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Abstract
Functional assessment of in vitro neuronal networks—of relevance for disease modelling and drug testing—can be performed 
using multi-electrode array (MEA) technology. However, the handling and processing of the large amount of data typically 
generated in MEA experiments remains a huge hurdle for researchers. Various software packages have been developed to 
tackle this issue, but to date, most are either not accessible through the links provided by the authors or only tackle parts 
of the analysis. Here, we present ‘‘MEA-ToolBox’’, a free open-source general MEA analytical toolbox that uses a variety 
of literature-based algorithms to process the data, detect spikes from raw recordings, and extract information at both the 
single-channel and array-wide network level. MEA-ToolBox extracts information about spike trains, burst-related analysis 
and connectivity metrics without the need of manual intervention. MEA-ToolBox is tailored for comparing different sets of 
measurements and will analyze data from multiple recorded files placed in the same folder sequentially, thus considerably 
streamlining the analysis pipeline. MEA-ToolBox is available with a graphic user interface (GUI) thus eliminating the need 
for any coding expertise while offering functionality to inspect, explore and post-process the data. As proof-of-concept, MEA-
ToolBox was tested on earlier-published MEA recordings from neuronal networks derived from human induced pluripotent 
stem cells (hiPSCs) obtained from healthy subjects and patients with neurodevelopmental disorders. Neuronal networks 
derived from patient’s hiPSCs showed a clear phenotype compared to those from healthy subjects, demonstrating that the 
toolbox could extract useful parameters and assess differences between normal and diseased profiles.

Keywords Electrophysiology · Data visualization · Burst analysis · Multi-electrode array · Neuron · Spike analysis

Introduction

A multi-electrode array (MEA) is a device containing mul-
tiple microelectrodes through which extracellular voltage 
changes from neuronal networks can be measured. MEAs for 
in vitro studies typically consist of a dish with tens to hun-
dreds embedded electrodes, to allow multi-site electrophysi-
ological recordings from living tissue slices or dissociated 
cell cultures. Electrophysiological recordings of neuronal 

networks derived from human induced pluripotent stem 
cells (hiPSC) or rodent brain tissue have been successfully 
assessed by MEA technology (Mossink et al., 2021; Cao 
et al., 2012, Bateup et al., 2013; Wainger et al., 2014; Bradley  
et al., 2018; Tukker et al., 2018; Frega et al., 2019). Com-
pared to conventional in vitro neurophysiological recordings 
with glass or metal electrodes, MEA technology has sev-
eral advantages including a high throughput and the ability 
to record activity of hundreds of neurons simultaneously 
for long periods of time, and offers a wide range of MEA 
electrode designs. These electrophysiological recordings of 
neuronal networks can serve as great functional readouts for 
healthy and diseased  conditions1. Not only can MEA tech-
nology serve as a platform to elucidate neurophysiological 
signatures of disease, it is also a platform for drug discov-
ery and drug testing (Cao et al., 2012, Bateup et al., 2013; 
Wainger et al., 2014; Bradley et al., 2018).

This has led to an increase in popularity of the MEA 
technology for studying disease or recapitulating the in vivo 
response to drugs (Tukker et al., 2018; Frega et al., 2019).
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However, MEA data are often difficult to manage and 
process. MEA data are typically large in size due to the high 
sample rates needed for spike detection, large number of 
electrodes and long or repeated recording times. Most labo-
ratories use commercial MEA recording systems that come 
with dedicated software (Plexon inc. Software, 2020; Multi 
Channel Systems MCS GmbH. Software, 2020a; Axion Bio-
systems and Axis software, 2020). However, even with the 
use of dedicated software, analyzing MEA data remains dif-
ficult because the analysis tools are limited and users cannot 
extend or modify existing tools. Different open source MEA 
toolboxes have been created in the past, aiming to address this 
need (Gelfman et al., 2018; Bologna et al., 2010; Mahmud  
et al., 2014; Someville et al., 2010; Pastore et al. 2016; 
Wagenaar et al., 2005; Cui et al., 2008; Yger et al., 2018; 
Meier et al., 2008; Mahmud et al., 2012; Bongard et al., 
2014; Nick et al., 2013; Dastgheyb et al., 2020). Several of 
the open source toolboxes assume that the user is already 
knowledgeable with the language the toolbox is programmed 
in, which often forms a barrier to use that toolbox (Gelfman 
et al., 2018; Bologna et al., 2010; Wagenaar et al. 2005). 
Moreover, most open source toolboxes specialize on only 
a single aspect in the analysis of MEA data. For example, 
some focus only on analyzing neuronal network connectiv-
ity (Pastore et al., 2016) or spike sorting (Yger et al., 2018), 
others may include a wide range of tools but miss the very 
relevant feature of spike detection (Gelfman et al., 2018; 
Dastgheyb et al., 2020). As a consequence, the user needs to 
switch between toolboxes to gain a full picture of the data, 
which easily leads to compatibility issues between the dif-
ferent toolboxes. Moreover, in most toolboxes, data files can 
only be processed one at a time, thus analyzing multiple files 
in series is not possible. Finally, the analysis pipeline of most 
of available toolboxes does not allow the more experienced 
user to adjust parameters or modify the tool.

Therefore, in spite of these great contributions, analyz-
ing MEA data remains a daunting task. To overcome these 
limitations, we created MEA-ToolBox, an open source gen-
eral toolbox for research purposes that (i) does not require 
any coding expertise, (ii) combines multiple tools to extract 
information about spike train metrics, single-channel burst 
metrics and network metrics, (iii) provides a standardized 
analysis pipeline that allows processing of multiple files 
in series, and (iv) offer more experienced users the ability 
to modify and add to the existing tools. To the best of our 
knowledge, such a toolbox is not available yet.

MEA-ToolBox is a free Matlab-based, open source program 
with a user-friendly GUI. It is directly compatible with Multi 
Channel Systems (MCS) MEA recordings from single-well 
60-channel and 120-channel as well as both 12 and 24 multi-
well formats. Both raw voltage traces or only spike time stamps 
can be processed (data sets that already have the detected spike 
stamps without the voltage trace data). MEA-ToolBox provides 

a standardized and automated working environment for effi-
cient data processing and management of multiple MEA data 
sets. MEA-ToolBox was compared to 2 other open source MEA 
toolboxes to highlight the necessity for an open source MEA 
toolbox that contains multiple tools to assess spike trains, 
single-channel bursts and network metrics all in one package 
without the need for any coding expertise.

