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Abstract

Objective

Clinical practice universally assumes that appropriate empirical antibiotic therapy improves

survival in patients with bloodstream infection. However, this is not generally supported by

previous studies. We examined the association between appropriate therapy and 30-day

mortality, while minimizing bias due to confounding by indication.

Methods

We conducted a retrospective cohort study between 2012 and 2017 at a tertiary university

hospital in the Netherlands. Adult patients with bloodstream infection attending the emer-

gency department were included. Based on in vitro susceptibility, antibiotic therapy was

scored as appropriate or inappropriate. Primary outcome was 30-day mortality. To control

for confounding, we performed conventional multivariable logistic regression and propensity

score methods. Additionally, we performed an analysis in a more homogeneous subgroup

(i.e. antibiotic monotherapy).

Results

We included 1.039 patients, 729 (70.2%) received appropriate therapy. Overall 30-day mor-

tality was 10.4%. Appropriately treated patients had more unfavorable characteristics, indi-

cating more severe illness. Despite adjustments, we found no association between

appropriate therapy and mortality. For the antibiotic monotherapy subgroup (n = 449),

patient characteristics were more homogeneous. Within this subgroup, appropriate therapy

was associated with lower mortality (Odds Ratios [95% Confidence Intervals] ranging from:

0.31 [0.14; 0.67] to 0.40 [0.19; 0.85]).
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Conclusions

Comparing heterogeneous treatment groups distorts associations despite use of common

methods to prevent bias. Consequently, conclusions of such observational studies should

be interpreted with care. If possible, future investigators should use our method of attempt-

ing to identify and analyze the most homogeneous treatment groups nested within their

study objective, because this minimizes residual confounding.

Introduction

Bacterial infections can result in considerable mortality and have a profound global burden [1–

3]. Patients with a severe infection (e.g. sepsis) often present in an acute care setting, such as the

emergency department (ED). Initiation of targeted antibiotic therapy in the ED is important in

patients with a suspected bacterial infection and is possible when the causative pathogen is

proven by cultures with determination of the antibiogram [4]. However, this process usually

takes over 24 hours and therefore empirical therapy is initiated in the ED. Appropriate empiri-

cal antibiotic therapy (i.e. appropriate therapy) is defined as applying the antibiotic agent which

matches in vitro susceptibility of the isolated bacteria, but was initially provided without evi-

dence on the causative pathogen or its antibiogram [5]. Clinical practice universally assumes

that appropriate therapy improves survival in patients with bloodstream infection (BSI).

Although an overall beneficial outcome of appropriate antibiotic therapy in patients with

BSI was demonstrated by meta-analyses [6, 7], studies that did not find lower mortality contin-

ued to be published [5, 8–14]. An explanation for these conflicting data is confounding by

indication [15], yet this was not investigated in these studies [5, 8–14]. Confounding by indica-

tion arises because patients at risk of dying of BSI are more likely to receive broad spectrum

antibiotic therapy–thus more often appropriate–as physicians want to ensure appropriateness

most in severely ill patients [3]. This results in an imbalance in–measured and unmeasured–

patient characteristics (i.e. underlying risk profile) between appropriately and inappropriately

treated patients, thereby biasing the genuine relation between appropriate therapy and mortal-

ity [16].

The main objective of this study was to examine whether administration of appropriate

empirical antibiotic therapy affects 30-day mortality in adult patients with BSI attending the

ED, while minimizing bias due to confounding by indication. Subsequently, we focused on

methodologically explaining why prior investigators suggested no impact of appropriate ther-

apy on survival.

Materials and methods

Study design and setting

We conducted a retrospective cohort study at the Erasmus University Medical Center Rotter-

dam (Erasmus MC), which is a tertiary university hospital in the Netherlands. We used data

from all patients attending the ED with BSI from July 2012 through December 2017. Blood cul-

tures are taken in patients suspected for BSI, and subsequently empiric antibiotic therapy is

started. Antibiotic advice is protocolized in guidelines based on local and national prevalence

and resistance data [17, 18]. These guidelines provide an advice depending on the suspected

source of infection and clinical judgement of severity of disease, e.g. working diagnosis. The

Medical Ethics Committee of the Erasmus MC reviewed our study and concluded that it did
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not fall under the scope of the Medical Research Involving Human Subjects Act and therefore

no informed consent needed to be obtained. Our study is thus approved and registered under

MEC-2018-1450.

