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Abstract
The additive hazards model specifies the effect of covariates on the hazard in an
additive way, in contrast to the popular Cox model, in which it is multiplicative.
As the non-parametric model, additive hazards offer a very flexible way of mod-
eling time-varying covariate effects. It is most commonly estimated by ordinary
least squares. In this paper, we consider the case where covariates are bounded,
and derive the maximum likelihood estimator under the constraint that the haz-
ard is non-negative for all covariate values in their domain. We show that the
maximum likelihood estimator may be obtained by separately maximizing the
log-likelihood contribution of each event time point, and we show that themaxi-
mizing problem is equivalent to fitting a series of Poisson regressionmodels with
an identity link under non-negativity constraints. We derive an analytic solution
to themaximum likelihood estimator. We contrast the maximum likelihood esti-
mator with the ordinary least-squares estimator in a simulation study and show
that the maximum likelihood estimator has smaller mean squared error than
the ordinary least-squares estimator. An illustration with data on patients with
carcinoma of the oropharynx is provided.
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1 INTRODUCTION

The fundamental concept in survival analysis is the haz-
ard rate. There are several regression models describing
the hazard rate, such as multiplicative risk models and
additive risk models. The dominant hazard model in sur-
vival analysis is the multiplicative proportional hazards
model (Cox, 1972). In many applications, the proportional
hazards assumption is not met. In such cases, develop-
ing models that adequately describe the non-proportional
effect of the covariate(s) is not straightforward (Gore
et al., 1984; Perperoglou et al., 2006; Schemper, 1992; van
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Houwelingen & Putter, 2012) and different models should
be considered.
In this paper, we focus on the non-parametric additive

hazards model proposed by Aalen (1980, 1989), extensively
studied in Martinussen and Scheike (2006). The additive
hazards model defines the hazard rate as a linear form of
the vector of covariates. Unconventionally, it does not nat-
urally force the hazard rate to be positive. However, it has
several useful properties, as set out by Aalen et al. (2008).
First, the additive hazards model is internally consistent:
it retains its additive structure if covariates are measured
with uncertainty or are dropped from the linear expres-
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sion, provided the left out covariates are independent of
the other covariates or if the covariates are jointly normally
distributed (Aalen et al., 2015; Martinussen et al., 2020).
This contrasts with the proportional hazardsmodel, which
loses its proportional hazards property when covariates
are omitted (Bretagnolle & Huber-Carol, 1988; Struthers
& Kalbfleisch, 1986; Schumacher et al., 1987). This draw-
back of proportional hazards has triggered a recent debate
about the danger of using the hazard ratio as a causal
effect measure in survival analysis (Aalen et al., 2015;
Hernán, 2010). A second advantage of additive hazards is
that it allows implementation of dynamic structures (Mart-
inussen et al., 2000), such as self-exciting processes, which
are impossible to incorporate in most other nonlinear
regression models.
The usual way to estimate the parameters in the additive

hazards model is by Aalen’s method, which uses ordi-
nary least squares (OLS) to estimate the cumulative effect
of the covariates. Aalen’s OLS method is straightforward
to implement, but it has the disadvantage that it does
not guarantee a positive hazard for all time points. One
method that generally yields efficient estimators is maxi-
mum likelihood (ML). To the best of our knowledge, the
ML method has not been considered in any detail in the
context of the additive hazards model, since no analytical
expression for the maximum likelihood estimator (MLE)
was available. The objective of this paper is to derive the
MLE for the additive hazards model and to determine its
advantages and limitations and in comparison to Aalen’s
OLS method.
We show that the MLE of the cumulative baseline haz-

ard and cumulative covariate effects is a step function
changing values only at the event time points, and that the
maximum of the log-likelihood can be found by separately
maximizing the log-likelihood contributions correspond-
ing to each of the event time points, as with Aalen’s OLS
solution. We define the constraint domain given by the
positivity of hazard, and show that themaximization prob-
lem is equivalent to fitting a series of identity-link Poisson
regression models under non-negativity constraints. This
problem has been studied before by Marschner (2010) and
Marschner et al. (2012), who proposed an EM algorithm to
obtain MLEs. In contrast, our solution is analytical, with
a computation time at each time point that is linear in the
sample size and in the number of covariates.
In Section 2, we introduce notation and in Section 3 we

discuss Aalen’s OLS method. Section 4 contains the the-
oretical results on the MLE. In Section 5, we report on
the results of a simulation study comparing ML with OLS.
Section 6 illustrates our methods on real data from a ran-
domized clinical trial on patients with carcinoma of the
oropharynx. The paper ends with a discussion.

