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Abstract
Vascular inflammation, lipid metabolism, and thrombogenicity play a key role not only in atherogenesis but also in the 
development of acute coronary syndromes. Biomarkers associated with coronary high-risk plaques defined according to 
intravascular imaging have not been systematically studied. A total of 69 patients with coronary artery disease who under-
went both optical coherence tomography and intravascular ultrasound imaging, and who provided blood specimens were 
included. Comprehensive biomarkers for inflammation, lipid, and coagulation were analyzed. Composite models sought 
biomarker patterns associated with thin-cap fibroatheroma (TCFA) and “high-risk plaques” (TCFA and large plaque bur-
den). Two different composite models were developed for TCFA, based on the finding that high sensitivity C-reactive pro-
tein (hsCRP), plasminogen activator inhibitor-1, fibrinogen, IL-6, homocysteine and amyloid A levels were elevated, and 
high-density lipoprotein cholesterol (HDL) and bile acid levels were decreased in these patients. Both composite models 
were highly accurate for detecting patients with TCFA (area under curve [AUC]: 0.883 in model-A and 0.875 in model-B, 
both p < 0.001). In addition, creatinine, hsCRP, fibrinogen, tumor necrosis factor-α, IL-6, homocysteine, amyloid A, HDL, 
prothrombin, and bile acid were useful for detecting patients with “high-risk plaques”. Two composite models were highly 
accurate for detection of patients with “high-risk plaques” (AUC: 0.925 in model-A and 0.947 in model-B, both p < 0.001). 
Biomarkers useful for detection of patients with high-risk coronary plaques defined according to intravascular imaging have 
been identified. These biomarkers may be useful to risk stratify patients and to develop targeted therapy.
Clinical Trial Registration https:// www. umin. ac. jp/ ctr/, UMIN000041692.
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Graphical abstract

Biomarkers and high-risk plaqueshsCRP, PAI-1, fibrinogen, IL-6, homocysteine, amyloid A, HDL, and bile acid were useful for detecting 
patients with TCFA. hsCRP, fibrinogen, IL-6, homocysteine, amyloid A, creatinine, TNFα, HDL, prothrombin, and bile acid were useful for 
detecting patients with “high-risk plaques” (plaque which has both TCFA and large plaque burden). White arrowhead denotes TCFA. Red and 
green dashed lines denote lumen area and external elastic membrane area, respectively.

Keywords Biomarker · Coronary artery disease · Intravascular ultrasound · Optical coherence tomography · Vulnerable 
plaque

Abbreviations
ACS  Acute coronary syndrome
EEM   External elastic membrane
FCT   Fibrous cap thickness
HDL   High-density lipoprotein cholesterol
hsCRP   High sensitivity C-reactive protein
IL   Interleukin
IVUS   Intravascular ultrasound
OCT   Optical coherence tomography
PB   Plaque burden
SCFAs   Short-chain fatty acids
TCFA   Thin-cap fibroatheroma
TMAO   Trimethylamine N-oxide
TNFα   Tumor necrosis factor α

Highlights

• Vascular inflammation, lipid metabolism, and throm-
bogenicity play a key role not only in atherogenesis but 
also in the development of acute coronary syndromes.

• Blood biomarkers, including hsCRP, PAI-1, fibrinogen, 
IL-6, homocysteine, amyloid A, HDL-C, and bile acid, 
are useful for detecting patients with TCFA.

• Creatinine, hsCRP, fibrinogen, TNFα, IL-6, homocyst-
eine, amyloid A, HDL, prothrombin, and bile acid are 
useful for detecting patients with “high-risk plaques” 
(both TCFA and large plaque burden).

• Composite models of these biomarkers have higher sen-
sitivity for identifying patients with high-risk coronary 
plaques.

