

Influenza virus RNA structure: unique and common features

Goultiaev, A.P.; Fouchier, R.A.M.; Olsthoorn, R.R.C.L.

Citation

Goultiaev, A. P., Fouchier, R. A. M., & Olsthoorn, R. R. C. L. (2010). Influenza virus RNA structure: unique and common features. *International Reviews Of Immunology*, 29(6), 533-556. doi:10.3109/08830185.2010.507828

Version: Publisher's Version

License: <u>Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)</u>

Downloaded from: https://hdl.handle.net/1887/3631577

Note: To cite this publication please use the final published version (if applicable).

International Reviews of Immunology

ISSN: 0883-0185 (Print) 1563-5244 (Online) Journal homepage: https://www.tandfonline.com/loi/iiri20

Influenza Virus RNA Structure: Unique and Common Features

Alexander P. Gultyaev, Ron A. M. Fouchier & René C. L. Olsthoorn

To cite this article: Alexander P. Gultyaev, Ron A. M. Fouchier & René C. L. Olsthoorn (2010) Influenza Virus RNA Structure: Unique and Common Features, International Reviews of Immunology, 29:6, 533-556, DOI: 10.3109/08830185.2010.507828

To link to this article: https://doi.org/10.3109/08830185.2010.507828

	Published online: 05 Oct 2010.
	Submit your article to this journal $oldsymbol{oldsymbol{\mathcal{G}}}$
hil	Article views: 882
Q	View related articles 🗗
4	Citing articles: 10 View citing articles 🗗

Influenza Virus RNA Structure: Unique and Common Features

Alexander P. Gultyaev

Department of Virology, Erasmus Medical Center, Rotterdam, Netherlands, and Department of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands

Ron A. M. Fouchier

Department of Virology, Erasmus Medical Center, Rotterdam, Netherlands

René C. L. Olsthoorn

Department of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands

The influenza A virus genome consists of eight negative-sense RNA segments. Here we review the currently available data on structure-function relationships in influenza virus RNAs. Various ideas and hypotheses about the roles of influenza virus RNA folding in the virus replication are also discussed in relation to other viruses.

 $\begin{tabular}{ll} \textbf{Keywords} & influenza virus, RNA structure, negative-sense RNA virus, segmented RNA genome \\ \end{tabular}$

INTRODUCTION

Influenza A virus is an important epidemic infectious agent in animals and humans [1–3]. It is a negative-sense segmented RNA virus of the family *Orthomyxoviridae*, and its genome consists of eight segments. These segments can be exchanged via reassortment upon infection of a single host by two strains. Gene segments 4 and 6 encode the main viral surface glycoproteins hemagglutinin (HA) and neuraminidase (NA), respectively, and various combinations of these genes define different antigenic subtypes, such as H1N1, H3N2, etc. Wild waterfowl are thought to be the main reservoir of influenza A virus diversity, with

Address correspondence to Dr. Alexander P. Gultyaev, Erasmus Medical Center, Department of Virology, Dr Molewaterplein 50, Rotterdam 3015 GE, Netherlands. E-mail: a.goultiaev@erasmusmc.nl

16 known HA subtypes and 9 NA subtypes. Only three HA subtypes (H1, H2, and H3) and two NA subtypes (N1 and N2) have circulated in the human population in the last century, during pandemics (caused by reassortant viruses) and subsequent annual seasonal epidemics.

The molecular basis of influenza virus evolution and host adaptation is usually sought in differences between protein sequences from various strains, and various important determinants of host range and virulence have been identified [4–7]. On the other hand, relatively little is known about influenza virus RNA folding and its influence on influenza virus replication. In contrast, for many other viruses with RNA genomes, many data on RNA structure-function relationships have accumulated and building of structural models has considerably contributed to the understanding of virus replication cycles [8–10].

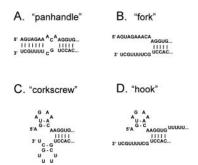
Here we summarize the available data on influenza virus RNA folding. We also discuss the various ideas and hypotheses about influenza virus RNA structure and its role in virus replication. In particular, we try to identify the analogies and differences between influenza viruses and other viruses. Apparently, such a comparison should not be restricted to the most closely related viruses, such as segmented negative-sense RNA viruses, but has to include the knowledge on RNA structures from other virus orders.

GLOBAL FOLDING OF INFLUENZA VIRUS GENOME SEGMENTS

In comparison with positive-strand RNA viruses, negative-strand RNA viruses, influenza virus included, seem to have less structured RNA on a global genome scale. The genomes of many positive-strand RNA viruses contain sequences that may be folded with free energies significantly lower than randomized sequences retaining the same dinucleotide and codon frequencies [11]. Such a pattern, coined genome-scale ordered RNA structure (GORS), is much more pronounced in positive-sense RNA viruses than in negative-sense RNA genomes.

This difference may be due to differences in replication mechanisms. The genomic RNA of negative-sense RNA viruses can serve as a template for viral polymerase only in a ribonucleoprotein (RNP) complex with the viral nucleoprotein, NP [12, 13]. In such a complex, the RNA secondary structure is completely or partially melted [13–15]. Thus, a potential for the formation of highly stable structures would probably present a barrier for efficient assembly of RNP particles.

However, in some influenza A virus genome segments, in particular, PB1, PB2, PA, and NP, a global pattern of RNA thermodynamic stability has been identified [16]. Furthermore, this pattern turned out to be host-specific, as the segments in human strains exhibited a slight trend


of lowering their stability (as judged from the increase in the lowest free energy of folding) as compared to those from avian strains. One of the explanations for this is adaptation of the virus to the host cell temperature, which is higher in birds than in humans [16]. On the other hand, the lowest free energy values of full-length segments are unlikely to represent the native structures, as such large RNA molecules usually fold into metastable conformations with folding free energies much higher than the global energy minima. Furthermore, the trend of the folding-energy increase in human influenza A strains actually follows the changes in their nucleotide and dinucleotide composition biases (decrease in C, G, and CpG contents), which may be attributed to reasons other than RNA folding [17, 18].

Irrespective of the GORS-like patterns, an RNA molecule can form local secondary structures. In fact, it is known that the low value of free energy is not the main determinant of a functional RNA structure [19]. Furthermore, even though influenza virus RNA is assumed to be mostly melted in mature RNP particles, local structures can still remain and they can also fold at those steps of the virus replication cycle when NP is not (yet) associated with certain RNA regions.

A ROLE OF RNA STRUCTURE IN INFLUENZA VIRUS RNA TRANSCRIPTION AND REPLICATION

The 5′- and 3′-termini of the influenza virus genome segments contain highly conserved sequences that are complementary to each other, and a role of interactions between them in virus replication has been suggested more than 30 years ago [20, 21]. Later, detailed studies of RNA structure in these regions, carried out by different groups, confirm the functional importance of the pairing between the termini of influenza virus RNA segments. This structure, so far, remains the only one in influenza virus RNA for which structure-function relationships are known in detail (reviewed in [22]). Remarkably, its functioning turned out to have a dynamic character, with different structures formed at various steps.

All segments of the influenza A virus can form a stem-loop structure with two stems separated by a bulge, the so-called "panhandle" (Fig. 1A). On the basis of electron microscopy and nuclease S1 mapping, the panhandle was suggested to determine the circular viral RNA (vRNA) conformation [23]. Similar structures can be folded in other segmented negative-strand RNA viruses, such as members of the *Orthomyxoviridae*, *Bunyaviridae*, and *Arenaviridae* families and Tenuiviruses [22, 24–26].