Material and Methods

Software Implementation

MEA-ToolBox was programmed with a user friendly graphi-
cal user interface (GUI) (Geiger, 2019) in the environment 
of MATLAB 2018b (Mathwork Inc., USA) using GUIDE 
and is provided as stand-alone application without the need 
of a MATLAB license, making it freely accessible.

(https:// github. com/ mhyhu/ Toolb ox). This allows users 
without coding expertise to analyze MEA datasets. How-
ever, experienced users can also access the source code of 
the MEA-ToolBox to support the development of additional 
features or modify existing ones. The manual offers a more 
detailed explanation of the code, starting from page 30.

MEA-ToolBox analyzes the data in three major steps: 
spike analysis, burst analysis, and connectivity analysis. 
This provides a more complete collection of analytic tools 
compared to existing MEA analysis software, which often 
lack one of these major steps. Figure 1 depicts a flow chart 
to explain the different steps followed by MEA-ToolBox.

In order to improve standardizing the analysis of MEA 
data, MEA-ToolBox is compatible with the HDF5 file format 
that is obtained by using the HDF5 file converter from multi-
channel systems (Multi Channel Systems MCS GmbH, 
2020b). This file format was chosen as it supports storing 
large amounts of data of different types in a compressed 
manner (Folk et al., 2011). The toolbox can analyze continu-
ous voltage traces, as well as data sets with only spike time 
stamps obtained by other software. If the data files were not 
converted with the multi-channel systems converter then the 
user must convert their data files into the HDF5 file format 
according to specifications mentioned in the manual to make 
it compatible with the toolbox. In addition, MEA-ToolBox 
has also been made compatible with CSV files based on the 
24 multiwell format from Axion Biosystems. We provide 
two different input file formats for the MEA-ToolBox as a 
starting point (MCS and Axion Biosystems). In the case that 
the data is not a HDF5 or CSV file then we have provided 
a specific description in the manual of how the CSV file or 
HDF5 should be structured to make it compatible with MEA-
ToolBox (See Supplementary Figs. 3 and 4).

In addition, MEA-ToolBox is compatible with standard 
single-well MEA layouts with 60 and 120 channels or the 
12 and 24 multiwell standard layouts with 12 electrodes per 
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Fig. 1  Flow chart of the MEA-
ToolBox. Raw MEA data files 
need to be converted to HDF5 
format, and are processed 
by MEA-ToolBox for spike 
detection and spike threshold 
setting. Spike train metrics 
are then collected along with 
burst, network, and connectiv-
ity features, quantified as 20 
neuro endpoints. The average 
analysis time was 30 min for a 
10 min measurements with 288 
electrodes (24 multiwell, MCS) 
4 min for spike detection, 7 min 
for single-burst detection and 
18 min for network related met-
rics. Then the results are visual-
ized in a GUI with the option 
for post processing if necessary. 
When satisfied the results can 
be exported in Excel format

1079Neuroinformatics (2022) 20:1077–1092
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well. Furthermore, there is an option for multiwell data to 
combine the analyzed data from multiple wells that belong 
to the same group.

Lastly, 20 ‘’neuro endpoints’’ (Supplementary Table 1, 
also found in the manual) are extracted during the analy-
sis that provide 20 different readout parameters concerning 
spike train, single-channel burst and network metrics, which 
allows the user to classify the MEA data into different elec-
trophysiological profiles.

Spike Detection

The spike detection method implemented in MEA-ToolBox 
is based on a published spike detection algorithm with slight 
alterations (Nick et al., 2013). In short, the spike detection 
algorithm first detects the baseline noise level in the signal 
by searching for ‘’spike-free’’ periods within the signal. The 
signal is split into 50-ms time windows. Afterwards the data 
within each time window is fitted with a Gaussian distribu-
tion. In the original method, if the gaussian fit within a time 
window had a standard deviation (SD) of 5 or lower, it was 
interpreted as ‘’pure, spike-free noise’’.

We deviated from this harsh threshold by setting the 
threshold based on actual MEA data. To this end, the thresh-
old was established by first gathering all the SD values of 
the gaussian fits of each 50-ms time window in a particular 
MEA channel, from which the median value was calculated. 
Next, the SD of each gaussian fit in each 50-ms time window 
is compared to the median value, and if the SD in the time 
window was lower than the median, the data within that 
time window was considered ‘‘pure noise’’. The algorithm 
continues until a time period of 2 s containing multiple time 
windows consecutively was found that were all considered 
to be ‘pure noise’. Afterwards, this process was repeated 
to find another time period of 2 s that was interpreted as 
‘‘pure noise’’. The average of these two time periods is set 
as ‘’baseline noise’’. Based on the detected baseline noise, 
the root means square (RMS) is determined, and the thresh-
old to detect spikes is set at 5X RMS. If the algorithm can 
only find one time window, it will use this time window as 
‘’baseline noise’’ however when the algorithm cannot find 
any window then the channel is determined to be too noisy 
and disregarded for further analyses.

Spike detection is performed for each individual MEA 
channel separately thus accounting for differences between 
channels. After the spikes are detected, ‘’artifact detec-
tion’’, by inspection of spike waveforms is performed 
(Wagenaar et al., 2005). The detected spikes are validated 
through an artifact detection algorithm where the detected 
spike has to have the highest peak with no secondary peaks 
within a ± 1 ms window, and more than 50% of the spike 
amplitude falling within this same window (Wagenaar 

et al., 2005). If the detected spikes do not fulfil this criteria 
they will be removed from further analyses. Furthermore, 
one can also set a minimum voltage that the amplitude of 
the spikes should reach before considering them as spikes 
(default = 0 µV). after the spikes are detected the a final 
check will be performed to determine if a channel is active 
or not. The channel is considered active when the firing rate 
is at least 0.1 Hz otherwise the channel will be disregarded 
from further analyses.

An example of the spike detection is shown in Fig. 2A 
(top) where a filtered trace is displayed, in which the ‘‘spike-
free’’ periods are displayed in red. Based on these calculated 
‘’spike-free’’ periods a threshold was set (black line) on both 
sides of the y-axis. Any peak that exceeded this threshold 
was labeled as a spike.