• Biomarkers may be useful for risk stratification for 
patients with coronary artery disease and may help 
guide targeted therapy.
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Introduction

Cardiovascular disease is a leading cause of death world-
wide. Patients with sudden cardiac death frequently harbor 
plaques with high-risk features such as thin-cap fibroath-
eroma (TCFA) and large necrotic core [1–3]. Such patients 
also often have a large plaque burden [1, 4]. Intravascular 
imaging modalities, such as optical coherence tomography 
(OCT) and intravascular ultrasound (IVUS) can identify 
such features [5–7]. Basic and population based studies have 
revealed that inflammation, lipid metabolism, thrombogenic-
ity, and possibly gut microbial metabolites are associated 
with atherosclerosis and cardiovascular events [8]. Biomark-
ers of these pathways may serve to stratify patients for future 
risk of adverse cardiovascular events. [9, 10]. However, 
most studies tested a limited number of biomarkers, and the 
association between biomarkers and specific plaque char-
acteristics has not been systematically studied. The current 
study aimed to discover specific blood biomarkers associated 
with key coronary plaque characteristics using both OCT 
and IVUS.

Methods

Study population

Patients with coronary artery disease who underwent both 
OCT and IVUS imaging prior to intervention were prospec-
tively enrolled (UMIN000041692) at New Tokyo Hospital in 
Japan from October 2020 until April 2021. In the biomarker 
study, 69 patients whose blood specimens were successfully 
collected within 12 h prior to the procedure were included 
(Supplemental Figure S1). Detailed descriptions of the study 
population and definitions are provided in the Supplemental 
Materials. The study protocol was approved by the institu-
tional ethics committees at New Tokyo Hospital and Mas-
sachusetts General Hospital. Written informed consent was 
provided by all participants.

Coronary angiography analysis

Methods for coronary angiographic analysis are described 
in the Supplemental Materials.

OCT and IVUS image acquisition and analysis

OCT imaging was performed using the frequency-domain 
OPTIS imaging system (Abbott, Minnesota). IVUS imaging 
was performed using iLab (Boston Scientific, Massachusetts) 
or VISICUBE (Terumo, Tokyo). Aspiration thrombectomy 

was allowed before intravascular imaging in patients with 
TIMI flow grade < 2 and/or occlusive thrombus. All OCT 
and IVUS images were submitted to the Massachusetts 
General Hospital core laboratory. OCT and IVUS image 
analysis was performed using offline review workstations 
(Ilumien Optis, St. Jude Medical) (QCU-CMS-RESEARCH 
version 4.69, Leiden University Medical Center, Leiden, The 
Netherlands) by investigators who were blinded to the clini-
cal, angiographic, and laboratory data. On OCT, lipid was 
defined as a low-signal region with diffuse border [7]. The 
degree of lipid arc was measured at 1-mm intervals. Lipid 
length was measured on the longitudinal view, and lipid 
index was obtained as the product of mean lipid arc and lipid 
length [11]. Lipid-rich plaque was defined as a plaque with 
a maximal lipid arc greater than 90° [12]. In lipid plaques, 
fibrous cap thickness (FCT) was measured 3 times at the 
thinnest part and the average value was calculated. TCFA 
was defined as a plaque with a maximal lipid arc greater than 
90° and FCT ≤ 65 μm [13, 14]. Additional OCT analysis 
was performed according to the previously established cri-
teria as described in the Supplemental Materials [7]. Good 
intraobserver and interobserver agreement was noted in the 
identification of TCFA (κ, 0.911 and 0.905, respectively). 
In IVUS analysis, cross-sectional area of the external elastic 
membrane (EEM) and lumen area were measured at 1-mm 
intervals. Plaque burden (PB) was analyzed as: (EEM area 
at minimal lumen area site—minimal lumen area)/EEM area 
at minimal lumen area site, using IVUS [15]. Greater PB 
was defined as plaques which have PB ≥ median PB value 
(80.26%). Previous studies reported that TCFA and large 
plaque burden were strongly associated with cardiac events 
[1, 3]. Thus, we defined a “high-risk plaques” as a plaque 
which has both TCFA and large PB.