FIGURE 1 Variations on the panhandle structure at the ends of influenza virus vRNAs.

Mutagenesis studies pointed to different functional roles of the panhandle base pairs, showing that the interactions between the panhandle ends were not necessary for initiation of transcription [27, 28]. This led to the proposal of the "RNA-fork" model, in which the panhandle is only partially double-stranded (Fig. 1B). Mutations in this part of the panhandle abolished promoter activity, which could be restored by complementary double mutations. In contrast, the effect of mutations at positions closer to the RNA 5′-end could not be compensated by substitutions at the 3′-end [27, 28].

The latter effect can be explained by the "corkscrew model" (Fig. 1C), with two small hairpins at the vRNA ends [29, 30]. The corkscrew conformation turned out to be required for tight polymerase binding and the endonuclease activity of the polymerase complex [29–31].

Furthermore, the small hairpin at the vRNA 5' end in the "5'-hook model" (Fig. 1D) turned out to be necessary for polyadenylation of mRNA [32]. The polyadenylation of influenza A virus mRNA occurs by reiterative copying of a track of five to seven uridine residues [33, 34], adjacent to the panhandle stem (Fig. 1D). The 5'-hook hairpin seems to be important for stable binding of the polymerase complex to the 5' end of vRNA during mRNA synthesis that serves as a physical barrier resulting in reiterative copying of the U-stretch [27, 32].

The panhandle and the corkscrew structures are conserved in vR-NAs of *Orthomyxoviridae* and other groups of segmented negative-sense RNA viruses, such as *Bunyaviridae* and Tenuiviruses [24, 26, 35]. However, the corkscrew structure does not seem to be universally required in all viruses of these groups. For instance, in Thogoto virus no evidence for the hairpin at the 3′ arm of the corkscrew structure was obtained [35].

It is likely that at different steps of the virus replication cycle the vRNA panhandles undergo conformational transitions between structures required for various functions. The switch between open and closed forms of the influenza RNP is guided by the antagonistic effects of NP and polymerase: NP melts RNA structure, while polymerase complex anneals it [15]. An RNA chaperone role, similar to that of the influenza virus NP protein, was suggested for hantavirus nucleocapsid protein [36]: the protein recognizes the terminal panhandle, but then unwinds it in the complex. Interestingly, the extent of pairing between the ends of the defective-interfering RNAs from vesicular stomatitis virus (VSV) has been directly shown to modulate the balance between transcription and replication; more stable panhandles enhanced replication, but suppressed transcription [37].

Such a switch is not unique for influenza and other negative-strand RNA viruses. Conformational transitions at both or one of the RNA termini were shown to switch between various RNA functions in both animal and plant positive-strand RNA viruses (e.g., [38–41]).

A ROLE OF RNA STRUCTURE IN INFLUENZA VIRUS RNA ENCAPSIDATION

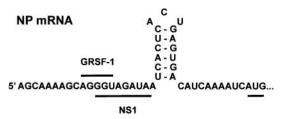
The eight vRNA segments of influenza A virus are separately encapsidated as RNP complexes, each containing one copy of three polymerase subunits (PB2, PB1, and PA) and multiple NP molecules, with an estimated stoichiometry of one NP monomer per 24 nucleotides [12, 13, 42]. At least one copy of each segment has to be packaged into a virion, and the currently accepted model assumes that this is mediated by specific packaging signals in vRNA rather than via a random process (reviewed in [43]).

Exact location and structure of these signals are still enigmatic, but multiple mutagenesis studies by different groups tracked down their location at the vRNA termini, in both untranslated regions (UTRs) and the proximal parts of the coding regions [43]. The terminal panhandles seem to be an important structural determinant of packaging [23, 44]. Obviously, however, the panhandles, which are conserved in all segments, are not sufficient for segment-specific packaging.

Specificity can be realized by interactions between the segments. In support of this model, a characteristic "7+1" configuration of 7 segments surrounding a central one is seen by transmission electron microscopy [45]. Furthermore, the signals of all segments are necessary and sufficient for efficient packaging, as evidenced by reverse genetics experiments manipulating various combinations of signals and packaged genes [46–48]. The existence of intersegment interactions was also

concluded from the observation that mutation of the proposed packaging signals of one segment affected the packaging of other non-mutated segments [49–52].

A network of specific interactions between various segments of the RNA genome could either be mediated by yet-unidentified protein factors or realized via direct RNA–RNA interactions [43, 49, 53]. In both scenarios, a role of RNA structure can be suspected, analogous to other virus families (e.g., *Retroviridae*). However, besides the terminal panhandle region, functional structures formed by the influenza RNA packaging signals remain unknown.


In principle, the high-order structure of RNA in packaged RNP particles, formed by each segment, is strongly influenced by NP binding. The shape of an RNP is mostly dictated by the structure of NP, as particles obtained without RNA are structurally indistinguishable from RNA-containing complexes [54]. However, RNA can still form some structures in RNP complexes, for instance, relatively short secondary structures that may be involved in intersegmental interactions [43]. RNA structure probing indicated periodic patterns of double-stranded RNA regions in RNP complexes [55]. Interestingly, in probing experiments with a "mini-vRNA" construct binding to NP [14], a small hairpin retained its structure upon protein binding. Although the authors attribute this to deficiencies in complex formation, it is also possible that some of the hairpin base pairs remain intact in the complex.

Intriguingly, experiments with selective incorporation of randomized NS segment packaging sequences suggest that their functional high-order structure might also be formed by sequences very different from the wild type [56]. However, attempts to identify functional secondary structures in the packaging signals of NS and other segments by predictions of low free energy conformations did not lead to reasonable models [50, 53, 56, 57]. Apparently, a straightforward search for (sub)optimal orthodox secondary structures in naked vRNAs without additional experimental or phylogenetic data is not sufficient to identify functional vRNA motifs and interactions in RNP complexes.

A ROLE OF RNA STRUCTURE IN INFLUENZA VIRUS RNA TRANSLATION

Infection of cells by the influenza A virus results in a shutoff of host protein synthesis and selective translation of the virus mRNAs [58, 59]. The molecular mechanism of such a discrimination involves both virus and host factors.

Some of the determinants of preferential translation of influenza virus mRNAs have been suggested to be located in their 5'-UTRs

FIGURE 2 The hairpin at the 5' end of NP mRNA of influenza A viruses, located between the proposed protein binding sites and the start codon [61, 63, 64]. The start codon is underlined. The putative sequence motifs AGGGU and GGUAGAUA, recognized by host factor GRSF-1 and viral NS1 protein, respectively, are indicated.

[60–63]. The sequence GGUAGAUA, present in NP and M segments, and AGGGU, present in NP and NS segments, have been shown to have stimulatory effects on translation due to the binding of the virus NS1 protein and the host GRSF-1 protein, respectively [61, 64].

One nucleotide downstream of the GGUAGAUA motif in the NP segment, a stable hairpin is predicted (Fig. 2), which may be involved in translational regulation [61, 63]. However, deletion of this hairpin did not have a significant effect on GRSF-1 binding, so its role is presently unclear [63, 64]. It has also been noted that the influenza A virus 5′-UTRs seem to have little stable secondary structure, which may be important for ensuring a single-stranded character of potential protein binding sites [63, 64].

