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The anatomy of cancer patients changes between radiation treatment planning and delivery
as well as over the course of radiotherapy. Adaptive radiotherapy (ART) aims to deliver radi-
ation accurately and precisely in the presence of such changes. To that end, ART uses an
imaging feedback loop to quantify these changes and modify the treatment plan accord-
ingly. This paper provides an overview of anatomical changes occurring over the course of
therapy and various adaptive strategies developed to account for those. Moreover, residual
uncertainties present in adaptive radiotherapy are discussed as well as required tools,
potential pitfalls and remaining challenges.
Semin Radiat Oncol 29:245−257 � 2019 The Authors. Published by Elsevier Inc. This is an
open access article under the CC BY-NC-ND license. (http://creativecommons.org/
licenses/by-nc-nd/4.0/)
Introduction

Radiotherapy aims to deliver a high therapeutic dose to
the tumor while minimizing exposure to the surround-

ing healthy tissue. In external beam radiotherapy, patients
are treated with multiple megavoltage (MV) photon beams
generated with a linear accelerator (linac). The treatment
plan is generally designed based on a single computed
tomography (CT) scan acquired one or more weeks before
treatment. The total radiation dose is typically delivered in
smaller daily portions over a period of several days to weeks,
to exploit the higher repair capacity of normal tissue com-
pared to tumor cells. Between radiation treatment planning
and delivery as well as over the course of radiotherapy, how-
ever, anatomical changes frequently occur. Consequently,
the dose actually delivered differs from the planned dose.

The traditional approach to account for anatomical changes
is to apply a safety margin around the clinical target volumes
to ensure coverage of these targets.1 Consequently, however,
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surrounding noninvolved tissue is also exposed to high levels
of radiation, increasing the risk of unacceptable side effects.2

To reduce these safety margins, Image-guided RT (IGRT) has
been developed.3 IGRT is the process of acquiring images of
the patient's anatomy (in the treatment room), comparing the
position of the tumor (or surrogate) during treatment with the
planned position and correcting the treatment position. While
IGRT has been widely adopted in clinical practice, it has a lim-
ited solution space as it assumes that the target has an (almost)
invariable shape and the dose to the organs-at-risk (OAR) does
not change considerably. Anatomical changes frequently do
not match these assumptions, such as for example posture
changes, differential motion between primary tumor and
involved lymph nodes, shape changes of bladder or cervix,
weight loss, and tumor regression. Adaptive radiotherapy
(ART) aims to deliver radiotherapy accurately and precisely in
the presence of such changes. To that end, ART uses an imag-
ing feedback loop to quantify these changes and modify the
treatment plan accordingly.4 This paper describes an overview
of anatomical changes occurring over the course of therapy
and various adaptive strategies developed to account for those.
Moreover, residual uncertainties present in adaptive radiother-
apy are discussed as well as required tools, potential pitfalls
and remaining challenges.
Anatomical Changes

Anatomical changes occur over various time scales, ranging
from seconds for cardiac and respiratory motion, to minutes
for bladder filling and peristaltic motion, days for prostate
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rotations, rectal filling, lung re-ventilation and cervical shape
changes, and weeks for treatment-related changes such as
weight loss, radiation-induced diarrhea and tumor regression.
Adaptations to changes occurring within a treatment fraction
fall out of the scope of this paper and are comprehensively dis-
cussed in Keall et al.5

Anatomical changes can occur in any region of the body/
disease site and can affect tumors as well as healthy organs.
The skull is often considered an adequate surrogate for cra-
nial lesions, but shifts of brain metastasis up to 5 mm have
been reported.6 In head and neck radiotherapy, posture
changesof 3-4 mm (systematic [S] and random [s]) have
been observed.7 Additionally, tumor volume reduction at a
median rate of 1.8%/d as well as parotid volume change of
0.19 cm3/d have been reported.8 Between simulation and
the first fraction, on the other hand, a median increase of
16% was reported.9

In locally advanced lung cancer patients, differential
motion between primary tumor and involved lymph nodes
of 2.5 mm (S and s) was observed.10 Similar to head and
neck cancer, a median GTV increase between simulation and
planning of 35% was reported. Lung tumor regression dur-
ing treatment ranges from 0.6% to 2.4%/d,11 while also
other intrathoracic changes in atelectasis and pleural effusion
are regularly observed.12

In breast cancer, an average seroma reduction of 62%
was observed affecting the size of the boost volume.13

Additionally, position variability of the heart of about
3 mm (S and s) have been reported for left sided breast
cancer patients.14

Similar to lung cancer, in esophageal cancer radiotherapy,
considerable primary tumor position variability has been
reported, averaging 3-4 mm in 3D.15 As considerable larger
variability was observed for distally located lesions, consider-
able differential motion relative to the CTV can be inferred.
Also median volume changes at fraction 20 of 22% and 34%
were reported for distal and middle esophageal cancer
respectively.15 For gastric lymphoma, large interfractional
deformations of the stomach have been reported up to 9.3 §
22.0 mm in the anterior-posterior direction.16

For bladder cancer, interfraction bladder wall motion
ranged from 1 mm (S and s) at the caudal side to 12 mm
(S and s) at the cranial-anterior side of the bladder despite
drinking protocols.17 Variations in bladder filling also cause
shape changes in cervix cancer, where displacements at the
tip of the uterus up to 50 mm have been reported.18 Cervix
motion is smaller with S ranging from 3.4-5.5 mm and s
ranging from 2.2-4.5 mm.19

While for prostate cancer, IGRT approaches are effective
to correct for organ motion, prostate rotations typically
remain uncorrected. These are primarily observed around
the left-right axis with S = 5.1° and s = 3.6°.20 Additionally,
radiation-induced diarrhea causes time trends in rectal vol-
ume over the course of treatment.21

