
Shared heritability and functional enrichment across six solid cancers
Jiang, X.; Finucane, H.K.; Schumacher, F.R.; Schmit, S.L.; Tyrer, J.P.; Han, Y.H.; ... ; Tung,
N.

Citation
Jiang, X., Finucane, H. K., Schumacher, F. R., Schmit, S. L., Tyrer, J. P., Han, Y. H., …
Tung, N. (2019). Shared heritability and functional enrichment across six solid cancers.
Nature Communications, 10. doi:10.1038/s41467-018-08054-4
 
Version: Publisher's Version
License: Creative Commons CC BY 4.0 license
Downloaded from: https://hdl.handle.net/1887/3630576
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by/4.0/
https://hdl.handle.net/1887/3630576


ARTICLE

Shared heritability and functional enrichment
across six solid cancers
Xia Jiang et al.#

Quantifying the genetic correlation between cancers can provide important insights into the

mechanisms driving cancer etiology. Using genome-wide association study summary sta-

tistics across six cancer types based on a total of 296,215 cases and 301,319 controls of

European ancestry, here we estimate the pair-wise genetic correlations between breast,

colorectal, head/neck, lung, ovary and prostate cancer, and between cancers and 38 other

diseases. We observed statistically significant genetic correlations between lung and head/

neck cancer (rg= 0.57, p= 4.6 × 10−8), breast and ovarian cancer (rg= 0.24, p= 7 × 10−5),

breast and lung cancer (rg= 0.18, p =1.5 × 10−6) and breast and colorectal cancer (rg= 0.15,

p= 1.1 × 10−4). We also found that multiple cancers are genetically correlated with non-

cancer traits including smoking, psychiatric diseases and metabolic characteristics. Functional

enrichment analysis revealed a significant excess contribution of conserved and regulatory

regions to cancer heritability. Our comprehensive analysis of cross-cancer heritability sug-

gests that solid tumors arising across tissues share in part a common germline genetic basis.
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Inherited genetic variation plays an important role in cancer
etiology. Large twin studies have demonstrated an excess
familial risk for cancer sites including, but not limited to,

breast, colorectal, head/neck, lung, ovary, and prostate with
heritability estimates ranging between 9% (head/neck) to 57%
(prostate)1–3. Data from nation-wide and multi-generation
registries further show that elevated cancer risks go beyond
nuclear families and isolated types, as family history of a specific
cancer can increase risk for other cancers4–6. Additional evidence
for a shared genetic component have been demonstrated by
cross-cancer genome-wide association study (GWAS) meta-ana-
lyses, which set out to identify genetic variants associated with
more than one cancer type. Fehringer et al. studied breast, col-
orectal, lung, ovarian, and prostate cancer, and identified a novel
locus at 1q22 associated with both breast and lung cancer7. Kar
et al. focused on three hormone-related cancers (breast, ovarian,
and prostate), and identified seven novel susceptibility loci shared
by at least two cancers8.

Previous attempts to estimate the genetic correlation across
cancers using GWAS data9–12 have mostly relied on restricted
maximum likelihood (REML) implemented in GCTA (genome-
wide complex trait analysis)13 and individual-level genotype data.
However, these studies have had limited sample sizes, yielding
inconclusive results. Sampson et al. quantified genetic correlations
across 13 cancers in European ancestry populations and identified
four cancer pairs with nominally significant genetic correlations
(bladder–lung, testis–kidney, lymphoma–osteosarcoma, and
lymphoma–leukemia)9. They did not observe any significant
genetic correlations across common solid tumors including can-
cers of the breast, lung and prostate9. REML becomes computa-
tionally challenging for large sample sizes and is sensitive to
technical artifacts. LD score regression (LDSC)14,15 overcomes
these issues by leveraging the relationship between association
statistics and LD patterns across the genome. We recently used
cross-trait LDSC to quantify genetic correlations across six cancers
based on a subset of the data included here and found moderate
correlations between colorectal and pancreatic cancer, as well as
between lung and colorectal cancer16. However, the average
sample size was only 11,210 cases and 13,961 controls per cancer,
resulting in imprecise estimates with wide confidence intervals.