Recently a correlation between locations of mRNA secondary structure domains and encoded protein domains was described for HIV [65]. Such a correlation could be explained by translational pausing caused by a stable RNA structure, which may ensure an efficient correct folding of important protein domains. Such an effect has also been proposed for the RNA bacteriophage MS2 [66], and could apply to many other viruses. This mechanism is one of the possible rationales for the presence of conserved local structures in influenza mRNAs as well.

A ROLE OF RNA STRUCTURE IN THE EXPRESSION OF INFLUENZA VIRUS OVERLAPPING READING FRAMES

Two segments of the influenza A virus genome (segments 7 and 8) contain introns. The ratio of spliced and unspliced mRNAs, encoding proteins with overlapping reading frames, M1/M2 and NS1/NS2, respectively, is tightly regulated [58, 67]. Homologous proteins in influenza B and C viruses are also encoded by overlapping open reading

frames (ORFs), but influenza B virus exploits a termination-reinitiation strategy in its segment 7 [67].


In the regions close to the 3' splice sites in NS mRNA of influenza A and B viruses, a remarkably conserved folding has been predicted [68, 69]. In both virus types, a stable pseudoknot structure can be formed, comprising the 3' splice site in one of its loops (Fig. 3). The pseudoknot conformation is supported by nucleotide covariations and by structure probing and NMR spectroscopy of oligonucleotides comprising the region around the 3' splice site [68]. To the best of our knowledge, apart from the terminal panhandle structures, this is the only structure shown to be conserved in both influenza A and B virus genomes.

Interestingly, in influenza A virus NS mRNA a dynamic equilibrium between this pseudoknot and an alternative hairpin conformation (Fig. 3) can be suggested [68]. Furthermore, the equilibrium turned out to be very sensitive for point mutations in some strains. For instance, a G563-C substitution, observed in recent H5N1 viruses, favored a shift to the hairpin conformation, while the pseudoknot became less stable (Fig. 3B). The C563 mutation seems to be unique for H5N1 viruses, and it is possible to trace its first occurrence in China in 2001 [68]. It is stably inherited in the dominant H5N1 lineages spreading over the world [70]. C563 has been present in all H5N1 viruses isolated from humans since 2003 [68].

Potential functions of the postulated pseudoknot and hairpin structures (Fig. 3) remain to be elucidated. Their location near the 3' splice site suggests that they are involved in splicing regulation. Splicing of NS mRNA in vitro is known to be strongly suppressed, and this block may result from an inactive RNA conformation, presumably including a structurally inaccessible 3' splice site [71, 72].

The suppression of the influenza A NS mRNA splicing has been shown to be dependent on inhibitory regions, located both in the intron (positions 153–465) and in the 3' exon (positions 775–860) [72]. It has been suggested that this may be attributed to an inhibition of proper NS1 mRNA folding required for splicing. While in the chimeric constructs, the intronic inhibitory region could inhibit the splicing of other mRNAs as well, the exonic sequence was inhibitory only in the NS1 mRNA. The structural context of these inhibitory elements has not been investigated, but it is possible that they can somehow interfere with the alternative foldings near the 3' splice site shown in Figure 3.

The influenza A virus NS1 protein itself is an inhibitor of splicing [73, 74]; on the contrary, influenza C virus NS1 upregulates splicing [75]. Interestingly, in the influenza C virus NS1 mRNA we could not find any structure similar to the pseudoknot suggested for the A and

FIGURE 3 (A) The pseudoknot structure conserved in NS segments of influenza A and B viruses [68, 69]. The 3' splice sites are indicated by small arrows. The nucleotide covariations supporting the pseudoknot are boxed. The location of the pseudoknot in relation to the coding regions of influenza A virus NS1 and NS2 mRNAs is shown schematically. (B) The pseudoknot/hairpin conformational transition caused by a unique C563 substitution in the H5N1 influenza A viruses, observed since 2001. The G-residues demonstrating the most considerable changes in RNase T1-susceptibility [68] upon the transition are shown by triangles. The indicated estimates of free energies (in kcal/mol) of the pseudoknot $\Delta G(pk)$ and the hairpin $\Delta G(hp)$ for the typical H5N1 sequences before and after 2001 are calculated [68] using the program kinefold (http://kinefold.curie.fr).

B types. The influenza A virus NS1 protein does not require its RNA-binding activity for splicing inhibition, but it is required for specific blocking of the nucleo-cytoplasmic transport of unspliced NS1 mRNA [76]. The mechanism of this specificity and the potential (structural) signals in NS1 mRNA required for nuclear retention are not known.

Coupled translation of M1 and BM2 proteins from segment 7 mRNA of influenza B virus occurs via a termination-reinitiation mechanism [77]. The M1 stop codon and the BM2 start codon overlap at the pentanucleotide UAAUG, the site of ribosome "stop-start." It has recently been suggested that the stop-start is regulated by the BM2 mRNA secondary structures able to affect the pairing between complementary sequences in 18S rRNA and mRNA [78]. Structure probing and folding predictions have revealed a potential for alternative coexisting secondary structures in BM2 mRNA with various accessibilities of the complementarity region (Fig. 4). Mutagenesis experiments identified the region required for efficient reinitiation, and both probing and structure predictions indicated that this region can adopt multiple metastable structures that could regulate BM2 expression [78, 79]. Regulation of translation reinitiation by RNA folding seems to be a widespread mechanism, and it has recently been proposed for caliciviruses [80, 81].

A ROLE OF RNA STRUCTURE IN INFLUENZA VIRUS EVOLUTION

A potential for the folding of functional RNA structures in the influenza virus genome implies specific constraints in its evolution [82, 83]. As some structures can be folded within protein coding regions, requirements for protein-coding capacity of viral mRNA pose an obvious constraint on RNA structure evolution, and vice versa. As predicted for RNA viruses in general [83], multiple constraints affecting the same genome can seriously limit the sequence space areas available for influenza virus adaptation.

This can explain, for instance, a remarkable conservation of codons in the influenza A virus genome, in particular, of those located in the regions important for packaging [84]. On the other hand, some regions in the influenza virus genome can fold into alternative structures that may be functional [68, 78]. Furthermore, a potential for the formation of alternative structures may also lead to conformational shifts in specific virus strains, as observed in the H5N1 lineage (Fig. 3B). In such shifts, novel nucleotide substitutions may be stably inherited if they become important in the new structural context. Thus, the evolution of influenza virus RNA structure may be punctuated [68], similar to

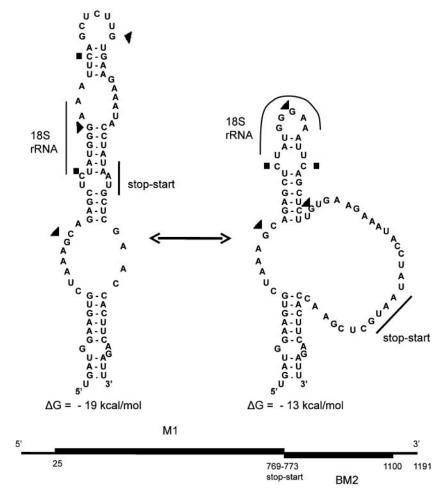


FIGURE 4 Alternative structures postulated to regulate translation reinitiation on M1/BM2 mRNA of influenza B viruses [78]. The locations of the stop-start pentanucleotide UAAUG and the sequence (UAUGGGAA) proposed to bind a complementary sequence in 18S rRNA are indicated. The locations of the M1 and BM2 coding regions in the M segment are shown schematically. Both alternative structures are in reasonable agreement with the RNA structure probing [78]. The strongest cleavage sites by the T1 (triangles) and CV1 (squares) RNases are shown here as an example. The indicated free energy estimates are calculated using the program mfold (http://frontend.bioinfo.rpi.edu/applications/mfold/).

the virus antigenic evolution [85–87]. Remarkably, such a pattern of evolution, with relatively long periods of phenotypic (e.g., structural) neutrality punctuated by rare discontinuous transitions, is also predicted from theoretical simulations of RNA adaptation [88, 89].