For preoperative rectal cancer radiotherapy, where the
mesorectum represent the CTV, the interfractional variability
of the upper-cranial region ranges from 2 mm till 7 mm (S)
at the cranial-anterior side.22 Finally, in preoperative
radiotherapy of extremity soft tissue sarcomas, volume
changes ranging from ¡57% to 28% were reported.23

The overview above illustrates that large geometric uncertain-
ties remain for many disease sites despite the use of extensive
image guidance. To account for such geometric uncertainties,
margins ranging from 5 mm (head-and-neck) to 40-50 mm
(bladder and stomach) are required. By correcting for such ana-
tomical changes ART has the potential to improve the quality of
RT for a wide range of disease sites, reducing margins, OAR
exposure and toxicity and/or facilitating dose escalation and
improved tumor control.

Concepts of Adaptive Radiotherapy
The concept of adaptive radiotherapy was introduced by Di
Yan24 as an imaging feedback control strategy to include
patient-specific treatment variation in treatment plan modifi-
cation. “A complete implementation should include 4 key
components, which are (1) treatment dose assessment, (2)
treatment variation identification/evaluation, (3) treatment
modification decisions, and (4) adaptive treatment modifica-
tion”.4 Frequently, however, only 2 or 3 components are
used in adaptive strategies, in part depending on the type of
anatomical change to be adapted to.

Roughly, 3 types of anatomical changes can be distin-
guished in radiotherapy. Firstly, the anatomy changes from
day to day. During the acquisition of the planning (CT) scan,
the anatomy is frozen in an arbitrary configuration that may
not be representative of treatment delivery. Consequently, a
systematic error is introduced into the process. Secondly,
these day-to-day anatomical changes also occur during treat-
ment delivery and thus represent a random error. Finally,
the treatment itself can cause anatomical changes that typi-
cally increase gradually over the course of therapy. Due to
these time trends, such anatomical changes have both a sys-
tematic and a random component. Different strategies have
been developed to account for these types of anatomical
changes as detailed below.
Average Anatomy Model
Systematic errors can be mitigated through offline correc-
tions while random error corrections require online strate-
gies. Systematic errors induced by freezing the anatomy in
an arbitrary configuration during simulation can thus be
effectively corrected for offline. To that end, the average ana-
tomical configuration during treatment needs to be esti-
mated. Similar to offline decision rules for setup error and
organ motion,25,28 such strategies rely on the quantification
of anatomical changes over the first number of
fractions of RT. Initially, such an adaptive strategy was devel-
oped to reduce systematic rotational deviations in prostate
cancer patients.26 That is, by measuring the daily prostate
rotation relative to the planning anatomy during for example
the first week, the average prostate rotation can be estimated
and a new treatment plan in which the CTV has been rotated
accordingly can be optimized.

This concept can be extended to more complex anatomi-
cal changes. An average anatomy model can be estimated by
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(1) deformable registration of the planning scan to the scans
of the initial fractions, (2) calculating the average deforma-
tion vector field, and (3) deforming the planning scan and
corresponding structures accordingly27 to obtain a synthetic
scan representing the average anatomical configuration. A
new treatment plan can subsequently be optimized on the
average anatomy model. Such strategy needs to balance on
the one hand the number of fractions used to make an accu-
rate estimate of the systematic error while on the other hand
leaving enough fractions that can benefit from an adapted
plan. Optimal time points ranges from about 5 to 12 scans
depending on the accuracy of the estimation, the balance
between systematic and random errors and the total number
of fractions.

The average anatomy model described above only uses
two components of the general adaptive framework: varia-
tion assessment and adaptive modification. A modification
decision can be added to select only patients with larger sys-
tematic error to balance workload and efficacy similar to a
shrinking action level protocol.28 Furthermore, a dosimetric
assessment can be added to improve patient selection and or
treatment plan modifications.
Library of Plans
To account for random anatomical changes, online
approaches are required, adapting each treatment fraction
to account for the anatomical changes observed on each
particular day. The approach most commonly imple-
mented consists of a library of treatment plans, created “a
priori”, to account for expected anatomical changes such
as variations in bladder volume. Though the “library of
plans” (LoP) approach is arguably easier to implement
than other forms of adaptation, it is worth noting that the
details of its practical implementation vary widely. The different
plans are typically made on a single CT scan (eg an “empty
bladder” scan) with interpolated and possibly even extrapolated
contours obtained from additional scan(s) (eg a “full bladder”
scan) and deformable registration.18 Alternatively, a LoP can be
made on different CT scans (eg a “full bladder” scan followed
by an “empty bladder” scan 29 or using multiple CBCTs of the
first few fractions.30 Instead of creating a library based on
patient specific variations, one can also design a library based
on population statistics to generate different CTVs 31 or PTVs.32

