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The influenza A virus genome consists of eight negative-sense RNA segments. Here
we review the currently available data on structure-function relationships in in-
fluenza virus RNAs. Various ideas and hypotheses about the roles of influenza virus
RNA folding in the virus replication are also discussed in relation to other viruses.
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INTRODUCTION

Influenza A virus is an important epidemic infectious agent in animals
and humans [1-3]. It is a negative-sense segmented RNA virus of the
family Orthomyxoviridae, and its genome consists of eight segments.
These segments can be exchanged via reassortment upon infection of a
single host by two strains. Gene segments 4 and 6 encode the main
viral surface glycoproteins hemagglutinin (HA) and neuraminidase
(NA), respectively, and various combinations of these genes define dif-
ferent antigenic subtypes, such as HIN1, H3N2, etc. Wild waterfowl
are thought to be the main reservoir of influenza A virus diversity, with
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16 known HA subtypes and 9 NA subtypes. Only three HA subtypes
(H1, H2, and H3) and two NA subtypes (N1 and N2) have circulated
in the human population in the last century, during pandemics (caused
by reassortant viruses) and subsequent annual seasonal epidemics.

The molecular basis of influenza virus evolution and host adapta-
tion is usually sought in differences between protein sequences from
various strains, and various important determinants of host range and
virulence have been identified [4-7]. On the other hand, relatively lit-
tle is known about influenza virus RNA folding and its influence on
influenza virus replication. In contrast, for many other viruses with
RNA genomes, many data on RNA structure-function relationships
have accumulated and building of structural models has considerably
contributed to the understanding of virus replication cycles [8—10].

Here we summarize the available data on influenza virus RNA fold-
ing. We also discuss the various ideas and hypotheses about influenza
virus RNA structure and its role in virus replication. In particular, we
try to identify the analogies and differences between influenza viruses
and other viruses. Apparently, such a comparison should not be re-
stricted to the most closely related viruses, such as segmented negative-
sense RNA viruses, but has to include the knowledge on RNA structures
from other virus orders.

GLOBAL FOLDING OF INFLUENZA VIRUS GENOME
SEGMENTS

In comparison with positive-strand RNA viruses, negative-strand RNA
viruses, influenza virus included, seem to have less structured RNA on a
global genome scale. The genomes of many positive-strand RNA viruses
contain sequences that may be folded with free energies significantly
lower than randomized sequences retaining the same dinucleotide and
codon frequencies [11]. Such a pattern, coined genome-scale ordered
RNA structure (GORS), is much more pronounced in positive-sense
RNA viruses than in negative-sense RNA genomes.

This difference may be due to differences in replication mechanisms.
The genomic RNA of negative-sense RNA viruses can serve as a tem-
plate for viral polymerase only in a ribonucleoprotein (RNP) complex
with the viral nucleoprotein, NP [12, 13]. In such a complex, the RNA
secondary structure is completely or partially melted [13-15]. Thus, a
potential for the formation of highly stable structures would probably
present a barrier for efficient assembly of RNP particles.

However, in some influenza A virus genome segments, in particular,
PB1, PB2, PA, and NP, a global pattern of RNA thermodynamic stabil-
ity has been identified [16]. Furthermore, this pattern turned out to be
host-specific, as the segments in human strains exhibited a slight trend
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of lowering their stability (as judged from the increase in the lowest
free energy of folding) as compared to those from avian strains. One of
the explanations for this is adaptation of the virus to the host cell tem-
perature, which is higher in birds than in humans [16]. On the other
hand, the lowest free energy values of full-length segments are un-
likely to represent the native structures, as such large RNA molecules
usually fold into metastable conformations with folding free energies
much higher than the global energy minima. Furthermore, the trend
of the folding-energy increase in human influenza A strains actually
follows the changes in their nucleotide and dinucleotide composition
biases (decrease in C, G, and CpG contents), which may be attributed
to reasons other than RNA folding [17, 18].