Selection of participants

Patients were eligible for inclusion if they were at least 18 years of age and had a laboratory

proven bacterial BSI at the ED. BSI was defined as presence of a known pathogen in one blood

culture or a common commensal (e.g. Staphylococcus epidermidis) [19] in at least two blood

cultures collected on separate occasions within two days from ED admission [19, 20]. Only the

first episode of BSI was included to prevent domination of results by individuals that fre-

quently visited the ED.

Data collection and processing

We combined electronic databases with data from the ED and the department of Medical

Microbiology and Infectious Diseases. The ED database included empiric antibiotic therapy

administered during the ED visit, potentially relevant and retrospectively available patient

characteristics (serving as proxies for severity of disease), and mortality. Treatment strategy

was either no antibiotic therapy, antibiotic monotherapy (if only one drug was administered),

or antibiotic combination therapy (if more than one drug was administered). Also, patient

charts were reviewed to assess dosage errors. General and demographic patients characteristics

collected were: sex, age, arrival (by ambulance or other mode of transportation), triage cate-

gory (according to the Manchester Triage System) [21], disposition (direct intensive care unit

admittance or other), chills [22], vomiting [22], need for vasopressors, suspected site of infec-

tion (unknown, respiratory, abdominal, urogenital, skin or soft tissue, intravascular or thorax,

central nervous system, other), and origin of infection (nosocomial or community-acquired)

[23]. To account for severity of disease we used the first recorded vital signs (i.e. body tempera-

ture, heart rate, respiratory rate, systolic blood pressure, oxygen saturation, and conscious-

ness), whether there was need for any supplemental oxygen, and calculated the National early

warning score (NEWS) [24, 25] (S1 Methods). Additionally, to account for comorbidity we

collected all components of the age-adjusted Charlson comorbidity index (CCI) [26] (S1 Meth-

ods). The primary outcome was 30-day mortality, because we expected 30 days to be a biologi-

cally plausible window to represent the effect of appropriate therapy on mortality [15]. For

mortality data we used municipal death registration records.

The Medical Microbiology and Infectious Diseases database contained data about type of

pathogen and their susceptibility (antibiogram) for all positive blood cultures collected at the

ED. Blood cultures were performed using the BACTEC system (Becton Dickinson Diagnostic

Instrument Systems, Sparks, Md) according to the manufactures protocol. Type of pathogen

was identified directly in one milliliter of blood by MALDI-TOF MS analysis (Microflex, Bru-

ker Daltonics, Bremen, Germany). The in vitro susceptibility to antibiotic agents testing was

performed with VITEK 2 (bioMérieux, Marcy l’Etoile, France). Based on earlier applied antibi-

otic therapy during ED visit and the established susceptibility of the isolated pathogen, we ret-

rospectively determined the appropriateness of empirical therapy. In accordance with

previous studies, no empiric antibiotic therapy, ineffective antibiotic therapy (based on anti-

biogram or if a dosage error was reported), or not intravenously administered antibiotic ther-

apy (except for antibiotics with high bioavailability, i.e. metronidazole and ciprofloxacin) were

all considered inappropriate. The interval of antibiotic administration was adjusted in patients

with a glomerular filtration rate less than 30 mL per minute, however, this does not affect the

initial dosage of antibiotic therapy administered in the ED [5–13, 15].

Appropriate therapy and confounding by indication
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Data analysis and control for confounding bias

For descriptive statistics we examined all patient characteristics among appropriately versus

(vs.) inappropriately treated patients. Based on distribution data were tested with an unpaired

t-test, chi-squared test, or Fisher’s exact test.

We considered patient characteristics as confounders during further analyses if, based on

expert knowledge, controlling for the variable would reduce bias when studying the relation

between appropriate therapy and 30-day mortality [16]. To improve our propensity score

methods, we only included potential confounding variables in our models that were statisti-

cally related to outcome, as this decreases variance without increasing bias (S2 Methods) [27].