Fig. 2  Detection of spikes, single-channel and array-wide network 
bursts and assessment of cross-correlation, conditional firing probabil-
ity and inter-spike intervals. Spikes are detected based on a threshold 
of 5X the root mean square (rms) of baseline noise. A, top: the time 
windows used for assessing baseline noise are indicated in red and the 
threshold based on the baseline noise is indicated by black horizontal 
lines. A, bottom: array-wide network bursts are detected based on the 
previously assessed single-channel bursts, which are indicated as black 
lines for the visualized six channels C1 -C6. The first step in detecting 
array-wide network bursts is to find single-channel bursts that occur 
within a 100-ms time window from each other across all the chan-
nels based on their first spike. These bursts are ‘‘combined’’ and are 
called network bursts. After detecting network bursts, the beginning 
and end times of these synchronized bursts are based on the earliest 
spike time and latest spike time of the SCBs that comprise the syn-
chronized bursts. Then any SCBs that occur within the time window 
of the synchronized bursts are added to the respective synchronized 
bursts. Lastly, a check is performed to determine if a minimum of 25% 
of the active channels are participating in these synchronized bursts 
before considering it a network burst. In the example given in A, 
three network bursts in blue are found because the three synchronized 
bursts and more than 25% of the active channels are contributing to 
each network burst. B. Cross correlation is assessed by comparing the 
spike train output of two channels. For this, the spike time stamps of 
the two channels are vertically aligned with each other, whereby one 
channel serves as the reference (spike train 2) and the other channel is 
the target (spike train 1). A time window is centred around each spike 
in train 2 and subsequently split in smaller bins, whereby the toolbox 
determines whether any spikes from spike train 1 fall within each 
bin of the time window. C: Simplified representation of the function 
used to calculate the conditional firing probability (CFP) for an elec-
trode pair i and j (see Materials and Methods Eq. 2).  Mi,j represents 
the maximum probability above offset, whereas  Ti,j is the time delay at 
which the CFP is maximum. The  wi,j is the width at  offseti,j + 0.8  Mi,j 
and the  offseti,j represents uncorrelated background activity. D: The 
ISI distance calculated at time t requires three inputs: the time stamps 
of the previous spike (X1), the time stamp of the following spike (X2). 
Using the time stamps X1 and X2, the instantaneous inter-spike inter-
val (iISI) can be calculated which is the third input. This process is 
also repeated for spike train Y after which the iISIx and iISIy are used 
to calculate a ratio between the iISI of both spike trains, which is nor-
malized to a value between -1 and 1 according to Eq. 3 before tempo-
rally averaging

◂

1080 Neuroinformatics (2022) 20:1077–1092



1 3

Single‑Channel Burst and Array‑Wide Network Burst 
Detection

A ‘’single-channel burst’’ (SCB) is defined as a collection of 
consecutive spikes with small inter-spike intervals occurring 
during a defined relatively short period occurring on a single 
MEA channel (Zeldenrust et al., 2018). MEA-ToolBox uses 
the ‘‘max interval’’ and ‘’log ISI’’ method (Cotteril et al., 
2016) to detect SCBs. These two methods were chosen based 
on literature (Cotteril et al., 2016).

In short, the max interval method consists of tuning 5 
parameters. These parameters include the “Start Interval 
(s)”, which is the maximum time interval between the first 
two spikes of a SCB, set at 0.05 s. The number of spikes 
(“Nspike (n)”) which is set at 3. Inter-burst interval as well 
as intra-burst interval, with default settings at 0.1 s for both. 
Inter-burst interval (IBI) refers to the maximum time interval 
between detected SCBs. If the time interval is smaller than 
this parameter than the SCBs will be combined. Intra-burst 
interval (s) is the maximum time interval of the spikes that 
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follow after the two initial spikes are found of a potential 
SCB. If the time interval is smaller than this value it will be 
included in the SCB. Finally, “Minimum burst duration (s)” 
which is set at 0.03 is combined with the above-mentioned 
parameters to select what the minimum duration of a SCB 
should be. These parameters are chosen based on values 
found in literature (Cotteril et al., 2016).

The other method for SCB detection is called the Log 
ISI method where 2 parameters can be tuned: the previ-
ously mentioned ‘’Nspike (n)’’ which is set at 3 as default 
and the ‘’Void Threshold (%)’’, which is the threshold for 
determining if the peaks detected in a log ISI histogram are 
separated well enough. If the calculated value is higher than 
the set value, the peaks are separated well enough (Pasquale 
et al., 2010).

When multiple SCBs fire within a similar time window 
on multiple channels, these are called network bursts (Nb) 
(Van pelt et al., 2004). The detection method for network 
bursts in the toolbox is also based on methods from literature 
(Wagenaar et al., 2005; Mendis et al., 2016). The method 
is based on first detecting the SCBs on each channel after 
which the algorithm will use the time of the first spike within 
each SCB to compare with each other to determine which 
SCBs fire within a 100-ms time window. If at least 2 SCBs 
are found to fire within a 100-ms time window based on 
their first spike from each other on different channels these 
SCBs are considered to represent a synchronized burst. Then 
the algorithm considers the start time and end time of the 
synchronized burst to be the earliest spike time point and 
the last spike time point of the SCBs that are part of the 
synchronized burst. Next any SCBs that falls within the time 
window of the synchronized burst are added to the synchro-
nized burst to create a potential network burst. The last step 
is to remove any potential network bursts in which less than 
25% of active channels are contributing to the network burst 
(Fig. 2A, bottom).

Connectivity Detection

MEA-ToolBox provides an estimate of functional connectiv-
ity of neuronal networks based on cross correlation (CC). 
The CC-based method that is used in the toolbox is termed 
conditional firing probability (CFP) (Le Feber et al., 2007), 
and is established based on co-occurrence of spikes across 
the different MEA channels (Mendis et al., 2016). In short, 
data is split into chunks of 2 (Pastore et al., 2016) spikes 
summed over all channels, and in all chunks for each pair 
of active electrodes (i, j) a CFP curve is calculated as the 
probability that an action potential is recorded at electrode 
j at t = tau (tau < 500 ms), given that one was recorded at 
electrode i at t = 0. To estimate this probability, for each 
0.5-ms time bin the number of action potentials at electrode 
j is counted that follows the action potential at electrode i 

 (Nfollowi,j). This is divided by the number of action potentials 
at electrode I,  Ni, as indicated by the following Eq. 1. The  Xi 
and  Xj are binary arrays that represent the recorded signals 
at electrodes I and j as point processes. X = 1 represents an 
action potential and otherwise it is 0.