Irrespective of the GORS-like patterns, an RNA molecule can form
local secondary structures. In fact, it is known that the low value of free
energy is not the main determinant of a functional RNA structure [19].
Furthermore, even though influenza virus RNA is assumed to be mostly
melted in mature RNP particles, local structures can still remain and
they can also fold at those steps of the virus replication cycle when NP
is not (yet) associated with certain RNA regions.

A ROLE OF RNA STRUCTURE IN INFLUENZA VIRUS RNA
TRANSCRIPTION AND REPLICATION

The 5'- and 3'-termini of the influenza virus genome segments contain
highly conserved sequences that are complementary to each other, and
a role of interactions between them in virus replication has been sug-
gested more than 30 years ago [20, 21]. Later, detailed studies of RNA
structure in these regions, carried out by different groups, confirm the
functional importance of the pairing between the termini of influenza
virus RNA segments. This structure, so far, remains the only one in
influenza virus RNA for which structure-function relationships are
known in detail (reviewed in [22]). Remarkably, its functioning turned
out to have a dynamic character, with different structures formed at
various steps.

All segments of the influenza A virus can form a stem-loop struc-
ture with two stems separated by a bulge, the so-called “panhandle”
(Fig. 1A). On the basis of electron microscopy and nuclease S1 map-
ping, the panhandle was suggested to determine the circular viral
RNA (vRNA) conformation [23]. Similar structures can be folded in
other segmented negative-strand RNA viruses, such as members of
the Orthomyxoviridae, Bunyaviridae, and Arenaviridae families and
Tenuiviruses [22, 24—26].
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FIGURE 1 Variations on the panhandle structure at the ends of influenza
virus vRNAs.

Mutagenesis studies pointed to different functional roles of the pan-
handle base pairs, showing that the interactions between the panhan-
dle ends were not necessary for initiation of transcription [27, 28]. This
led to the proposal of the “RNA-fork” model, in which the panhandle
is only partially double-stranded (Fig. 1B). Mutations in this part of
the panhandle abolished promoter activity, which could be restored by
complementary double mutations. In contrast, the effect of mutations
at positions closer to the RNA 5-end could not be compensated by sub-
stitutions at the 3’-end [27, 28].

The latter effect can be explained by the “corkscrew model” (Fig. 1C),
with two small hairpins at the vRNA ends [29, 30]. The corkscrew
conformation turned out to be required for tight polymerase binding
and the endonuclease activity of the polymerase complex [29-31].

Furthermore, the small hairpin at the vRNA 5 end in the “5'-
hook model” (Fig. 1D) turned out to be necessary for polyadenylation
of mRNA [32]. The polyadenylation of influenza A virus mRNA oc-
curs by reiterative copying of a track of five to seven uridine residues
[33, 34], adjacent to the panhandle stem (Fig. 1D). The 5-hook hair-
pin seems to be important for stable binding of the polymerase com-
plex to the 5 end of vVRNA during mRNA synthesis that serves as a
physical barrier resulting in reiterative copying of the U-stretch [27,
32].

The panhandle and the corkscrew structures are conserved in vR-
NAs of Orthomyxoviridae and other groups of segmented negative-
sense RNA viruses, such as Bunyaviridae and Tenuiviruses [24, 26,
35]. However, the corkscrew structure does not seem to be universally
required in all viruses of these groups. For instance, in Thogoto virus
no evidence for the hairpin at the 3’ arm of the corkscrew structure was
obtained [35].
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It is likely that at different steps of the virus replication cycle the
vRNA panhandles undergo conformational transitions between struc-
tures required for various functions. The switch between open and
closed forms of the influenza RNP is guided by the antagonistic effects
of NP and polymerase: NP melts RNA structure, while polymerase
complex anneals it [15]. An RNA chaperone role, similar to that of the
influenza virus NP protein, was suggested for hantavirus nucleocapsid
protein [36]: the protein recognizes the terminal panhandle, but then
unwinds it in the complex. Interestingly, the extent of pairing between
the ends of the defective-interfering RNAs from vesicular stomatitis
virus (VSV) has been directly shown to modulate the balance between
transcription and replication; more stable panhandles enhanced repli-
cation, but suppressed transcription [37].