In addition to the development of novel analytical methods
tailored to genomic data, several high-quality functional anno-
tations have recently been released into the public domain
through large-scale efforts. For example, the ENCODE con-
sortium has built a comprehensive and informative parts list of
functional elements in the human genome (http://www.nature.
com/encode/#/threads), which allows for the analysis of compo-
nents of SNP-heritability to unravel the functional architecture of
complex traits.

Here, we use summary statistics from the largest-to-date Eur-
opean ancestry GWAS of breast, colorectal, head/neck, lung,
ovary, and prostate cancer with an average sample size of 49,369
cases and 50,219 controls per cancer, to quantify genetic corre-
lations between cancers and their subtypes. We also use GWAS
summary statistics for 38 non-cancer traits (average N= 113,808
per trait), to quantify the genetic correlations between the six
cancers and other diseases. Furthermore, we assessed the pro-
portion of cancer heritability attributable to specific functional
categories, with the goal of identifying functional elements that
are enriched for SNP-heritability.

Our comprehensive analysis identifies statistically significant
genetic correlations between lung and head/neck cancer, breast
and ovarian cancer, breast and lung cancer, and breast and col-
orectal cancer. We also find multiple cancers to be genetically
correlated with non-cancer traits including smoking, psychiatric
diseases, and metabolic traits. Functional enrichment analysis

reveals a significant contribution of conserved and regulatory
regions to cancer heritability. Our results suggest that solid
tumors arising across tissues share in part a common germline
genetic basis.

Results
Heritability estimates across cancers. We first estimated cancer-
specific heritability causally explained by common SNPs (h2g)
using LDSC (note that this quantity is slightly different from the
h2g as defined in Yang et al.17 which estimates the heritability due
to genotyped and imputed SNPs) (see Methods). Estimates of h2g
on the liability scale ranged from 0.03 (ovarian) to 0.25 (prostate)
(Supplementary Table 1). After removing genome-wide sig-
nificant (p < 5 × 10−8) loci, defined as all SNPs within 500 kb of
the most significant SNP in a given region (Supplementary
Data 1), we observed an ~50% decrease in SNP-heritability for
prostate and breast cancer, and ~20% decrease for lung, ovarian,
and colorectal cancer, despite the fact that we were only excluding
1% (colorectal cancer) to 5% (breast cancer) of the genome. In
contrast, the SNP-heritability for head/neck cancer was not
affected by removing genome-wide significant loci (Fig. 1a). For
most of the cancers, the GWAS significant loci for that particular
cancer explained most of the heritability. For some cancers,
however, significant GWAS loci of other cancers also explained a
non-trivial part of its heritability. For example, the significant
breast cancer GWAS loci explained 10%, 15%, and 22% herit-
ability of colorectal, ovarian and prostate cancer, respectively; the
significant colorectal cancer GWAS loci explained 11% herit-
ability of prostate cancer; the significant lung cancer GWAS loci
explained 10% heritability of head/neck cancer; and the sig-
nificant prostate cancer GWAS loci explained 11 and 15% her-
itability of breast and ovarian cancer, respectively (Supplementary
Table 2). Comparing the liability-scale SNP-heritability to cor-
responding estimates from twin studies suggests that common
SNPs can almost entirely explain the classical heritability of head/
neck cancer, whereas for other cancers, only 30–40% of herit-
ability can be explained (Fig. 1b).