To facilitate interpretation, a standard function was fitted 
to CFP curves using a Nelder-Mead simplex algorithm to 
reduce the mean squared error, as shown in Eq. 2:

In Eq. 2,  Mi,j is the maximum value of the  CFPfit above 
the offset, Ti,j the latency at which maximum CFP is 
reached, wi,j is a parameter related to the width of the peak 
and  offseti,j represents uncorrelated background activity (see 
Fig. 2C).  Mi,j is interpreted as the strength of a connection, 
 Ti,j as the latency. Connectivity maps were made based on 
the averaged  Mi,j values over all the chunks obtained from 
the CFPfit.

Spike Train Synchronicity Measurements

Spike train synchronicity can be defined as the similarity 
between pairs of spike trains. We implemented the ISI-distance 
method to calculate the spike train synchronicity due to its 
parameter-free nature and flexibility to be extended (Kreuz 
et al., 2007; Satuvuori et al., 2017). The method transforms the 
spike times of two spike trains into temporal profiles with one 
value for each time point. To obtain this value, the time stamp 
of the previous spike and time stamp of the following spike 
are used to calculate the instantaneous inter spike interval. For 
example, Fig. 2D shows two spike trains X and Y with two 
spikes in both. At time t, the last spike with time stamp < = t 
(X1 and Y1) and the first spike with time stamp > t (X2 and 
Y2) are determined for both spike trains.

The instantaneous inter-spike interval (iISI) is calculated 
as the difference between these time stamps  (iISIx = X2-X1 
and  iISIy = Y2-Y1). Then a normalized ratio value I(t) is 
obtained by dividing the two iISI values from both spike 
trains according to the following Eq. 3:

This process is repeated for all the spike times in the 
whole signal. The last step involves temporal averaging 
across the absolute values of I to get the mean ISI distance. 

(1)

CFPi,j[𝜏] =
Nfollowi,j

Ni

=

∑
t Xi

[t] ⋅ Xj [t + 𝜏]
∑

t Xi
[t]

�0 < 𝜏 ≤ 500 ms.

(2)
CFP

fit

i,j
[�] =

Mi,j

1 +
(

�−Ti,j

wi,j

)2
+ offseti,j

(3)I(t) =

{
iISI(x)∕iISI(y) − 1 if iISI(x) ≤ iISI(y)

−(iISI(y)∕iISI(x) − 1) otherwise.
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The result is a value between -1 and 1. Negative values indi-
cate that the first spike train is faster than the second, posi-
tive values the opposite. I(t) = 0 means that both trains are 
equally fast.

Spike Sorting

Due to the use of the MEA, it is important to realize that the 
recorded signals may contain action potentials from mul-
tiple neurons as the extracellular electrodes are typically 
bigger than a neuron. Therefore, in order to investigate the 
contributions of individual neurons it is necessary to sepa-
rate the detected spikes from different neurons on the same 
electrode. This is possible using a method called spike sort-
ing. Spike sorting is a clustering process by which detected 
spikes are separated into different clusters based on the simi-
larity of their waveforms. Each detected cluster is a different 
neuron because the extracellular spike waveform is different 
due to the biological properties of neurons. One of the key 
steps in spike sorting is to determine which features of the 
spike waveform should be used for the clustering process 
without any manual intervention.

We adapted a method from the literature that is based 
on combining different feature extraction techniques with 
Gaussian mixture models (GMM) (Souza et al., 2019). This 
method was shown to be better than other approaches known 
in literature with the added benefit of needing no manual 
intervention. GMMs are a type of statistical model that fit 
data using Gaussian distributions.

To better fit complex MEA data that contain multiple 
peaks/features rather than a single type, multiple Gaussians 
distributions each accounting for a distinct peak/feature are 
combined to form this ‘’continuous’’ Gaussian curve (mix-
ture) to better fit complex data. In this recent method, GMMs 
are used in combination with either a principal component 
analysis (PCA), weighted PCA or a wavelet decomposition 
(WD) to extract three features from the data that are depend-
ent on the GMM (peaks, inflection point of the mixture and 
the distance between individual Gaussians). A feature that 
is independent of the GMM (variance of the features) is 
also used. The five highest-ranked PC scores or wavelet 
coefficients were selected for the clustering procedure. The 
first step in the clustering procedure is to overestimate the 
number of clusters by fitting a GMM into the five selected 
features with a high number of Gaussians. As a final step, an 
additional GMM was fitted on the previously detected clus-
ter centers with each Gaussian corresponding to a detected 
cluster center. Afterwards each waveform was assigned to 
the cluster that had the highest corresponding probability.

We adopted the Souza et al. (2019) user-friendly interface 
into MEA-ToolBox to allow the user to not only visualize the 
clusters but also to check for stability of the clusters and to 

remove clusters if needed. The stability of the clusters is vis-
ualized as the peak-to-valley distance of the waveforms of a 
cluster together with the firing rate over the whole recording.

This can be used to determine if the cluster has similar 
properties over time and to potentially identity shifts of a 
neuron from a cluster to another cluster. Therefore, this fea-
ture allows the user to get a better understanding of their 
dataset.

MEA‑ToolBox Analysis Parameters Summary

A summary of the main MEA-ToolBox default parameters 
that are used to run the standard analysis pipeline are sum-
marized here and can be accessed before starting the analysis 
procedure from the MEA-ToolBox GUI, as shown in Sup-
plementary Fig. 1. All of the mentioned parameters below 
are changeable by the user, however we recommend to use 
the default values, as seen in brackets. These parameters 
include: (1) the high-pass Butterworth filter cutoff frequency 
and filter order (200 Hz and 2), (2) baseline noise detection 
and pure noise window (50 ms and 2 s), (3) spike detection 
threshold, spike detection interval, minimum spike ampli-
tude and minimum fire frequency to be considered an active 
channel (5, 0 ms, 0 µV and 0.1 Hz), (4) Burst detection with 
Max Interval Method start interval, number of spikes, inter 
burst interval, Intra burst interval and minimum burst dura-
tion (0.05 s, 4, 0.1 s, 0.1 s and 0.03 s), (5) Log ISI Method 
with void threshold and number of spikes (70% and 3), and 
(6) network burst detection synchronized time window, min-
imum synchronized burst count and minimum active channel 
participation (0.1 s, 2 and 25%). An option to analyze spike 
time stamps only is also provided. Once these parameters are 
set, MEA-ToolBox can analyze multiple files in series which 
means that entire experimental recording data sets can be 
processed instead of having to run the analysis file by file 
with the same parameters.