Blood biomarker analysis

The blood samples for biomarker analysis were collected 
from patients within 12 h prior to the procedure. Details 
of biomarker analyses are described in the Supplemental 
Materials.

Statistical analysis

Categorical data are presented as counts and percentages, 
and are compared using the chi-squared test or Fisher 
exact test, as appropriate. Continuous data are presented as 
mean ± standard deviation or median (25th − 75th percen-
tile), as appropriate, depending on the normality of distri-
bution. Between-group differences in continuous variables 
were compared using the Student t-test or Mann–Whitney 
U test, as appropriate. Receiver-operating characteristic 
curve analyses were performed to determine the best cut-
off values of biomarkers for discriminating TCFA and 
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“high-risk plaques” as well as the sensitivities and spe-
cificities. The discriminative composite models were built 
on multivariable logistic regression including biomark-
ers which were significantly different between patients 
with and without specific feature (TCFA and “high-risk 
plaques”). Specifically, high sensitivity C-reactive pro-
tein (hsCRP), plasminogen activator inhibitor-1 (PAI-1), 
fibrinogen, interleukin-6 (IL-6), homocysteine, amyloid A, 
high-density lipoprotein cholesterol (HDL), and bile acid 
were different between patients with TCFA versus with-
out TCFA. Thus, these biomarkers were included in the 
models for TCFA. Creatinine, hsCRP, fibrinogen, tumor 
necrosis factor α (TNFα), IL-6, homocysteine, amyloid 
A, HDL, prothrombin, and bile acid were significantly 
different between patients with “high-risk plaque” versus 
without “high-risk plaque”. Thus, we included these bio-
markers in the composite models for “high-risk plaque. 
In each analysis, two versions of composite models were 
built because IL-6 and amyloid A had multicollinearity 
(variance inflation factor > 10). Analyses were performed 
with SPSS (version 25 for Windows; SPSS, Inc., Chicago 
Illinois).

Results

Patient characteristics, angiographic findings, 
and OCT/IVUS findings

Patient characteristics are shown in Table 1. Among 69 
patients, 50 patients (72.5%) were male and the majority 
of patients presented with stable angina pectoris (87.0%). 
Patients who had TCFA at the culprit lesion more fre-
quently presented with ACS, and were less frequently on 
antiplatelet therapy, compared to those without TCFA. 
In the angiographic analysis, patients with TCFA had 
greater diameter stenosis than those without TCFA (Sup-
plemental Table S1). OCT and IVUS findings are shown 
in Table 2. The majority of patients without TCFA had 
lipid-rich plaque (83%) or macrophages (77%). Patients 
with TCFA had larger lipid and plaque burden, compared 
to those without TCFA.

Differences in biomarkers between patients 
with and without TCFA

Certain biomarkers differed significantly between patients 
with and without TCFA (Fig. 1, Supplemental Table S2 con-
tains additional biomarker data). Patients with TCFA had 
significantly higher values of hsCRP, PAI-1, fibrinogen, 
IL-6, homocysteine, and amyloid A, and significantly lower 

values of HDL and bile acid, compared to those without 
TCFA.