For each treatment fraction, the best plan from the
library is subsequently selected, typically using visual com-
parison of the daily in-room scan with the contours of
the library plans. For practical reasons, only libraries con-
taining a limited number of plans (2-5) can be generated.
Consequently, the application of a LoP strategy is limited
to anatomical changes that are dominated by a single vari-
able, such as bladder filling or the associated cervix-uterus
shape change. To account for more complex random ana-
tomical changes, online replanning strategies are required
as described below. A LoP approach primarily uses the
treatment variation evaluation and treatment modification
decisions of the general adaptive framework. Note that the
case where the library is generated prior to the first frac-
tion, the treatment plans itself are not modified based on a
feedback loop.
Triggered Adaptation
To account for time-dependent changes, triggered adapta-
tions are frequently applied. Triggered adaptation refers to
the process of adapting the treatment plan when exceeding a
certain “threshold,” for example, when the patient experi-
enced considerable anatomical changes such as weight loss.
In its simplest form, this is arguably the most common form
of offline adaptation, pre-dating the introduction of the term
“adaptive radiotherapy”. In most cases, the criteria for trig-
gering an adaptation are qualitative, for example, the fixation
equipment is no longer appropriate, or the anatomical
changes are judged significant on visual examination (eg,
Ramella et al 2017).33 Kwint et al12 have described a semi-
quantitative traffic light protocol for intrathoracic changes.
Some reports have described objective criteria, based on
geometry and or dosimetry. For example, Møller et al34

described a strict set of criteria based on a combination of
changes in the position of the tumor, lymph nodes and
OARs in NSCLC/SCLC patients and dosimetric impact.
Adaptation is then triggered if the defined criteria are vio-
lated in 3 consecutive fractions.

Ideally, adaptive replanning is triggered based on dosi-
metric criteria. By recalculating the treatment plan on daily
images and accumulating the dose, the delivered dose can be
estimated.35,36 Subsequently deviations compared to the
planned dose can be used to identify patients
who require adaptive replanning. This triggered adaptive
approach thus uses treatment variation identification, treat-
ment modification decisions, and adaptive treatment modifi-
cation and can be extended with treatment dose assessment.
Scheduled Adaptation
Triggered adaptation has the disadvantage of being unpre-
dictable: arrangements for re-scanning/replanning can only
be made once a change has been observed. In contrast,
scheduling the time-point(s) of the adaptive process enables
departments to predict which resources need to be allocated.
Rescanning can occur once (eg, halfway through the treat-
ment course) or several times (eg, weekly during the treat-
ment course).37 To limit required resources, the original
treatment plan can then be transferred and recalculated on
the new anatomy to judge if it is still fulfilling the clinical
objectives of tumor coverage and OAR sparing.38 It is worth
noting that most studies reporting on the efficiency of sched-
uled adaptation are retrospective and often on a limited
number of patients.23,39,40
Online Replanning
To account for both systematic and random complex ana-
tomical changes as well as time trends, daily online replan-
ning can be considered. With such an approach the plan is
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reoptimized every treatment fraction. The challenge is to
condense the time of scanning and treatment planning tradi-
tionally spanning a few days to a few weeks, to a few
minutes. To accelerate the treatment planning process,
Ahunbay et al.41 proposed a geometric approach named seg-
ment aperture morphing (SAM), where the beam/segment
apertures are adjusted by applying the spatial relationship
between the planning target contour and the apertures to the
new target contour. Such an approach was shown to be prac-
tically equivalent to full-scope reoptimization in prostate
cancer radiotherapy. Similarly, to account for 6D setup error
in fractionated mask based stereotactic radiosurgery, the
planned shot positions of the Gamma Knife Icon (Elekta AB,
Stockholm, Sweden) can be reoptimized.42 The introduction
of MR-guided radiotherapy machines43,44 has further illus-
trated the feasibility of daily online replanning. The high
soft-tissue contrast of MRI is exploited for (partial) recon-
touring of the anatomy and full replanning at the expense of
longer treatment time slots.
Tools and Requirements

Although the concept of adapting radiotherapy using in-
room images is not new, the software tools required to facili-
tate this process are not fully mature and their performance
must be continuously evaluated. Both offline and online
approaches require a feedback-loop encompassing image
acquisition, image evaluation, plan generation/selection and
(possibly) new image acquisition for verification.

For the average anatomy model approach, the image
quality should be high enough for accurate registration.45

Software tools for subsequent processing of registration
results, however, are currently not commercially available.
An average anatomy model based on repeated delineations46

does not need additional tools and could be implemented
using standard treatment planning software. Similar to alter-
native approaches, however, automation in delineation and
planning facilitates efficient workflows.

Various approaches of the library of plans strategy have
been reported.47 The approach to acquire sequential scans
with different bladder filling could be implemented using
standard treatment planning software. An alternative
approach is to acquire 2 scans and use a motion model to
interpolate between those scans. Such interpolation strate-
gies are currently not commercially available. Finally, an
approach to design a library based on the scans of the first
week requires adequate image quality to delineate the target
on these scans. For all approaches, proper training to select
the adequate plan from the library is mandatory.48

Scheduled adaption has the advantage of using the stan-
dard treatment planning pathway: a new “treatment plan-
ning” quality image is acquired during the treatment,
satisfying the same image quality criteria for delineation
and dose calculation as the original treatment planning
image. To reduce the workload for any adaptive strategy,
contour propagation and automatic planning would be
useful tools as described above. A major limitation of this
approach is the general lack of knowledge of the optimal
time point at which to schedule one or several adaptations.
Such time point should balance the time that relevant
changes have occurred and the remaining number of frac-
tions that can benefit from an adaptive replan. Addition-
ally, the efficiency of such an approach would increase
with accurate selection of patient that would benefit from
an adaptive intervention.49,50

For triggered adaptation, qualitative or semi-qualitative
criteria require no dedicated software or image processing,
only sufficient image quality to make a clinical judgment
call. However, in order to limit interobserver variation,
some guidelines and training are essential.12 Where
quantitative criteria are used, the images must
be of high enough quality for manual or automatic delin-
eation. For in-room CT this will generally be the case.
The adequacy of CBCT for this purpose depends on
disease site51,52 and image quality.53,54 Though various
approaches provide a reasonably accurate dose calculation
on CBCT as described below, most clinical approaches
still rely on the Hounsfield units from diagnostic quality
scans, either from the original treatment planning scans or
from rescans acquired for this purpose. For in-room MR,
image quality is expected to be adequate provided that
proper sequences are used. Ideally, those images would
also offer an accurate map of electron density (enabling
reliable dose calculation). Note that for triggered adapta-
tions the frequency of repeat imaging should be high
enough to timely capture relevant changes.