We conducted inferential statistics to investigate the association between appropriate ther-

apy and 30-day mortality while attempting to control for confounding by indication. Results

were presented as odds ratios (OR) with 95% confidence intervals (CI). We handled missing

data using multiple imputations. For efficiency purposes we imputed 20 datasets using the

chained equations method [28].

To limit confounding by indication, we controlled for measured proxies of disease severity

(e.g. arrival mode, triage category, direct intensive care unit admittance, components of

NEWS, components of CCI) with multiple statistical techniques. First, we performed a con-

ventional multivariable logistic regression analysis. However, this method is known to fall

short in case of confounding by indication [29]. Therefore, secondly, we used propensity score

methods. Propensity score methods directly focus on indication for treatment under study

and potentially provide more precise estimates in studies in which confounding by indication

may occur [29]. We applied three analytical procedures with the obtained propensity scores,

namely 1) adjustment by logistic regression, 2) stratification, and 3) inverse probability of

treatment weighting (S2 Methods) [30–32]. To assess the impact of potential contaminated

BSI (i.e. those with a common commensal on multiple blood cultures), we subsequently per-

formed a sensitivity analysis after exclusion of these patients.

Finally, we attempted to limit confounding bias by selecting patients treated with–appropri-

ate or inappropriate–antibiotic monotherapy. When comparing the total appropriately to

inappropriately treated group, we expected various degrees of confounding bias for different

treatment strategies (i.e. no antibiotic therapy, antibiotic combination therapy, antibiotic

monotherapy). We expected that patients with the lowest disease severity and the lowest risk

of dying would more often receive no–thus inappropriate–antibiotic therapy. We also

expected that severely ill patients with high chance of dying are more likely to receive antibiotic

combination therapy to broaden the spectrum, resulting in more often appropriate therapy.

Therefore, when studying the relation between appropriate therapy and mortality in the total

population, including these treatment strategies potentially contributes to large heterogeneity

between appropriately and inappropriately treated patients, which increases risk of confound-

ing bias. We expected that the subset of patients who received antibiotic monotherapy was the

least confounded group with more homogeneous measured and unmeasured confounders.

All hypothesis tests were 2-sided, with a significance level of P< .05. Statistical analyses

were performed using R version 3.4.4.

Results

Patient characteristics

We identified 1.286 adult patients with a positive laboratory proven blood culture taken at the

ED. We excluded 247 patients with recurrent BSI, resulting in 1.039 unique patients of whom

729 (70.2%) received appropriate therapy. In 310 patients therapy was inappropriate: 184

Appropriate therapy and confounding by indication
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patients received no empiric antibiotic therapy, 115 patients were treated with ineffective anti-

biotic therapy, and in 11 patients antibiotic therapy was not intravenously administered. Of

the patients who were appropriately treated, cefuroxime and gentamicin combination therapy

was most often administered. 30-day mortality was 10.4%. We found that 673 (64.8%) patients

had a gram-negative BSI. The most frequently isolated pathogens were Escherichia coli
(32.8%), Staphylococcus aureus (10.1%), and Streptococcus pneumoniae (8.2%). Patient charac-

teristics are shown in Table 1.

Patients receiving appropriate therapy had less favorable measured characteristics than

patients receiving inappropriate antibiotic therapy: they more frequently arrived by ambulance

(27.7% vs. 15.2%), had higher triage categories (29.6% vs. 11.1%), were more often admitted

directly to the intensive care unit (9.1% vs. 2.6%), needed vasopressors more frequently (4.9%

vs. 1.6%), and received more antibiotic combination therapy (52.4% vs. 7.1%). In addition,

appropriately treated patients had more abnormal vital signs and on average a higher NEWS

of 6.0 (± 3.8) vs. 3.8 (± 3.1).

Appropriate empirical antibiotic therapy and 30-day mortality

Crude 30-day mortality for appropriately treated patients was 11.1% (81 patients) vs. 8.7% (27

patients) for inappropriately treated patients (OR[95%CI]: 1.31 [0.84; 2.10]). There was no

association between appropriate therapy and 30-day mortality after conventional adjustment

for confounders, adjustment for propensity score, propensity score stratification and inverse

probability of treatment weighting (OR[95%CI] ranging from: 0.71 [0.43; 1.19] to 1.03 [0.76;

1.40], Fig 1).