ROC curve for detecting patients with TCFA

The ROC curves for distinguishing the patients with TCFA 
from those without are shown in Fig. 2A–C. ROC curves 
and cut-off values of biomarkers associated with the pres-
ence of TCFA are shown in Fig. 2A and include hsCRP, 
PAI-1, fibrinogen, IL-6, homocysteine, and amyloid A, 
whereas biomarkers associated with the absence of TCFA, 
which include HDL and bile acid, are shown in Fig. 2B. 
We developed two versions of composite models (model-
A: hsCRP, PAI-1, fibrinogen, IL-6, homocysteine, HDL-C, 
and bile acid; model-B: hsCRP, PAI-1, fibrinogen, homo-
cysteine, amyloid A, HDL-C, and bile acid) because of the 
multicollinearity of IL-6 and amyloid A (variance inflation 
factor > 10). The area under the curve (AUC) for distinguish-
ing patients with TCFA from those without was 0.883 (95% 
confidence interval [95%CI], 0.800–0.966) in model-A and 
0.875 (95%CI, 0.789–0.961) in model-B (Fig. 2C). Fig-
ure 2D and E show the relationships between the number 
of predictors and the prevalence of TCFA. The number of 
predictors were calculated as: the sum of the number of unfa-
vorable biomarkers beyond cut-off value and the number of 
favorable biomarkers less than cut-off value. The prevalence 
of TCFA increased as the number of predictors increased.

Differences in biomarkers for patients 
with and without “high‑risk plaques”

Out of 69 patients, 14 had “high-risk plaques” as defined 
above. We identified the blood biomarkers that can distin-
guish patients with or without “high-risk plaques” (differ-
ences in each biomarker value between patients with and 
without “high-risk plaques” are shown in Supplemental 
Table S3). ROC curves and cut-off values are shown in 
Fig. 3A–C. ROC curves showed that creatinine, hsCRP, 
fibrinogen, TNFα, IL-6, homocysteine, and amyloid A 
were useful for predicting the presence of “high-risk 
plaques” (unfavorable biomarkers) (Fig. 3A). In contrast, 
HDL, prothrombin, and bile acid were useful for predict-
ing the absence of “high-risk plaques” (favorable biomark-
ers) (Fig. 3B). Like the analyses for TCFA, we made two 
composite models (model-A: creatinine, hsCRP, fibrino-
gen, TNFα, IL-6, homocysteine, HDL, prothrombin, and 
bile acid; model-B: creatinine, hsCRP, fibrinogen, TNFα, 
homocysteine, amyloid A, HDL, prothrombin, and bile acid) 
because of multicollinearity of IL-6 and amyloid. The AUC 
for distinguishing patients with “high-risk plaques” from 
those without was 0.925 (0.850–1.000) in model-A and 
0.947 (0.893–1.000) in model-B (Fig. 3C). Figure 3D and 
E show the relationship between the number of predictors 
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and the prevalence of “high-risk plaques”. The prevalence 
of “high-risk plaques” increased as the number of predictors 
increased.

Discussion

This study identified blood biomarkers useful for distin-
guishing patients with TCFA and “high-risk plaques” from 
those without. To have a more robust method to predict high-
risk plaques, composite models were devised. Furthermore, 
we identified the optimal cut-off of each biomarker and 

Table 1  Patient characteristics

Statistically significant (p < 0.05) are given in bold
Values are mean ± SD, n (%), or median (interquartile range)
ACEI/ARB angiotensin-converting enzyme inhibitor/angiotensin II receptor blocker, BMI body mass index, 
CABG coronary artery bypass graft, CAD coronary artery disease, DOAC direct oral anticoagulant, LAD left 
anterior descending artery, LCX left circumflex artery, LVEF left ventricular ejection fraction, MI myocar-
dial infarction, NSTE-ACS non-ST-segment elevation acute coronary syndrome, PCI percutaneous coronary 
intervention,RCA  right coronary artery, STEMI ST-segment elevation myocardial infarction

All
(n = 69)

Patients with TCFA
(n = 22)