Finally online replanning requires high image quality and
both fast delineation and fast replanning within a single
treatment fraction. At present, the delineations are either
completely or partially manual and treatment times are typi-
cally double or longer than normal fractions.44,55 Further
acceleration is therefore warranted to implement online
replanning on a larger scale.

Treatment planning systems are well equipped to per-
form a straightforward adaptive replanning. Frequently,
also a "warm start" is available where the initial treatment
plan is reoptimized using the final objectives and con-
straints on the new image and structures. More dedicated
tools for adaptive replanning to take into account
patient-specific variation, delivered dose, and adapting
the objectives to the observed changes and variations4

are typically not available.
A weak point of all approaches is the reliability of the cri-

teria to identify patients for adaptation: a high number of
false negatives can be a concern, as patients who could bene-
fit from adaptation would go undetected) while false posi-
tives result in a high resource burden. The lack of quality
assurance tools for the newly created adapted plan is a con-
cern, especially for online approaches.

These issues could be mitigated by introducing software
solutions processing all longitudinal images available for one
patient instead of triggering an adaptation based on a single
“image of the day”. Appropriate software tools (eg, reliable
automatic delineation and dose accumulation) may also
reduce the resource burden slightly as described below.
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Clinical Applications of Adaptive
Radiotherapy

Although adaptive radiotherapy is not widely adopted in
clinical practice, various clinical applications have been
described in the literature. Some characteristic examples are
described below.

Prostate cancer radiotherapy was one of the first disease
sites where adaptive protocols were clinically implemented.
Nijkamp et al56 described the clinical results of the first
twenty patients treated with an off-line ART protocol using
CBCT. Patients began treatment with a standard PTV mar-
gin. The CBCT scans acquired during the first six fractions
were used to generate an average prostate CTV based on
local rigid prostate registration,26 after which a new treat-
ment plan was generated with a reduced PTV margin. A safe
margin reduction of on average 29% was reported while the
volume of the rectum that received >65 Gy was reduced by
19% and the mean dose to the anal wall was reduced on
average by 4.8 Gy. Park et al.46 report on a large cohort of
992 prostate cancer patients treated with offline ART. The
target motion was assessed with daily CT during the first
week from which patient-specific confidence-limited PTVs
were then constructed. Authors report excellent biochemical
control that was independent of rectal volume/distension in
contrast to de Crevoisier et al21 while maintaining very low
rates of chronic GI toxicity. The feasibility of daily online
plan adaptation to account for 6 degrees of freedom of pros-
tate motion using geometrically adapted IMRT segments was
shown in a cohort of 39 patients and allowed safe margin
reduction down to 5 mm in 31 of 39 patients.57

The nonrigid day-to-day target motion in cervix cancer
radiotherapy is well suited for a library of plans approach.
Heijkoop et al.92 report on the clinical evaluation of such a
protocol where full and empty bladder CT scans were
acquired prior to treatment to build a bladder volume-
dependent cervix-uterus motion model for establishment of
the plan library. In patients showing >2.5 cm bladder-
induced cervix-uterus motion, two IMRT plans were con-
structed, based on model-predicted internal target volume
for empty-to-half-full and half-full-to-full bladder. Otherwise
only a single IMRT plan was constructed based on the full
predicted motion. The PTV combined the ITV(s) and nodal
CTV expanded with a 1 cm margin. Additionally a 3D con-
formal radiotherapy (3DCRT) motion-robust backup plan
was created. Daily CBCT scans were used to position the
patient based on bony anatomy and nodal targets and select
the appropriate plan. In 11 out of 40 patients, two IMRT
plans were created. An IMRT plan was chosen in about 81%
of the fractions and reduced the bowel cavity volume receiv-
ing 99% of the prescription dose by 26%-29%.

For bladder cancer radiotherapy, different adaptive
approaches have shown to be feasible in clinical practice. An
average anatomy model, using the first five CBCTs to gener-
ate an ITV expanded by 1 cm was used in a multi-center
study and reduced the treatment volume by about 40%
without compromising target coverage.58 Tuomikoski et
al.59 evaluated a LoP approach consisting of 3 to 4 plans
generated on successive planning CTs acquired over 15-30
minute intervals. In five patients, this reduced the average
volume of intestinal cavity receiving ≥ 45 Gy by 46% com-
pared to a conventional strategy while maintaining similar
CTV coverage. Meijer et al.60 used a full and voided bladder
scan combined with an interpolation model to generate 6
IMRT plans with concomitant boost. Lipiodol markers were
used to align the GTV, followed by plan selection to main-
tain full bladder coverage. In twenty patients no grade 3 uri-
nary or gastrointestinal toxicity was observed and after a
median follow-up of 28 months two local relapses occurred.
A bladder LoP approach consisting of 3 plans, small,
medium and large derived from CBCT in the first week has
been tested in two multicenter trials61,62 containing 54 and
20 patients respectively. Both studies demonstrate feasibility
in a multicenter setting with considerable reduced course-
averaged PTVs. Moreover, the integral dose was reduced
despite the use of daily kV CBCT imaging.63