For sensitivity analysis, we examined the impact of excluding patients with common com-

mensal bacteria on multiple blood cultures collected on separate occasions within two days

from ED admission. In our study, 24 patients had at least two subsequent blood cultures with a

common commensal (17 Staphylococcus epidermidis, 3 Staphylococcus hominis, 1 Bacillus
licheniformis, 1 Rhodococcus equi, 1 Staphylococcus capitis, and 1 Staphylococcus lugdunensis).
Appropriate therapy was administered in 9 (37.5%) patients. Excluding these patients did not

affect our results.

Subgroup analysis antibiotic monotherapy

There were 449 patients treated with antibiotic monotherapy of whom 347 (77.3%) received

appropriate therapy. In 102 patients therapy was inappropriate: 92 patients were treated with

ineffective antibiotic therapy and in 10 patients antibiotic therapy was not intravenously

administered. Of the patients who were appropriately treated, cefuroxime was most often

administered. 30-day mortality was 7.1%. We found that 299 (66.6%) patients had a gram-neg-

ative BSI, which is comparable to the rate of gram-negative BSI in the total population

(64.8%). The most frequently isolated pathogens were Escherichia coli (35.4%), Staphylococcus
aureus (11.1%), and Klebsiella pneumoniae (7.8%). Patient characteristics were comparable for

appropriately and inappropriately treated patients, indicating more homogeneity in the mono-

therapy subgroup compared to the total population (Table 2).

In the monotherapy subgroup, crude 30-day mortality for appropriately treated patients

was 5.5% (19 patients) vs. 12.7% (13 patients) for inappropriately treated patients. Appropriate

therapy was associated with lower 30-day mortality after crude estimation, adjustment for pro-

pensity score, propensity score stratification, and inverse probability of treatment weighting

(OR[95%CI] ranging from: 0.31 [0.14; 0.67] to 0.40 [0.19; 0.85], Fig 2). Conventional adjust-

ment for confounders had an OR with 95%CI of 0.41 [0.14; 1.18].

Appropriate therapy and confounding by indication
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Table 1. Patient characteristics in appropriately versus inappropriately treated patients (total population).