Data Sets Used for Developing MEA‑Toolbox 
and Application of MEA‑Toolbox to Experimental 
Data

We used a model data set obtained from a patient with Kleef-
stra syndrome to compare the performance of MEA-ToolBox 
to two other MEA toolboxes: meaRtools (Gelfman et al., 
2018) and Multiwell Analyzer (Multi Channel Systems MCS 
GmbH, 2019). These toolboxes were the only ones compat-
ible with the multiwell format. To complement compari-
sons, we also show the usefulness of having the tools to sort 
spikes and perform a connectivity analysis all in one pack-
age and state the limitations of MEA-ToolBox compared to 
the other toolboxes. To perform a comprehensive analysis 
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with meaRtools and Multiwell Analyzer, the burst detection 
method were set to match the MEA-ToolBox parameters used 
for single-channel burst detection and array-wide network 
burst detection. Since network burst inter burst interval (IBI) 
and network burst coefficient of variation (CV) of IBI are not 
included in meaRtools, these had to be manually calculated, 
by using the ‘’Network Burst (Nb)_start’’ and ‘’Nb_end’’ 
values located in the variable nb, all separately for each well; 
the endpoint, called ‘’mean_NB_time_per_sec_10’’, was 
used to represent the duration of the network burst detected 
by meaRtools. For Multiwell Analyzer, the network burst 
IBI and network burst CV of IBI were manually calculated 
using the start and end times of the detected network bursts.

All graphs seen in Fig. 5 were created by following a 
similar approach in which the average was taken of the same 
four wells for each endpoints. All three toolboxes were used 
on a PC with Windows 10, with an intel Xeon E3-1240 v6 
clocked at 3.7 GHz and 16 GB of Ram.

Results

Data Visualization and Data Analysis 
with MEA‑ToolBox

The user can change several parameters before starting the 
analysis (Fig. 1 suppl). Once the analysis is finished the 
toolbox will save a.mat file that contains all the informa-
tion the toolbox needs to calculate the neural endpoints 
and allow use of the GUI. For a more detailed look at the 
output.mat file please see the manual. MEA-ToolBox is pro-
grammed with a user-friendly GUI home screen (Fig. 3), 
which is designed to give an overview of the MEA data. 
For this, the home screen tab shows a color-coded over-
view of the activity of all channels on the left top (Fig. 3A 
(1)). Next, several options are available to visually inspect 
the analyzed data and modify the default parameters to suit 
the user’s need. For example, each channel can be accessed 
for additional single-channel information (Fig. 3B, e.g.: 
channel 134). Five parameters are displayed: (1) filtered 
voltage (noise-estimation period indicated in red) together 
with the thresholds used for spike detection (horizontal 
black bars); (2) spike raster plot of the selected channel; 
(3) a firing rate histogram of the selected channel; (4) 
histogram of the inter-spike-interval (ISI); and (5) time 
stamps of detected spikes (black) and bursts (red). A table 
is displayed showing information about the file name and 
the parameters that will be used in the analysis (Fig. 3A 
(2)). A general data button is provided that will retrieve all 
spike train metrics and related statistics for every single-
channel in the displayed file. These include spike number, 
mean ISI, median ISI, std ISI, SCB (Max Interval), SCB 
(Log ISI), Fire rate, mean instantaneous firing rate, mean 

CV ISI, mean CV2 ISI and threshold value. This informa-
tion is exportable as an Excel table. Raw voltage traces of 
all the channels within one well can be visualized (Fig. 3A 
(3)) by using a “full trace” button. An example is shown 
in Fig. 3C, whereby the raw voltage signals are displayed 
for a 200-s window.

Following spike detection, a spike raster plot is displayed 
for a selected single-channel in which each black line rep-
resents a spike (Fig. 3A (4)). A “raster plot” button is also 
provided with a more detailed view of the spike raster plot 
(Fig. 3D). Here, single-channel bursts can additionally be 
displayed in red, overlaid with either the spike raster plot 
or (in blue) array-wide network bursts. A ‘‘10 most active 
channels option’’ displays a new graph that allows for a 
quick determination of the most active channels. This option 
also allows to detect broken or degrading channels where the 
threshold detection will detect pure noise of high amplitude, 
resulting in falsely hyperactive channels. MEA-ToolBox can 
remove such channels from further analysis with a ‘’remove 
channel’’ option. When used the single-channel burst detec-
tion, network burst detection and connectivity detection 
algorithms are rerun again. Heatmaps of the whole MEA are 
also generated based on the number of spikes in each chan-
nel. In addition, an animation of the spike activity over time 
can be saved as an.avi file. The previously mentioned visu-
alizations can all be saved as a.tiff file or any other image file 
by going into the upper left corner ‘file’ menu and selecting 
the save as button. For extraction of MEA spike features, all 
analyzed files can be placed in a single folder—for exam-
ple from multiple experiments or from the same MEA over 
multiple days/weeks)—and via the “Neuro endpoints” but-
ton 20 different features of spike activity are calculated for 
each file and is saved as an excel file with the different neural 
endpoint in columns and each row represents a well. Sup-
plementary Table 1 provides a detailed description of the 
Neuro endpoints and their definitions.

In case of multiwell data, MEA-ToolBox can group certain 
wells together to calculate the mean/median and SEM/25%-
75 quartiles values of such groups for the 20 Neuro endpoints. 
The analyzed Neuro endpoint data are exportable as an Excel 
table for further data processing or creating graphs. If certain 
wells are grouped, then the rows represent the grouped wells 
which is also indicated in the naming of the row.

Burst Analysis with MEA‑ToolBox

The start screen and ‘’Bursts’’ tab of MEA-ToolBox allows 
for visualization of detected single-channel (SCB) and net-
work bursts (Nb). Detected spikes, thresholds, SCBs and 
Nbs can be displayed here (e.g. channel 134, Fig. 4A). Fur-
thermore, the ‘‘Bursts’’ tab also includes options for fine-
tuning of the parameters used for SCB detection and Nb 
detection. The user can also rerun these detection algorithms 
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using the changed parameters and make a comparison 
between the detected SCBs and Nbs without the need to re-
analyze the whole file (Fig. 4). The result is a comparison 
between the detected bursts using the previous parameters 
versus the newly chosen parameters (as indicated in black 
and blue). An example is shown where the logISI parameters 
for the number of spikes was decreased from 10 to 3 and 
shows that indeed more bursts are detected (Fig. 4B, arrows). 
This option can be useful if the burst detection needs to be 
less strict or fit a more precise profile and therefore can be 
first visualized here before re-analyzing the whole file again.

