ceramics, a variety of stone and shell tools, 
and more evidence of marine food resources, e.g., various 
types of mollusk shells and fish remains. Third, large sites 
(30,001–60,000 m2), have characteristics like those of 
medium-sized sites but tend to have more diverse and 
abundant material culture and other remains. Finally, the 
very large sites (60,001–140,000 m2) present a material 
culture pattern like that of large sites, but their spatial 
distribution covers a larger area.
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Archaeological sites with anthropogenic mounds and 
levelled areas show an arrangement where two or more 
mounds that have either a circular, oval, or “U” shape, 
are located around the levelled areas. In some cases, the 
levelled area is located between mounds or in the middle 
of the “U” shape (Figure 2). The registered mounds on 
the foothills and/or hilltops of the Cordillera Septentrional 
have diameters ranging from 3 m to 12 m and do not 
exceed 3 m in height (De Ruiter, 2012; Sonnemann, Ulloa 
Hung and Hofman, 2016; Hofman et al., 2020; Herrera 
Malatesta, 2018; Hofman and Hoogland, 2015; Ulloa 
Hung, 2014). At some sites, the topography has been 
greatly affected by human or environmental influences, 
which complicates the identification of mounds and 
levelled areas. The levelled areas between the mounds 
usually have a circular shape and an area between 40 
and 200 m2. Their extent also depends on the size of 
the settlement: investigated larger sites, featuring more 
and bigger mounds tend to also have larger levelled 
areas (Hofman et al., 2020; Sonnemann, Ulloa Hung 
and Hofman, 2016). Several of the excavated sites, e.g., 
El Flaco, El Carril, and El Manantial, featured levelled 
areas, or areas in between mounds, with postholes and 
other cultural features, which confirmed the existence of 
settlement structures (Figure 3), possibly the houses of 
the Indigenous inhabitants (Hofman et al., 2018; Herrera 
Malatesta, 2018). The mounds are composed of layers 

of brown and dark brown soil, ash lenses and refuse, 
which alternate with layers of white soil removed from 
the surrounding area to create levelled areas for various 
settlement structures (Hofman, 2017). The layers of 
dark brown soil suggest that during certain periods of 
occupation, the mounds may have been used as ‘kitchen 
gardens’, i.e. small household gardens (Pagán-Jiménez 
et al., 2020). Additionally, the presence of human and 
animal burials in some of the mounds also indicates their 
possible use as ritual areas (Hofman and Hoogland, 2015; 
Hofman, Ulloa Hung and Hoogland, 2016; Hofman et al., 
2020). Finally, during the large-scale excavations at the 
site of El Flaco, we identified a small number of mounds 
that were not the result of human intervention but of 
the natural topography of the karstic terrain (Hofman 
and Hoogland, 2015). Yet, we have not observed this 
at the (also extensively investigated) site of El Carril, or 
in any other excavated site in the region (Hofman et 
al., 2020; Herrera Malatesta, 2018). The excavations of 
these sites increased our comprehension of their general 
chronology, covering between 800 and 1500 CE, and 
provided a better context for the ceramic repertoire of 
the three main ceramic groups present in the region, 
i.e. Ostionoid (600–1200 CE), Meillacoid (800–1550 
CE), and Chicoid (900–1700 CE) (Keegan and Hofman, 
2017). This new evidence on the relationship between 
sites with terrain modifications and the environment, 

Figure 1 Archaeological site distribution in the north-western Dominican Republic (map by Eduardo Herrera Malatesta).
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Figure 2 Three topographically modified settlement sites from the survey region. The topography was recorded from drone imagery and 
a 3D model produced by photogrammetry. Each site is visualized by DEM (50% visibility), over slope (50% visibility), and over a hillshade 
visualization. Based on a visual analysis the mounds and levelled areas were drawn by hand (models created by Till Sonnemann).

Figure 3 Stratigraphy of mound units at four sites with alternating layers and lenses of ash and soil. A) El Carril, B) El Flaco, C) El 
Manantial (photographs A & B by Menno Hoogland, C by Eduardo Herrera Malatesta).
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including their topographic location strongly highlights 
the need to study and understand the regional pattern 
of archaeological sites with terrain modifications.