For locally advanced lung cancer, Møller et al.34 report
on a triggered ART protocol where daily CBCT scans used
for soft-tissue matching were systematically evaluated. In
case residual uncertainties of tumor, lymph nodes or verte-
brae exceeded thresholds of 2.5 and 5 mm respectively for
3 consecutive days or when large anatomical changes in
normal tissue, pneumonia, atelectasis or pleural effusion
persisted for 3 consecutive days, an adaptive plan was cre-
ated based on a new CT scan to corrected for these changes.
In a cohort of 233 patients, 27% were adapted. The trigger
criteria used, correctly identified 98% of the patients
requiring adaptation with a false positive rate of 20% as
evaluated on surveillance CT scans. The same group also
reported an increased loco-regional control rate (65% vs
47%) without increasing treatment-related toxicity in the
ART cohort compared to a historical cohort without ART
and larger margins. In the prospective Lartia trial,33 217
patients received weekly rescanning to access clinically rele-
vant tumor regression by 2 independent physicians. Fifty
patients were replanned with a CTV reduction from 155 to
91 cc after a median of 25 fractions of 1.8 Gy. In the
adapted cohort, 2% and 4% of patients experienced acute
grade ≥3 pulmonary and esophageal toxicity and late toxic-
ity in 4% and 2%, respectively. In-field, marginal and out-
of-field local relapse was reported in 20%, 6%, and 4% of
patients.

In a retrospective analysis, van Beek et al.64 describe a
triggered adaptation protocol based on visual assessment of
daily CBCT scans in head and neck cancer patients that
yielded adaptations in 37 out of 416 patients. Combined
with daily IGRT, this protocol allowed for a PTV margin
reduction from 5 mm to 3 mm, which reduced the severity,
frequency, and duration of radiation-related toxicity without
jeopardizing outcome.65 Scheduled adaptations have been
prospectively studied in head and neck cancer radiotherapy.
Capelle et al.50 report on a prospective trial including 20
head and neck cancer patients receiving a second CT scan
after 15 fractions followed by a new plan from fraction 20.
They observed minimal benefit of routine adaptive replan-
ning in unselected patients, and no benefit in adjuvantly
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treated patients. Patients with nasopharyngeal carcinoma or
with greater weight loss or reduction in neck separation did
have clinically significant dosimetric benefits. Schwartz et
al.66 report on a prospective trial of 22 patients receiving one
(14) or two (8) plan adaptations. While the initial plan had
PTV margins of 3-4 mm, 0 mm PTVs were utilized in the
adapted plans. Single ART reduced the dose to the ipsilateral
and contralateral parotid by 1.3 and 0.6 Gy respectively and
could be further reduced with a second adaptation.

The availability of MR guided systems has increased the
interest for daily online replanning strategies and has been
explored for various disease sites.43 Pancreatic cancer is a dis-
ease site with very poor prognosis. Bohoudi et al.67 describe a
fast and robust online adaptive planning strategy for the MRI-
dian system (ViewRay Inc, Cleveland, OH), where OAR
(re-)contouring was done only within a distance of 3 cm from
the PTV surface and demonstrate good plan quality. Rudra et
al.68 treated 36 patients with locally advanced or borderline
resectable pancreatic cancer using MR guided radiotherapy.
Both conventionally-fractionated as well as SBRT regimens
were used. In patients treated with a BED <70 Gy, only 3.6%
of fractions were adapted while in patients treated with a BED
≥70, 66% of treatment fractions were adapted. Moreover, a
BED ≥70 Gy was associated with improved OS in uni- and
multivariate analysis. This has led a recently opened prospec-
tive multi-center phase 2 trial (NCT03621644) to investigate
the safety efficacy of MR driven adaptive high dose SBRT for
pancreatic cancer patients.
Residual Uncertainties

As described above, adaptive radiotherapy provides a versa-
tile suite of techniques to reduce geometric and possibly
biological uncertainties. Inevitably, however, residual uncer-
tainties remain due to the fact that adaptive radiotherapy has
finite accuracy, is powerless to some sources of geometrical
uncertainties and also induces sources of geometric uncer-
tainties novel to radiotherapy. In this section we will give an
overview of these residual geometric uncertainties in adap-
tive radiotherapy for anatomical changes and discuss strate-
gies to account for them.

One of the weakest links in modern radiotherapy is target
delineation. Inter and intraobserver variation in target delinea-
tion is a major source of geometric uncertainty in image
guided and adaptive RT.69 Moreover, pathology validation
studies to quantify the target delineation in relation to the gold
standard are scarce.70,71 In adaptive radiotherapy, the targets
are delineated on new scans and thus also susceptible to target
delineation errors. Repeated delineations potentially reduce
the impact of intraobserver variations with the square-root of
the number of delineations being part of the adaptive protocol
or even interobserver variations depending on the number of
observers involved. Systematic differences between imaging
and pathology, however, persist despite advanced adaptive
strategies or might even increase. Similarly, ART is powerless
against treatment delivery inaccuracies associated with the
mechanical precision of the treatment machine.72
Adaptive radiotherapy also introduces new sources of
geometric uncertainties. First of all, the in-room imaging sys-
tems used to drive adaptive strategies such as CBCT and MRI
need to be calibrated to the linac isocenter. The finite preci-
sion of such a calibration introduces uncertainty about the
exact position of the anatomy during treatment.73 Similarly,
in-room image distortions add uncertainties to the exact
position of the visualized anatomy.74-76 Following image
acquisition, in-room images are typically registered rigidly or
deformably to the planning scan. These registrations can be
used to access, for example, setup errors, quantify anatomi-
cal changes, propagate contours and accumulate the deliv-
ered dose. All these processes are influenced by the finite
accuracy of image registrations.77-79

The adaptive radiotherapy process itself has also lim-
ited accuracy. The average anatomy approach uses the
first couple of fractions to estimate systematic misalign-
ments relative to the planning geometry to reduce the
systematic. The accuracy of such an estimate is propor-
tional to the square-root of the number of observations.
Consequently, such a protocol needs to balance the num-
ber of fractions used to estimate the systematic deviations
against the number of remaining fractions that can bene-
fit from an adaptive intervention.27 Similarly, a library of
plan approach is based on a limited number of plans
(typically 2-5) and thus each plan needs to cover a range
of motion.80 Moreover, the scans underlying the library
of plans are typically acquired on the same day or first
week of treatment and thus do not capture the full com-
plexity of motion present during treatment.