2 NOTATION ANDMODEL
DEFINITION

Weuse bold letters to indicate vectors andmatrices. Define
𝑇∗ to be the time to event, 𝐶 to be the time to censor-
ing, and let 𝑇 = min(𝑇∗, 𝐶), and Δ = 𝐼(𝑇∗ ≤ 𝐶) the event
indicator. We observe (𝑡𝑖, 𝛿𝑖, 𝐱∗𝑖 ), 𝑖 = 1, … , 𝑛, with 𝐱∗

𝑖
=

(𝑥𝑖1, … , 𝑥𝑖𝑝)
⊤ a 𝑝-vector of covariates. We assume that

the covariates 𝑥𝑖𝑗 are restricted to the interval [0, 1]. This
looks like a severe restriction, but it is not, because for
any covariate with a minimum of 𝑎 and a maximum of
𝑏 in the observed data, we can rescale the covariate to be
(𝑥 − 𝑎)∕(𝑏 − 𝑎), which takes values in [0, 1]. Extend 𝐱∗

𝑖
with the constant 𝑥𝑖0 = 1, obtaining 𝐱𝑖 = (1, 𝑥𝑖1, … , 𝑥𝑖𝑝)⊤.
Define  to be the set of event time points 𝑡𝑖 , with corre-
sponding 𝛿𝑖 = 1 and let || = 𝐾. We assume there are no
ties, and define the ordered sequence of event time points
𝑡∗1 < ⋯ < 𝑡∗𝐾 . Finally, define 𝑌𝑖(𝑡) = 𝐼(𝑡𝑖 ≥ 𝑡) as the at risk
indicator of subject 𝑖, taking the value 1 if subject 𝑖 is at
risk for the event of interest at time 𝑡 and the value 0
otherwise.
The additive hazards model (Aalen, 1980, 1989) assumes

the hazard rate given 𝐱∗
𝑖
to be of the form

ℎ(𝑡 |𝐱∗
𝑖
) = 𝐱⊤

𝑖
𝜷(𝑡) = 𝛽0(𝑡) + 𝛽1(𝑡)𝑥𝑖1 +⋯+ 𝛽𝑝(𝑡)𝑥𝑖𝑝.

The parameters 𝛽𝑗(𝑡) allow effects of the covariates to
change over time, thus, the additive model is fully non-
parametric.

3 AALEN’s METHOD

To estimate the parameters 𝜷(𝑡), the most commonly used
approach is Aalen’s OLS method. Let us define the count-
ing process 𝑁𝑖(𝑡) as the number of events experienced by
subject 𝑖 before or at time 𝑡. Then, the intensity 𝜆𝑖(𝑡) of the
counting process has the form

𝜆𝑖(𝑡) = 𝑌𝑖(𝑡)(𝛽0(𝑡) + 𝛽1(𝑡)𝑥𝑖1 +⋯ + 𝛽𝑝(𝑡)𝑥𝑖𝑝) = 𝑌𝑖(𝑡)ℎ(𝑡 |𝐱∗𝑖 ).
The formula 𝑑𝑁𝑖(𝑡) = 𝜆𝑖(𝑡)𝑑𝑡 + 𝑑𝑀𝑖(𝑡) gives equations

𝑑𝐍(𝑡) = 𝐗(𝑡)𝑑𝐁(𝑡) + 𝑑𝐌(𝑡),

where 𝐍(𝑡) = (𝑁1(𝑡), 𝑁2(𝑡), … ,𝑁𝑛(𝑡))
⊤ is the vector

of counting processes, 𝐗(𝑡) is the matrix of covari-
ates multiplied with 𝑌𝑖(𝑡) at the 𝑖th row, 𝐁(𝑡) =

(𝐵0(𝑡), 𝐵1(𝑡), … , 𝐵𝑝(𝑡))
⊤ is the cumulative beta defined as

𝐵𝑗(𝑡) = ∫
𝑡

0
𝛽𝑗(𝑠)𝑑𝑠 and 𝐌(𝑡) = (𝑀1(𝑡), … ,𝑀𝑛(𝑡))

⊤, where
𝑀𝑖(𝑡) is the 𝑖th martingale error term. OLS regression thus
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LU et al. 3

gives Aalen’s estimator of the 𝜷(𝑡) if 𝑋(𝑡) is of full rank:

𝑑�̂�(𝑡) = (𝐗(𝑡)⊤𝐗(𝑡))−1𝐗(𝑡)⊤𝑑𝐍(𝑡).

When𝑋(𝑡) is not of full rank,we set 𝑑�̂�(𝑡) = 0 (Aalen et al.,
2008).

4 MAXIMUM LIKELIHOOD
ESTIMATION

In this section, we will derive an analytic solution for the
MLE under the natural constraint that the hazard is non-
negative at each time point for all covariate values within
the domain. The proofs will be given in Web Appendix A.

4.1 The shape of the likelihood

To begin with, let us consider the likelihood function for
the additive hazards model. The log-likelihood contribu-
tion of subject 𝑖with an event or censored at time 𝑡𝑖 is given
by

𝓁𝑖 = 𝛿𝑖 log{ℎ(𝑡𝑖 |𝐱∗𝑖 )} + log{𝑆(𝑡𝑖 |𝐱∗𝑖 )},
where 𝑆(𝑡 |𝐱∗

𝑖
) = 𝑃(𝑇∗ > 𝑡 |𝐱∗

𝑖
) = exp(−𝐻(𝑡 |𝐱∗

𝑖
)) is the

survival probability and𝐻(𝑡 |𝐱∗
𝑖
) the cumulative hazard of

subject 𝑖. The log-likelihood is therefore given by (Aalen
et al., 2008)

𝓁 =

𝑛∑
𝑖=1

{𝛿𝑖 log 𝑥
⊤
𝑖
𝜷(𝑡𝑖) − 𝐱

⊤
𝑖
𝐁(𝑡𝑖)}. (1)

Our first result is

Proposition 1. The likelihood function 𝓁 is unbounded as
a function of 𝜷(𝑡).