RNA secondary structure constraints have been suggested to act as possible additional control to eliminate mutations occurring in the regions coding for essential domains of viral proteins [90, 91]. In principle, such a function could explain the presence of high-order RNA structures in coding parts of the genome. On the other hand, in general it should be noted that in a region coding for conserved protein domains, a prediction of conserved RNA structural element may be just one of possible structures folded by a conserved nucleotide sequence. For instance, we noticed that in many conserved regions of influenza virus segments, mutually exclusive structures could be predicted (Gultyaev et al., unpublished). In the absence of experimental and/or phylogenetic (covariations) support, it is impossible to judge which of the alternative structures is actually formed in vivo.

POTENTIAL ROLES OF UNDISCOVERED INFLUENZA RNA STRUCTURES

As compared to many other single-stranded RNA viruses, the knowledge about high-order structures formed by influenza virus RNA is rather limited. In particular, this difference is striking in comparison with positive-stranded RNA viruses. In this group, reliable structural models can be developed for very large genomic regions or even complete genomes (e.g., [65, 92]), and numerous functional structures and specific motifs are identified and studied in detail (e.g., [8, 9]). In contrast, besides established structure-function relationships of the terminal panhandle structures [22], the information about the rest of the influenza virus genome is mostly limited to fragmentary folding predictions [61, 63, 68, 69, 78, 90, 91], structure probing in vitro [68, 78] and detection of global thermodynamic properties [16].

To a certain extent, this is because influenza virus does not need to exploit several mechanisms determined by highly structured RNA topologies. For instance, its mRNAs are capped and polyadenylated, thus IRES structures and translational enhancers of cap-independent translation, known to form characteristic structures in many viruses, are not likely to be encoded by the influenza virus genome. Influenza virus mRNAs do not have very long 5'-UTRs and 3'-UTRs that contain the majority of cis-acting RNA elements in positive-stranded RNA viruses [9]. Furthermore, the structure of influenza virus RNPs,

presumably with RNA uniformly distributed along the RNP [13], does not seem to allow an extensive RNA structure formation.

On the other hand, even in RNPs some high-order RNA structure can be expected. In influenza A virus RNPs, the bound RNA is accessible to treatment by RNAses [13, 14, 55]. The length of protected fragments is around 18 nt, while the average RNA fragment bound per NP monomer is 24 nt [13, 42]. Furthermore, RNPs turn out to contain unprotected vRNA regions that are sufficient for hybridization to complementary cDNA fragments, as shown by specific RNase H cleavage of bound RNPs [93]. These regions can be partially double-stranded, as evidenced by RNA structure probing of RNPs [14, 55]. Thus, some local structural motifs, presumably small hairpin loops, may be exposed at the surface of RNP particles and are able to interact with each other.

Such motifs might provide a basis for specific recognition between influenza virus genome segments during packaging [43]. Yet, no structures performing this role have been identified in influenza viruses.

In principle, the recurrent motifs that promote the formation of stable bimolecular RNA/RNA complexes are specific tetraloop binding by helical receptors and "kissing" interactions mediated by hairpin loops [94–98]. The GNRA hairpin tetraloops (where N is any base, and R is either G or A) are recognized by RNA stems (receptors) containing specific motifs [94–96]. The long-range GNRA/receptor interactions are typical for large ribozymes, where they are essential for RNA self-assembly [95, 96].

Kissing interactions are formed between hairpin loops and complementary sequences that are frequently, but not always, located in hairpin loops as well [97–99]. Viruses have been shown to exploit kissing interactions for various functions, in particular, for the interdependent packaging of genomic RNAs such as in homodimeric retroviral genomes and the bipartite genome of Red clover necrotic mosaic virus [100–105].

In retroviruses, genomic RNAs are packaged as dimers formed via multiple contacts mediated by kissing hairpin structures. Compared to retroviral genomic RNAs, influenza virus vRNAs in RNPs are expected to have considerably less secondary structure, but several contacts between small structural elements, probably formed under the chaperone-like influence of NP binding, could provide both specificity and thermodynamic stability for inter-segment interactions.

Several observations may be considered as an indirect support for such a "multi-hairpin" model. It is known that even two base pairs are sufficient for efficient kissing interaction [106, 107], and the cooperative effect of multiple interactions can lead to much more stable complexes [108]. Existence of multiple interactions between influenza virus gene

segments is consistent with relatively mild effects of substitutions of certain conserved nucleotides in the packaging signals [43]. Similarly, in mutagenesis studies of retroviral dimerization, deletions of single motifs only partially affect encapsidation [101]. On the other hand, a remarkable conservation of certain wobble positions in codons putatively located within the packaging signals of influenza A virus [84] may be explained by the need to have specific loop conformations for efficient contacts. Such structural constraints in the loops involved in intermolecular or long-range intramolecular kissing interactions of viral RNAs can lead to stringent sequence requirements [100, 109–111].

In principle, one may also anticipate the existence of alternative structures and conformational switches regulating the packaging of the influenza virus genome. Folding of nascent vRNA during its synthesis, prior to the formation of the terminal panhandle and the mature RNP complex, should result in local structures that may be partially or completely disrupted upon NP binding and packaging. Such rearrangements of secondary structure regulate dimerization and packaging of retroviral genomes [102–104].

Interestingly, several studies identified potential hairpin structures in the 5'-proximal regions of some of the vRNA segments from *Bunyaviridae* genomes [112–114]. Such hairpins could be functional during packaging. The hairpins at the 5' ends of S segments of Bunyamwera virus and Hantaan virus (Fig. 5A,B) have been suggested to be involved in recognition of transcribed nascent vRNA by N protein [112–114].

The extent of evolutionary conservation of these hairpins in related viruses has not yet been investigated. Intriguingly, very conserved hairpins can also be predicted in the 5'-proximal vRNA regions of some segments of the influenza virus genome. For instance, using various programs for RNA structure prediction [115–117], we identified a possible stable hairpin in the 5'-proximal part of segment 7 vRNA (Fig. 5C). Despite some sequence diversity in this region, the hairpin seems to be conserved in all influenza A virus strains. Furthermore, at one of the base-paired positions, a remarkable host-specific covariation can be observed; while the majority of human strains (except early viruses of 1918–1933) have a C-G pair, avian strains have mostly U-A.

A functional role of such hairpin structures remains to be elucidated. In principle, they can be specifically recognized by NP, even if they are completely or partially melted upon the assembly of mature RNP particles. Another possible role of hairpin structures could be to establish kissing interactions between the segments.