ART is also used to account for progressive changes such
as treatment response. In an offline setting, the progressive
changes before and after the adaptive intervention need to be
accounted for in the initial and adaptive treatment plans. In
an online setting of daily plan adaptations, slow progressive
changes can be accurately accounted for. However, rapid
changes that occur during a fraction following the plan adap-
tation such as intrafraction setup variability, bladder filling,
peristalsis and respiratory motion still challenges the accu-
racy of adaptive radiotherapy.81−85 Although even more fre-
quent adaptations are being explored,86 on- and offline
adaptive strategies need to account for such intrafraction var-
iabilities.

Table 1 provides an overview of the residual geometric
uncertainties limiting the accuracy of adaptive radiotherapy.
Although a number of these uncertainties are quite small,
their relevance increases with increasing accuracy of treat-
ment delivery associated with advanced adaptive protocols.
The Planning Target Volume concept (PTV)1 is most widely
used to account for residual uncertainties in adaptive radio-
therapy. Margin recipes to calculate the appropriate PTV
margins are typically based on assumptions such as rigidity,
normally distributed errors, large targets, and long fractiona-
tions schemes.69 Residual uncertainties associated with adap-
tive radiotherapy frequently violate these assumptions and
such recipes should thus be handled with care.87 Probabilis-
tic planning is a more advanced method to account for geo-
metric uncertainties88 but not widely available.



Table 1Overview of Residual Uncertainties in Adaptive Radiotherapy

Type of Uncertainty Range of Uncertainty References

Limited number of observations 1/xN of the systematic error, with N the number of observations 69

Limited number of plans in library 1/P of the initial motion with P the number of plans in the library 80

Intra-fraction motion 2-5 mm 81,83

Respiratory motion Peak-to-peak amplitude 0-50 mm 85

Imaging ISOC calibrations §0.3 mm 75

Imaging distortions CT: <1 mm 75

MRI: <2 mm 89

Registration Rigid: <0.5 voxel dimension
Deformable: 95% <2 mm

78

Contouring 4mm (1 SD) 90

Delivery inaccuracies 0.2-2 mm 72
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Potential Pitfalls

While adaptive radiotherapy represents a powerful strategy
to improve the accuracy of radiotherapy, there are also
some important limitations that should be acknowledged.
Here we discuss some caveats associated with modern
adaptive strategies.

Deformable registration between a planning and repeated
scan can be utilized to propagate the contours of the
planning scan to the new scan. While such an approach is
uncontroversial for OAR (although careful evaluation of the
contours is recommended), it should be handled with care
for target volumes. First of all, tumors frequently respond to
radiotherapy and thus become smaller over the course of
treatment.91,92 Contour propagation through deformable
registration is likely to segment the smaller tumor volume. It
is, however, unclear if it is safe to adapt to these smaller vol-
umes as the region originally occupied by the GTV might
still contain microscopic disease.93 This will depend on
whether the regression was elastic (i.e., the surrounding tis-
sue moves inward with the regressing tumor) or eroding
(i.e., the remains in its original location while the tumor
regresses).11 Safety of field size reduction following tumor
regression should therefore be studied in prospective clinical
trials.33 Outside such a trial, we recommend to rigidly prop-
agate the GTV and manually check for errors.

The CTV is often defined as an expansion of the GTV.
The accuracy of automatic propagation of such a CTV is
highly dependent on the properties of the underlying
deformable registration and algorithm and the type of
GTV regression. As the CTV in this case overlaps with
normal tissue that drives (in part) the deformable registra-
tion, the relation between the propagated CTV delineation
and the underlying microscopic disease distribution is
likely to be compromised. We therefore advise to also rig-
idly propagate the CTV outside a clinical trial. In case a
smaller GTV is accepted in the adaptive protocol, the CTV
should be carefully evaluated taking into account the ini-
tial microscopic disease distribution, the type of tumor
regression and the response of the CTV to therapy. Note
that when the CTV is defined by organ boundaries such as
for prostate or cervix cancer radiotherapy, contour propa-
gation using deformable registration is less controversial.
Similar to the CTV, the PTV contour also overlaps with
normal tissue. The deformation of the normal tissue at the
PTV contour has little or no correlation with the required
PTV margin. We therefore recommend to rigidly propagate
the PTV or re-expand from the propagated CTV.