We therefore introduce the natural constraint that the
hazard for each possible covariate value of our data is non-
negative at each time point, that is, we require that for all
𝑡 ≥ 0,

ℎ(𝑡 |𝐱∗) ≥ 0, for 𝐱∗ ∈ {0, 1}𝑝, (2)

which implies positivity of the hazard for 𝐱∗ ∈ [0, 1]𝑝.
Our objective is to maximize the total log-likelihood given
in (1), subject to the constraint (2).
Let us assume �̂�(𝑡) is the function which maxi-

mizes the likelihood function (1), subject to the con-
straint (2). Since �̂�(𝑡) is an estimator of 𝐁(𝑡), which is

generally the negative logarithm of the survival function,
we may assume that it is right continuous with left limits
(cadlag). Thus, we may decompose �̂�(𝑡) as the summation
of a continuous function �̂�𝑐(𝑡) and a step function �̂�𝑠(𝑡).

Lemma 1. Under the constraint ℎ(𝑡 |𝐱∗) ≥ 0 for 𝐱∗ ∈
{0, 1}𝑝, the log-likelihood can only achieve a maximum if
�̂�𝑐(𝑡) ≡ 0 and �̂�𝑠(𝑡) is a step function with jumps only at the
event time points in  .

Lemma 1 implies that the maximization problem is the
same as maximizing the total log-likelihood with respect
to the jumps of 𝐁(𝑡) at the event time points. Denoting
the jump of 𝐵𝑗(𝑡) at the 𝑘th event time point 𝑡∗

𝑘
as 𝛽𝑘𝑗 ,

𝑘 = 1,… , 𝐾, 𝑗 = 0,… , 𝑝, this leads to 𝐵𝑗(𝑡) =
∑
𝑘∶𝑡∗

𝑘
≤𝑡 𝛽𝑘𝑗 .

We assume that there are no ties. The total log-likelihood
𝓁 from (1) can now be rewritten in terms of the 𝛽𝑘𝑗 as

𝓁 =

𝑛∑
𝑖=1

{
𝛿𝑖 log

( 𝑝∑
𝑗=0

𝑥𝑖𝑗𝛽𝑘(𝑖),𝑗

)
−

𝑝∑
𝑗=0

𝑥𝑖𝑗
∑

𝑘∶𝑡∗
𝑘
≤𝑡𝑖

𝛽𝑘𝑗

}
,

where 𝑘(𝑖) is the index of the event time points 𝑡∗
𝑘
corre-

sponding to 𝑡𝑖 , that is, 𝑡∗𝑘(𝑖) = 𝑡𝑖 (in case 𝛿𝑖 = 0, 𝑘(𝑖) can be
chosen as an arbitrary index in {1, … , 𝑛}). We reorder this
sum over subjects as a sum over the distinct event time
points 𝑡∗

𝑘
, obtaining

𝓁 =

𝐾∑
𝑘=1

{
log

( 𝑝∑
𝑗=0

𝑥𝑖(𝑘),𝑗𝛽𝑘𝑗

)
−

𝑝∑
𝑗=0

𝛽𝑘𝑗
∑
𝑙∶𝑡𝑙≥𝑡

∗
𝑘

𝑥𝑙𝑗

}
=

𝐾∑
𝑘=1

𝓁∗
𝑘
,

with

𝓁∗
𝑘
= log

( 𝑝∑
𝑗=0

𝑥𝑖(𝑘),𝑗𝛽𝑘𝑗

)
−

𝑝∑
𝑗=0

𝛽𝑘𝑗𝑠𝑘𝑗, (3)

𝑠𝑘𝑗 =
∑
𝑙∶𝑡𝑙≥𝑡

∗
𝑘
𝑥𝑙𝑗 , and where 𝑖(𝑘) is the subject index cor-

responding to the 𝑘th event time point, that is, 𝑡𝑖(𝑘) =
𝑡∗
𝑘
.
It is easy to see that each term 𝓁∗

𝑘
is a function only of

the variables 𝛽𝑘𝑗, 𝑗 = 0,… , 𝑝. Since the terms 𝓁∗𝑘 do not
have parameters in common, we may reduce the prob-
lem by separately maximizing each 𝓁∗