Genetic correlations between cancers. We then estimated the
genetic correlation between cancers using cross-trait LDSC (see
Methods). After adjusting for the number of tests (p < 0.05/15=
0.003), we found multiple significant genetic correlations Fig. 1c
and Supplementary Table 1), with the strongest result observed
for lung and head/neck cancer (rg= 0.57, se= 0.10). In addition,
colorectal and lung cancer (rg= 0.28, se= 0.06), breast and
ovarian cancer (rg= 0.24, se=0.06), breast and lung cancer (rg=
0.18, se= 0.04), and breast and colorectal cancer (rg= 0.15, se=
0.04) showed statistically significant genetic correlations. We also
observed nominally significant genetic correlations (p < 0.05)
between lung and ovarian cancer (rg= 0.16, se= 0.08), prostate
cancer and head/neck (rg= 0.15, se= 0.08), colorectal (rg= 0.11,
se= 0.05), and breast cancer (rg= 0.07, se= 0.03) (Fig. 1c). Some
cancer pairs showed minimal correlations with estimates close to
0 (ovarian and prostate: rg= 0.02, se= 0.07; lung and prostate:
rg=−0.03, se= 0.04; breast and head/neck: rg= 0.03, se= 0.06).
We further calculated the cross-cancer genetic correlation based
on data after excluding the GWAS significant regions of each
cancer. The estimates were mostly consistent with the results
calculated based on all SNPs.

We conducted subtype-specific analysis for breast, lung,
ovarian, and prostate cancer (Supplementary Table 1). Estrogen
receptor positive (ER+) and negative (ER−) breast cancer
showed a genetic correlation of 0.60 (se= 0.03), indicating that
the genetic contributions to these two subtypes are in part
distinct. The genetic correlation between the two common lung
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cancer subtypes adenocarcinoma and squamous cell carcinoma
was similarly 0.58 (se= 0.10). Further, we observed a significantly
larger genetic correlation of lung cancer with ER− (rg= 0.29,
se= 0.06) than with ER+ breast cancer (rg= 0.13, se= 0.04)
(pdifference= 0.002). This also held true for lung squamous cell
carcinoma, which showed statistically stronger genetic correlation
with ER− (rg= 0.33, se= 0.08) than with ER+ breast cancer
(rg= 0.11, se= 0.05) (pdifference= 0.0019). We observed no other
statistically significant differential genetic correlations across
subtypes (all pdifference > 0.1).

We then estimated local genetic correlations between cancers
using ρ-HESS, dividing the genome into 1703 regions (see
Methods) (Fig. 2 and Supplementary Fig. 1). We found that
although the genome-wide genetic correlation between breast
and prostate cancer was modest (rg= 0.07), chr10:123M
(10q26.13, p= 1.0 × 10−7) and chr9:20–22 M (9p21, p= 1.0 ×
10−6), two previously known pleiotropic regions18, showed
significant genetic correlations (rg=−0.00098 and rg=
0.00046). Similarly, although the genome-wide genetic correla-
tion between lung and prostate cancer was negligible (rg=
−0.03), two previously identified pleiotropic regions
(chr6:30–31 M or 6p21.33, p= 5.7 × 10−7 and chr20:62M or
20q13.33, p= 2.8 × 10−6) exhibited significant local genetic
correlations (rg=−0.00060 and rg= 0.00067). Overall, local
genetic correlation analysis reinforced shared effects for 44%
(31/71) of previously reported pleiotropic cancer regions
(Supplementary Data 2). It also identified novel pleiotropic
signals. For example, the breast and prostate cancer pleiotropic
region at 2q33.1 showed significant local genetic correlation
between breast and ovarian cancer (p= 2.3 × 10−6). Addition-
ally, 6p21.32, a region indicated for head/neck and prostate
cancer, showed highly significant local genetic correlation for
head/neck and lung cancer (p= 8.6 × 10−8).