Dose Accumulation as Background Dose
As described above, deformable registration for contour
propagation of OAR is uncontroversial; if it looks good it is
good. The underlying deformation model does not need to
be anatomically correct as long as it accurately maps the
organ boundaries. For dose accumulation94, on the other
hand, anatomically correct deformation models establishing
tissue-to-tissue correspondence are crucial. Visual verifica-
tion of deformable registration is therefore challenging in
regions of homogeneous intensity and alternative strategies
are required to validate deformable registration for dose
accumulation.79,95 Moreover, due to the higher complexity
of deformable registration for dose accumulation the result-
ing accumulated dose should be handled with care. In other
words, the uncertainties in the accumulated dose should be
quantified and taken into account when incorporating accu-
mulated doses into plan adaptations. Similarly, other uncer-
tainties not captured in the images underlying dose
accumulation (Table 1), should also be taken into account to
evaluate the accumulated dose distribution.
Dose accumulation in Regressing Tumors
Volume changes over the course of therapy represent an espe-
cially challenging case for deformable image registration and
dose accumulation. When the volume changes, tissue to tissue
correspondence is no longer possible as tissue present in one
scan is no longer present in the other scan. A plausible aim for
a deformable registration algorithm in such a scenario is to
map a voxel in the scan of the reduced volume to the corre-
sponding expanded volume in the other scan containing the
remaining tissue combined with tissue that has disappeared.
As a consequence, however, when transforming scans and
daily doses back to the planning CT, mass and energy are not
conserved. While corrections can be applied to enforce mass
and energy in such transformations96 yielding "physically"
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more correct representations, it is debatable if such corrections
are also biologically more relevant.
Adapting to Dose Constraints/NTCP
Models Derived From Planned Dose
During treatment plan optimization, various dose constraints
and objective are used to guide the optimization algorithm to
a desirable solution and to evaluate acceptability of the
resulting plan. Subsequently, such a plan is delivered in the
presence of geometric uncertainties and anatomical changes
such that the planned dose is not equal to the delivered
dose. Although adaptive radiotherapy has the potential to
minimize this difference, it is important to realize that most
dose constraints are based on associations between treatment
outcomes and the planned dose instead of the delivered dose
and stem from studies not using adaptive strategies. For
example, the planned OAR maximum dose close to the PTV is
likely to be an overestimation of the delivered maximum dose
in fractionated treatments due to day-to-day variations,97

while the planned mean parotid dose is often lower than the
delivered dose due to weight loss and parotid shrinkage.7

Consequently, these dose constraints cannot straightforwardly
be used to evaluate acceptability of delivered dose or select
patients for adaptive replanning. Similarly, in (online) adaptive
replanning where differences between planned and delivered
dose will be reduced compared to standard radiotherapy, the
use of standard dose constraints should also be handled with
care. It is therefore important that dose constraints and under-
lying normal tissue complication probability models are
updated using delivered dose98 to effectively use such adaptive
strategies.
Remaining Challenges

Following the introduction of adaptive radiotherapy by Yan
et al,24 ART has been an active field of research. As a result,
various adaptive protocols have been clinically implemented
in specialized centers.34,46,56,66,99 Large-scale clinical adop-
tion, however, is still more a dream than a reality. To realize
the full potential of adaptive radiotherapy, various challenges
remain to be solved.

Imaging
Although offline adaptive protocols can be driven by the
imaging systems also used for treatment simulation, in-room
imaging systems provide a substantial logistic advantage. In-
room volumetric imaging systems are often already being
used for image guided patient alignment thus proving 3D
anatomical visualization without the need to for additional
imaging sessions. For online adaptive protocols, in-room
imaging equipment becomes essential as scans in treatment
position are required just prior to treatment. Linac integrated
cone beam CT (CBC)100 is the most widely used in-room
imaging system. The image quality of linac integrated CBCT,
however, is reduced compared to fan beam CT due to
increased levels of scattered X-rays associated with the cone
beam geometry, lower quality detector systems, and slow
revolution acquisitions. Consequently, CBCT's HU accuracy
and soft-tissue contrast are reduced, challenging both dose
calculation accuracy and image segmentation on CBCT
scans.75,101 Methods to improve CBCT based dose calcula-
tion accuracy include HU calibration curves derived from
phantoms or patients, bulk density corrections, uniformity
corrections and deformable registration to propagate HUs
from the planning CT to the CBCT.102 Dose calculations
accuracy varies between 8% to less than 1%. Methods to fur-
ther improve CBCT image quality include hardware and
software scatter mitigation,103-106 ghosting correction,107

respiratory correlated (4D) CBCT108 and advanced recon-
struction algorithms.109,110 Although CBCT image quality
has improved considerably over the last decade, it remains
inferior to diagnostic CT. Additional efforts are thus required
to achieve an image quality on par with diagnostic CT. This
is especially true in the thoracic and upper abdominal region
where respiratory and cardiac motion as well as peristalsis
induce considerable motion artifacts.

A novel alternative to in-room CBCT is in-room MR
such as the MRIdian (ViewRay Inc, Cleveland, OH) and
Unity (Elekta Oncology AB, Stockholm, Sweden). MRI is
well known for its superior soft tissue contrast over (CB)
CT enabling advanced adaptive protocols.111 Moreover,
MRI is a more versatile imaging modality that allows a flexi-
ble tradeoff between contrast-to-noise, temporal and spatial
resolution, field-of-view, and does not deposit any radia-
tion dose to the patient. On the other hand, the image
acquisition time of MRI is typically longer than for CBCT.
Therefore, accelerated acquisition schemes and fast recon-
structions are warranted to limit treatment time slots.112,113

Additionally, current systems lack the ability to acquire 4D
MRI's to visualize the anatomy over the breathing
cycle,114,115,116 Finally, MRI lacks electron density infor-
mation required to perform dose calculation and treatment
plan optimization. While bulk density overrides achieve
reasonable dosimetric accuracy further developments in
more advanced conversions of MRI scans to electron densi-
ties117 would have the potential to fully replace CT in the
pretreatment and adaptive workflows.
Automation
A major obstacle for large scale use of ART is the high work
load. Many adaptive protocols require the acquisition of
additional scans that need to be segmented and additional
treatment plans need to be optimized. Using traditional
workflows, this requires a lot of manual labor. Consequently,
ART is often limited to a few patients with large anatomical
changes. Automation is therefore a key element to expand
the number of patients that could benefit from ART.