𝑘
as a function of

𝜷𝑘 = (𝛽𝑘0, 𝛽𝑘1, … , 𝛽𝑘𝑝).
For the remainder of this section, we will fix (any) one

of the time points 𝑡∗
𝑘
. To simplify notation, we are going to

suppress dependence on 𝑘, and consider maximization of

𝓁∗ = log
( 𝑝∑
𝑗=0

𝑥𝑗𝛽𝑗

)
−

𝑝∑
𝑗=0

𝑠𝑗𝛽𝑗 = log
(
𝐱⊤𝜷

)
− 𝐬⊤𝜷 (4)
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4 LU et al.

with respect to 𝜷 = (𝛽0, 𝛽1, … , 𝛽𝑝), where 𝐬 =

(𝑠0, 𝑠1, … , 𝑠𝑝)
⊤, 𝑥𝑗 stands for the 𝑗th element of the

covariate vector of the subject that failed at time 𝑡∗
𝑘
, and

𝑥0 = 1. Appendix C of the Supporting Information details
the connection with Poisson regression with identity link,
in parallel to the connection of Cox’s proportional hazards
model with Poisson regression with log link (Holford,
1980; Laird & Olivier, 1981; McCullagh & Nelder, 1989).

4.2 Maximum likelihood with the full
constraint matrix

We will now give an alternative description of the con-
straint (2) using matrix form. Let 𝜷 = (𝛽0, 𝛽1, … , 𝛽𝑝)⊤ be
the vector of parameters of the function 𝓁∗. We can
restate the constraint (2) by the matrix 𝑀𝐃 through the
inequalities 𝑀𝐃𝜷 ≥ 𝟎. We construct the matrix 𝑀𝐃 such
that the rows consist of all the 2𝑝 possible (𝑝 + 1)-tuples
(𝑚0,𝑚1, … ,𝑚𝑝) in {0, 1}𝑝+1 with 𝑚0 = 1. So,𝑀𝐃 is a 2𝑝 ×
(𝑝 + 1)matrix.
The domain 𝐃 ⊂ ℝ𝑝+1 defined by constraint (2) is a

polytope enclosed by the flat boundaries defined by 𝛾𝑖 =
𝑀⊤
𝑖
𝜷 = 0, 𝑖 = 1, … , 2𝑝, where 𝑀𝑖 is the 𝑖th row of 𝑀𝐃.

We can now show that the maximum point lies on the
boundary of this polytope.

Lemma 2. If the maximum point of 𝓁∗ in the domain 𝐃
exists, then the maximum point lies on the intersection of 𝑝
flat boundaries given by 𝛾𝑖𝑗 = 𝑀

⊤
𝑖𝑗
𝜷 = 0, 𝑗 = 1… , 𝑝.

In Lemma 2, we have given the geometric property of
the maximum point of the 𝓁∗. The intersection of 𝑝 flat

boundaries is a one-dimensional line. So, the maximum
point always lies on a one-dimensional line edge on the
boundary of the domain. The following lemma defines all
the one-dimensional line edges on the boundary of the
domain. There are 2𝑝 such line edges.

Lemma 3. The one-dimensional line edges on the bound-
ary of the domain𝑀𝐃𝜷 ≥ 0 are given by (0, … , 0, 𝑙, 0, … , 0),
𝑙 > 0, with the position of 𝑙 ranging from 2 to 𝑝 + 1, and
(𝑙, … , 0, −𝑙, 0, … , 0), with the position of −𝑙 ranging from 2
to 𝑝 + 1.

Let us denote by 𝒆𝑗 the (𝑝 + 1)-vector
(0, 0, … , 0, 1, 0, … , 0)⊤, with the 1 at position 𝑗 + 1, and
by 𝒇𝑗 the (𝑝 + 1)-vector (1, 0, … , 0, −1, 0, … , 0)⊤, with the
−1 at position 𝑗 + 1, and define the sets + = {𝒆1, … , 𝒆𝑝}

and − = {𝒇1, … , 𝒇𝑝}. We call the set  = + ∪−, a
finite set of cardinality 2𝑝, the set of admissible directions.
Lemma’s 2 and 3 imply that the maximum of 𝓁∗ lies on
one of the edges 𝒗 ⋅ 𝑙, with 𝒗 ∈ . We now come to our
main theorem which describes the structure of the MLE
of the additive hazards model under the constraint of
non-negativity of the hazards. Let 𝑖(𝑘) denote the index of
the subject that fails at 𝑡∗

𝑘
, the MLE 𝜷𝑘 at the event time

point 𝑡∗
𝑘
can be determined as follows:

Theorem 1. For an additive hazards model ℎ(𝑡 |𝐱∗
𝑖
) =

𝜷(𝑡)𝐱𝑖 with constraints ℎ(𝑡 |𝐱∗) ≥ 0, with 𝐱∗ ∈ [0, 1]𝑝,
assuming no ties, the values returned by Algorithm 1are

A l g o r i t hm 1 Algorithm to find the maximum point within the
domain 𝐃.

maximum likelihood estimators.
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LU et al. 5

Theorem 1 offers some insight into the MLE. There are
only two possible patterns of the jump 𝜷(𝑡∗

