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BACKGROUND The association between the change in vessel inflammation, as quantified by perivascular adipose

tissue (PVAT) density, and the progression of coronary atherosclerosis remains to be determined.

OBJECTIVES The purpose of this study was to explore the association between the change in PVAT density and the

progression of total and compositional plaque volume (PV).

METHODS Patients were selected from a prospective multinational registry. Patients who underwent serial coronary

computed tomography angiography studies with $2-year intervals and were scanned with the same tube voltage at

baseline and follow-up were included. Total and compositional PV and PVAT density at baseline and follow-up were

quantitatively analyzed for every lesion. Multivariate linear regression models using cluster analyses were constructed.

RESULTS A total of 1,476 lesions were identified from 474 enrolled patients (mean age 61.2 � 9.3 years; 65.0% men).

The mean PVAT density was �74.1 � 11.5 HU, and total PV was 48.1 � 83.5 mm3 (19.2 � 44.8 mm3 of calcified PV and

28.9 � 51.0 mm3 of noncalcified PV). On multivariate analysis (adjusted for clinical risk factors, medication use, change in

lipid levels, total PV at baseline, luminal HU attenuation, location of lesions, and tube voltage), the increase in PVAT

density was positively associated with the progression of total PV (estimate ¼ 0.275 [95% CI: 0.004-0.545]; P ¼ 0.047),

driven by the association with fibrous PV (estimate ¼ 0.245 [95% CI: 0.070-0.420]; P ¼ 0.006). Calcified PV

progression was not associated with the increase in PVAT density (P > 0.050).

CONCLUSIONS Increase in vessel inflammation represented by PVAT density is independently associated with the

progression of the lipid component of coronary atherosclerotic plaques. (Progression of AtheRosclerotic PlAque Deter-

mIned by Computed TomoGraphic Angiography Imaging [PARADIGM]; NCT02803411)
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AB BR E V I A T I O N S

AND ACRONYM S

CAD = coronary artery disease

CT = computed tomography

CTA = computed tomography

angiography

HRP = high-risk plaque

PV = plaque volume

PVAT = perivascular adipose

tissue
I nflammation is one of the primary mechanisms
responsible for the development and progression
of coronary atherosclerosis.1,2 Inflammation plays

a vital role in initiating the development of a coronary
plaque, and suppression of inflammation using medi-
cation attenuates the progression of coronary artery
disease (CAD).3,4 Accordingly, considerable effort has
been put toward the development of imaging technol-
ogies that can directly visualize and quantify vessel
inflammation that relates to the development and pro-
gression of coronary plaques, using both invasive and
noninvasive coronary imaging modalities.5-7

Recently, increased computed tomography (CT)
attenuation (HU) in perivascular adipose tissue
(PVAT) density assessed by coronary computed to-
mography angiography (CTA) has been proposed as a
reliable quantitative marker of vessel inflammation
that drives the development and progression of
CAD.8-10 Increased PVAT density differentiates
various stages of CAD,11 and is associated with the
presence of high-risk plaque (HRP) features that are
correlated with future clinical events12 and culprit
lesions in patients with acute coronary syndromes.13

Few studies have investigated the association be-
tween the changes in PVAT and plaque progression,
but are limited by small patient numbers and short
follow-up periods.14,15 Therefore, whether the change
in PVAT density affects the progression of each cor-
onary plaque has not been fully evaluated.

In this study, we explored the association between
the changes in PVAT density and the progression of
total and compositional plaque volume (PV) in pa-
tients with CAD from a large multicenter registry of
serial coronary CTAs.

METHODS

STUDY DESIGN AND POPULATION. The PARADIGM
(Progression of AtheRosclerotic PlAque DetermIned
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analysis (Figure 1).