Such a switch is not unique for influenza and other negative-strand
RNA viruses. Conformational transitions at both or one of the RNA
termini were shown to switch between various RNA functions in both
animal and plant positive-strand RNA viruses (e.g., [38-41]).

A ROLE OF RNA STRUCTURE IN INFLUENZA VIRUS RNA
ENCAPSIDATION

The eight vRNA segments of influenza A virus are separately encapsi-
dated as RNP complexes, each containing one copy of three polymerase
subunits (PB2, PB1, and PA) and multiple NP molecules, with an es-
timated stoichiometry of one NP monomer per 24 nucleotides [12, 13,
42]. At least one copy of each segment has to be packaged into a virion,
and the currently accepted model assumes that this is mediated by
specific packaging signals in vRNA rather than via a random process
(reviewed in [43]).

Exact location and structure of these signals are still enigmatic, but
multiple mutagenesis studies by different groups tracked down their
location at the vRNA termini, in both untranslated regions (UTRs) and
the proximal parts of the coding regions [43]. The terminal panhan-
dles seem to be an important structural determinant of packaging [23,
44]. Obviously, however, the panhandles, which are conserved in all
segments, are not sufficient for segment-specific packaging.

Specificity can be realized by interactions between the segments.
In support of this model, a characteristic “7 + 1” configuration of 7
segments surrounding a central one is seen by transmission electron
microscopy [45]. Furthermore, the signals of all segments are necessary
and sufficient for efficient packaging, as evidenced by reverse genetics
experiments manipulating various combinations of signals and pack-
aged genes [46—48]. The existence of intersegment interactions was also



538 A. P. Gultyaev et al.

concluded from the observation that mutation of the proposed packag-
ing signals of one segment affected the packaging of other non-mutated
segments [49-52].

A network of specific interactions between various segments of the
RNA genome could either be mediated by yet-unidentified protein fac-
tors or realized via direct RNA-RNA interactions [43, 49, 53]. In both
scenarios, a role of RNA structure can be suspected, analogous to other
virus families (e.g., Retroviridae). However, besides the terminal pan-
handle region, functional structures formed by the influenza RNA pack-
aging signals remain unknown.

In principle, the high-order structure of RNA in packaged RNP par-
ticles, formed by each segment, is strongly influenced by NP binding.
The shape of an RNP is mostly dictated by the structure of NP, as par-
ticles obtained without RNA are structurally indistinguishable from
RNA-containing complexes [54]. However, RNA can still form some
structures in RNP complexes, for instance, relatively short secondary
structures that may be involved in intersegmental interactions [43].
RNA structure probing indicated periodic patterns of double-stranded
RNA regions in RNP complexes [55]. Interestingly, in probing experi-
ments with a “mini-vRNA” construct binding to NP [14], a small hairpin
retained its structure upon protein binding. Although the authors at-
tribute this to deficiencies in complex formation, it is also possible that
some of the hairpin base pairs remain intact in the complex.

Intriguingly, experiments with selective incorporation of randomized
NS segment packaging sequences suggest that their functional high-
order structure might also be formed by sequences very different from
the wild type [56]. However, attempts to identify functional secondary
structures in the packaging signals of NS and other segments by predic-
tions of low free energy conformations did not lead to reasonable models
[50, 53, 56, 57]. Apparently, a straightforward search for (sub)optimal
orthodox secondary structures in naked vRNAs without additional ex-
perimental or phylogenetic data is not sufficient to identify functional
vRNA motifs and interactions in RNP complexes.