Genetic correlations between cancer and other traits. Sig-
nificant genetic correlations (p < 0.05/228= 0.0002) between the
six cancers and 38 non-cancer traits reflected several known
associations (Fig. 3 and Supplementary Data 3). We observed a
strong genetic correlation between smoking and lung cancer
(rg= 0.56, se= 0.06), and similarly for head/neck cancer (rg=
0.47, se= 0.08), both cancers having smoking as its primary risk
factor19,20. Educational attainment was negatively genetically
correlated with colorectal (rg=−0.17, se= 0.04), head/neck
(rg=−0.42, se= 0.07), and lung cancer (rg=−0.39, se=0.04) (all
p < 5 × 10−6). Body mass index (BMI) showed a positive genetic
correlation with colorectal cancer (rg= 0.15, se= 0.03) and also
suggestive but weak negative correlations with prostate (rg=
−0.07, se= 0.03) and breast cancer (rg=−0.06, se= 0.03). Lung
cancer showed a negative genetic correlation with lung function
(rg=−0.15, se= 0.04) and age at natural menopause (rg=−0.25,
se= 0.05), and moderate positive genetic correlations with
depressive symptoms (rg= 0.25, se=0.06) and waist-to-hip ratio
(rg= 0.16, se= 0.04). Breast cancer showed a positive genetic
correlation with schizophrenia (rg= 0.14, se= 0.03).

We did not find evidence of genetic correlations between cancer
and several previously suggested risk factors21–23 including
cardiovascular traits (coronary artery disease, hypertension, and
blood pressure) or sleep characteristics (chronotype, duration, and
insomnia). Further, we did not observe genetic correlations
between cancer and circulating lipids (HDL, LDL, and triglycer-
ides) or type 2 diabetes-related traits except a significant
negative correlation between HDL and lung cancer
(rg=−0.14, se= 0.04). We observed no significant genetic
correlation between breast cancer and age at menarche
(rg=−0.03, se= 0.03) or age at natural menopause (rg=−0.01,
se= 0.03). We also did not observe notable genetic correlations
between cancer and autoimmune inflammatory diseases or height.
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Fig. 1 Estimates of SNP-heritability (h2g) and cross-cancer heritability (rg) for the six cancer types. SNP-heritability and cross-cancer heritability are
calculated based on HapMap3 SNPs using LD score regression (LDSC). a The solid bar represents overall SNP h2g on the liability scale, calculated based on
all HapMap3 SNPs. The dark green bar represents h2g calculated based on non-significant SNPs—the remaining SNPs after excluding genome-wide
significant hits (p < 5 × 10−8) ± 500 kb. The black bar with density texture indicates proportion of h2g (as reflected by the percentages displayed on top of
each bar) that could be explained by top hits ±500 kb surrounded areas. The orange error bars represent 95% confidence intervals. b The solid blue bar
represents overall SNP h2g in liability scale (no SNP exclusion), with black error bars indicating 95% confidence intervals. The red short lines correspond to
classical estimates of h2 measured in a twin study of Scandinavian countries (Mucci et al.2). c Genetic correlations between cancers. Estimates withstood
Bonferroni corrections (p < 0.05/15) are marked with double asterisk (**), and nominal significant results (p < 0.05) are marked with single asterisk (*)
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Subtype analysis revealed that smoking and educational
attainment showed genetic correlations with all lung cancer
subtypes (Supplementary Data 3). Educational attainment, forced
vital capacity and depressive symptoms showed genetic correla-
tions with ER− but not ER+ breast cancer, whilst the observed
genetic correlation between schizophrenia and breast cancer was
limited to ER+ disease, and the genetic correlation between
depressive symptoms and lung cancer was observed only for lung
squamous cell carcinoma.

We further assessed the support for mediated or pleiotropic
causal models for non-cancer traits and cancer using the
correlation between trait-specific effect sizes of genome-wide
significant SNPs for pairs of phenotypes. We detected four
putative directional genetic correlations (defined as p < 0.05 from
a likelihood ratio (LR) comparing the best non-causal model to
the best causal model) (Fig. 4), where SNPs associated with the
non-cancer trait showed correlated effect estimates with cancer

but the reverse was not true (circulating HDL concentrations and
breast cancer, LRnon-causal vs. causal= 0.04, schizophrenia and
breast cancer, LRnon-causal vs. causal= 0.003, age at natural
menopause and breast cancer, LRnon-causal vs. causal= 0.04, and
lupus and prostate cancer, LRnon-causal vs. causal= 0.0006).