Patients were considered to be statin-naive when
they were not treated with statins at both baseline
and follow-up coronary CTAs, and statin-taking if
they were treated with statins at the follow-up coro-
nary CTA.
CORONARY CTA ANALYSIS PROTOCOL. Acquisition and
analysis of the coronary CTAs were performed
following the guidelines provided by the Society of
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FIGURE 1 The CONSORT Diagram

474 patients with 1,476 lesions

1,150 patients with different tube voltage between
 baseline and follow-up coronary CTAs
 492  patients with ≥1 quantitatively non-
 interpretable coronary CTA
 125  patients with ≥1 non-interpretable with
 perivascular adipose tissue attenuation
 11  patients who experienced clinical events
 between the coronary CTA

2,252 patients with serial (≥2) coronary CTA

CTA ¼ computed tomography angiography.
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branches using a modified 17-segment American
Heart Association model.19,22 The presence of an
atherosclerotic plaque was defined as any
tissue $1 mm3 within, or adjacent to, the lumen that
could be discriminated from the surrounding peri-
cardial tissue, epicardial fat, or lumen, and identified
in $2 planes.19,22 For serial comparisons of coronary
CTAs, coronary lesions were coregistered between the
coronary CTA-1 and -2 evaluations using fiduciary
landmarks, including the distance from the ostium
and the branch vessels.

Stenosis severity on the percent diameter stenosis
(DS) (%) and total plaque volume (PV) (mm3) were
determined for each lesion. Total PV was further
subclassified as follows into compositional PVs using
predefined HU cutoff values23: 1) noncalcified (�30 to
350 HU) PV encompassing necrotic core (�30 to 30
HU), fibro-fatty (30–130 HU), and fibrous (131–350 HU)
PV; and 2) calcified PV ($351 HU).24,25 The progression
of PV was defined as the change in PV divided by the
coronary CTA intervals. The presence of HRP fea-
tures, defined as coronary lesions with evidence of $2
of the following criteria: positive arterial remodeling,
low-attenuation plaque, or spotty calcification,
were also determined based on the qualitative
assessment.22,26

ANALYSIS OF PVAT DENSITY. PVAT density was
assessed in all quantitatively analyzed coronary le-
sions.8,9,14 For each lesion, volumes located within
the radial distance from the vessel wall equal in
thickness to the average diameter of the lesion were
set by the readers and traced automatically with
software (QAngioCT Research Edition version 3.2.0.5,
Medis Medical Imaging) using the vessel wall contour
previously confirmed for the quantitative analysis of
coronary CTAs.9,14,27 In this region, PVAT density was
then calculated as the average attenuation of all
voxels in the range of �190 to �30 HU (for identifying
fat tissues).8,9,13,14,27 The mean luminal attenuation
(HU) was also identified for each lesion. PVAT density
was considered high when >70.1 HU.9,27

STATISTICAL ANALYSIS. Categorical variables are
presented as absolute counts and percentages, and
continuous variables are expressed as mean � SD or
median (IQR), as appropriate. Differences between
categorical variables were analyzed using the chi-
square test or Fisher’s exact test, as appropriate,
while differences between continuous variables were
assessed using the Student’s t-test.

To explore the association between PVAT density
and PVs at baseline and follow-up at the lesional
level, we constructed multivariable linear mixed ef-
fect models with random effects to account for clus-
tering of observations within the same individual.
Models were adjusted for age; male sex; body mass
index; systolic blood pressure; smoking history; hy-
pertension; diabetes mellitus; family history of CAD;
level of low-density lipoprotein; medication use
including statins, antiplatelets, and beta-blockers;
and luminal attenuation. For the association be-
tween the change in PVAT density and the change in
PVs, models were repeated with additional adjust-
ments using changes in low-density lipoprotein
levels, baseline PVs, luminal attenuation at baseline
and follow-up, location of lesions within the major 3
vessels, and tube voltage. The statistical significance
of the estimate of PVAT in each model was assessed
using the likelihood ratio test, according to recent
recommendations.

A 2-tailed value of P < 0.05 was considered statis-
tically significant. All analyses were performed using
SAS version 9.4 (SAS Institute Inc) and R 3.3.0 (R
Development Core Team, 2016).