It is not surprising that a potential for the formation of conserved structures is revealed in NS segments of influenza A and B viruses

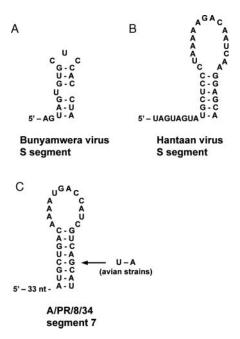
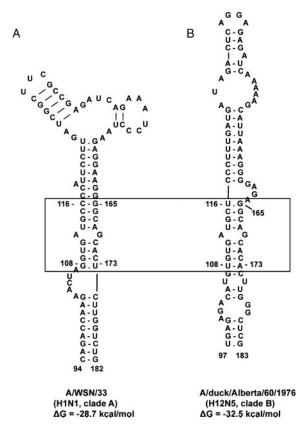


FIGURE 5 The hairpin structures predicted to fold at the 5' ends of vR-NAs from negative-sense viruses. (A) Bunyamwera virus S segment [112, 113]. (B) Hantaan virus S segment [114]. (C) Conserved hairpin in the M segment of influenza A viruses, supported by a host-specific covariation [A. P. Gultyaev, unpublished]. All structures can be predicted by various folding algorithms, including free energy minimization, such as mfold (http://frontend.bioinfo.rpi.edu/applications/mfold/).

(Fig. 3) [68] and of M segments in influenza B virus (Fig. 4) [78], which contain overlapping ORFs. Many viruses utilize mRNA (re)folding to fine-tune the balance between proteins alternatively expressed from a single gene by mechanisms, such as splicing, ribosomal frameshifting, readthrough, reinitiation, and leaky scanning (e.g., [8, 80, 118–121]).

Thus, it is likely that functional conserved structures are present in other segments encoding more than one protein, such as M and PB1 segments of influenza A viruses. For instance, splicing of the M segment mRNA has been shown to be regulated by a purine-rich exonic enhancer that recruits splicing factor SF2/ASF [122], and such a recruitment in host pre-mRNA's may be affected by secondary structure [123]. Interestingly, in a recent genome-wide screen of human host

factors involved in influenza virus replication, multiple factors turned out to be connected with pre-mRNA splicing [124].


The PB1 segment seems to have a complicated regulation of translation of several ORFs. In addition to the primary PB1 polymerase, two other proteins (PB1-F2 and N40) are translated from downstream start codons [125, 126], and shorter polypeptides, synthesized from further downstream AUGs, have been reported as well [127]. While PB1-F2 is likely to be translated by leaky scanning past upstream AUG codons with moderate Kozak translation initiation contexts, translation of N40 and downstream polypeptides should involve additional regulation mechanisms [126].

Of course, one cannot exclude the presence of functional structures in mRNAs from other segments as well. For instance, there is growing evidence that nucleo-cytoplasmic transport and/or nuclear retention of influenza virus mRNAs are segment-specific [76, 128–131]. One of the important issues in understanding this process is to characterize the signals in viral transcripts that are recognized by the host and viral proteins involved in its regulation [130].

It has been reported that transcription of influenza virus mRNAs from recombinant plasmids in human embryo kidney cells is affected by the folded structures in the protein-coding regions [90]. This was demonstrated by a study of mutants that changed the stem-loop structure predicted in the NS gene (Fig. 6A). However, the influence of this structure on transcription by viral polymerase has not been tested.

The structure reported by Ilyinskii et al. [90] for A/WSN/33 is also repeatedly predicted as one of the most conserved elements in our simulations of NS mRNA folding for various influenza A strains [68]. In particular, a similar extended stem-loop structure may also be present in strains containing the so-called clade B NS gene (Fig. 6B). Although the top and the bottom parts of the stem-loops are formed by non-homologous base pairs, the middle parts (nucleotides 109–116/165–172) are exactly the same in both clades. The similarity of the structures from the two clades is remarkable, because their sequences differ considerably [132]. Strong conservation of the overall topology of the predicted extended stem-loop structures suggests that the shape of NS RNA folding in this region plays some yet unknown functional role.

In summary, the studies on influenza virus RNA folding suggest that we are only at the very beginning of elucidating the role of high-order RNA structures in the virus replication. More detailed knowledge of specific influenza virus RNA structures will help us to solve many puzzles in understanding the molecular mechanisms underlying the virus replication cycle.

FIGURE 6 (A) A stable stem-loop structure, suggested to affect the in vitro transcription of the NS segment of clade A strain A/WSN/33 [90]. (B) Folding of a homologous structure of the NS segment mRNAs from clade B strains [A. P. Gultyaev, unpublished]. The stems formed by homologous base pairs (regions 108–116/165–173) in the two structures are boxed. Both structures can be predicted by various folding algorithms, including free energy minimization, such as mfold (http://frontend.bioinfo.rpi.edu/applications/mfold/), and supported by comparative analysis. The folding free energies are calculated using the mfold server.

ACKNOWLEDGMENTS

This work was supported by the European Commission grant no. 201607 (also known under the acronym RNAFLU) [to R.C.L.O. and A.P.G]; and by a VICI grant of the Netherlands Organisation for Scientific Research (NWO) [to R.A.M.F].

Declaration of Interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

REFERENCES

- [1] Cox NJ, Subbarao K. Global epidemiology of influenza: Past and present. Annu Rev Med 2000;51:407–421.
- [2] Horimoto T, Kawaoka Y. Influenza: Lessons from past pandemics, warnings from current incidents. Nature Rev Microbiol 2005;3:591–600.
- [3] Nelson MI, Holmes EC. The evolution of epidemic influenza. Nature Rev Genet 2007;8:196–204.
- [4] Parrish CR, Kawaoka Y. The origins of new pandemic viruses: The acquisition of new host ranges by canine parvovirus and influenza A viruses. Annu Rev Microbiol 2005;59:553–586.
- [5] Finkelstein DB, Mukatira S, Mehta PK, et al. Persistent host markers in pandemic and H5N1 influenza viruses. J Virol 2007;81:10292–10299.
- [6] de Wit E, Fouchier RAM. Emerging influenza. J Clin Virol 2008;41:1-6.
- [7] Basler CF, Aguilar PV. Progress in identifying virulence determinants of the 1918 H1N1 and the Southeast Asian H5N1 influenza A viruses. Antiviral Res 2008;79:166–178.
- [8] Brierley I, Pennell S, Gilbert RJ. Viral RNA pseudoknots: Versatile motifs in gene expression and replication. Nature Rev Microbiol 2007;5: 598–610.
- [9] Liu Y, Wimmer E, Paul AV. Cis-acting RNA elements in human and animal plusstrand RNA viruses. Biochim Biophys Acta 2009;1789:495–517.
- [10] Schroeder S. Advances in RNA structure prediction from sequence: New tools for generating hypotheses about viral RNA structure-function relationships. J Virol 2009;83:6326–6334.
- [11] Simmonds P, Tuplin A, and Evans DJ. Detection of genome-scale ordered RNA structure (GORS) in genomes of positive-stranded RNA viruses: Implications for virus evolution and host persistence. RNA 2004;10:1337–1351.
- [12] Ortin J, Parra F. Structure and function of RNA replication. Annu Rev Microbiol 2006;60:305–326.
- [13] Coloma R, Valpuesta JM, Arranz R, et al. The structure of a biologically active influenza virus ribonucleoprotein complex. PLoS Pathogens 2009;5:e1000491.
- [14] Baudin F, Bach C, Cusack S, Ruigrok RWH. Structure of influenza virus RNP. I. Influenza virus nucleoprotein melts secondary structure in panhandle RNA and exposes the bases to the solvent. EMBO J 1994;13:3158–3165.
- [15] Klumpp K, Ruigrok RWH, Baudin F. Roles of the influenza virus polymerase and nucleoprotein in forming a functional RNP structure. EMBO J 1997;16:1248–1257.
- [16] Brower-Sinning R, Carter DM, Crevar CJ, et al. The role of RNA folding free energy in the evolution of the polymerase genes of the influenza A virus. Genome Biol 2009;10:R18.
- [17] Rabadan R, Levine AJ, Robins H. Comparison of avian and human influenza A viruses reveals a mutational bias on the viral genomes. J Virol 2006;80:11887–11891.
- [18] Greenbaum BD, Levine AJ, Bhanot G, Rabadan R. Patterns of evolution and host gene mimicry in influenza and other RNA viruses. PLoS Pathogens 2008;4:e1000079.