Patients without TCFA
(n = 47)

p value

Age, y 70.7 ± 11.1 71.1 ± 11.7 70.5 ± 10.9 0.691
BMI 25.2 ± 3.6 25.9 ± 3.1 24.8 ± 3.7 0.246
Male, n (%) 50 (72.5) 18 (81.8) 32 (68.1) 0.243
Clinical presentation 0.002
 Stable angina pectoris, n (%) 60 (87.0) 15 (68.2) 45 (95.7)
 STEMI, n (%) 3 (4.3) 3 (13.6) 0 (0.0)
 NSTE-ACS, n (%) 6 (8.7) 4 (18.2) 2 (4.3)
 Prior MI, n (%) 7 (10.1) 3 (13.6) 4 (8.5) 0.394
 Prior PCI, n (%) 23 (33.3) 6 (27.3) 17 (36.2) 0.465
 Prior CABG, n (%) 0 (0.0) 0 (0.0) 0 (0.0) –
 Hypertension, n (%) 56 (81.2) 16 (72.7) 40 (85.1) 0.184
 Dyslipidemia, n (%) 59 (85.5) 18 (81.8) 41 (87.2) 0.398
 Diabetes mellitus, n (%) 26 (37.7) 8 (36.4) 18 (38.3) 0.877
 Renal Insufficiency, n (%) 19 (27.5) 9 (40.9) 10 (21.3) 0.089
 Family history of CAD, n (%) 2 (2.9) 0 (0.0) 2 (4.3) 0.461

Smoking 0.458
 Current smoker, n (%) 13 (18.8) 6 (27.3) 7 (14.9)
 Past smoker, n (%) 30 (43.5) 9 (40.9) 21 (44.7)
 Never smoker, n (%) 26 (37.7) 7 (31.8) 19 (40.4)
 LVEF, % 63.9 (60.7–66.1) 63.9 (54.4–65.8) 63.9 (60.9–67.8) 0.223

Medication at admission
 Aspirin, n (%) 47 (68.1) 9 (40.9) 38 (80.9) 0.001
 P2Y12 inhibitor, n (%) 42 (60.9) 9 (40.9) 33 (70.2) 0.020
 Warfarin, n (%) 0 (0.0) 0 (0.0) 0 (0.0) –
 DOAC, n (%) 9 (13.0) 2 (9.1) 7 (14.9) 0.402
 Statin, n (%) 48 (69.6) 12 (54.5) 36 (76.6) 0.064
 PCSK9 inhibitor, n (%) 0 (0.0) 0 (0.0) 0 (0.0) –
 β blocker, n (%) 15 (21.7) 4 (18.2) 11 (23.4) 0.439
 ACEI/ARB, n (%) 34 (49.3) 11 (50.0) 23 (48.9) 0.934

Culprit vessel 0.073
 LAD, n (%) 48 (69.6) 14 (63.6) 34 (72.3)
 LCX, n (%) 9 (13.0) 1 (4.5) 8 (17.0)
 RCA, n (%) 12 (17.4) 7 (31.8) 5 (10.6)
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demonstrated the relationship between the number of pre-
dictors and the presence of TCFA and “high-risk plaques”.

This is a pilot study demonstrating potential for the uti-
lization of blood biomarkers to identify patients with high-
risk coronary plaque features defined according to intravas-
cular imaging. Biomarkers may provide insights into a link 
between underlying pathological process and high-risk coro-
nary plaque phenotype. Although the number of the patient 
was limited (especially patients who presented with ACS), 
if the findings are replicated in larger studies, this simple 
approach will help not only to risk stratify but also to guide 
targeted therapy for patients with coronary artery disease.

Inflammation and coronary artery disease

Inflammation contributes to atherosclerotic plaque forma-
tion and adverse cardiac events [8, 16, 17]. This study 
demonstrated that blood inflammatory biomarkers (such 
as hsCRP, IL-6, fibrinogen, and amyloid A) may help to 
detect patients with coronary plaques with higher risk fea-
tures on intravascular imaging. This result is consistent 