RESULTS

STUDY POPULATION AND BASELINE CHARACTERISTICS.

In total, 474 patients (age 61.2 � 9.3 years; 65% men)
were included (Table 1). Hypertension was present in
60.3% of the study population, and the prevalence of
diabetes mellitus and hyperlipidemia was 23.6% and
48.1%, respectively. Statins were used in 60.8% of the
study population. The interscan interval between
coronary CTAs was 3.3 � 1.2 years. Coronary CTA
scans were performed using 100 kV in 47.9% of pa-
tients and 120 kV in 51.5%.

LESION BASED CORONARY CTA FINDINGS. In total,
1,474 lesions were identified from the 474 enrolled
patients (Table 2). Most of the lesions were non-
obstructive; the mean diameter stenosis was 18.8% �



TABLE 1 Clinical Characteristics of the Study Population at

Baseline (n ¼ 474)

Age, y 61.2 � 9.3

Male 308 (65.0)

Coronary CTA interval, y 3.3 � 1.2

Body mass index, kg/m2 26.2 � 3.4

Hypertension 286 (60.3)

Diabetes mellitus 112 (23.6)

Hyperlipidemia 228 (48.1)

Family history of CAD 130 (27.4)

Smoking 222 (46.8)

Total cholesterol, mg/dL 186.8 � 40.2

Low-density lipoprotein, mg/dL 113.5 � 36.9

High-density lipoprotein, mg/dL 48.3 � 11.8

Triglycerides, mg/dL 149.9 � 92.6

Statin 288 (60.8)

Antiplatelets 245 (51.7)

Beta-blockers 172 (36.3)

Coronary CTA acquisition parameters

Tube voltage

80 kV 3 (0.6)

100 kV 227 (47.9)

120 kV 244 (51.5)

Tube current, mA 582.2 � 245.3

Radiation dose, DLP 706.1 � 455.7

Heart rate, beats/min 60.9 � 9.9

Coronary CTA acquisition parameters at follow-up

Tube current, mA 439.9 � 231.1

Radiation dose, DLP 580.2 � 456.3

Heart rate, beats/min 60.9 � 9.5

Values are mean � SD or n (%).

CAD ¼ coronary artery disease; CTA ¼ computed tomography angiography;
DLP ¼ dose length product.
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12.6%, and 14.4% of plaques exhibited HRP features.
Total PV at baseline was 48.1 � 83.5 mm3, comprising
19.2 � 44.8 mm3 of calcified PV and 28.9 � 51.0 mm3

of noncalcified PV. At follow-up, total PV increased to
65.7 � 102.2 mm3 as a result of the summation of 29.6
� 57.5 mm3 of calcified PV and 36.1 � 6.32 mm3 of
noncalcified PV.

Overall, the PVAT density was �74.1 � 11.5 HU at
baseline and �73.1 � 11.7 HU at follow-up. When the
lesions were divided according to the change in PVAT
density, PVAT density was increased in 788 lesions
and decreased in 688 lesions (Supplemental Table 1).
At follow-up, the lesions with increased PVAT density
possessed a greater total PV and noncalcified PV than
those with decreased PVAT density (71.8 � 112.5 mm3

vs 58.7 � 88.5 mm3 and 41.8 � 73.7 mm3 vs 29.5 � 47.7
mm3, respectively, all P < 0.05).

ASSOCIATION BETWEEN PVAT DENSITY WITH TOTAL

AND COMPOSITIONAL PVs. The cross-sectional anal-
ysis observed a negative association between the to-
tal and calcified PV and PVAT density at baseline
(estimate ¼ �0.5880 [95% CI: �1.1256 to �0.0505] and
estimate ¼ �0.2768 [95% CI: �0.5322 to �0.0214],
respectively, all P < 0.05). However, no association
was observed between all PVs and PVAT density at
follow-up (Table 3).