Characteristic Appropriate n = 729 (70.2) Inappropriate n = 310 (29.8) P-value

Sex, male 425 (58.3) 201 (64.8) .06

Age, mean (SD), yearsA 60.9 (15.5) 60.1 (15.9) .44

Arrival by ambulanceA 202 (27.7) 47 (15.2) < .001

Triage category, acute/highly urgentA,B 205 (29.6) 33 (11.1) < .001

Direct intensive care unit admittanceA 66 (9.1) 8 (2.6) < .001

ChillsA 311 (42.7) 134 (43.2) .92

Vomiting 178 (24.4) 68 (21.9) .43

Need for vasopressorsA 36 (4.9) 5 (1.6) .02

Suspected site of infection, unknown 169 (23.2) 70 (22.6) .90

Origin, nosocomial 384 (52.7) 175 (56.5) .29

Antibiotic treatment strategy

Combination therapy 382 (52.4) 22 (7.1) < .001

Monotherapy 347 (47.6) 102 (32.9) < .001

No antibiotic therapy 0 (0.0) 186 (60.0) < .001

Vital signs / NEWS parameters

Body temperature, mean (SD),˚CA,C 38.4 (1.2) 38.0 (1.1) < .001

Heart rate, mean (SD), /minD 108 (23.8) 100 (19.6) < .001

Respiratory rate, mean (SD), /minA,E 24 (8.5) 21 (7.1) < .001

Systolic blood pressure, mean (SD), mm HgA,F 125 (28.5) 125 (24.5) .77

Oxygen saturation, mean (SD), %G 95 (5.8) 96 (2.4) < .001

Any supplemental oxygenA 339 (46.5) 62 (20.0) < .001

Consciousness, not alertA,H 96 (15.5) 16 (6.5) < .001

NEWS, mean (SD) 6.0 (3.8) 3.8 (3.1) < .001

Comorbidities of Charlson comorbidity indexI

Diabetes mellitus, uncomplicated 147 (20.2) 53 (17.1) .29

Diabetes mellitus, end-organ damageA 10 (1.4) 3 (1.0) .77

Liver disease, mildA 93 (12.8) 47 (15.2) . 35

Malignancy, leukemia, lymphoma, localized solid tumorA 120 (16.5) 61 (19.7) .25

Malignancy, metastatic solid tumorA 93 (12.8) 40 (12.9) >.99

Chronic kidney diseaseA 124 (17.0) 45 (14.5) .37

Congestive heart failure 96 (13.2) 37 (11.9) .66

Myocardial infarction 103 (14.1) 36 (11.6) .32

Chronic obstructive pulmonary diseaseA 95 (13.0) 39 (12.6) .92

Perivascular disease 77 (10.6) 44 (14.2) .12

Cerebrovascular accident or transient ischemic attackA 115 (15.8) 26 (8.4) .002

DementiaA 30 (4.1) 6 (1.9) .12

Connective tissue disease 57 (7.8) 20 (6.5) .52

Peptic ulcer disease 17 (2.3) 8 (2.6) >.99

Type of isolated pathogen

Gram-negative BSI 457 (62.7) 216 (69.7) .03

Data are presented as No. (%) unless otherwise indicated. Data in this table is not imputed yet. NEWS, national early warning score; BSI, bloodstream infection.
AConfounding variables.
BData on triage category were missing for 50 (4.6%) patients.
CData on body temperature were missing for 9 (0.9%) patients.
DData on heart rate were missing for 24 (2.3%) patients.
EData on respiratory rate were missing for 370 (35.5%) patients.
FData on systolic blood pressure were missing for 20 (1.9%) patients.
GData on oxygen saturation were missing for 43 (4.3%) patients.
HData on consciousness were missing for 175 (16.8%) patients.
IComorbidities with a prevalence below 1% are not presented (i.e. moderate to severe liver disease, acquired immunodeficiency syndrome, and hemiplegia).

https://doi.org/10.1371/journal.pone.0225478.t001
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Discussion

This study aimed to address the confounding that exists in establishing the effects of antibiotic

appropriateness in patients with BSI. Despite extensive adjustment for confounding, we found

no association between appropriate empirical antibiotic therapy and mortality when assessing

all patients. This finding–in line with previous studies [5, 8–13]–remains counterintuitive and

is in contrast to fundamentals of current clinical practice [3].

We hypothesized that confounding by indication was the explanation for finding no associ-

ation between appropriate therapy and mortality in previous studies. Patients at risk of dying

of BSI are more likely to receive broad spectrum antibiotic–thus more often appropriate–ther-

apy as physicians want to ensure appropriateness most in severely ill patients. As a result, the

association between appropriate therapy and mortality is biased. In our study, the first clue for

confounding by indication was more unfavorable patient characteristics in the appropriately

treated group. We noticed this heterogeneity as well in the study of Anderson et al., which also

found no association between appropriate therapy and mortality [13]. However, the authors

did not consider confounding by indication as a potential explanation for their findings [13].

A second clue for confounding was attenuation of estimates when controlling for bias–with

both conventional multivariable logistic regression and propensity score methods. We noticed

that in prior studies, that also found no association, there was attenuation of estimates after

adjustment for confounders [10, 11]. Since we only adjusted for observed confounders,

unmeasured–residual–confounders could still be of potential bias.

Chance of residual confounding is absent in totally homogenous groups (e.g. as in an ideal

randomized controlled trial) [16]. Our total population was heterogeneous in measured

patient characteristics and we expected various degrees of confounding bias for different treat-

ment strategies. We expected that patients receiving antibiotic combination–thus more often

appropriate–therapy were the most ill and patients receiving no antibiotic therapy–thus inap-

propriate therapy–were the least ill patients. We expected the remainder of patients that

received antibiotic monotherapy to be more comparable, as physicians chose to treat these

patients presumably based on a more comparable judgment of illness. In addition, the severely