Similarly, there is a button for optimizing the array-wide 
network burst detection parameters. These options include 

the ability to toggle between using the log ISI detected bursts 
or the max interval detected bursts (default) and changing 
the network burst parameters. Zooming in the detected 
bursts for closer inspection is done by selecting which burst 
number to visualize, an example of Max Interval burst #2 
and #3 is shown in Fig. 4C for channel 134.

Finally, a table is presented that contains all the single-
channel/network burst metrics for the selected channel of 
both the max interval method and log ISI method (Fig. 4D). 
Metrics for the Max Interval and log ISI detected bursts 
include number of bursts, duration, number of spikes per 
burst, frequency of burst, mean ISI in bursts and the percent-
age of spike participating in bursts. For the network bursts, 

Fig. 3  Home screen display. Color coded overview of array activity 
A1, parameters used for the analysis A2, full trace visualization A3 
and raster plot A4. Single-channel metrics B, filtered signals C and 
raster plots with detected bursts (red) and network bursts(if appli-
cable, blue) D are also displayed. For multiwell formats, selecting 
a well in the overview will automatically display the accompanying 
trace view and raster plot of the selected well. Well 12 is shown here 
as an example with channel 134 selected for single-channel metrics 

B containing information about i the filtered voltage trace show-
ing which part of the measurement is used as baseline noise to set 
the threshold for spike detection (pure noise, red) together with the 
thresholds used for spike detection (horizontal black bars), ii a spike 
raster plot of a single-channel, iii A firing rate histogram for the 
selected channel, iv Histogram of the distribution of the inter spike 
interval (ISI) and v Time stamp of detected spikes (black) and bursts 
(red)
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statistics about the number of network bursts, start time, 
end time, duration, fire rate of the spikes within the network 
bursts, the ISI of the spikes within the network bursts and 
the IBI between network bursts are extracted.

Connectivity Analysis with MEA‑ToolBox

The MEA-ToolBox connectivity analysis tool provides an 
estimate on functional connectivity within the neuronal net-
works recorded on a MEA, based on the conditional firing 

probability (CFP). This is a cross correlation-based method 
in which the relationship between two spikes is determined 
by two variables: M for the strength of and T for the latency 
of a presumed relationship (Le Feber et al., 2007).

Here, we present some example data from human induced 
pluripotent cell (hiPSC)-derived neuronal cultures for visu-
alization purposes to show that the versatility of the connec-
tivity tool is not restricted to a certain electrode layout. In 
this example, the data was recorded on a 120-channel single 
MEA. Figure 5 shows the connectivity analysis tab in which 
the left panel will show all the detected putative connections, 

Fig. 4  Burst detection display. A: An example of a single-channel 
burst visualization (channel 134, well 12) detected with the max 
interval method in the Burst tab of the toolbox. The detected SCBs 
are displayed in red with the spikes and the used threshold to detect 
the spikes in black. B: Within the burst tab it is possible to not only 
visualize the detected SCBs but also change the parameters used to 
detect the SCBs if the user doesn’t agree with the detected SCBs. The 
user can choose between the log-ISI and the max-interval method 
after which the corresponding parameters with the methods will 
become available to change. These parameters are located in the bot-
tom of the tab (GUI not shown). For the log ISI method the user can 
change the void threshold and the minimum spike count to be consid-
ered a SCB. The method involves checking if the log ISI histogram 
detects multiple peaks and if the algorithm detects multiple peaks 
then the algorithm will check how well they are separated by using 
the void threshold parameter. The void threshold value indicates how 
strict the separation between the peaks needs to be before the algo-
rithm considers it a SCB. If the algorithm cannot find two peaks then 
it is not considered a SCB. For the max interval method the user can 

change 5 parameters, the maximum start interval between the first 
2 spikes, the number of spikes needed to be considered a SCB, the 
inter-burst interval which refers to the minimum time that needs to 
be present between the each SCB ( if the time is shorter between 
detected SCBs then they will be combined), the intra-burst interval 
which is the time between the spikes after the 2 initial spikes in a 
SCB ( if spikes after the 2 initial spikes is shorter than this value than 
they will be included in the SCB) and lastly the minimum burst dura-
tion. After the user changed the parameters, the user use the rerun 
button to only rerun the SCB detection algorithm and when finished 
the toolbox will display the newly detected SCBs or not. Here the 
orange arrows indicate the additional burst detected by changing the 
minimum spike count from 4 to 3. C: Possibility to zoom inside the 
voltage signal to visualize specific bursts. D: Statistical report con-
taining all the SCB metrics for the selected channel for the old param-
eters and new parameters if the user chose to rerun the detection oth-
erwise it will only display the SCB metrics for detected SCBs with 
the initial parameters at the beginning of the analysis
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whereas he right panel only shows the 60 strongest connec-
tions (Fig. 5A and B). Setting a limit to the number of shown 
connections improves readability of the graph. The puta-
tive connections associated with a selected channel can be 
visualized in the bottom panels. This will allow for a more 
detailed look at a specific channel without the interference 
of the other channels (Fig. 5C and D). The option “display 
direction” adds arrowheads to drawn lines to indicate the 
direction of a putative connection. All figures are exportable 
as.tiff files with 1200 dpi and a resolution of 1920 × 1080 by 
using the corresponding export figure button.

Spike Sorting with MEA‑ToolBox

MEA-ToolBox also includes tools for spike sorting and sav-
ing the detected clusters and the sorted spike waveforms. 
After loading the raw voltage traces, spike waveforms of a 

selected channel can be inspected by using the pull-down 
menu. After spike sorting, the different spikes are organized 
per channel and displayed in the ‘’sorted waveforms’’ panel 
for inspection. Spike sorting can be performed on a channel-
by-channel basis (Fig. 6A), or for the whole MEA-well in 
the case of a multiwell data set (Fig. 6B, 12 channels per 
well). After the spike sorting process is finished the user can 
visualize the detected clusters via the ‘’clusters button’’. The 
user can visualize the clusters, either as a scatterplot of two 
dimensions in the clustering space or as a line plot of all five 
dimensions in the clustering space. Also provided is a plot 
of the cluster stability which is defined as the peak-to-valley 
distance of waveforms over the whole recording. The peak 
to valley distance of the spike waveform was calculated by 
taking the difference between the maximum value and the 
minimum value of the spike waveform. The detected clus-
ters can be saved via the save button which will store the 