When the lesions were divided according to the
statin use, a negative association of PVAT density
with total and calcified PV at baseline only existed in
the lesions of statin-taking patients (Supplemental
Table 2). In the lesions of statin-naive patients, no
association was observed between the PVAT density
and the total and compositional PVs (all P > 0.05).

The multivariable analysis model of the association
of the change in PVAT density on the progression of
plaque volumes is shown in Table 4. Increase in PVAT
density demonstrated a positive association with the
progression of total PV (estimate ¼ 0.275 [95% CI:
0.004-0.545]; P ¼ 0.047). The change in PVAT density
was also positively associated with the progression of
fibrous PV (estimate ¼ 0.245 [95% CI: 0.0695-0.420];
P ¼ 0.006), but not with the progression of calcified
PV (P > 0.05) (Central Illustration).

DISCUSSION

In the analysis of the PARADIGM registry primarily
involving non-obstructive CAD patients, the increase
in PVAT density was significantly associated with
the progression of coronary atherosclerosis as rep-
resented by total PV. Importantly, when total PV was
subclassified into its constituents, only the increase
of fibrous PV, a component of non-calcified PV,
was positively associated with the increase in
PVAT density, but the progression of calcified PV
was not.

Inflammation plays a pivotal role in both the initi-
ation of a coronary plaque and its progression. Previ-
ous cross-sectional studies have highlighted PVAT
density as a potential imaging marker for vessel
inflammation that could assist in better identification
of high-risk patients by demonstrating a direct asso-
ciation between the increased PVAT density and more
advanced stages of CAD, as well as the presence of HRP
and downstream myocardial hypoperfusion.11-13,27

Our findings are in line with these observations, as we
reported that the increases in PVAT density (repre-
senting an increase in vessel inflammation) were
significantly correlated with the increase in total PV,
chiefly explained by the positive association with a
component of noncalcified PV.

Lipid-lowering medications, including statins and
proprotein convertase subtilisin/kexin type 9 in-
hibitors, attenuate the atherosclerotic plaque pro-
gression as demonstrated in both invasive and

https://doi.org/10.1016/j.jcmg.2022.04.016
https://doi.org/10.1016/j.jcmg.2022.04.016
https://doi.org/10.1016/j.jcmg.2022.04.016


TABLE 2 Coronary CTA Characteristics of Lesions at Baseline and

Follow-Up (n ¼ 1,476)

Baseline Follow-Up P Value

PVAT attenuation, HU �74.1 � 11.5 �73.1 � 11.7 <0.001

Diameter stenosis, % 18.8 � 12.6 21.5 � 12.8 <0.001

High-risk plaquea 212 (14.4) 249 (16.9) <0.001

Total PV, mm3 48.1 � 83.5 65.7 � 102.2 <0.001

Calcified PV, mm3 19.2 � 44.8 29.6 � 57.5 <0.001

Noncalcified PV, mm3b 28.9 � 51.0 36.1 � 63.2 <0.001

Fibrous PV, mm3 20.8 � 35.9 26.8 � 43.5 <0.001

Fibro-fatty PV, mm3 7.2 � 16.9 8.4 � 21.7 0.001

Necrotic-core PV, mm3 0.88 � 3.68 0.98 � 3.85 0.376

Values are mean � SD or n (%). aPVAT density was considered high when >70.1
HU.9,27 bHigh-risk plaque is defined as a lesion with $2 features indicative of
positive arterial remodeling, low-attenuation plaque, or spotty calcification.

PV ¼ plaque volume; PVAT ¼ perivascular adipose tissue; other abbreviation as
in Table 1.
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noninvasive imaging studies,28-30 not only by
lowering the plasma level of low-density lipoprotein
level, but also by their anti-inflammatory effects on
the coronary vasculature.3,31 Furthermore, statins
were associated with the faster progression of calci-
fied PV and slower progression of noncalcified PV, the
component that determines plaque instability and is
more directly associated with vessel inflammation
and future clinical events.20,30 Statin usage was also
associated with decrease in PVAT density in non-
calcified and mixed coronary plaques in a recent
study.15 This association between the plaque lipid
components and inflammation is also supported by
our findings that only fibrous PV, and not calcified PV,
was associated with the increase in PVAT density.