A ROLE OF RNA STRUCTURE IN INFLUENZA VIRUS RNA
TRANSLATION

Infection of cells by the influenza A virus results in a shutoff of host
protein synthesis and selective translation of the virus mRNAs [58, 59].
The molecular mechanism of such a discrimination involves both virus
and host factors.

Some of the determinants of preferential translation of influenza
virus mRNAs have been suggested to be located in their 5-UTRs
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FIGURE 2 The hairpin at the 5 end of NP mRNA of influenza A viruses,
located between the proposed protein binding sites and the start codon [61,
63, 64]. The start codon is underlined. The putative sequence motifs AGGGU
and GGUAGAUA, recognized by host factor GRSF-1 and viral NS1 protein,
respectively, are indicated.

[60-63]. The sequence GGUAGAUA, present in NP and M segments,
and AGGGU, present in NP and NS segments, have been shown to have
stimulatory effects on translation due to the binding of the virus NS1
protein and the host GRSF-1 protein, respectively [61, 64].

One nucleotide downstream of the GGUAGAUA motif in the NP
segment, a stable hairpin is predicted (Fig. 2), which may be involved in
translational regulation [61, 63]. However, deletion of this hairpin did
not have a significant effect on GRSF-1 binding, so its role is presently
unclear [63, 64]. It has also been noted that the influenza A virus 5'-
UTRs seem to have little stable secondary structure, which may be
important for ensuring a single-stranded character of potential protein
binding sites [63, 64].

Recently a correlation between locations of mRNA secondary struc-
ture domains and encoded protein domains was described for HIV [65].
Such a correlation could be explained by translational pausing caused
by a stable RNA structure, which may ensure an efficient correct fold-
ing of important protein domains. Such an effect has also been proposed
for the RNA bacteriophage MS2 [66], and could apply to many other
viruses. This mechanism is one of the possible rationales for the pres-
ence of conserved local structures in influenza mRNAs as well.

A ROLE OF RNA STRUCTURE IN THE EXPRESSION OF
INFLUENZA VIRUS OVERLAPPING READING FRAMES

Two segments of the influenza A virus genome (segments 7 and 8)
contain introns. The ratio of spliced and unspliced mRNAs, encod-
ing proteins with overlapping reading frames, M1/M2 and NS1/NS2,
respectively, is tightly regulated [58, 67]. Homologous proteins in in-
fluenza B and C viruses are also encoded by overlapping open reading
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frames (ORFs), but influenza B virus exploits a termination-reinitiation
strategy in its segment 7 [67].

In the regions close to the 3’ splice sites in NS mRNA of influenza A
and B viruses, a remarkably conserved folding has been predicted [68,
69]. In both virus types, a stable pseudoknot structure can be formed,
comprising the 3’ splice site in one of its loops (Fig. 3). The pseudoknot
conformation is supported by nucleotide covariations and by structure
probing and NMR spectroscopy of oligonucleotides comprising the re-
gion around the 3’ splice site [68]. To the best of our knowledge, apart
from the terminal panhandle structures, this is the only structure
shown to be conserved in both influenza A and B virus genomes.

Interestingly, in influenza A virus NS mRNA a dynamic equilib-
rium between this pseudoknot and an alternative hairpin conformation
(Fig. 3) can be suggested [68]. Furthermore, the equilibrium turned out
to be very sensitive for point mutations in some strains. For instance, a
G563-C substitution, observed in recent H5N1 viruses, favored a shift
to the hairpin conformation, while the pseudoknot became less stable
(Fig. 3B). The C563 mutation seems to be unique for H5N1 viruses,
and it is possible to trace its first occurrence in China in 2001 [68]. It
is stably inherited in the dominant H5N1 lineages spreading over the
world [70]. C563 has been present in all H5N1 viruses isolated from
humans since 2003 [68].

Potential functions of the postulated pseudoknot and hairpin struc-
tures (Fig. 3) remain to be elucidated. Their location near the 3’ splice
site suggests that they are involved in splicing regulation. Splicing of
NS mRNA in vitro is known to be strongly suppressed, and this block
may result from an inactive RNA conformation, presumably including
a structurally inaccessible 3’ splice site [71, 72].