𝑘
). Either there

is an increment of the coefficient 𝛽𝑗(𝑡∗𝑘) for one covariate
or there is a decrease of 𝛽𝑗(𝑡∗𝑘) for one covariate which
is compensated by an increment of the intercept. So, this
estimator is sparse in the change of 𝜷(𝑡).
Theorem 1 also implies a condition for the existence and

uniqueness of the likelihood estimator. The likelihood esti-
mator exists if and only if 𝑠𝑘,𝑚 ≠ 0 and 𝑠𝑘,0 − 𝑠𝑘,(𝑚−𝑝) ≠ 0.
Equality corresponds to the case where all 𝑥𝑖 ’s are zeros
or all 𝑥𝑖 ’s are ones, 𝑖 ≥ 𝑖(𝑘). Uniqueness is not guaranteed
by Theorem 1. In fact, all choices of the ratios 𝑥𝑖(𝑘),𝑗∕𝑠𝑘,𝑗
and/or (𝑥𝑖(𝑘),0 − 𝑥𝑖(𝑘),𝑗)∕(𝑠𝑘,0 − 𝑠𝑘,𝑗) found by Algorithm 1
result in the same maximum. In that case any 𝒗 ∈ 
corresponding to such a maximum is allowed, as well
as any convex combination, as stated in the following
theorem.

Theorem 2. If 𝜷(𝑚1)
𝑘

and 𝜷(𝑚2)
𝑘

are solutions given by Algo-
rithm 1 which maximize the likelihood 𝓁, then any convex
combination 𝜆𝜷(𝑚1)

𝑘
+ (1 − 𝜆)𝜷

(𝑚2)

𝑘
, with 0 ≤ 𝜆 ≤ 1, attains

the same maximized likelihood.

Theorem 2 shows that the points of maxima form a flat
top and are closed under convex combinations. In practice,
we suggest an average of all solutions given by Theorem 1.
By Theorem 2, this is also a solution which maximizes
the likelihood.
With our result on the MLE, we also have the following

result which reveals the connection between the MLE and
Aalen’s estimator.

Proposition 2. For an additive hazards model with one
binary covariate, themaximum likelihood estimator and the
Aalen estimator coincide.

This can also be explained intuitively by Theorem 1 as
follows. For one binary covariate, Aalen’s OLSmethod can
be viewed as selecting one of the two competing trends at
each event time. Theorem 1 shows that the nature of MLE
is similar; the jump of the coefficient takes place for only
one covariate, that is, only one trend is selected at each
event time.

4.3 Example

We illustrate Theorem 1 using a simple example with two
covariates. Let us assume that at a certain event time point
𝑡∗ a subject fails with covariate values 𝑥1 = 0 and 𝑥2 =
1, so we have 𝐱∗ = (0, 1), and 𝐱 = (1, 0, 1). Suppose that

𝐬 = (8, 5, 6)⊤. Then, the log-likelihood is given by

𝓁∗ = log(𝛽0 + 𝛽2) − 8𝛽0 − 5𝛽1 − 6𝛽2. (5)

In this case, the domain is defined by the matrix 𝐌𝐃

through the boundary conditions𝑀𝐃𝜷 ≥ 0, where

𝑀𝐃 =

⎛⎜⎜⎜⎜⎝
1 0 0

1 0 1

1 1 0

1 1 1

⎞⎟⎟⎟⎟⎠
.

Theorem 1 directs us to compare the values of 𝑥1∕𝑠1,
𝑥2∕𝑠2, (𝑥0 − 𝑥1)∕(𝑠0 − 𝑠1), and (𝑥0 − 𝑥2)∕(𝑠0 − 𝑠2), namely
0, 1

6
, 1

3
, 0, corresponding to the one-dimensional line

edges 𝒗 ⋅ 𝑙, with 𝒗 = (0, 1, 0)⊤, (0, 0, 1)⊤, (1, −1, 0)⊤ and
(1, 0, −1)⊤, respectively, in the set of admissible direc-
tions . The third of these numbers is the largest, so
the one-dimensional line 𝒗 ⋅ 𝑙, with 𝒗 = (1, −1, 0)⊤ is the
edge where the maximum point lies. Maximizing over
𝑙 gives 𝑙 = 1

𝐬⊤𝒗
=

1

3
, 𝜷(𝑡) = (1

3
, −

1

3
, 0) and the maximized

log-likelihood 𝓁∗ = log( 1
3
) − 1.

4.4 Maximum likelihood with a partial
constraint matrix

In the previous subsection, we showed that the maximum
point of the likelihood function lies on one of the 2𝑝 one-
dimensional line edges of the boundary. This result was
derived for the case where the domain is given by the
matrix 𝑀𝐃, whose rows are all the combinations of 1 and
0 in the last 𝑝 columns. Sometimes we need more flex-
ible domains, for example, when dummy covariates are
introduced or when it is known that some coefficients are
positive. In this more general case Theorem 1 does not
apply, and numerical solutions are needed.
We consider a general domain defined by 𝑀𝐷𝜷 ≥ 0 for

some matrix 𝑀𝐷 , where the matrix 𝑀𝐷 can be an arbi-
trary matrix of 𝑝 + 1 columns. We assume that the rank
of 𝑀𝐷 is 𝑝 + 1. We assert that Lemma 2 still applies for
this constraint matrix 𝑀𝐷 . The maximum point lies on
a one-dimensional edge on the boundary, defined as the
intersection of 𝑝 flat boundaries. So, any local maximum
point of a one-dimensional edge is a potential solution
of the ML of the domain 𝐷. Given any one-dimensional
edge, we have 𝑝 equations 𝛾𝑖 = 𝑀𝑖𝜷 = 0. Combined with
the first-order condition which is also a linear equation,
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6 LU et al.