Fig. 5  Connectivity map of an example single-well MEA recording. 
A: The human induced pluripotent cell (hiPSC)-derived neuronal 
culture in this example exhibited a multitude of putative functional 
connections, shown by the drawn connections, based on the connec-
tivity map. The connectivity map was created based on the M values 
obtained from the conditioning firing probability for every electrode 
pair. The M values represent the strength of the connection between 
an electrode pair. B: The top right panel also show the functional con-

nections but will only take into account the strongest 60 connections 
found. Visualize connections from a specific channel (C and D), that 
allows to select a channel and will only visualize the connections 
associated with this selected channel. Either the selected channel is 
connected to other channels or other channels are connected to the 
selected channel. Arrows indicate direction of the putative connec-
tions, whereas the color indicates the strength of the connections
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detected clusters in a.mat file which contains the spikes and 
which cluster they belong to and if they are not sorted than 
the spikes will denoted as nan. The.mat file also contains 
the created model used to classify the spikes with the mean 
(mu), covariance matrix (S) and weight of each gaussian 
(alpha). Lastly, the file contains the clustering space of each 
channel. For example, Fig. 6A shows that channel 6 of well 
6 has two detected clusters that both show stable peak-to-
valley values of the waveforms over the whole recording. 
Furthermore, there are no major deviations in firing rate 
indicating that, most likely, the spikes are sorted correctly. 
Another example can be seen in Fig. 6B, in which a whole 
MEA-well (well 6) was spike sorted. Within the well, seven 
clusters were identified, indicating that the spikes could 
come from seven different neurons.

Application of MEA‑ToolBox to a Published MEA Data 
Set

To demonstrate key features of MEA-ToolBox on experi-
mental data, a published MEA data set was processed with 
default parameter settings. The data set contained record-
ings from a multiwell plate (with 24 wells, and 12 channels/
well) from hiPSC-derived neurons from a patient with Kleef-
stra syndrome, for which a combination of custom-written 
scripts and toolboxes was used to demonstrate features of 
disturbed network excitability (Frega et al., 2019).

Figures 7A and B compare the visualization of the data 
using the original data set (Fig. 7A) with the results from MEA-
ToolBox (Fig. 7B), including a selection of four network-related 
neuro endpoints calculated as an average of all active electrodes 

Fig. 6  Spike sorting analysis. Examples for the output of the spike 
sorting analysis. A-D: the output of channel 6 of well 6 of a multiwell 
MEA data set containing 12 electrodes/well. A and B indicate the 
clusters (separated by color) that were found for this channel whereas 

C and D show the cluster stability over time for two different clusters, 
measured in terms of peak-to-valley and firing rate. E and F show the 
7 clusters found of all 12 electrodes (channels) of well 6 of the multi-
well data set
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per condition. The selection of neuro endpoints was based on 
parameters reported in Frega et al. (2019) In the MEA-ToolBox 
results, control cultures show a higher single-channel fire and 
burst rate, burst duration and count. In line with the report of 

Frega et al. (2019); the Kleefstra cultures show lower network 
burst rates but longer network burst duration, network IBI, and 
network CV IBI. These results were obtained using the GUI of 
MEA-ToolBox, which did not require the need of any coding 

Fig. 7  Comparison between toolboxes. Visualization of the outcome 
of different toolboxes using bar graphs in which network-related 
neuro endpoints are compared to results of a published dataset for 
similarity. For the comparison only those neuro endpoints are shown 
that were reported in the original  paper7 (Kleefstra cultures show 
lower network burst rate but longer network burst duration, network 
IBI, and network CV IBI). A: The burst rate per min, B: the inter 
burst interval, C: burst duration and lastly D: the coefficient of vari-
ation of the inter burst interval. The MEA-ToolBox and the multiwell 

analyzer were able to output the same results reported in the original 
paper. MeaRtools could replicate the finding that Kleefstra cultures 
had less network bursts and a higher network burst IBI but in con-
trast to the published data, network burst duration and network burst 
CV of IBI did not differ between the two groups (not shown). For the 
multiwell analyzer (as well as the meaRtools) the network burst IBI 
and network burst CV of IBI needed to be calculated manually as 
they were not included as an output
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expertise and demonstrated the ease of extracting metrics from 
the data using MEA-ToolBox.

Comparison with meaRtools and Multiwell‑Analyzer

To illustrate how MEA-ToolBox functions in comparison 
to existing toolboxes, the Kleefstra data set was also ana-
lyzed with Multiwell-Analyzer and meaRtools. Both of the 
toolboxes contain tools for burst analysis, while connectiv-
ity analysis and spike sorting are not included. Multiwell-
Analyzer is a stand-alone free software package designed to 
analyze multiwell MEA data (Pasquale et al., 2008), but is 
restricted to the multi-channel system data format. Multiwell-
Analyzer only provides four network burst endpoints: start 
time stamp, duration, spike count and spike frequency. To 
acquire values for network burst IBIs and network burst CV 
of IBI, manual calculation is required. For these endpoints, 
Multiwell-Analyzer reproduced published results for the 
Kleefstra data set, i.e. with respect to the number of network 
bursts (being less frequent), longer burst durations and longer 
inter-burst intervals (Fig. 7C). MeaRtools is a software pack-
age created and available only in R and therefore difficult 
to use for unexperienced users without R coding expertise 
(Gelfman et al., 2018). We performed the spike detection 
using the MEA-ToolBox before converting the MEA data into 
the CSV format needed to use meaRtools. For comparison, 
we only used the above-mentioned parameters reported as in 
Frega et al. (2019) Similarly to the Multiwell-Analyzer, we 
manually calculated the network burst IBI and network burst 
CV of IBI. The results obtained with meaRtools showed that 
Kleefstra cultures had less network bursts, higher network 
burst IBI and the network burst duration and network burst 
CV of IBI did not differ between the two groups (data not 
shown).

Discussion

Standardization of MEA analysis is currently challenging 
as many researchers use different tailor-made analyses. We 
here provide a streamlined open source analysis toolbox that 
is freely available and does not require any coding exper-
tise. Furthermore, for users with coding expertise, we have 
provided a detailed description of the code in the manual 
starting from page 30, allowing modification of the tools. 
MEA-ToolBox contains all the basic analysis tools needed for 
MEA analysis, so that spike and burst detection, connectiv-
ity, and spike sorting as well as all classical visualization 
options for MEA data are provided together in one package.