The suppression of the influenza A NS mRNA splicing has been
shown to be dependent on inhibitory regions, located both in the in-
tron (positions 153-465) and in the 3’ exon (positions 775-860) [72].
It has been suggested that this may be attributed to an inhibition of
proper NS1 mRNA folding required for splicing. While in the chimeric
constructs, the intronic inhibitory region could inhibit the splicing of
other mRNAs as well, the exonic sequence was inhibitory only in the
NS1 mRNA. The structural context of these inhibitory elements has not
been investigated, but it is possible that they can somehow interfere
with the alternative foldings near the 3’ splice site shown in Figure 3.

The influenza A virus NS1 protein itself is an inhibitor of splicing
[73, 74]; on the contrary, influenza C virus NS1 upregulates splicing
[75]. Interestingly, in the influenza C virus NS1 mRNA we could not
find any structure similar to the pseudoknot suggested for the A and
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FIGURE 3 (A) The pseudoknot structure conserved in NS segments of in-
fluenza A and B viruses [68, 69]. The 3’ splice sites are indicated by small
arrows. The nucleotide covariations supporting the pseudoknot are boxed. The
location of the pseudoknot in relation to the coding regions of influenza A virus
NS1 and NS2 mRNAs is shown schematically. (B) The pseudoknot/hairpin
conformational transition caused by a unique C563 substitution in the H5N1
influenza A viruses, observed since 2001. The G-residues demonstrating the
most considerable changes in RNase T1-susceptibility [68] upon the transition
are shown by triangles. The indicated estimates of free energies (in kcal/mol)
of the pseudoknot AG(pk) and the hairpin AG(hp) for the typical H5N1 se-
quences before and after 2001 are calculated [68] using the program kinefold
(http://kinefold.curie.fr).
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B types. The influenza A virus NS1 protein does not require its RNA-
binding activity for splicing inhibition, but it is required for specific
blocking of the nucleo-cytoplasmic transport of unspliced NS1 mRNA
[76]. The mechanism of this specificity and the potential (structural)
signals in NS1 mRNA required for nuclear retention are not known.

Coupled translation of M1 and BM2 proteins from segment 7 mRNA
of influenza B virus occurs via a termination-reinitiation mechanism
[77]. The M1 stop codon and the BM2 start codon overlap at the pen-
tanucleotide UAAUG, the site of ribosome “stop-start.” It has recently
been suggested that the stop-start is regulated by the BM2 mRNA
secondary structures able to affect the pairing between complemen-
tary sequences in 18S rRNA and mRNA [78]. Structure probing and
folding predictions have revealed a potential for alternative coexist-
ing secondary structures in BM2 mRNA with various accessibilities of
the complementarity region (Fig. 4). Mutagenesis experiments iden-
tified the region required for efficient reinitiation, and both probing
and structure predictions indicated that this region can adopt mul-
tiple metastable structures that could regulate BM2 expression [78,
79]. Regulation of translation reinitiation by RNA folding seems to be
a widespread mechanism, and it has recently been proposed for cali-
civiruses [80, 81].

A ROLE OF RNA STRUCTURE IN INFLUENZA VIRUS
EVOLUTION

A potential for the folding of functional RNA structures in the influenza
virus genome implies specific constraints in its evolution [82, 83]. As
some structures can be folded within protein coding regions, require-
ments for protein-coding capacity of viral mRNA pose an obvious con-
straint on RNA structure evolution, and vice versa. As predicted for
RNA viruses in general [83], multiple constraints affecting the same
genome can seriously limit the sequence space areas available for in-
fluenza virus adaptation.