3. MATERIAL AND METHODS

3.1. ARCHAEOLOGICAL DATA
The focal region encompasses geopolitically the modern 
provinces of Montecristi, Puerto Plata, and Valverde in the 
Dominican Republic and topographically the northern 
coastal strip, Cordillera Septentrional and the Cibao valley, 
which includes the Yaque river (Figure 1). The database 
results from a compilation of regional archaeological 
surveys carried out in this region since 2007 (Ulloa Hung, 
2014; Ulloa Hung and Herrera Malatesta, 2015; Herrera 
Malatesta, 2018; Herrera Malatesta and Hofman, 2019). 
Several factors, from environmental (dense thorny 
bushland, marshes) to topographical (steep valleys and 
mountains) hindered a systematic survey approach for 
the great extent of the study region. Therefore, sites 
were primarily recorded using an opportunistic survey 
methodology (Orton, 2000), which involved intense 
ethnographical work with local communities and 
collaborations with local guides to locate archaeological 
sites. Alternatively, some sites were registered by 
implementing predictive modelling methods that 
determined areas with a high probability of archaeological 
evidence (Herrera Malatesta, 2017). For the present study, 
285 of the more than 300 analyzed archaeological sites 
were used, the remaining ones being unsuitable for a 
variety of reasons, e.g., the total or partial alteration of 
the site; dense vegetation that prevented full recording of 
evidence on the ground, or sites in caves or rock shelters. 
Of the 285, less than 5% were previously registered by 
Dominican researchers (Ortega, 2005; Veloz Maggiolo 
and Ortega, 1980). The database contains information 
regarding the location of sites, their associated material 
culture, functionality, the size of the site, and the presence/
absence of mounds. Since the database is composed of 
surface finds, its structure is mostly in a binary format of 
presence/absence of material evidence. For the spatial 
statistical analysis, the dataset of archaeological sites was 
divided into two groups. One contains the archaeological 
sites with terrain modifications (n = 58) and the other one, 
the archaeological sites without terrain modifications (n 
= 227). The dataset used for this paper is open access 
(Herrera Malatesta and Hofman, 2019).

3.2. ENVIRONMENTAL DATA
The related environmental data consist of modern records 
compiled in two atlases published by the Environmental 
Ministry of the Dominican Republic (Moya Pons, 2004; 
MMARN, 2012). Considering the available archaeological 
and palaeobotanical data from the sites with terrain 
modifications, the focus was on exploring a group of 

environmental variables that have already been identified 
as having some sort of relationship with the archaeological 
distribution of sites with and without terrain modifications. 
The selected variables are related to the geomorphology 
and soil quality of the region. To facilitate locating them 
in the Atlas, we decided to use an English translation of 
their original Spanish names. From the geomorphology, 
the covariates are (i) alluvium, (ii) hills and plateaus, and 
(iii) mountainous areas. The alluvium variable was chosen 
because it represents an area in the valley where some 
important sites with terrain modification have been 
registered. The area itself is close to the major rivers in 
the study region, and the land on and near the alluvium is 
highly arable and fertile soil. The second and third variables 
were selected because several sites with and without 
terrain modifications are located in the low-relief hills of 
the Cordillera Septentrional and the more mountainous 
areas. From the quality of soils, the covariates are: (i) 
arable soils and (ii) soils suitable for forests, pastures and 
mountain crops. These two variables were selected to test 
if the location of the archaeological sites with and without 
terrain modifications are being affected by the presence 
of arable soils in the valley and the low relief hills and/or 
the suitable areas for crops located in the mountains. To 
prepare these covariates for the spatial statistical analysis, 
a Euclidian distance map was calculated for each variable 
using ESRI ArcGIS 10.7. Since the vectors created from 
the environmental variables are based on copyrighted 
materials, though allowed to be replicated and used for the 
purposes of the research study, it is not possible to share 
the digital data. Nonetheless, all data can be accessed in 
paper form in the mentioned publications.

3.3. METHODS
To study the spatial relationships of the Indigenous 
settlement patterns, we focused on applying Point 
Pattern Analysis, which is simply defined as the study 
of the spatial arrangement of points in space (Riris, 
2020; Costanzo et al., 2021; Carrero-Pazos, Bevan and 
Lake, 2019). When the intensity of the point pattern is 
constant, i.e., corresponding to a stationary and isotropic 
process within the region, it is called a Homogeneous 
Poisson Process (HPP). Alternatively, when the intensity 
is not spatially uniform it is called Inhomogeneous 
Poisson Process (IPP). If evidence indicates that a 
regional pattern can be the result of an IPP, it is relevant 
to assess whether the intensity of the events depends 
on the influence of spatial variables (the covariates) and, 
if so, it becomes necessary to quantify this dependence. 
In spatial statistics, this is referred to as the intensity of 
the pattern depending on First-order effects. However, 
when the intensity of the point pattern is the result of 
the points showing independence or rejection from each 
other, then the point pattern is the result of Second-
order effects (Baddeley, Rubak and Turner, 2016; Diggle, 
2013). Based on this framework and the archaeological 
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background of this region, this paper aims to determine 
the impact of the regional environmental setting 
on the distribution of archaeological sites with and 
without terrain modifications. For this, we defined two 
complimentary null hypotheses:

H1 the intensity of the point pattern of 
archaeological sites with and without terrain 
modifications is uniform, i.e., it is stationary and 
isotropic. The environmental variables (covariates) 
do not affect the spatial distribution of the points.
H2 the archaeological sites with and without 
terrain modifications are completely independent 
of each other, and they do not show any spatial 
correlation.

3.4. FITTING COVARIATE SPATIAL DATA
To statistically address these two hypotheses, the point 
process intensity was explored by applying parametric 
methods that explore the degree to which the covariates 
affect the distribution of archaeological sites. The first 
step to fit the covariates was to test the presence of 
multicollinearity using Pearson’s R, to assess if each 
variable can be used as an independent model for further 
analysis. This test showed that there are no collinear 
effects among the five considered variables. Then, the 
observed point pattern of archaeological sites with and 
without terrain modifications was fitted to a Poisson point 
process model, equivalent to an initial null hypothesis of 
complete spatial randomness (CSR). For this, the Bayesian 
Information Criterion (BIC) was used as a guideline 
for information gain per model. The stepwise model 
selection procedure rejected the same covariate for the 
two groups of sites, i.e., soils suitable for forests, pastures 
and mountain crops. The resulting four covariates for each 
group of archaeological sites, and the assumed Poisson 
process, comprise the multivariate first-order model. 
The spatial intensity (density) of the archaeological sites 
with and without terrain modifications in this region as 
described by the interaction of these parameters, is a 
function of their combined maximum logistic likelihood 
(Baddeley and Turner, 2000). Next, to assess the possible 
effects of interaction between the sites with and without 
terrain modifications at a landscape level, a second-order 
test was incorporated into the fitted first-order model 
to generate a combined model. This model statistically 
accounted for induced and internal spatial dynamics 
simultaneously. For this, a Strauss point process model 
was advanced to replace CSR as the null model and to 
obtain the range of observed variability in the empirical 
point pattern (Kelly and Ripley, 1976). Although there 
are other alternatives such as Poisson, Area Interaction 
or Multiscale Geyer Process (Baddeley and Turner, 2005; 
Riris, 2020), the selected function provided clearer results 
to understand the distribution of sites with and without 
terrain modifications in this region.

After fitting the covariates and the archaeological 
site distribution, the resulting models were tested by 
a goodness-of-fit for each of the six models (‘null’, 
‘first-’, and ‘second-order’ for the sites with and without 
terrain modifications), comparatively employing a 
pair correlation function (PCF). This method provides 
an estimation of the degree of spatial clustering and 
regularity of the spatial pattern at multiples scales within 
a window of observations (Baddeley, Rubak and Turner, 
2016). Other common methods to test second-order 
effects are the Ripley’s K and L functions (Ripley, 1977; 
Orton, 2004; Bevan and Conolly, 2006; Bivand, Pebesma 
and Gómez-Rubio, 2008; Vanzetti et al., 2010; Bevan et 
al., 2013), which analyses point patterns at different scale 
ranges. However, considering the characteristics of the 
available data and the hypothesis to be tested, PCF was a 
more adequate method. This is because, contrary to the K 
and L functions, PCF measures the intensity of pair points 
in doughnut-shaped rings from and around each point 
(Baddeley, Rubak and Turner, 2016) in a non-cumulative 
matter, allowing an improved measure for spatial 
association at different scales. PCF quantifies how each 
point in the dataset is surrounded by other points, and 
therefore the resulting value will present the variation of 
site density across the study region. This allows a better 
differentiation of patterns at different scales.