with previous studies which showed inflammatory bio-
markers have significant associations with coronary artery 
disease burden and cardiovascular events [18–20]. Athero-
sclerotic lesion formation generally follows accumulation 
and modification of plasma-derived lipoproteins and their 
uptake by macrophages (foam cell formation) [21]. Cell 
death and deficient clearance of dead cells (efferocytosis) 
promotes formation of the plaque’s necrotic core. Within 
the plaque, inflammatory activation of macrophages, mast 
cells, and T cells provokes the release of pro-inflammatory 
cytokines which inhibit interstitial collagen synthesis and 
proteases which digest fibrous cap components [17]. Thus, 
inflammation contributes to TCFA formation. Atheroscle-
rosis also involves endothelial dysfunction. Pro-inflamma-
tory cytokines such as IL-1 and TNFα promote the interac-
tion between circulating leukocytes and the endothelium 
through induction of leukocyte adhesion molecules (such 
as vascular cell adhesion molecule 1) [22]. Downstream of 
IL-1 and TNF, IL-6 exacerbates the progression of athero-
sclerosis through activation of Janus kinase 1 and signal 
transducer and activator of transcription 1 and 3 [22]. IL-6 

Table 2  OCT and IVUS analysis

Statistically significant (p < 0.05) are given in bold
Values are n (%), median (interquartile range), or mean ± SD.
ACS acute coronary syndrome, FCT fibrous cap thickness, IVUS  intravascular ultrasound, OCT optical coherence tomography, TCFA thin-cap 
fibroatheroma

All (n = 69) Patients with TCFA
(n = 22)

Patients without TCFA
(n = 47)

p-value

Qualitative OCT analysis
 Lipid-rich plaque, n (%) 61 (88.4) 22 (100.0) 39 (83.0) 0.040
 TCFA, n (%) 22 (31.9) 22 (100.0) 0 (0.0) –
 Macrophage, n (%) 58 (84.1) 22 (100.0) 36 (76.6) 0.013
 Microvessels, n (%) 33 (47.8) 14 (63.6) 19 (40.4) 0.072
 Cholesterol crystal, n (%) 21 (30.4) 9 (40.9) 12 (25.5) 0.196
 Calcification, n (%) 52 (75.4) 16 (72.7) 36 (76.6) 0.728
 Layered plaque, n (%) 48 (69.6) 16 (72.7) 32 (68.1) 0.696

Culprit etiology in ACS cases (n = 9) 0.028
 Plaque rupture, n (%) 7 (77.8) 7 (100.0) 0 (0.0)
 Plaque erosion, n (%) 2 (22.2) 0 (0.0) 2 (100.0)

Quantitative OCT and IVUS analysis
 Minimal flow area,  mm2 1.19 (0.88–1.84) 1.27 (1.02–1.68) 1.14 (0.79–1.93) 0.444
 Reference lumen area,
mm2

6.67 (4.72–8.78) 7.26 (6.72–10.29) 6.00 (4.59–8.10) 0.009

 Area stenosis, % 78.2 ± 10.8 80.6 ± 8.9 77.1 ± 11.5 0.209
 Lipid analysis
 Thinnest FCT, µm 87 (60–131) 54 (43–60) 107 (87–150) < 0.001
 Max lipid arc, degree 246 (148–360) 360 (269–360) 181 (137–264) < 0.001
 Mean lipid arc, degree 157 ± 56 206 ± 39 133 ± 47 < 0.001
 Lipid length, mm 10.1 (6.1–12.8) 12.3 (9.6–20.7) 8.2 (5.2–11.5) 0.001
 Lipid index 1419.0 (829.8–2298.9) 2491.7 (1859.4–4113.2) 1080.0 (499.8–1828.5) < 0.001
 Plaque burden by IVUS, % 80.3 (73.3–86.5) 82.7 (76.6–89.8) 79.9 (71.5–83.0) 0.039
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also unleashed the acute phase response in hepatocytes. 
Fibrinogen, an acute phase reactant induced by IL-6, not 
only reflects inflammation but also furnishes fibrin for 
thrombus formation and increases plasma viscosity [23]. 
Amyloid A is a highly sensitive acute phase reactant and 

known to associate with atherosclerosis [24]. In addition 
to these mechanistic reports, CANTOS demonstrated the 
effectiveness of biomarker guided anti-inflammatory ther-
apy by showing that allocation of a monoclonal antibody 
targeting IL-1β based on hsCRP reduces major adverse 
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cardiovascular events [25]. This result illustrated the util-
ity of inflammatory biomarkers in guiding optimal anti-
inflammatory therapy.