This can explain, for instance, a remarkable conservation of codons
in the influenza A virus genome, in particular, of those located in the
regions important for packaging [84]. On the other hand, some regions
in the influenza virus genome can fold into alternative structures that
may be functional [68, 78]. Furthermore, a potential for the formation
of alternative structures may also lead to conformational shifts in spe-
cific virus strains, as observed in the H5N1 lineage (Fig. 3B). In such
shifts, novel nucleotide substitutions may be stably inherited if they
become important in the new structural context. Thus, the evolution
of influenza virus RNA structure may be punctuated [68], similar to
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schematically. Both alternative structures are in reasonable agreement with
the RNA structure probing [78]. The strongest cleavage sites by the T1
(triangles) and CV1 (squares) RNases are shown here as an example. The
indicated free energy estimates are calculated using the program mfold
(http://frontend.bioinfo.rpi.edu/applications/mfold/).
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the virus antigenic evolution [85-87]. Remarkably, such a pattern of
evolution, with relatively long periods of phenotypic (e.g., structural)
neutrality punctuated by rare discontinuous transitions, is also pre-
dicted from theoretical simulations of RNA adaptation [88, 89].

RNA secondary structure constraints have been suggested to act
as possible additional control to eliminate mutations occurring in the
regions coding for essential domains of viral proteins [90, 91]. In prin-
ciple, such a function could explain the presence of high-order RNA
structures in coding parts of the genome. On the other hand, in general
it should be noted that in a region coding for conserved protein domains,
a prediction of conserved RNA structural element may be just one of
possible structures folded by a conserved nucleotide sequence. For in-
stance, we noticed that in many conserved regions of influenza virus
segments, mutually exclusive structures could be predicted (Gultyaev
et al., unpublished). In the absence of experimental and/or phylogenetic
(covariations) support, it is impossible to judge which of the alternative
structures is actually formed in vivo.

POTENTIAL ROLES OF UNDISCOVERED INFLUENZA RNA
STRUCTURES

As compared to many other single-stranded RNA viruses, the knowl-
edge about high-order structures formed by influenza virus RNA is
rather limited. In particular, this difference is striking in comparison
with positive-stranded RNA viruses. In this group, reliable structural
models can be developed for very large genomic regions or even com-
plete genomes (e.g., [65, 92]), and numerous functional structures and
specific motifs are identified and studied in detail (e.g., [8, 9]). In con-
trast, besides established structure-function relationships of the ter-
minal panhandle structures [22], the information about the rest of the
influenza virus genome is mostly limited to fragmentary folding pre-
dictions [61, 63, 68, 69, 78, 90, 91], structure probing in vitro [68, 78]
and detection of global thermodynamic properties [16].

To a certain extent, this is because influenza virus does not need to
exploit several mechanisms determined by highly structured RNA
topologies. For instance, its mRNAs are capped and polyadenylated,
thus IRES structures and translational enhancers of cap-independent
translation, known to form characteristic structures in many viruses,
are not likely to be encoded by the influenza virus genome. Influenza
virus mRNAs do not have very long 5-UTRs and 3'-UTRs that con-
tain the majority of cis-acting RNA elements in positive-stranded
RNA viruses [9]. Furthermore, the structure of influenza virus RNPs,
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presumably with RNA uniformly distributed along the RNP [13], does
not seem to allow an extensive RNA structure formation.

On the other hand, even in RNPs some high-order RNA structure can
be expected. In influenza A virus RNPs, the bound RNA is accessible to
treatment by RNAses [13, 14, 55]. The length of protected fragments is
around 18 nt, while the average RNA fragment bound per NP monomer
is 24 nt [13, 42]. Furthermore, RNPs turn out to contain unprotected
vRNA regions that are sufficient for hybridization to complementary
c¢DNA fragments, as shown by specific RNase H cleavage of bound RNPs
[93]. These regions can be partially double-stranded, as evidenced by
RNA structure probing of RNPs [14, 55]. Thus, some local structural
motifs, presumably small hairpin loops, may be exposed at the surface
of RNP particles and are able to interact with each other.

Such motifs might provide a basis for specific recognition between
influenza virus genome segments during packaging [43]. Yet, no struc-
tures performing this role have been identified in influenza viruses.