- [19] Rivas E, Eddy SR. Secondary structure alone is generally not statistically significant for the detection of noncoding RNAs. Bioinformatics 2000;16:583– 605.
- [20] Skehel JJ, Hay AJ. Nucleotide sequences at the 5' termini of influenza virus RNAs and their transcripts. Nucleic Acids Res 1978;5:1207–1219.
- [21] Robertson JS. 5' and 3' terminal nucleotide sequences of the RNA genome segments of influenza virus. Nucleic Acids Res 1979;6:3745–3757.
- [22] Neumann G, Brownlee GG, Fodor E, Kawaoka Y. Orthomyxovirus replication, transcription, and polyadenylation. Curr Top Microbiol Immunol 2004;283:121–143.
- [23] Hsu, M-T, Parvin JD, Gupta S, et al. Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle. Proc Natl Acad Sci U S A 1987;84:8140–8144.
- [24] Flick R, Elgh F, Hobom G, Pettersson RF. Mutational analysis of the Uukuniemi virus (*Bunyaviridae* family) promoter reveals two elements of functional importance. J Virol 2002;76:10849–10860.
- [25] Perez M, de la Torre JC. Characterization of the genomic promoter of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 2003;77:1184–1194.
- [26] Barr JN, Wertz GW. Role of the conserved nucleotide mismatch within 3'- and 5'-terminal regions of Bunyamwera virus in signaling transcription. J Virol 2005;79:3586–3594.
- [27] Fodor E, Pritlove DC, Brownlee GG. The influenza virus panhandle is involved in the initiation of transcription. J Virol 1994;68:4092–4096.
- [28] Kim HJ, Fodor E, Brownlee GG, Seong BL. Mutational analysis of the RNA-fork model of the influenza A virus vRNA promoter. J Gen Virol 1997;78:353–357.
- [29] Flick R, Neumann G, Hoffmann E, et al. Promoter elements in the influenza vRNA terminal structure. RNA 1996;2:1046–1057.
- [30] Leahy MB, Dobbyn HC, Brownlee GG. Hairpin loop structure in the 3' arm of the influenza A virus virion RNA promoter is required for endonuclease activity. J Virol 2001;75:7042–7049.
- [31] Brownlee GG, Sharps JL. The RNA polymerase of influenza A virus is stabilized by interaction with its viral RNA promoter. J Virol 2002;76:7103–7113.
- [32] Pritlove DC, Poon LLM, Devenish LN, et al. A hairpin loop at the 5' end of influenza A virus virion RNA is required for synthesis of poly(A)+ mRNA in vitro. J Virol 1999;73:2109–2114.
- [33] Robertson JS, Schubert M, Lazzarini RA. Polyadenylation sites for influenza virus mRNA. J Virol 1981;38:157–163.
- [34] Poon LLM, Pritlove DC, Fodor E, Brownlee GG. Direct evidence that the poly(A) tail of influenza A virus mRNA is synthesized by reiterative copying of a U track in the virion RNA template. J Virol 1999;73:3473–3476.
- [35] Leahy MB, Dessens JT, Nuttall PA. Striking conformational similarities between the transcription promoters of Thogoto and influenza A viruses: Evidence for intrastrand base pairing in the 5' promoter arm. J Virol 1997;71:8352–8356.
- [36] Mir MA, Panganiban AT. Characterization of the RNA chaperone activity of hantavirus nucleocapsid protein. J Virol 2006;80:6276–6285.
- [37] Wertz GW, Whelan S, LeGrone A, Ball LA. Extent of terminal complementarity modulates the balance between transcription and replication of vesicular stomatitis virus RNA. Proc Natl Acad Sci U S A 1994;91:8587–8591.
- [38] Gritsun TS, Gould EA. Origin and evolution of flavivirus 5'UTRs and panhandles: Trans-terminal duplications? Virology 2007;366:8–15.

- [39] Van Den Born E, Posthuma CC, Gultyaev AP, Snijder EJ. Discontinuous subgenomic RNA synthesis in arteriviruses is guided by an RNA hairpin structure located in the genomic leader region. J Virol 2005;79:6312–6324.
- [40] Olsthoorn RCL, Mertens S, Brederode FT, Bol JF. A conformational switch at the 3' end of a plant virus RNA regulates viral replication. EMBO J 1999;18:4856–4864.
- [41] Chen S-C, Olsthoorn RCL. In vitro and in vivo studies of the RNA conformational switch in alfalfa mosaic virus. J Virol 2010;84:1423–1429.
- [42] Ortega J, Martin-Benito J, Zürcher T, et al. Ultrastructural and functional analyses of recombinant influenza virus ribonucleoproteins suggest dimerization of nucleoprotein during virus amplification. J Virol 2000;74:156–163.
- [43] Hutchinson A, von Kirchbach JC, Gog JR, Digard P. Genome packaging in influenza A virus. J Gen Virol 2010;91:313–328.
- [44] Tchatalbachev S, Flick R, Hobom G. The packaging signal of influenza viral RNA molecules. RNA 2001;7:979–989.
- [45] Noda T, Sagara H, Yen A, et al. Architecture of ribonucleoprotein complexes in influenza A virus particles. Nature 2006;439:490–492.
- [46] de Wit E, Spronken MIJ, Rimmelzwaan GF, et al. Evidence for specific packaging of the influenza A virus genome from conditionally defective virus particles lacking a polymerase gene. Vaccine 2006;24:6647–6650.
- [47] Gao Q, Brydon EWA, Palese P. A seven-segmented influenza A virus expressing the influenza C virus glycoprotein HEF. J Virol 2008;82:6419–6426.
- [48] Gao Q, Palese P. Rewiring the RNAs of influenza virus to prevent reassortment. Proc Natl Acad Sci U S A 2009;106:15891–15896.
- [49] Muramoto Y, Takada A, Fijii K, et al. Hierarchy among viral RNA (vRNA) segments in their role in vRNA incorporation into influenza A virions. J Virol 2006;80:2318–2325.
- [50] Marsh GA, Hatami R, Palese P. Specific residues of the influenza A virus hemagglutinin viral RNA are important for efficient packaging into budding virions. J Virol 2007;81:9727–9736.
- [51] Marsh GA, Rabadan R, Levine AJ, Palese P. Highly conserved regions of influenza A virus polymerase gene segments are critical for efficient viral RNA packaging. J Virol 2008;82:2295–2304.
- [52] Hutchinson EC, Wise HM, Kudryavtseva K, et al. Characterisation of influenza A viruses with mutations in segment 5 packaging signals. Vaccine 2009;27:6270–6275.
- [53] Fujii Y, Goto H, Watanabe T, et al. Selective incorporation of influenza virus RNA segments into virions. Proc Natl. Acad. Sci. U S A 2003;100:2002–2007.
- [54] Ruigrok RWH, Baudin F. Structure of influenza virus ribonucleoprotein particles. II. Purified RNA-free influenza virus ribonucleoprotein forms structures that are indistinguishable from the intact influenza virus ribonucleoprotein particles. J Gen Virol 1995;76:1009–1014.
- [55] Yamanaka K, Ishihama A, Nagata K. Reconstitution of influenza virus RNAnucleoprotein complexes structurally resembling native viral ribonucleoprotein cores. J Biol Chem 1990;265:11151–11155.
- [56] Fujii K, Ozawa M, Iwatsuki-Horimoto K, et al. Incorporation of influenza A virus genome segments does not absolutely require wild-type sequences. J Gen Virol 2009;90:1734–1740.
- [57] Liang, Y, Huang T, Ly H, et al. Mutational analysis of packaging signals in influenza virus PA, PB1, and PB2 genomic RNA segments. J Virol 2008;82:229–236.
- [58] Ortin J. Multiple levels of posttranscriptional regulation of influenza virus gene expression. Semin Virol 1998;8:335–342.