To illustrate the critical scales where sites with and 
without terrain modifications attract or reject one another, 
a significance envelope was computed via Monte Carlo 
simulations from the ‘null’, ‘first-’, and ‘second-order’ 
models. The envelopes were generated by simulating 
999 point patterns for each calculation of the PCF to the 
six fitted models (Baddeley and Turner, 2005). Rather 
than expressing confidence intervals at a level of 95%, 
these envelopes estimated acceptance intervals (or non-
rejection intervals), which are the likelihood of incorrectly 
rejecting the null hypothesis of no spatial structure 
as a function of the number of simulated runs. For the 
envelopes generated here, the value of α corresponded to 
0.002, which is highly robust. The workflow for fitting and 
testing the models was fully implemented as R code, and 
it is available in the supplementary information. It was 
based on the codes of Bevan et al. (2013) and Riris (2020), 
and it draws on functions from several R packages, such 
as ‘sp’, ‘rgdal’, ‘raster’, ‘MASS’, ‘maptools’, ‘dismo’, ‘DAAG’ 
and ‘spatstat’ (Pebesma and Bivand, 2005; Maindonald 
and Braun, 2010; Baddeley and Turner, 2005; Bivand, 
2022; Bivand et al., 2022; Ripley et al., 2022; Hijmans, 
2021; Hijmans et al., 2022).

4. SPATIAL POINT PROCESS 
MODELLING

4.1. NULL MODEL
All spatial statistical processes begin with the assumption 
that point patterns are distributed in space stochastically 
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(Illian et al., 2008), and this random pattern is called 
Complete Spatial Randomness (CSR). When a point pattern 
is defined by a stochastic process, it is said to have a 
Poisson process that affects the distribution, i.e., that the 
events occur continuously and independently from each 
other. For the two sets of archaeological sites used in this 
study, their spatial structure was illustrated by the initial 
application of the PCF (Figures 4 and 5, top left). Figure 
4 (top left) shows that the archaeological distribution 
of sites with terrain modifications shows a pattern of 
repulsion at all spatial scales. The red dotted line (equal 
to 1) marks the value of CSR, all values above this line 
represent a cluster point pattern and all below a regular 
point pattern. The grey area indicates the Monte Carlo 
simulation threshold (Baddeley, Rubak and Turner, 2016).

For the sites without terrain modifications (Figure 
5, top left) the first maximum and minimum values 
outside the simulation envelope mark the range at which 
points are most strongly attracted or repelled by each 
other. For the study region, there is a peak cluster of sites 
without terrain modifications at around 500 m distance 
from each other that decreases over space to reach a 
maximum point of rejection, i.e., a regular pattern, at 
around 4000 m. This initial pattern implies that a variety 
of spatial processes may be affecting the distribution 
suggesting a strong range clustering up to 2000 m and 
a weaker longer-range repulsion between sites without 

terrain modifications from 4000 m up to 10000 m. Yet, 
the results for the two groups of sites are not conclusive 
and are just a baseline for further explorations. This 
baseline assessment lacks sufficient context to properly 
explore the implications of these results, and therefore 
the analysis turns to the assessment of the fitted 
covariate data and point process models.

4.2. FIRST-ORDER MODEL
The first-order model (Figures 4 and 5, bottom left) 
presents a more interesting fit over the CSR null model. 
For the sites with terrain modifications, this model 
(Figure 4, bottom left) controls all the signals of spatial 
autocorrelation at all ranges within the spatial frame. Of 
the five tested covariates, four showed highly significant 
correlations (Table 1). Interestingly, when the covariates 
are included, the pattern shows two clusters of sites, 
one in the range of 3800 m and 6000 m and another 
at 7800 m and 9500 m, approximately. Before the first 
cluster, the pattern shows CSR; after the first and second 
clusters, there is repulsion among the sites. The intensity 
surface (log-odds of points per unit of area) from this 
model (Figure 4, top right) offers a visual summary 
of the degree to which this model explains the spatial 
structure of sites with terrain modifications. The pattern 
is inhomogeneous, this is spatially variable along the 
study region, and the predicted spatial trend is strong, 

Figure 4 Results of point process modelling for sites with terrain modifications. Null: The pair correlation function estimated on an 
assumption of complete spatial randomness. Intensity surface: the predicted intensity surface created from the first-order fit. First-
order: the pair correlation function with a critical envelope conditioned on the covariate data as first-order variables. Second-order: 
incorporating a point interaction term in the first-order model, accounting for all spatial variability.
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with several zones highlighting values at the high end of 
the scale. Together with the results of the pair correlation 
functions, the fitted first-order model suggests that there 
is spatial variation within this pattern.