In principle, the recurrent motifs that promote the formation of sta-
ble bimolecular RNA/RNA complexes are specific tetraloop binding by
helical receptors and “kissing” interactions mediated by hairpin loops
[94-98]. The GNRA hairpin tetraloops (where N is any base, and R is ei-
ther G or A) are recognized by RNA stems (receptors) containing specific
motifs [94-96]. The long-range GNRA/receptor interactions are typical
for large ribozymes, where they are essential for RNA self-assembly
[95, 96].

Kissing interactions are formed between hairpin loops and comple-
mentary sequences that are frequently, but not always, located in hair-
pin loops as well [97-99]. Viruses have been shown to exploit kissing
interactions for various functions, in particular, for the interdependent
packaging of genomic RNAs such as in homodimeric retroviral genomes
and the bipartite genome of Red clover necrotic mosaic virus [100—
105].

In retroviruses, genomic RNAs are packaged as dimers formed via
multiple contacts mediated by kissing hairpin structures. Compared
to retroviral genomic RNAs, influenza virus vRNAs in RNPs are ex-
pected to have considerably less secondary structure, but several con-
tacts between small structural elements, probably formed under the
chaperone-like influence of NP binding, could provide both specificity
and thermodynamic stability for inter-segment interactions.

Several observations may be considered as an indirect support for
such a “multi-hairpin” model. It is known that even two base pairs are
sufficient for efficient kissing interaction [106, 107], and the cooperative
effect of multiple interactions can lead to much more stable complexes
[108]. Existence of multiple interactions between influenza virus gene



546 A. P. Gultyaev et al.

segments is consistent with relatively mild effects of substitutions of
certain conserved nucleotides in the packaging signals [43]. Similarly,
in mutagenesis studies of retroviral dimerization, deletions of single
motifs only partially affect encapsidation [101]. On the other hand, a
remarkable conservation of certain wobble positions in codons puta-
tively located within the packaging signals of influenza A virus [84]
may be explained by the need to have specific loop conformations for
efficient contacts. Such structural constraints in the loops involved in
intermolecular or long-range intramolecular kissing interactions of vi-
ral RNAs can lead to stringent sequence requirements [100, 109-111].

In principle, one may also anticipate the existence of alternative
structures and conformational switches regulating the packaging of
the influenza virus genome. Folding of nascent vRNA during its syn-
thesis, prior to the formation of the terminal panhandle and the mature
RNP complex, should result in local structures that may be partially or
completely disrupted upon NP binding and packaging. Such rearrange-
ments of secondary structure regulate dimerization and packaging of
retroviral genomes [102-104].

Interestingly, several studies identified potential hairpin structures
in the 5'-proximal regions of some of the vRNA segments from Bun-
yaviridae genomes [112—114]. Such hairpins could be functional during
packaging. The hairpins at the 5 ends of S segments of Bunyamwera
virus and Hantaan virus (Fig. 5A,B) have been suggested to be involved
in recognition of transcribed nascent vRNA by N protein [112-114].

The extent of evolutionary conservation of these hairpins in related
viruses has not yet been investigated. Intriguingly, very conserved hair-
pins can also be predicted in the 5-proximal vRNA regions of some
segments of the influenza virus genome. For instance, using various
programs for RNA structure prediction [115-117], we identified a pos-
sible stable hairpin in the 5'-proximal part of segment 7 vRNA (Fig. 5C).
Despite some sequence diversity in this region, the hairpin seems to
be conserved in all influenza A virus strains. Furthermore, at one of
the base-paired positions, a remarkable host-specific covariation can be
observed; while the majority of human strains (except early viruses of
1918-1933) have a C-G pair, avian strains have mostly U-A.

A functional role of such hairpin structures remains to be elucidated.
In principle, they can be specifically recognized by NP, even if they are
completely or partially melted upon the assembly of mature RNP par-
ticles. Another possible role of hairpin structures could be to establish
kissing interactions between the segments.