- [59] Kash JC, Goodman AG, Korth MJ, Katze MG. Hijacking of the host-cell response and translational control during influenza virus infection. Virus Res 2006;119:111–120.
- [60] Garfinkel MS, Katze MG. Translational control by influenza virus. J Biol Chem 1993;268:22223–22226.
- [61] Enami K, Sato TA, Nakada S, Enami M. Influenza virus NS1 protein stimulates translation of the M1 protein. J Virol 1994;68:1432–1437.
- [62] de la Luna S, Fortes P, Beloso A, Ortin J. Influenza virus NS1 protein enhances the rate of translation initiation of viral mRNAs. J Virol 1995;69:2427–2433.
- [63] Park YW, Wilusz J, Katze MG. Regulation of eukaryotic protein synthesis: Selective influenza viral mRNA translation is mediated by the cellular RNA-binding protein GRSF-1. Proc Natl Acad Sci U S A 1999;96:6694–6699.
- [64] Kash JC, Cunningham DM, Smit MW, et al. Selective translation of eukaryotic mRNAs: Functional molecular analysis of GRSF-1, a positive regulator of influenza virus protein synthesis. J Virol 2002;76:10417–10426.
- [65] Watts JM, Dang KK, Gorelick RJ, et al. Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 2009;460:711–716.
- [66] Guisez Y, Robbens J, Remaut E, Fiers W. Folding of the MS2 coat protein in Escherichia coli is modulated by translational pauses resulting from mRNA secondary structure and codon usage: A hypothesis. J Theor Biol 1993;162:243–252.
- [67] Lamb RA, Horvath CM. Diversity of coding strategies in influenza viruses. Trends Genet 1991;7:261–266.
- [68] Gultyaev AP, Heus HA, Olsthoorn RCL. An RNA conformational shift in recent H5N1 influenza A viruses. Bioinformatics 2007;23:272–276.
- [69] Gultyaev AP, Olsthoorn RCL. A family of non-classical pseudoknots in influenza A and B viruses. RNA Biol 2010;7:125–129.
- [70] Ducatez MF, Olinger CM, Owoade AA, et al. Molecular and antigenic evolution and geographical spread of H5N1 highly pathogenic avian influenza viruses in western Africa. J Gen Virol 2007;88:2297–2306.
- [71] Plotch SJ, Krug RM. In vitro splicing of influenza viral NS1 mRNA and NS1-β-globin chimeras: Possible mechanisms for the control of viral mRNA splicing. Proc Natl Acad Sci U S A 1986;83:5444–5448.
- [72] Nemeroff ME, Utans U, Krämer A, Krug RM. Identification of cis-acting intron and exon regions in influenza virus NS1 mRNA that inhibit splicing and cause the formation of aberrantly sedimenting presplicing complexes. Mol Cell Biol 1992;12:962–970.
- [73] Fortes P, Beloso A, J. Ortin J. Influenza virus NS1 protein inhibits pre-mRNA splicing and blocks mRNA nucleocytoplasmic transport. EMBO J 1994;13:704–712.
- [74] Lu Y, Qian XY, Krug RM. The influenza virus NS1 protein: A novel inhibitor of pre-mRNA splicing. Genes Dev 1994;8:1817–1828.
- [75] Muraki Y, Furukawa T, Kohno Y, et al. Influenza C virus NS1 protein upregulates the splicing of viral mRNAs. J Virol 2010;84:1957–1966.
- [76] Garaigorta U, Ortin J. Mutation analysis of a recombinant NS replicon shows that influenza virus NS1 protein blocks the splicing and nucleo-cytoplasmic transport of its own viral mRNA. Nucleic Acids Res 2007;35:4573–4582.
- [77] Horvath CM, Williams MA, Lamb RA. Eukaryptic coupled translation of tandem cistrons: Identification of the influenza B virus BM2 polypeptide. EMBO J 1990;9:2639–2647.
- [78] Powell ML, Napthine S, Jackson RJ, et al. Characterization of the terminationreinitiation strategy employed in the expression of influenza B virus BM2 protein. RNA 2008;14:2394–2406.

- [79] Hatta M, Kohlmeier CK, Hatta Y, et al. Region required for protein expression from the stop-start pentanucleotide in the M gene of influenza B virus. J Virol 2009;83:5939–5942.
- [80] Luttermann C, Meyers G. The importance of inter- and intramolecular base pairing for translation reinitiation on a eukaryotic bicistronic mRNA. Genes Dev 2009;23:331–344.
- [81] Napthine S, Lever RA, Powell ML, et al. Expression of the VP2 protein of murine norovirus by a translation termination-reinitiation strategy. PLoS One 2009;4:e8390.
- [82] Domingo E, Escarmis C, Sevilla N, et al. Basic concepts in RNA virus evolution. FASEB J 1996;10:859–864.
- [83] Holmes EC. Error thresholds and the constraints to RNA virus evolution. Trends Microbiol 2003;11:543–546.
- [84] Gog JR, Dos Santos Afonso E, Dalton RM, et al. Codon conservation in the influenza A virus genome defines RNA packaging signals. Nucleic Acids Res 2007;35:1897–1907.
- [85] Smith DJ, Lapedes AS, de Jong JC, et al. Mapping the antigenic and genetic evolution of influenza virus. Science 2004;305:371–376.
- [86] Koelle K, Cobey S, Grenfell B, Pascual M. Epochal evolution shapes the phylodynamics of interpandemic influenza A (H3N2) in humans. Science 2006;314:1898–1903.
- [87] Wolf YI, Viboud C, Holmes EC, et al. Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus. Biol Direct 2006;1:34.
- [88] Huynen MA, Stadler PF, Fontana W. Smoothness within ruggedness: The role of neutrality in adaptation. Proc Natl Acad Sci U S A 1996;93:397–401.
- [89] Fontana W, Schuster P. Continuity in evolution: On the nature of transitions. Science 1998;280:1451–1455.
- [90] Ilyinskii PO, Schmidt T, Lukashev D, et al. Importance of mRNA secondary structural elements for the expression of influenza virus genes. OMICS 2009;13:421–430.
- [91] Ghosh A, Nandy A, Nandy P. Computational analysis and determination of a highly conserved surface exposed segment in H5N1 avian flu and H1N1 swine flu neuraminidase. BMC Struct Biol 2010;10:6.
- [92] Beekwilder MJ, Nieuwenhuizen R, van Duin J. Secondary structure model for the last two domains of single-stranded RNA phage Q beta. J Mol Biol 1995;247:903–917.
- [93] Enami M, Enami K. Characterization of influenza virus NS1 protein by using a novel helper-virus-free reverse genetic system. J Virol 2000;74:5556–5561.
- [94] Pley HW, Flaherty KM, McKay DB. Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Nature 1994;372:111–113.
- [95] Costa M, Michel F. Rules for RNA recognition of GNRA tetraloops deduced by in vitro selection: Comparison with in vivo evolution. EMBO J 1997;16:3289– 3302.
- [96] Geary C, Baudrey S, Jaeger L. Comprehensive features of natural and in vitro selected GNRA tetraloop-binding receptors. Nucleic Acids Res 2008;36:1138–1152.
- [97] Franch T, Gerdes K. U-turns and regulatory RNAs. Curr Opin Microbiol 2000;3:159–164.
- [98] Brunel C, Marquet R, Romby P, Ehresmann C. RNA loop-loop interactions as dynamic functional motifs. Biochimie 2002;84:925–944.