Thrombogenic and lipid factors, and coronary 
artery disease

Prothrombotic factors also associate with coronary artery 
disease and ACS. The acute phase reactant PAI-1 can pro-
mote thrombosis and atherosclerosis [26]. PAI-1 inhibitors 
tissue-type and urokinase-type plasminogen activator, key 
components of the endogenous fibrinolysis. In addition to 
hepatocyte production, endothelial cell and smooth muscle 
cell activation or injury can increase local vascular PAI-1 
synthesis. By suppressing the fibrinolytic system, PAI-1 
facilitates clot stability [26]. Previous studies reported the 
increase of PAI-1 in atherosclerosis, coronary artery disease, 
obesity, and insulin resistance [26]. Homocysteine may also 
contribute to coronary artery disease. Homocysteine is asso-
ciated with an increase in vascular oxidative burden through 
an increase in superoxide radical production and alteration 
of intracellular antioxidant enzymes [27]. As a result, homo-
cysteine can lead to endothelial dysfunction, a prothrombotic 
state, and atherosclerosis. In addition, the pro-oxidative state 
caused by homocysteine can activate inflammatory media-
tors such as that governed by the transcription factor nuclear 
factor kappa B, which can exacerbate atherosclerosis [27]. 
In our current study, HDL was a protective factor against 
TCFA and “high-risk plaques”. HDL concentrations cor-
relate inversely with atherosclerotic events. HDL can medi-
ate reverse cholesterol transport; the process of removing 
excess cholesterol from arterial wall’s macrophages to the 
liver, bile, and feces [28]. In addition, HDL has antioxidant 
components, which might protect against atherosclerosis. 
HDL inhibits the expression of adhesion molecules and 

migration of monocytes into the subendothelial space [28]. 
Furthermore, HDL also enhances nitric oxide synthesis, 
increasing the production of nitric oxide, which protects 
against inflammation activation in the endothelium [28]. On 
the other hand, our current study showed prothrombin was 
a protective biomarker for “high-risk plaques”. However, 
prothrombin is associated with the coagulation cascade and 
it can have an unfavorable effect on atherosclerosis from a 
theoretical perspective (it can promote mural thrombus after 
minor endothelial disruption, which results in rapid plaque 
progression following thrombus organization). The role of 
prothrombin on atherosclerosis remains incompletely under-
stood and other factors such as liver disease and alcohol 
consumption can affect prothrombin [29, 30]. Thus, further 
mechanistic and validation studies are required.

Gut microbial metabolites and coronary artery 
disease

Recent accumulating evidence suggests that gut micro-
biota and their metabolites may influence atherosclerosis 
and adverse coronary events. Previous large studies have 
reported the unfavorable effect of trimethylamine oxide 
(TMAO) [31, 32]. In contrast, certain short chain fatty 
acids (SCFAs) may exert cardioprotective functions [33]. 
This study did not show clear relationships between vulner-
able plaque features, and TMAO and SCFAs (Supplemen-
tal Tables S2 and S3). This study lacked healthy controls 
because of the invasive nature of the intravascular imaging.

Our study demonstrated that bile acid was associated 
with favorable features (related to the absence of TCFA and 
“high-risk plaques”). Bile acids have been reported to be 
associated with lipid metabolism, glucose/insulin metabo-
lism, and inflammation [33]. Although the effects of bile 
acids on atherosclerosis have not been fully understood, they 
may modulate the gut microbial microflora and modulate 
immune responses and have an impact on host physiology 
through farnesoid X receptor, liver X receptor, pregnane X 
receptor, and G-protein-coupled receptors [33]. Bile acids 
comprise several species which have different concentra-
tions. However, our current study analyzed only total bile 
acid. Thus, defining the effects of specific bile acids on 
plaque characteristics will require further study.