we have 𝑝 + 1 linear equations whose solution is the max-
imum point on this edge. By testing its derivatives and
constraint conditions, we can check if it is a maximum
point of the domain 𝐷. However, it is difficult to find the
right edge onwhich themaximumpoint lies.We introduce
threemethods to find the right edge: the naïvemethod, the
ascending method, and the descending method.
The naïve method loops through all the possible com-

binations of 𝑝 rows of 𝑀𝐷 . Every combination of 𝑝 rows
defines a one-dimensional edge and gives a possible solu-
tion of the maximum point 𝜷∗. We can test its derivatives
and constraint conditions to check if it is the maximum
point we want to find. This naïve method is easy to
understand, but not efficient, since the complexity grows
approximately with the 𝑝th power of number of the rows
of𝑀𝐷 .
The ascendingmethod searches for a sequence of 𝜷∗with

increasing likelihood. More specifically, the algorithm
starts from a 𝑝-combination of rows, whose maximum
point is 𝜷∗0 . We assume this edge is inside the domain. If
𝜷∗0 is not the maximum point of the domain 𝐷, its gradient
points to the inside of the domain. Following this direction,
we can find an adjacent one-dimensional edgewhosemax-
imumpoint 𝜷∗1 has a larger likelihood. Since this algorithm
starts from an edge already on the domain, as a result, it is
quite efficient when a good starting edge of the domain is
known. To find a new edge, we use the gradient of the log-
likelihood, constrained to the adjacent hyperplanes. This
method works well if the geometry of the domain is not
too complicated.
The descending method is the reverse of the ascending

method. Assuming that we find a maximum point 𝜷∗ on a
one-dimensional edge, it is not necessary that this 𝜷∗ sat-
isfies all the constraint conditions 𝑀𝐷𝜷

∗ ≥ 0. However, it
may satisfy some of the constraint conditions, that is, we
have 𝛾𝑖 = 𝑀𝑖𝜷

∗ ≥ 0 for some row vector𝑀𝑖 . So, for a sub-
matrix𝑀′

𝐷 consisting of these rows, we have𝑀
′
𝐷𝜷 ≥ 0. In

many cases, this means we find a maximum point of the
domain 𝐷′ defined by 𝑀′

𝐷𝜷 ≥ 0. This new domain 𝐷′ is
larger than the domain 𝐷 and we have 𝐷′ ⊃ 𝐷. So, the ML
of domain 𝐷′ is larger than the ML of domain 𝐷. Starting
from this domain 𝐷′, we can add the constraints step by
step, which gives smaller and smaller domains and finally
reaches the domain 𝐷 that we want. Correspondingly, we
have a series of decreasing ML. This gives the name of the
descending method. The descending method also requires
a starting edge whose maximum point is the maximum
point of some larger domain 𝐷′ ⊃ 𝐷. We can apply the
naïve method to find such an edge and this is the time
consuming part of the algorithm.
Details and pseudo-code of all three methods are given

in Web Appendix B.

TABLE 1 Comparison of the complexity of the maximum
likelihood (ML) method and Aalen’s ordinary least-squares method;
computation time in seconds

Number of covariates 2 4 8 12 16
MLmethod (ahMLE) 0.21 0.32 0.46 0.59 0.98
ML method (addreg) 34.5 3.2 min

> 1 h > 1 h > 1 h
Aalen’s method (ahMLE) 0.20 0.35 0.47 0.77 1.04
Aalen’s method (timereg) 1.32 2.37 4.29 6.59 10.07

5 SIMULATION

Wehave shown the theoretical background and algorithms
in Section 4. The aim of the following simulation study
is to show the feasibility of our MLE and compare its
performance with the OLS estimator.
We assume 𝜷(𝑡) = 𝜷𝑡, a linear function of 𝑡 with 𝜷 =

(𝛽0, 𝛽1, … , 𝛽𝑝) constant. Hence, the true hazard has 𝑝
covariates and it is given by ℎ(𝑡 |𝐱) = ∑