For the sites without terrain modifications, of the 
five tested covariates, four showed highly significant 

correlations (Table 2). The covariate presence provides an 
improved fit compared to the CSR null model, controlling 
most of the signals of spatial autocorrelation. In this 
iteration, the strong pattern of short-range clustering 
and long-range repulsion remains. However, a small 
new cluster appears at a range of 4800 m and 5800 m, 

Figure 5 Results of point process modelling for sites without terrain modifications. Null: The pair correlation function estimated on an 
assumption of complete spatial randomness. Intensity surface: the predicted intensity surface created from the first-order fit. First-
order: the pair correlation function with a critical envelope conditioned on the covariate data as first-order variables. Second-order: 
incorporating a point interaction term in the first-order model, accounting for all spatial variability.

COVARIATES ESTIMATE STD. ERROR Z VALUE SIGNIFICANT

(Intercept) –1.7504450 4.7434160 –36.902629 ***

Alluvium 0,0001872681 0,00003771534 4.965303 ***

Hills and Plateaus –0,0002048970 0,00004904832 –4.177451 ***

Mountainous areas –0,0001380711 0,00003149600 –4.383766 ***

Arable soils –0,0001164922 0,00003183083 –3.659729 ***

Table 1 Fitted covariate datasets for the first-order model, sites with terrain modifications.

COVARIATES ESTIMATE STD. ERROR Z VALUE SIGNIFICANT

(Intercept) –1.6048930 2.0523640 –78.1972737 ***

Alluvium 0,0001314754 0,00001791114 7.3404269 ***

Hills and Plateaus –0,0001393845 0,00002166846 –6.4325969 ***

Mountainous areas –0,00006091828 0,00001397768 –4.3582533 ***

Arable soils –0,00001786111 0,00003669478 –0.4867479 ***

Table 2 Fitted covariate datasets for the first-order model, sites without terrain modifications.
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approximately. As with the previous group of sites, the 
intensity surface (Figure 5, top right) provides a clear view 
of the degree to which this model explains the spatial 
structure of sites without terrain modifications. Again, 
the inhomogeneous pattern shows spatial variability in 
the study region, and the strong predicted spatial trend 
illustrates several zones with values at the high end of 
the scale. Together with the results of the pair correlation 
functions, the fitted first-order model suggests that there 
is spatial variation within this pattern.

4.3. SECOND-ORDER MODEL
The second-order model was created by fitting a 
nonstationary Strauss process by maximizing the profile 
information entropy with respect to a series of fixed 
spatial interaction distances (Baddeley, Rubak and 
Turner, 2016). For the sites with terrain modifications, 
the analysis was permuted in 100-meter intervals from 
100 m to 2500 m to produce 25 candidate models. 
According to Akaike’s Information Criterion (AIC), this 
procedure provides the best fit for the area interaction 
parameter at r = 2500 m. In this case, the AIC was used 
instead of the BIC, as while BIC is better at selecting the 
true model than AIC, the latter is optimal for estimating 
the regression function (Yang, 2005). The second model 
also incorporates the first-order model as a trend 
parameter. For the sites without terrain modifications, 
the analysis was permuted in 250-metre intervals from 
250 m to 6500 m to produce 25 candidate models. In 
this case, Akaike’s Information Criterion indicated that 
the best fit for this group of sites in the area interaction 
parameter is at r = 750 m. This combined first- and 
second-order model successfully controls for both 
exogenous and endogenous processes within the point 
pattern of archaeological sites with and without terrain 
modifications. Conditioning the simulation envelope for 
the pair correlation function on the combined null model 
(Figures 4 and 5, bottom right) illustrates the effect of 
incorporating between-point interaction.

For the sites with terrain modifications (Figure 4, bottom 
right), the results indicate that most of the variability in 
the spatial structure can be explained by controlling the 
second-order factors. Like with the first-order trend, the 
second-order trend affects the site patterning, as both 
models show clustering at 3800 m to 6000 m and 7800 
m to 9800 m, approximately. For the sites without terrain 
modifications, a more interesting picture is presented by 
the results of the second-order trend (Figure 5, bottom 
right). The second-order model emphasizes the presence 
of the second and third clusters, which are smaller in 
the first-order trend and almost non-existent with the 
null model. This represents a greater influence of the 
second-order trend within this distribution. While other 
analyses with a better goodness-of-fit could be done to 
further untangle the relationship between the influences 
of first and second-order effects in the site pattern, the 

results are satisfactory as they present an explanation 
of the landscape-level archaeological distribution of 
the sites with terrain modifications. Among the results 
of the two groups of sites, a noticeable exception not 
accounted for by the second-order model is a short-
distance statistically significant clustering of sites 
without terrain modifications in a range of 500 m and 
800 m. This indicates a relevant spatial threshold for the 
sites without terrain modifications, which could help with 
the understanding of the distributional pattern of this 
type of site within the region.