- [99] Aldaz-Carroll L, Tallet B, Dausse E, et al. Apical loop-internal loop interactions: A new RNA-RNA recognition motif identified through in vitro selection against RNA hairpins of the hepatitis C virus mRNA. Biochemistry 2002;41:5883–5893.
- [100] Clever JL, Wong ML, Parslow TG. Requirements for kissing-loop-mediated dimerization of human immunodeficiency virus RNA. J Virol 1996;70:5902–5908.
- [101] De Tapia M, Metzler V, Mougel M, et al. Dimerization of MoMuLV genomic RNA: Redefinition of the role of the palindromic stem-loop H1 (278–303) and new roles for stem-loops H2 (310–352) and H3 (355–374). Biochemistry 1998;37:6077– 6085.
- [102] Huthoff H, Berkhout B. Multiple secondary structure reaarangements during HIV-1 RNA dimerization. Biochemistry 2002;41:10439–10445.
- [103] Gherghe C, Leonard CW, Gorelick RJ, Weeks KM. Secondary structure of the mature ex virio Moloney murine leukemia virus genomic RNA dimerization domain. J Virol 2010;84:898–906.
- [104] Miyazaki Y, Garcia EL, King SR, et al. An RNA structural switch regulates diploid genome packaging by Moloney murine leukemia virus. J Mol Biol 2010;396:141–152.
- [105] Basnayake VR, Sit TL, Lommel SA. The Red clover necrotic mosaic virus origin of assembly is delimited to the RNA-2 trans-activator. Virology 2009;384:169–178.
- [106] Kim CH, Tinoco Jr. I. A retroviral RNA kissing complex containing only two G.C base pairs. Proc Natl Acad Sci U S A 2000;97:9396–9401.
- [107] Li PTX, Bustamante C, Tinoco Jr. I. Unusual mechanical stability of a minimal RNA kissing complex. Proc Natl Acad Sci U S A 2006;103:15847–15852.
- [108] Boucard D, Toulmé J-J, Di Primo C. Bimodal loop-loop interactions increase the affinity of RNA aptamers for HIV-1 RNA structures. Biochemistry 2006;45:1518–1524.
- [109] Lodmell JS, Ehresmann C, Ehresmann B, Marquet R. Convergence of natural and artificial evolution of an RNA loop-loop interaction: The HIV-1 dimerization initiation site. RNA 2000;6:1267–1276.
- [110] Ducongé F, Di Primo C, Toulmé JJ. Is a closing "GA pair" a rule for stable loop-loop RNA complexes? J Biol Chem 2000;275:21287–21294.
- [111] Meulewaeter F, van Lipzig R, Gultyaev AP, et al. Conservation of RNA structures enables TNV and BYDV 5' and 3' elements to cooperate synergistically in capindependent translation. Nucleic Acids Res 2004;32:1721–1730.
- [112] Osborne JC, Elliott RM. RNA binding properties of Bunyamwera virus nucleocapsid protein and selective binding to an element in the 5' terminus of the negative-sense S segment. J Virol 2000;74:9946–9952.
- [113] Kohl A, Lowen AC, Leonard VHJ, Elliott RM. Genetic elements regulating packaging of the Bunyamwera orthobunyavirus genome. J Gen Virol 2006;87:177–187.
- [114] Severson WE, Xu X, Jonsson CB. Cis-acting signals in encapsidation of hantaan virus S-segment viral genomic RNA by its N protein. J Virol 2001;75:2646–2652.
- [115] Gultyaev AP, van Batenburg FHD, Pleij CWA. The computer simulation of RNA folding pathways using a genetic algorithm. J Mol Biol 1995;250:37–51.
- [116] Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003;31:3406–3415.
- [117] Gruber AR, Lorenz R, Bernhart SH, et al. The Vienna RNA Websuite. Nucleic Acids Res 2008;36:W70–W74.
- [118] Jacquenet S, Ropers D, Bilodeau PS, et al. Conserved stem-loop structures in the HIV-1 RNA region containing the A3 3' splice site and its cis-regulatory element: Possible involvement in RNA splicing. Nucleic Acids Res 2001;29:464–468.

- [119] Ryabova LA, Pooggin MM, Hohn T. Translation reinitiation and leaky scanning in plant viruses. Virus Res 2006;119:52–62.
- [120] Abbink TEM, Berkhout B. RNA structure modulates splicing efficiency at the human immunodeficiency virus type 1 major splice donor. J Virol 2008;82:3090–3098.
- [121] Plant EP, Rakauskaite R, Taylor DR, Dinman JD. Achieving a golden mean: Mechanisms by which coronaviruses ensure synthesis of the correct stoichiometric ratios of viral proteins. J Virol 2010;84:4330–4340.
- [122] Shih S-R, Krug RM. Novel exploitation of a nuclear function by influenza virus: the cellular SF2/ASF splicing factor controls the amount of the essential viral M2 ion channel protein in infected cells. EMBO J 1996;15:5415–5427.
- [123] Buratti E, Muro AF, Giombi M, et al. RNA folding affects the recruitment of SR proteins by mouse and human polypurinic enhancer elements in the fibronectin EDA exon. Mol Cell Biol 2004;24:1387–1400.
- [124] Karlas A, Machuy N, Shin Y, et al. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature 2010;463:818–822.
- [125] Chen W, Calvo PA, Malide D, et al. A novel influenza A virus mitochondrial protein that induces cell death. Nature Med 2001;7:1306–1312.
- [126] Wise HM, Foeglein A, Sun J, et al. A complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. J Virol 2009;83:8021–8031.
- [127] Zamarin D, Ortigoza MB, Palese P. Influenza A virus PB1-F2 protein contributes to viral pathogenesis. J Virol 2006:80:7976–7983.
- [128] Amorim MJ, Read EK, Dalton RM, et al. Nuclear export of influenza A virus mRNAs requires ongoing RNA polymeraze II activity. Traffic 2007;8:1–11.
- [129] Wang W, Cui ZQ, Han H, et al. Imaging and characterizing influenza A virus mRNA transport in living cells. Nucleic Acids Res 2008;36:4913–4928.
- [130] Schneider J, Wolff T. Nuclear functions of the influenza A and B viruses NS proteins: Do they play a role in viral mRNA export? Vaccine 2009;27:6312–6316.
- [131] Read EKC, Digard P. Individual influenza A virus mRNAs show differential dependence on cellular NXF1/TAP for their nuclear export. J Gen Virol 2010;91:1290–1301.
- [132] Ludwig S, Schultz U, Mandler J, et al. Phylogenetic relationship of the nonstructural (NS) genes of influenza A viruses. Virology 1991;183:566–577.