𝑗
𝛽𝑗𝑥𝑗𝑡. This cor-

responds to a Weibull distribution with shape 𝑏 = 2 and
rate 𝑎 =

∑
𝛽𝑗𝑥𝑗∕2, using the parameterization ℎ(𝑡; 𝑎, 𝑏) =

𝑎𝑏𝑡𝑏−1 for the Weibull hazard. We randomly generate
covariate data 𝐱𝑖 , for 𝑖 = 1, … , 𝑛, with independent uni-
form distributions on [0, 1]. By the given parameters and
randomly generated covariates, we generate the survival
times as simulated data. We use both the ML method and
Aalen’s OLS method to fit the additive hazards model. We
use theMLEwith full constraint matrix introduced in Sec-
tion 4, as implemented in the R package ahMLE (2022).
For assessing computing time, we also used the R pack-
age addreg (2017), which is not specifically designed for
additive hazards but more generally to Poisson general-
ized linear models with identity link. The addreg package
results always converge to a solution that is close to the
package ahMLE results but not exactly. We verified that
the addreg solution never gave a higher likelihood than our
new algorithm. For Aalen’smethod, we use the R packages
ahMLE and also timereg (2022) to assess computing time.
These two packages also gave identical results.
We first assessed the computation time of the new ML

method on the simulated data. Theorem 1 implies that the
complexity of the algorithm to obtain the MLE is linear in
the number of covariates 𝑝. Hence, the method should be
faster than Aalen’s method whose complexity is quadratic
in 𝑝. We generated simulated data as above with sam-
ple size 𝑛 = 500. Table 1 shows the computation time of
the two methods with a varying number 𝑝 of covariates.
It is seen that as 𝑝 increases, the ML method runs faster
than Aalen’s OLS method, although timings are compara-
ble overall. Implementation of theMLE is faster in ahMLE,
compared to addreg, and implementation of the OLS
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F IGURE 1 Estimated survival curves by ordinary least squares (OLS) and by maximum likelihood (MLE). This figure appears in color in
the electronic version of this article, and any mention of color refers to that version.
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F IGURE 2 Histograms of estimated cumulative hazards at time 𝑡 = 3 (median) by ordinary least squares (OLS) and maximum
likelihood (ML). This figure appears in color in the electronic version of this article, and any mention of color refers to that version.

estimator is faster in ahMLE, compared to timereg,
although it should be acknowledged that timereg provides
computes additional output.
Our second aim is to compare the perfor-

mance of the two estimators. We take 𝑝 = 4 and
𝜷(𝑡) = (0.05, 0.02, 0.04, 0.06, 0.08)𝑡, with sample size
𝑛 = 250, 500, 1000. For each subject an independent
censoring time 𝐶𝑖 is generated with uniform distribution
over (2.5,7.5), giving a censoring rate of about 22% in the
simulation data.
We choose a subject with data of values 𝑥 =

(0.4, 0.6, 0.4, 0.6). Figure 1 shows the true survival curve

and a single realization of the estimated survival curves
by the two methods. The survival curves given by both
estimators are similar and approximate the true survival
curve well.
We repeat the same simulation set-up for 1000 replica-

tionswith the same subject.We check the estimated cumu-
lative hazards at the three quartiles and the 90% percentile
of the true time to event distribution for that subject, at
𝑡 = 1.93, 3.00, 4.24 and 5.47, respectively. Figure 2 shows
histograms of the estimated cumulative hazards for the
two methods at the median. The true value of the cumu-
lative hazard is 0.693, shown by the red vertical line. The
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8 LU et al.

TABLE 2 Bias (mean estimate minus true value), empirical SE (the standard deviation of the estimates around their mean), and RMSE
(root mean squared error, square root of the mean-squared difference between estimate and truth) of cumulative hazards estimators by OLS,
OLSR, and ML

True True Estimated
survival cumulative cumulative Empirical
probability Time hazard Method hazard Bias SE RMSE
𝑛 = 250