Functional enrichment analysis of cancer heritability. Finally,
we partitioned SNP-heritability of each cancer by using 24
genomic functional annotations (the baseline-LD model descri-
bed in Gazal et al.24) and 220 cell-type-specific histone mark
annotations (the cell-type-specific model described in Finucane
et al.14). Meta-analysis across the six cancers revealed statistically
significant enrichments for multiple functional categories.
We observed the highest enrichment for conserved regions
(Table 1, Supplementary Table 3) which overlapped with
only 2.6% of SNPs but explained 25% of cancer SNP-heritability
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(9.8-fold enrichment, p= 2.3 × 10−5). Transcription factor bind-
ing sites showed the second highest enrichment (4.0-fold, 13% of
SNPs explaining 40% of SNP-heritability, p= 1.4 × 10−7). Fur-
ther, super-enhancers (groups of putative enhancers in close
genomic proximity with unusually high levels of mediator bind-
ing) showed a significant 2.6-fold enrichment (p= 2.0 × 10−20).
Additional enhancers, including regular enhancers (3.2-fold),
weak enhancers (3.1-fold) and FANTOM5 enhancers (3.1-fold),
presented similar enrichments but were not statistically sig-
nificant. In addition, multiple histone modifications of epigenetic
markers H3K9ac, H3K4me3, and H3K27ac, were all significantly
enriched for cancer heritability. Repressed regions exhibited
depletion (0.34-fold, p= 1.2 × 10−6). Enrichment analysis of
functional categories for each cancer and cancer subtype are
shown in Fig. 5 and Supplementary Table 4.

Overall, cell-type-specific analysis of histone marks identified
significant enrichments specific to individual cancers (Supple-
mentary Fig. 2). For breast cancer, 3 out of 8 statistically
significant tissues were adipose nuclei (H3K4me1, H3K9ac) and
breast myoepithelial (H3K4me1) cells. For colorectal cancer, 15
out of the 18 statistically significant enrichments were observed in
either colon or rectal tissues (colon/rectal mucosa, duodenum
mucosa, small/large intestine, and colon smooth muscle). We
observed no significant enrichments for head/neck, lung, and
ovarian cancer, but we noted that for both lung (9 out of 10) and
ovarian cancer (6 out of 10), the most enriched cell types were
immune cells; while in head/neck cancer, 6 out of 10 most highly
enriched cell types belonged to CNS (Supplementary Fig. 3,
Supplementary Data 4). Cell-type-specific analysis for cancer
subtypes are shown in Supplementary Data 5. Comparing
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cell-type-specific enrichment for cancers to the additional 38
non-cancer traits revealed notably differential clustering patterns
(Supplementary Fig. 4). Breast, colorectal, and prostate cancer
showed enrichment mostly for adipose and epithelial tissues, in
contrast to autoimmune diseases (enriched for immune/hemato-
poietic cells) or psychiatric disorders (enriched for brain tissues).

Discussion
We performed a comprehensive analysis quantifying the herit-
ability and genetic correlation of six cancers, leveraging summary
statistics from the largest cancer GWAS conducted to date. Our
study demonstrates shared genetic components across multiple
cancer types. These results contrast with a prior study conducted
by Sampson et al. which reported an overall negligible genetic
correlation among common solid tumors9. Our results are,
however, in line with a recent study,16 which analyzed a subset of
the data included here, and identified a significant genetic cor-
relation between lung and colorectal cancer.

Our data support, and for the first time quantify, the strong
genetic correlation (rg= 0.57) between lung and head/neck can-
cer, two cancers linked to tobacco use20,25. We also for the first
time observed a significant genetic correlation between breast and
ovarian cancer (rg= 0.24), two cancers that are known to share
rare genetic factors including BRCA1/2 mutations, and environ-
mental exposures associated with endogenous and exogenous
hormone exposures26. Prostate cancer is also considered as
hormone-dependent and associated with BRCA1/2mutations, but
interestingly, we only observed a nominally significant and
modest (rg= 0.07) genetic correlation between breast and pros-
tate cancer, while ovarian and prostate cancer showed no genetic
correlation (rg= 0.02, se= 0.07).