Clinical implication

Our current study demonstrated the possibility of risk strati-
fication for high-risk plaques in patients with coronary artery 
disease using a combination of blood biomarkers. Based 
on biomarkers, a targeted therapy for inflammation, lipid, 
coagulation, or endothelial dysfunction may be chosen. In 
addition, although large validation studies are required, the 
composite models of biomarkers may help identify patients 

Fig. 2  ROC curves and cut-off values for distinguishing between 
the patients with and without TCFA and the relationship between 
the number of predictors and the prevalence of TCFA. A shows the 
ROC curves and best cut-off values of biomarkers useful for detect-
ing the patients with TCFA (unfavorable biomarkers). B shows the 
ROC curves and best cut-off values of biomarkers useful for detecting 
the patients without TCFA (favorable biomarkers). C shows the ROC 
curves of composite models (model-A: hsCRP, PAI-1, fibrinogen, 
IL-6, homocysteine, HDL, and bile acid, model-B: hsCRP, PAI-1, 
fibrinogen, homocysteine, amyloid A, HDL, and bile acid). We made 
2 versions of the model because IL-6 and amyloid A had multicol-
linearity (variance inflation factor > 10). Both models were highly 
accurate for distinguishing between patients with and without TCFA. 
D and E show the relationship between number of predictors and the 
prevalence of TCFA. The number of predictors was calculated as: the 
number of unfavorable biomarkers (hsCRP, PAI-1, fibrinogen, IL-6, 
and homocysteine in D, hsCRP, PAI-1, fibrinogen, homocysteine, 
and amyloid A in A]) above each cut-off value and favorable markers 
(HDL and bile acid) less than each cut-off value. In both panels, the 
prevalence of TCFA increased as the number of predictors increased.

◂
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with high-risk plaques in the coronary arteries without inva-
sive examinations, such as intra-coronary imaging.

Limitations

This study has several limitations. First, the current study 
was a proof-of-concept study, therefore the number of 
patients was small. In addition, the majority of the patients 
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enrolled in this study presented with stable angina. Hence, 
the intravascular imaging findings which suggestive of high-
risk plaques in the current study are not fully representa-
tive for all vulnerable/high-risk plaques and the results of 
this study should be limited to those patients with stable 
coronary artery disease. The biomarkers associated with 
vulnerable plaque features may differ depending on clinical 
presentation: ACS or stable angina pectoris. Larger studies 
are warranted to confirm this preliminary finding. Second, 
only patients with coronary artery disease were enrolled. 
Therefore, there is no healthy control data in our current 
study. Third, although we investigated more than 40 blood 
biomarkers in our current study, the panels tested may not 
include some potentially informative biomarkers including 
for example non-coding RNAs. A large study with com-
prehensive biomarker assays to confirm the findings of this 
pilot study is warranted. Fourth, multiple other factors (not 
only plaque characteristics) could have influenced blood 
biomarker levels. Fifth, comparison of the biomarker pat-
terns developed here to correlate with morphologic charac-
teristics of plaques with other risk stratification algorithms 
and prediction of events will require further study. Finally, 
all patients were enrolled in Japan. There is a possibility 
that the results could differ in a cohort with different ethnic 
backgrounds.

Conclusion

This study identified patterns of blood biomarkers that asso-
ciate with high-risk plaque features defined according to 
intravascular imaging. Such patterns of biomarkers may aid 
risk assessment and help plan targeted therapeutic strategies.

Patients with TCFA had significantly higher values of 
hsCRP, PAI-1, fibrinogen, IL-6, homocysteine, and amy-
loid A and lower values of HDL and bile acid, compared to 
patients without TCFA.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11239- 022- 02709-2.
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