0.75 1.93 0.288 OLS 0.290 0.002 0.045 0.045
OLSR 0.416 0.128 0.05 0.14
MLE 0.285 −0.003 0.038 0.038

0.5 3.00 0.693 OLS 0.698 0.004 0.079 0.079
OLSR 1.00 0.31 0.09 0.327
MLE 0.684 −0.009 0.068 0.068

0.25 4.24 1.386 OLS 1.386 −0.001 0.150 0.150
OLSR 1.99 0.61 0.163 0.635
MLE 1.363 −0.023 0.123 0.125

0.10 5.47 2.304 OLS 2.300 −0.003 0.385 0.385
OLSR 3.23 0.93 0.41 1.02
MLE 2.285 −0.018 0.285 0.286

𝑛 = 1000

0.75 1.93 0.288 OLS 0.286 −0.0001 0.022 0.022
OLSR 0.417 0.129 0.028 0.133
MLE 0.282 −0.006 0.018 0.019

0.5 3.00 0.693 OLS 0.694 0.0007 0.038 0.038
OLSR 0.995 0.302 0.046 0.307
MLE 0.677 −0.016 0.032 0.036

0.25 4.24 1.386 OLS 1.382 −0.005 0.076 0.076
OLSR 1.97 0.588 0.093 0.598
MLE 1.347 −0.039 0.064 0.075

0.10 5.47 2.304 OLS 2.295 −0.008 0.160 0.160
OLSR 3.263 0.961 0.179 0.98
MLE 2.251 −0.052 0.133 0.143

𝑛 = 5000

0.75 1.93 0.288 OLS 0.288 −0.00016 0.01 0.01
OLSR 0.414 0.126 0.014 0.128
MLE 0.282 −0.006 0.009 0.011

0.5 3.00 0.693 OLS 0.694 0.0005 0.018 0.018
OLSR 0.99 0.30 0.023 0.30
MLE 0.675 −0.018 0.016 0.025

0.25 4.24 1.386 OLS 1.387 −0.0002 0.033 0.033
OLSR 1.972 0.586 0.044 0.59
MLE 1.347 −0.039 0.031 0.050

0.10 5.47 2.303 OLS 2.300 −0.003 0.070 0.070
OLSR 3.265 0.962 0.090 0.972
MLE 2.240 −0.06 0.059 0.086

Abbreviations: MLE, maximum likelihood estimator; OLS, ordinary least squares; OLSR.
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in color in the electronic version of this paper, and any mention of color refers to that version.
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10 LU et al.

OLS estimate is quite symmetric around the true value,
while the MLE is slightly skewed to the left. However, the
variability of the ML estimation is smaller.
This behavior is also seen in Table 2, which shows that

for all four time points and all sample sizes, the MLE
has more bias but smaller variance. The bias in the ML
estimate does not seem to vanish with increasing sample
size, eventually dominating the mean-squared error. We
believe that this persistence of the bias arises as a conse-
quence of the constraints. To check this, we have added
a third method to the simulation, which imposes the con-
straints of theMLmethod toAalen’s estimation procedure.
We use the R package quadprog (2019) to implement this
method, which we call Ordinary Least Square methods
Restricted (OLSR). The results from OLSR show much
more persistent bias than the MLE.

6 APPLICATION

We apply our methods to data from a clinical trial with 195
patients with carcinoma of the oropharynx by the Radia-
tion Therapy Oncology Group in the United States. The
data are introduced by Kalbfleisch and Prentice (2002, Sec-
tion 1.1.2, Web Appendix A) and used for illustration of
additive hazards models in Aalen et al. (2008). Patients
were randomized into two treatment groups (“standard”
and “experimental” treatment), and survival times were
measured in days from diagnosis. Seven covariates were
included in the data: sex, treatment, grade, age, condition,
T-stage, and N-stage. Following Aalen et al. (2008), we
take all the covariates as continuous. We rescale them to
[0,1].
The cumulative beta’s of the baseline and covariates sex,

treatment group, condition, T-stage andN-stage are shown
in Figure 3. The OLS baseline hazard estimate decreases
over the first 9 months and between 2 and 2.5 years, which
would correspond to a negative hazard for subjects with all
covariates 0, and an increasing survival curve. The MLE
of the baseline hazard is monotone increasing over time,
as desired. For treatment effect, condition, T-stage and N-
stage factors the two estimated curves of the cumulative
beta are very close to each other in these cases. For sex, the
twomethods show opposite trends. The differences in esti-
mates between the two methods may partly be explained
by the large number of covariates in the model, in rela-
tion to the modest sample size, leading to highly variable
estimates for both methods.
To illustrate the difference in the behavior of the survival

curves between ML and OLS, we choose a subject who
is female of age 55 years in the treatment group, of can-

cer grade moderate differentiated, of condition restricted
worked, of second T-stage and first N-stage. The covariates
of the subject are given by 𝐱 = (1, 1, 0, 1, −0.5, 1, 1, 1). The
estimated survival curves according to the OLS and ML
models are shown in Figure 4. The two estimators give sim-
ilar results in the first half year when the risk set is large.
After that, the OLS survival curve starts to fluctuate wildly,
while the ML estimate shows a steady decrease.

7 DISCUSSION

In this paper, we have presented an ML approach to
the additive hazards model as an alternative to the OLS
approach. We constructed an MLE under the natural con-
straint that the hazard is non-negative at each time point
for each possible combination of covariate values. The
MLE is characterized by increments of the cumulative haz-
ards at the observed event time points, as the OLS. We
derived an explicit expression of the MLE. Its computa-
tional complexity is linear in the number of covariates for
each time point, while that of the OLS is quadratic. A
simulation study showed that the MLE sacrifices a small
amount of bias in favor of smaller variability, leading to
a smaller mean-squared error. This bias seems to persists
for large sample size. Still, we found that the bias was
much smaller than that of a version of Aalen’s estima-
tor constrained to have positive increments. We showed
in the Supporting Information that the additive hazards
model is a special case of the Poisson identity link regres-
sion model, parallel to the well-established connection
between the Cox proportional hazards model and the log
link Poisson model.
We have not developed any theoretical results on the

asymptotic properties of the MLE, although these are
important to derive. Obtaining such asymptotic results
is challenging, because maximum likelihood estimation
under constraints represents a non-standard setting for
which asymptotic theory (typically derived under strict
regularity conditions) is not readily available. The fact that
the number of constraints grows with 𝑛 adds to the com-
plexity of this problem. It would be valuable to develop
asymptotic theory and investigate efficiency of the MLE.
Other issues of interest to explore are cross-validation and
penalized likelihood.
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