Our large sample sizes allowed us to conduct well-powered
analyses for cancer subtypes. While head/neck cancer showed
negligible genetic correlation with overall (rg= 0.03, se= 0.06)
and ER+ breast cancer (rg=−0.02, se= 0.07), it showed a
stronger genetic correlation with ER− breast cancer (rg= 0.21,
se= 0.09). Similarly, lung cancer showed a statistically more
pronounced genetic correlation with ER− (rg= 0.29, se= 0.06)
than ER+ breast cancer (rg= 0.13, se= 0.04). A recent pooled
analysis of smoking and breast cancer risk demonstrated a
smoking-related increased risk for ER+ but not for ER− breast
cancer27, and thus it is unlikely that the stronger genetic corre-
lation between ER− subtype and lung and head/neck cancer is
due to smoking behavior. Perhaps surprisingly, despite literature
suggesting substantial similarities between ER− breast cancer and
serous ovarian cancer in particular28, we did not observe statis-
tically significant different genetic correlations between ER− or

ER+ breast cancer and serous ovarian cancer (rg= 0.17, se=
0.08 vs. rg= 0.11, se= 0.06). This suggests that rare high pene-
trance variants may play a more important role in driving the
similarities behind ER− breast cancer and serous ovarian cancer
than common genetic variation.

Heritability analysis confirms that common cancers have a
polygenic component that involves a large number of variants.
Although susceptibility variants identified at genome-wide sig-
nificance explain an appreciable fraction of the heritability for
some cancers, we estimate that the majority of the polygenic effect
is attributable to other, yet undiscovered variants, presumably
with effects that are too weak to have been identified with current
sample sizes. We found the genetic component that could be
attributed to genome-wide significant loci varied greatly from
~0% for head/neck cancer to ~50% for breast and prostate cancer.
These results reflect in part the strong correlation between
number of GWAS-identified loci and sample size, as we had more
than twice as many breast and prostate cancer samples compared
to the other cancers. One corollary is that larger GWAS are likely
to identify new susceptibility loci that could help our under-
standing of disease development, improve prediction power of
genetic risk scores and hence contribute to screening and per-
sonalized risk prediction29.

Among the genetic correlations between cancer and non-
cancer traits, we observed positive correlations for psychiatric
disorders (depressive symptoms, schizophrenia) with lung and
breast cancer, where findings from epidemiological studies have
been suggestive but inconclusive. It has been proposed that the
linkage between psychiatric traits and cancers are more likely to
be mediated through cancer-associated risk phenotypes such as
smoking, excessive alcohol consumption in depressed popula-
tions30, and reduced fertility patterns (e.g., nulliparous) in psy-
chiatric populations31. Detailed analyses considering confounding
traits like reproductive history and smoking are needed to make
inference about the mechanisms involved. GWAS have identified
pleiotropic regions influencing both lung cancer and nicotine
dependence, such as 15q25.132,33. In line with those results, we
identified a strong genetic correlation between smoking and both
lung (rg= 0.56) and head/neck cancer (rg= 0.47). It remains
unclear whether this genetic correlation is completely explained
by the direct influence of smoking or if the shared genetic com-
ponent affects the traits through separate pathways. Interestingly,
a genetic correlation (rg= 0.35, se= 0.14) between lung and
bladder cancer, another smoking-associated cancer, has been
identified previously9. Due to the small numbers of GWAS-
identified smoking-associated SNPs, we were unable to assess a
directional correlation between smoking and cancer, but we
expect such analyses to become feasible as additional smoking-
related SNPs are identified. We found modest positive, yet sig-
nificant genetic correlations between adiposity-related measures
(as reflected by waist-to-hip ratio, circulating HDL levels and
BMI) and both colorectal and lung cancer, but negative genetic
correlations between BMI and prostate and breast cancer, con-
sistent with previous reported findings34 and reinforce the com-
plex dynamics between obesity and cancer where multiple factors
including age, smoking, endogenous hormones and reproductive
status play a role.