It is not surprising that a potential for the formation of conserved
structures is revealed in NS segments of influenza A and B viruses
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FIGURE 5 The hairpin structures predicted to fold at the 5 ends of vR-
NAs from negative-sense viruses. (A) Bunyamwera virus S segment [112,
113]. (B) Hantaan virus S segment [114]. (C) Conserved hairpin in the
M segment of influenza A viruses, supported by a host-specific covaria-
tion [A. P. Gultyaev, unpublished]. All structures can be predicted by var-
ious folding algorithms, including free energy minimization, such as mfold
(http://frontend.bioinfo.rpi.edu/applications/mfold/).

(Fig. 3) [68] and of M segments in influenza B virus (Fig. 4) [78], which
contain overlapping ORFs. Many viruses utilize mRNA (re)folding to
fine-tune the balance between proteins alternatively expressed from
a single gene by mechanisms, such as splicing, ribosomal frameshift-
ing, readthrough, reinitiation, and leaky scanning (e.g., [8, 80, 118—
121]).

Thus, it is likely that functional conserved structures are present
in other segments encoding more than one protein, such as M and
PB1 segments of influenza A viruses. For instance, splicing of the M
segment mRNA has been shown to be regulated by a purine-rich ex-
onic enhancer that recruits splicing factor SF2/ASF [122], and such a
recruitment in host pre-mRNA’s may be affected by secondary struc-
ture [123]. Interestingly, in a recent genome-wide screen of human host
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factors involved in influenza virus replication, multiple factors turned
out to be connected with pre-mRNA splicing [124].

The PB1 segment seems to have a complicated regulation of trans-
lation of several ORFs. In addition to the primary PB1 polymerase,
two other proteins (PB1-F2 and N40) are translated from downstream
start codons [125, 126], and shorter polypeptides, synthesized from fur-
ther downstream AUGs, have been reported as well [127]. While PB1-
F2 is likely to be translated by leaky scanning past upstream AUG
codons with moderate Kozak translation initiation contexts, transla-
tion of N40 and downstream polypeptides should involve additional
regulation mechanisms [126].

Of course, one cannot exclude the presence of functional structures
in mRNAs from other segments as well. For instance, there is growing
evidence that nucleo-cytoplasmic transport and/or nuclear retention of
influenza virus mRNAs are segment-specific [76, 128—-131]. One of the
important issues in understanding this process is to characterize the
signals in viral transcripts that are recognized by the host and viral
proteins involved in its regulation [130].

It has been reported that transcription of influenza virus mRNAs
from recombinant plasmids in human embryo kidney cells is affected
by the folded structures in the protein-coding regions [90]. This was
demonstrated by a study of mutants that changed the stem-loop struc-
ture predicted in the NS gene (Fig. 6A). However, the influence of this
structure on transcription by viral polymerase has not been tested.

The structure reported by Ilyinskii et al. [90] for A/WSN/33 is also
repeatedly predicted as one of the most conserved elements in our sim-
ulations of NS mRNA folding for various influenza A strains [68]. In
particular, a similar extended stem-loop structure may also be present
in strains containing the so-called clade B NS gene (Fig. 6B). Although
the top and the bottom parts of the stem-loops are formed by non-
homologous base pairs, the middle parts (nucleotides 109-116/165-172)
are exactly the same in both clades. The similarity of the structures
from the two clades is remarkable, because their sequences differ con-
siderably [132]. Strong conservation of the overall topology of the pre-
dicted extended stem-loop structures suggests that the shape of NS
RNA folding in this region plays some yet unknown functional role.

In summary, the studies on influenza virus RNA folding suggest
that we are only at the very beginning of elucidating the role of high-
order RNA structures in the virus replication. More detailed knowledge
of specific influenza virus RNA structures will help us to solve many
puzzles in understanding the molecular mechanisms underlying the
virus replication cycle.
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