Autosegmentation
Automatic segmentation and automatic treatment plan opti-
mization are techniques being developed to automate the
treatment planning process for both conventional and
adaptive workflows. Automatic segmentation 118 aims to
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automatically delineate OAR and\or target volumes. Atlas
based segmentation119 is a popular approach for OAR
segmentation where a set of validated OAR delineations of
previously treated patients (the atlas) is propagated to a new
scan using inter-patient deformable registration. Various
algorithms have been proposed to combine the propagated
contours into the new segmentation. Such approaches typi-
cally provide clinicians with a good starting point for review
and adjustment.120 Moreover they are less suitable for seg-
mentation of the target volumes due to the large inter-patient
variability in shape and position of gross tumor volumes. An
alternative approach is to propagate the planning contours
from the planning scan to the daily scan using deformable
registration. Novel approaches based on deep neural convo-
lutional networks (CNN) provide more accurate and faster
auto-segmentation.121

Despite continuous improvements in segmentation accu-
racy, current clinical practice in online MRI guidance still
requires manual intervention and involves radiation oncolo-
gists available at the treatment machine.67,122 Further
improvement in robust auto-segmentation is therefore war-
ranted. For adaptive radiotherapy, improved performance
might be possible by tailoring the segmentation models to
the patient using the planning CT and one or more follow-
up scans from previous fractions.123 On the other hand, the
quality of automatic segmentations should be evaluated in
the context of inter-observer variability and thus extensive
manual contour adjustments might have limited clinical rele-
vance. Note that auto-segmentation algorithms will typically
delineate the visible tumor boundaries, also in case of tumor
regression thereby ignoring possible remaining microscopic
disease as described above.

Automatic Planning
Although IMRT and VMAT are optimized using an inverse
treatment planning algorithm minimizing a set of objec-
tives and constraints, the initial result of such an algorithm
typically requires extensive time consuming tweaking
before an acceptable plan is obtained. Automatic treatment
planning aims to reduce the time for treatment plan opti-
mization, reduce plan variability and improve plan quality.
Three different classes can be distinguished for automatic
planning.124 First, knowledge based planning where either
a model or atlas capturing prior knowledge is utilized to
predict an achievable dose distribution. Second, protocol-
based automatic iterative optimization where the manual
tweaking after the initial inverse optimization is performed
by another algorithm following a predefined protocol of
prioritization. Thirdly, an a-priory multi-criteria optimiza-
tion generating a single Pareto-optimal plan based on prior-
ities between objectives. Currently available auto-planning
strategies require minimal manual interactions, but overall
planning time still exceeds 30 min,125 making them highly
suited for offline ART but too slow for online ART. Novel
knowledge based approaches using deep convolutional
neural network to predict the 3D dose-distribution might
significantly speedup the overall planning time.126 An
alternative approach for online plan adaptation is to use
the final objective of the initial plan to re-optimize the plan
on the new anatomy.122 While such an approach might
produce high quality plans without further "tweaking" in
case the anatomical changes are small, it is unclear if such
an approach is valid in case of larger anatomical changes.
Note that the automated treatment planning approaches
described above optimize the plan based on a single scan
and corresponding delineations. To realize the full poten-
tial of adaptive radiotherapy, the accumulated dose and a
prediction of future anatomical variations should also be
taken into account.4
Approval and QA
Even when automatic segmentation and treatment plan-
ning produce robust and reliable delineations and treat-
ment plans, two important issues remain. Firstly approval
of delineations and treatment plans are typically performed
by the treating physician and formally captures the treat-
ment intent of the physician. Consequently, frequent adap-
tation and especially online ART requires considerable time
investment from clinician for approval making large scale
implementation challenging. Interestingly, in the context
of adaptive radiotherapy, the delineations and plans are
often adjusted in order to realize the dose distributions of
the initial plan in the continuously-changing patient. Con-
sequently, such adaptations do not alter the physician's
treatment intent. In order to allow for large scale adaptive
replanning, the treatment plan and treatment intend
should be disentangled. Dosimetric tolerances relative to
the initial plan and superiority of the adapted plan over the
initial plan in the new anatomy could be ingredients of
decision support systems for plan approval.

A second obstacle to large scale clinical implementation of
adaptive radiotherapy is plan QA. Pretreatment patient spe-
cific QA of treatment plans already generates a high work load
on the clinical physics group of many radiotherapy depart-
ments. Advanced adaptive protocols, where multiple treat-
ment plans per patient are generated, makes such a QA
approach unfeasible. Even more, for online plan adaptations,
pre-treatment QA is impossible. Consequently, alternatives
for patient-specific QA need to be developed and adopted.
Various approaches have been investigated and implemented
in clinical practice such as (1) dose recalculation using an
independent dose calculation algorithm,44 (2) an independent
verification of the delivered plan using treatment plan files
and delivery log files,127,128 (3) an entrance fluence detector
system mounted at the linac collimator between the MLC and
the patient129 and (4) an portal dosimetry algorithm based on
electronic portal imaging device.130
Concluding Remarks

The concept of adaptive radiotherapy was introduced
22 year ago131 as a sophisticated offline setup correction
protocol. Since then, volumetric imaging in the treatment
room, (deformable) image registration software, inverse
treatment planning and insight into anatomical changes
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have grown tremendously. Simultaneously, the concept of
adaptive radiotherapy has evolved and a range of
approaches have been clinically implemented for different
types of changes and disease sites. Although various chal-
lenges still remain to be solved to realize the full potential
of adaptive radiotherapy, more simple approaches have
already been shown to be feasible in multicenter trials.
With recent advances in image processing and machine
learning, adaptive radiotherapy might be ready for prime
time in the years to come.
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