We did not observe genetic correlations between breast cancer
and age at menarche or age at natural menopause. These null
observations were largely driven by ER+ breast cancer (ER+ :
rg= 0.006, se= 0.03 vs. ER−: rg=−0.09, se= 0.04 for age
at menarche. ER+ : rg= 0.0005, se= 0.04 vs. ER−: rg=−0.10,
se= 0.05 for age at natural menopause), and were unexpected
given that both factors play pivotal roles in breast cancer etiol-
ogy35 and previous Mendelian randomization (MR) analyses have
identified a link36,37. An important difference between genetic

Table 1 Significant enrichment estimates of genomic
functional categories, meta-analyzed across six cancer sites

Category Enrichment (95% CI) P-value

Conserved region 9.78 (5.72–13.84) 2.28 × 10−5

TFBS 4.04 (2.91–5.17) 1.43 × 10−7

H3K9ac 3.41 (2.14–4.69) 2.04 × 10−4

H3K4me3 3.23 (2.47–4.00) 8.91 × 10−9

Super Enhancer 2.56 (2.23–2.89) 1.99 × 10−20

H3K27ac (PGC) 2.36 (1.91–2.80) 2.12 × 10−9

H3K27ac (Hnisz) 1.90 (1.65–2.15) 1.86 × 10−12

H3K4me1 1.84 (1.56–2.12) 2.57 × 10−9

Repressed region 0.34 (0.07–0.61) 1.15 × 10−6

The meta-analysis was performed based on the enrichment estimates and standard errors
calculated using LD score regression in each individual cancer type. P-values were significant
after Bonferroni correction (P < 0.05/24)
TFBS transcription factor binding sites
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correlation and MR analyses is that the latter only considers
genome-wide significant SNPs while the former incorporates the
entire genome. It is possible that a relatively small overlap in
strongly associated SNPs can result in significant MR results
despite low evidence of an overall genetic correlation. Indeed, the
directional genetic correlations we observed for age at natural
menopause, schizophrenia, and HDL with breast cancer, and for
lupus with prostate cancer, highlight again that although an
overall genetic correlation may be negligible, there can still be
genetic links between traits. It is important to note that we cannot
rule out unmeasured confounding, including the possibility that
these genetic variants affect an intermediate phenotype that is
pleiotropic for both target traits. Given the observational nature
of our data, these putative causal directions should be interpreted
with caution.

Pan-cancer tumor-based studies have demonstrated that dif-
ferent cancers are sometimes driven by similar somatic functional
events such as specific copy number abnormalities and
mutations38,39. Our enrichment results of germline genetic across
functional annotation data shed new light on the biological
mechanisms leading to cancer development. The more pro-
nounced enrichment identified for conserved regions compared
with coding regions provides evidence for the biological impor-
tance of the former, which has been shown to be true for multiple
traits14,40. Even though the biochemical function of many con-
served regions remains uncharacterized, transcribed ultra-
conserved regions have been found to be frequently located at
fragile sites. Compared to normal cells, cancer cells have a unique
spectrum of transcribed ultra-conservative regions, suggesting
that variation in expression of these regions are involved in the
malignant process41,42. These results bridge the link between
germline and somatic genetics in cancer development, which was
also observed in a recent breast cancer GWAS that has demon-
strated a strong overlap between target genes for GWAS hits and
somatic driver genes in breast tumors43. We also found a four-
fold enrichment for transcription factor binding sites and a three-
fold enrichment for super-enhancers, consistent with prior
observations that breast cancer GWAS loci fall in enhancer
regions involved in distal regulation of target genes43. Cell-type-
specific analysis of histone marks demonstrated the importance of
tissue specificity, primarily for colorectal and breast cancer.
Further, our results suggest that immune cells are important for
ovarian and lung cancer whilst CNS is important to head/neck
cancer. Unfortunately, we did not have data on prostate-specific
tissues, but we note that tissue-specific enrichment of prostate
cancer heritability for epigenetic markers has been observed
previously10. We note that generation of rich functional anno-
tation is ongoing and we expect to include additional tissue-
specific functional elements in our future work.