Fig 1. Estimates of appropriate empirical antibiotic therapy on 30-day mortality (total population). CI, confidence interval. Confounding variables: age, arrival,

triage category, direct intensive care unit admittance, chills, need for vasopressors, body temperature, respiratory rate, systolic blood pressure, supplemental oxygen,

consciousness, diabetes mellitus with end-organ damage, mild liver disease, malignancy, chronic kidney disease, chronic obstructive pulmonary disease, cerebrovascular

accident or transient ischemic attack, and dementia. For a detailed description of statistical adjustment techniques, see S2 Methods. This figure shows attenuation of

estimates after adjustment for confounders.

https://doi.org/10.1371/journal.pone.0225478.g001
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confounded treatment strategies–i.e. antibiotic combination therapy and no antibiotic ther-

apy–are per definition excluded during this subgroup analysis. We therefore decided to subse-

quently analyze the antibiotic monotherapy subgroup. We found that for antibiotic

monotherapy measured patient characteristics of appropriately and inappropriately treated

patients were more balanced (i.e. homogeneous), lowering the chance of residual confounding.

Table 2. Patient characteristics in appropriately versus inappropriately treated patients (antibiotic monotherapy).

Characteristic Appropriate n = 347 (77.3) Inappropriate n = 102 (22.7) P-value

Sex, male 200 (57.6) 67 (65.7) .18

Age, mean (SD), yearsA 60.1 (15.4) 63.0 (15.1) .09

Arrival by ambulanceA 55 (15.9) 14 (13.7) .71

Triage category, acute/highly urgentA 52 (15.7) 12 (12.2) .49

Direct intensive care unit admittanceA 10 (2.9) 2 (1.9) >.99

ChillsA 164 (47.3) 47 (46.1) .92

Vomiting 86 (24.8) 21 (20.6) .46

Need for vasopressorsA 3 (0.9) 2 (2.0) .70

Suspected site of infection, unknown 86 (24.8) 20 (19.6) .34

Origin, nosocomial 207 (59.7) 63 (61.8) .79

Vital signs / NEWS parameters

Body temperature, mean (SD),˚CA 38.3 (1.1) 38.1 (1.2) .05

Heart rate, mean (SD), beats/min 103 (20.6) 100 (21.6) .21

Respiratory rate, mean (SD), breaths/minA 21 (7.0) 20 (6.4) .21

Systolic blood pressure, mean (SD), mm HgA 128 (25.7) 123 (21.1) .05

Oxygen saturation, mean (SD), % 96 (5.5) 96 (2.3) .67

Any supplemental oxygenA 106 (30.5) 33 (32.4) .82

Consciousness, not alertA 18 (6.3) 7 (8.5) .65

NEWS, mean (SD) 4.5 (3.0) 4.3 (3.4) .48

Comorbidities of Charlson comorbidity indexB

Diabetes mellitus, uncomplicated 64 (18.4) 17 (16.7) .79

Diabetes mellitus, end-organ damageA 5 (1.4) 0 (0.0) .59

Liver disease, mildA 53 (15.3) 15 (14.7) >.99

Malignancy, leukemia, lymphoma, localized solid tumorA 64 (18.4) 20 (19.6) .90

Malignancy, metastatic solid tumorA 45 (13.0) 19 (18.6) .20

Chronic kidney diseaseA 85 (24.5) 21 (20.6) .49

Congestive heart failure 52 (15.0) 11 (10.8) .36

Myocardial infarction 48 (13.8) 16 (15.7) .76

Chronic obstructive pulmonary diseaseA 39 (11.2) 19 (18.6) .07

Perivascular disease 31 (8.9) 13 (12.7) .34

Cerebrovascular accident or transient ischemic attackA 57 (16.4) 11 (10.8) .21

DementiaA 11 (3.2) 1 (1.0) .39

Connective tissue disease 27 (7.8) 6 (5.9) .67

Peptic ulcer disease 9 (2.6) 3 (2.9) .88

Type of isolated pathogen

Gram-negative BSI 214 (61.7) 85 (83.3) < .001

Data are presented as No. (%) unless otherwise indicated. Data in this table is not imputed yet.