MEA-ToolBox enables analysis of raw voltage traces as 
well as time stamp data, including spike detection, burst 
detection, network burst detection and additional tools. The 

software is compatible with different MEA formats (e.g. 60- 
and 120-channel single-well as well as multiwell MEAs), 
and provides 20 neuro endpoints to ease interpretation of the 
MEA data. For data visualization, multiple tools are added 
such as raster plots, heatmaps and full traces. We also added 
a spike sorting component for characterizing individual 
spike data from the multiunit data sets (Souza et al., 2019). 
MEA-ToolBox can analyze multiple files in series which 
avoids file-by-file analysis and allows keeping the same 
analysis parameters thus streamlining the analysis process.

In addition, MEA-ToolBox has connectivity and spike 
sorting options. We believe that adding these tools will be 
beneficial for users as it can help with understanding the 
MEA data better. MEA-ToolBox can draw all putative func-
tional connections one-by-one using a visualization tool that 
allows the user to obtain information about the dynamics of 
in vitro neuronal networks. We added the directionality to 
the connections as well for signal propagation studies, which 
can be used for analysing cortical spreading depolarization 
events with directionality or investigate the spatio tempo-
ral events of the firing patterns on the MEA. Assessment 
of these functional connections has been proposed to be a 
potential tool to indicate if an in vitro culture is healthy or 
not (Monssink et al., 2021). For spike sorting, in princi-
ple, each detected cluster can represent a different putative 
cell, but it is important to note that the amplitude of action 
potentials can strongly decrease during repetitive burst fir-
ing, and spike sorting may erroneously categorize these as 
different clusters. Caution should, therefore, be taken when 
interpreting such clusters. Still, spike sorting can be very 
useful, as shown, for example, by Becchetti et al. (2012) to 
help discriminate between inhibitory and excitatory neurons. 
A suggestion for future MEA-ToolBox improvements would 
be to quantify the peak to valley stability, by evaluating the 
amount of variability over time and setting a threshold (as a 
percentage of a defined range of variability, parameters set 
as fixed or depending on the mean or median).

Limitations of MEA‑ToolBox

Although our MEA-ToolBox software contains a wide variety 
of tools to analyze MEA data there are some limitations. The 
entire code is written using MATLAB scripts, which means 
that the interpretation of the code is slower compared to using 
for example MEX files. However, since MEA-ToolBox was 
made for offline analysis, fast processing times are not criti-
cal. We chose not to make use of MEX files because multiple 
functions for the visualization tools within the GUI were not 
compatible with MEX files. As a general concern, the time/
speed needed to analyze the data and work with the GUI is 
dependent on the hardware of the user’s PC. The bigger the 
data set is, the more ram is needed. For example, with 16 GB 
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ram, a 10 min-long voltage recordings (roughly 4 GB) of a 
12-well MEA multiwell (288 individual channels) will take 
on average 30 min to analyze, which can be broken down into 
3 distinct phases: 4 min for spike detection, 7 min for single-
burst detection and 18 min for network related metrics. For 
files containing only time stamps, the analysis will be much 
faster, only taking a few minutes.

We alleviated some of the limitations by employing sev-
eral tricks such as splitting the data in multiple pieces before 
combining them together later in the analysis pipeline when 
needed. MeaRtools does not have this limitation because it 
does not need to work with voltage traces and only works 
with spike time stamps data, making the analysis much 
faster. This makes meaRtools very suited for users that are 
experienced in R and want to quickly explore their data. In 
the case of Multiwell-Analyzer, this package is specialized 
to analyze multiwell MEA data and does not pose a limit on 
the amount of data it can process. Exploratory studies usu-
ally contain large data sets and if they are multiwell data sets 
then the Multiwell-Analzyer is more suited for these types 
of exploratory studies.

Another limitation of MEA-ToolBox is that the incorpo-
rated algorithms are not parameter-free. The benefits are 
that the user can fine tune parameters but this means that 
the neuro endpoints are not data-driven but based on the 
parameters that are set. As a result, features of the data set 
could be missed or distorted if the user does not know what 
kind of parameters to use. This is why default values are 
provided for each parameter based on literature. However, 
if the user wants to perform a more exploratory analysis, 
parameter-free methods such as the Otsu method to detect 
network bursts—used in meaRtools—would be preferred. 
This might also explain the difference found in the analysis 
of the Kleefstra data set using meaRtools compared to MEA-
ToolBox, as meaRtools used the parameter-free method for 
network burst detection. Although meaRtools could repli-
cate the findings of the original publication that Kleefstra 
cultures showed fewer network bursts and a higher network 
burst IBI, in contrast to the publication, network burst dura-
tion and network burst CV of IBI did not differ between the 
two groups, whereas MEA-ToolBox replicated also the latter. 
Neither the methods used in the MEA-ToolBox nor the meth-
ods used in meaRtools are wrong because there is no golden 
standard and we believe that each approach serves different 
purposes. There is a great example of this in the paper of 
Cotterill et al. (2016) that used 8 different methods to detect 
single-channel bursts from literature to compare their per-
formance. The outcomes show that even if one tries to use 
the same parameters and compare them, different methods 
do not necessarily give the same results. The authors dis-
cussed that they cannot conclude on a perfect method for 
burst detection and recommend to choose a burst detector 
based on the degrees of freedom the user wants to control. 

Nevertheless, two methods were found to perform best in 
the analysis, i.e. the max interval method and the log ISI 
method, which is why we have chosen to include these in our 
MEA-ToolBox. Both the meaRtools and Multiwell-Analyzer 
are more specialized toolboxes tailored for users with either 
R coding expertise or exploratory studies and we also rec-
ommend these toolboxes for those users. Lastly, Dastgheyb 
et al. (2020) have compiled a table (cf table ESM1) contain-
ing most of the toolboxes found in the literature and have 
scored them per feature, which gives an excellent overview 
of the previously published toolboxes limitations.

Conclusion

The focus for the MEA-ToolBox was to represent a general 
toolbox for MEA data analysis that is user friendly while 
containing a multitude of tools for users which have no expe-
rience in coding. MEA-ToolBox will automatically detect 
spikes and collect information about spike activity, bursting 
behavior and network related metrics and is provided with an 
intuitive GUI interface. Lastly, we will provide continuous 
support for the development of MEA-ToolBox as an open 
source program on Github (e.g. make toolbox compatible 
with more file formats from other MEA manufacturers), and 
encourage more advanced users to provide add-on pack-
ages for increased modularity and new features or improve 
the existing scripts, so that MEA-ToolBox can become and 
remain a universal and standardized MEA analytical tool.

Information Sharing Statement
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