Taken together, including the monitoring of PVAT
density, may be considered for the assessment of CAD
and monitoring the effects of medications, indepen-
dent of the plaque itself. As per the current clinical
TABLE 3 Impact of Perivascular Adipose Tissue Attenuation Density o

Baseline

Estimate 95% CI

High-risk plaquea 0.0002 �0.0023 to 0.0027

Total PV �0.5880 �1.1256 to �0.0505

Calcified PV �0.2768 �0.5322 to �0.0214

Noncalcified PVb �0.3127 �0.6732 to 0.0479

Fibrous PV �0.1503 �0.3977 to 0.0972

Fibro-fatty PV �0.1364 �0.2616 to �0.0113

Necrotic-core PV �0.0471 �0.0771 to �0.0171

Adjusted for age; male; body mass index; systolic blood pressure; smoking history; hyp
medication use including statins, antiplatelets, and beta-blockers; luminal attenuation; l
features indicative of positive arterial remodeling, low-attenuation plaque, or spotty cal
PV.

Abbreviations as in Tables 1 and 2.
guidelines, risk stratification and the determination of
treatment strategies for CAD are predominantly
determined by the degree of coronary stenosis.32,33

However, recent studies have repeatedly demon-
strated the importance of nonobstructive coronary
lesions for the development of acute coronary syn-
dromes.34,35 The totality of coronary atherosclerosis,
as represented by the overall plaque burden and its
components, is maybe more important for risk strati-
fication than the presence of an obstructive lesion.34-38

Therefore, studies assessing the value of a more
comprehensive evaluation of coronary atherosclerosis
that includes data from the perivascular tissues other
than plaques may be warranted to improve risk
stratification.

Notably, the cross-sectional analysis in this study
revealed a negative association between PVAT den-
sity and total PV at baseline. However, this negative
association has only existed in lesions from statin-
taking patients. CAD is a dynamic disease with pla-
ques at various stages that can coexist in a single
patient, such that one plaque may be developing
while another is stabilizing, which could also
contribute to this finding.39 PARADIGM is an obser-
vational study with patients at various stages of CAD,
including some patients who were already on statin
treatment and others who were not. Furthermore,
previous studies have shown the effect of statins on
plaque compositions and characteristics, which
resulted in plaque calcification and eventual stabili-
zation.20,30,40 Therefore, it is plausible to assume that
most of lesions in statin-taking patients were already
in stabilized status, thereby weakening the impact of
elevated PVAT density with PVs at baseline. Still, the
impact of change in PVAT density on the progression
of PV, especially the noncalcified PV, remained sig-
nificant even under the effect of statins.
n Total and Compositional Plaque Volume at Baseline and Follow-Up

Follow-Up

P Value Estimate 95% CI P Value

0.877 0.0005 �0.002 to 0.003 0.6856

0.0321 �0.0053 �0.569 to 0.5585 0.9855

0.0337 �0.0524 �0.3533 to 0.2486 0.7327

0.089 0.0004 �0.3952 to 0.3958 0.9988

0.2335 0.0954 �0.1726 to 0.3634 0.4849

0.0327 �0.078 �0.2212 to 0.0654 0.2859

0.0022 �0.0343 �0.061 to �0.0075 0.0122

ertension; diabetes mellitus; family history of CAD; level of low-density lipoprotein;
ocation of lesions; and tube voltage. aHigh-risk plaque is defined as a lesion with $2
cification. bNoncalcified PV is the summation of fibrous, fibro-fatty, and necrotic core