NEWS, national early warning score; BSI, bloodstream infection.
AConfounding variables.
B Comorbidities with a prevalence below 1% are not presented (i.e. moderate to severe liver disease, acquired immunodeficiency syndrome, and hemiplegia).

https://doi.org/10.1371/journal.pone.0225478.t002
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In this subgroup appropriate therapy was associated with lower 30-day mortality. This finding

is in line with our expectations and current practice, and supports our hypothesis that residual

confounding distorts associations when comparing heterogeneous treatment groups.

Reducing confounding by indication through analyzing homogeneous subgroups–in our

study antibiotic monotherapy–is not often done. Previous studies on appropriate therapy and

mortality disregarded severely confounded treatment strategies (i.e. antibiotic combination

therapy, no antibiotic therapy), which resulted in comparison of heterogeneous groups [5, 8–

13]. Therefore, the conclusions of these studies are potentially not trustworthy.

To prevent confounding, we adjusted for validated risk scores (e.g. NEWS, CCI) and

applied several adjustment techniques (i.e. conventional multivariable logistic regression and

propensity score methods). However, for the total population, these techniques fell short and

we were unable to prevent bias. Apparently, a physicians’ decision to initiate a certain therapy

is not only based on findings that are represented by such risk score systems, hence statistical

adjustment techniques fall short. Thus, conclusions of observational studies comparing hetero-

geneous groups should be interpreted with care. If possible, future investigators should use our

method of attempting to identify and analyze the most homogeneous treatment groups nested

within their study objective, as we demonstrated that this minimizes residual confounding.

Limitations

Our study has limitations. First, we used retrospectively collected data making our study prone

to bias. However, the quality of available data was assumed to be high as all data used was

essential for daily clinical practice. For only 13 patients (1.3%) documentation was unclear on

whether antibiotic therapy was administered at the ED or after discharge, therefore we scored

them as inappropriate therapy. We had no data on the exact time to the first antibiotic dose,

but only on whether administration was during the ED visit or not. However, timing of antibi-

otic administration would have had no impact on the outcome of the inappropriately treated

group. Delayed treatment might have had an impact on mortality in the appropriately treated

group, which could have led to a more extreme estimate than we found already.

Fig 2. Estimates of appropriate empirical antibiotic therapy on 30-day mortality (antibiotic monotherapy). CI, confidence interval. Confounding variables: age,

arrival, triage category, direct intensive care unit admittance, chills, need for vasopressors, body temperature, respiratory rate, systolic blood pressure, supplemental

oxygen, consciousness, diabetes mellitus with end-organ damage, mild liver disease, malignancy, chronic kidney disease, chronic obstructive pulmonary disease,

cerebrovascular accident or transient ischemic attack, and dementia. For a detailed description of statistical adjustment techniques, see S2 Methods. This figure shows

attenuation of estimates after adjustment for confounders.

https://doi.org/10.1371/journal.pone.0225478.g002
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Furthermore, we want to emphasize that we considered the association between empiric

antibiotic treatment at the ED and 30-day mortality, as this was our main study objective.

Depending on disease course and culture results, antibiotic treatment could have been modi-

fied later on resulting in a different definitive antibiotic treatment. Also, we had no data on

whether any source control such as abscess drainage was performed after ED discharge. Aside

from empiric antibiotic treatment at the ED, this may have altered survival as well.

Conclusions

We initially found that appropriate empirical antibiotic therapy was not beneficial in patients

with BSI. We showed that this counterintuitive finding was presumably the result of residual

confounding. Patients that present with high disease severity are more likely to receive appro-

priate therapy than less ill patients. Therefore, the appropriately treated are initially at higher

risk of dying than the inappropriately treated. Analyzing these heterogeneous treatment

groups results in distorted associations and subsequent conclusions despite the use of common

methods to prevent bias. With a subgroup analysis in a more homogeneous population (i.e.

antibiotic monotherapy), we found the expected benefit of appropriate therapy. Our study

underlines the complexities of performing clinical observational research. In case of heteroge-

neous groups results should always be interpreted with care. If possible, future investigators

should attempt to identify and analyze the most homogeneous treatment groups nested within

their study objective, because this minimizes residual confounding.
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