5. DISCUSSION

This paper has applied advanced spatial statistical 
methods to study a regional archaeological dataset in 
the northwestern Dominican Republic to augment the 
understanding of past Indigenous regional settlement 
patterns. It demonstrated the analytical possibilities 
of using spatial statistics for non-systematic regional 
survey data. As verified in other regions, applying spatial 
statistical methods in correlation with environmental 
and cultural variables proved to be a valuable tool to 
understand regional patterns (Riris, 2020; Bevan et al., 
2013), complementing previous site-based research in the 
region. The performed analysis proves the importance of 
comparing archaeological data to known environmental 
variables to explore their correlation on a large scale. The 
analyses have also proven that further tests must be 
done to continue looking for explanations on the cultural 
reasons behind the location of settlements and the 
construction of mounds and levelled areas in the region. 
Nonetheless, the methods presented here provided a 
robust and rigorous starting point for future regional and 
landscape research in the region.

The results provided two main takeaways. First, both 
sets of archaeological sites presented the same positive 
and negative correlations with the same variables (Tables 
1 and 2). In archaeological terms, this could mean that, on 
the one hand, these variables do not explain the variability 
of archaeological sites as expected. On the other hand, it 
could mean that, contrary to expectations, in terms of the 
regional pattern there is no difference between the sites 
with and without terrain modifications and the presence 
or absence of these environmental variables. This means 
that the potential reasoning behind the location of the 
sites and the eventual construction of levelled areas and 
mounds was similar and not led by certain environmental 
variables. The results indicated that both sets of sites have 
a positive correlation with the alluvium variable, which 
is physically located in the Cibao valley, running along 
the Yaque river. This implies that, contrary to the visual 
assessment that the sites are clustered towards the coast, 
the statistical results suggest that the regional pattern 
tends to be towards the valley, the major water sources, 
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and the high-productivity soils. Along the same line, the 
negative correlation with the other three variables does 
not negate the presence of archaeological sites in the 
same spatial areas, just that the regional pattern shows a 
tendency of rejection towards those variables.

Secondly, the analysis provided valuable information 
regarding the structures of the regional patterns 
concerning the three models. For the two sets of 
archaeological sites, there were clear differences between 
the null model and the first and second-order trends. 
For the sites with terrain modifications, the null model 
presented an image of a regular regional pattern with no 
insights into the decision of locating sites. For the sites 
without terrain modifications, the null model showed a 
significant cluster at distances <2000 m, and significant 
regular patterns at 4000, 6–7000, and above 9000 m, 
approximately. Yet, when the environmental variables 
were considered, patterns of clustered sites appeared 
at different spatial scales for both sets of archaeological 
sites. This indicates that the regional site distribution 
could be influenced by the environmental setting. 
Furthermore, when the pattern was fitted against the 
second-order trend, the clusters were even more clear. 
These results indicate that, as Riris (2020) proposed, 
regional spatial palimpsests cannot be explained by 
fixed-scale summary statistics under a null assumption 
of spatial homogeneity. They also show that the regional 
archaeological pattern is affected by exogenous factors 
that influence the locations of points at different spatial 
scales, yet the cluster pattern becomes clearer and more 
significant when the intrinsic properties of the point 
pattern are considered. With these results, the two null 
hypotheses are rejected, as there was evidence that the 
environmental variables (covariates) do affect the spatial 
distribution of the points, and the archaeological sites 
with and without terrain modifications do show a spatial 
correlation.

Past Indigenous peoples took advantage of the 
topographical conditions in and around their settlements 
to remodel the landscape to their needs, and the terrain 
modifications are evidence of this. They transformed 
the surroundings with new topographies. The results 
emphasize the complexity and multiscalar conditions 
between the archaeological sites and environmental 
context. This gives way to a debate on how past 
Indigenous peoples interacted with their environment 
and created this complex landscape, where specific 
cultural features correlate with environmental conditions 
at different spatial scales.
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