TABLE 4 Impact of the Change in Perivascular Adipose Tissue

Density on the Progression of Plaque Volumes

Estimate 95% CI P Value

Total PV 0.275 0.004 to 0.545 0.047

Calcified PV 0.023 �0.086 to 0.130 0.691

Noncalcified PVa 0.254 �0.003 to 0.512 0.053

Fibrous PV 0.245 0.0695 to 0.420 0.006

Fibro-fatty PV 0.049 �0.062 to 0.159 0.380

Necrotic-core PV �0.022 �0.048 to 0.007 0.137

Adjusted for age; male; body mass index; systolic blood pressure; smoking history;
hypertension; diabetes mellitus; family history of CAD; changes in low-density
lipoprotein levels; medication use including statins, antiplatelets, and beta-
blockers; plaque volume at baseline; luminal attenuation at baseline and follow-
up; location of lesions; and tube voltage. aNoncalcified PV is the summation of
fibrous, fibro-fatty, and necrotic core PV.

Abbreviations as in Tables 1 and 2.
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STUDY LIMITATIONS. First, selection bias was inevi-
table because of the observational study design, as
only patients with more than 2 coronary CTA scans
were enrolled. High-risk patients subjected to inva-
sive studies or revascularizations, or patients with
normal coronaries would have been omitted from the
registry. These issues resulted in a study population
of CAD patients who were generally at low risk and
had a low incidence of hard clinical events. Second,
the study was not powered to estimate the coronary
event risk of individual plaques as reflected by the
low % diameter stenosis of the lesions. Thus, the
relevance of the current results for high-risk
CENTRAL ILLUSTRATION Association Betwe
Plaque Progression

PVAT density –69 HU
Total PV 102 mm3

Calcified PV 1 mm3  Noncalcified PV 10

PVAT density –99 HU
Total PV 61 mm3

Calcified PV 1 mm3  Noncalcified PV 60

Baseline

Follow-up

Lee S-E, et al. J Am Coll Cardiol Img. 2022;15(10):1760–1767.

Noncalcified PV is the summation of fibrous, fibro-fatty, and necrotic core

RCA ¼ right coronary artery.
populations and obstructive lesions is unknown.
Moreover, the direct association between the changes
in PVAT density to clinical outcomes could not be
assessed.

Third, differences in vendors and scan parameters
between the patients might have influenced the re-
sults. However, to minimize the effect of different
scan acquisition parameters generated from the
observational study design, we only included pa-
tients who were scanned with the same tube voltage
at baseline and follow-up. We also adjusted for
luminal HU attenuation, which was reported to be
associated with quantitative coronary CT analysis in
recent work from our network.17

To our knowledge, this is the first study to describe
the value of the change in PVAT density in the clinical
outcomes and the association of the changes in PVAT
density with the progression of total and composi-
tional PV in a largemultinational registry. To overcome
the limitations of this study, large population-based
prospective studies with serial coronary CTAs should
be conducted. However, as there are currently no rec-
ommendations on the use of serial coronary CTAs for
the evaluating CAD in a low-risk population,41 an
observation registry such as the PARADIGM provides a
unique opportunity to further understand the associ-
ation between vessel inflammation represented by
PVAT density with and the progression of coronary
atherosclerosis.
en the Change in PVAT Density and Total and Compositional

1 mm3

PVAT density –82 HU
Total PV 217 mm3

Calcified PV 134 mm3  Noncalcified PV 83 mm3

 mm3

PVAT density –70 HU
Total PV 233 mm3

Calcified PV 121 mm3  Noncalcified PV 112 mm3
3

years

PV. LAD¼ left anterior descending; PV¼ plaque volume; PVAT¼ perivascular adipose tissue;



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: The

change in vascular inflammation as represented by the

pericoronary adipose tissue attenuation density is

associated with the progression of coronary athero-

sclerosis driven by the association with the noncalci-

fied plaque components.

TRANSLATIONAL OUTLOOK: Prospective studies

should be employed to investigate whether a more

comprehensive evaluation of coronary atherosclerosis

that includes pericoronary tissues would improve the

risk stratification of patients with CAD.
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CONCLUSIONS

The increase in PVAT density was significantly asso-
ciated with an increase in total PV, driven by the
positive association with the progression of fibrous
PV but not with the progression of calcified PV.
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