Our study has several strengths. We were able to robustly
quantify pair-wise genetic correlations between multiple cancers
using the largest available cancer GWAS, comprising almost
600,000 samples across six major cancers and subtypes. We were
also able to systematically assess the genetic correlations between
cancer and 38 non-cancer traits. Notwithstanding the large
sample sizes, several limitations need to be acknowledged. We did
not have the sample sizes required to assess relevant cancer
subgroups including oropharyngeal cancer, clear cell, mucinous
and endometrioid ovarian cancer, or lung cancer among never
smokers (each with ~2000 cases). In addition, we did not have
access to GWAS summary statistics for pre- vs. post-menopausal
breast cancer. We were not able to consider all cancer risk factors
when selecting non-cancer traits, since some of the well-
established risk factors such as infection were either not avail-
able, showed no evidence of heritability or were not based on
adequate sample sizes for robust analyses. SNP-heritability varies

with minor allele frequency, linkage disequilibrium, and genotype
certainty; we note that approaches to estimate heritability lever-
aging GWAS data are constantly evolving. We also note that
estimate variability needs to be taken into account when com-
paring the SNP-heritability with the classical twin-heritability, in
particular for cancers with small sample sizes such as head/neck
cancer (SNP-heritability varied between 5–14% and twin-
heritability varied between 0–60%, although both point esti-
mates were 9%). Further, our data were based on GWAS meta-
analysis from multiple individual GWAS across European
ancestry populations from Europe, Australia and the US. Intra-
European ancestry differences are likely to be a source of bias.
However, since we limited our analysis to SNPs with MAF > 1%
and HapMap3 SNPs (which have proven to be well imputed
across European ancestry populations), we believe that any
population structure across cancers will have minimal effect on
our results. Finally, as more non-European and multi-ethnic
GWAS data become available, it is important to examine trans-
ethnic genetic correlation in cancer.

In conclusion, results from our comprehensive analysis of
heritability and genetic correlations across six cancer types indi-
cate that solid tumors arising from different tissues share com-
mon germline genetic influences. Our results also demonstrate
evidence for common genetic risk sharing between cancers and
smoking, psychiatric, and metabolic traits. In addition, functional
components of the genome, particularly conserved and regulatory
regions, are significant contributors to cancer heritability across
multiple cancer types. Our results provide a basis and direction
for future cross-cancer studies aiming to further explore the
biological mechanisms underlying cancer development.

Methods
Studies and quality control. We used summary statistics from six cancer GWASs
based on a total of 597,534 participants of European ancestry. Cancer-specific
sample sizes were: breast cancer: 122,977 cases/105,974 controls; colorectal cancer:
36,948/30,864; head/neck cancer (oral and oropharyngeal cancers): 5452/5984; lung
cancer: 29,266/56,450; ovarian cancer: 22,406/40,941; prostate cancer: 79,166/
61,106. These data were generated through the joint efforts of multiple consortia.
Details on study characteristics and subjects contributed to each cancer-specific
GWAS summary dataset have been described elsewhere43–49. SNPs were imputed
to the 1000 Genomes Project reference panel (1KGP) using a standardized protocol
for all cancer types18. We included autosomal SNPs with a minor allele frequency
(MAF) larger than 1% and present in HapMap3 (NSNPs= ~1 million) because
those SNPs are usually well imputed in most studies (note that excluding sex
chromosomes could reduce the overall heritability estimates). A brief overview of
the quality control in each cancer dataset are presented in Supplementary Table 5.
For some of the cancers, we further obtained summary statistics data on subtypes
(ER+ and ER− breast cancer; lung adenocarcinoma, and squamous cell carci-
noma; serous invasive ovarian cancer and advanced stage prostate cancer, defined
as metastatic disease or Gleason score ≥ 8 or PSA > 100 or prostate cancer death).
Sample sizes and more details shown in Supplementary Table 1.

We additionally assembled European ancestry GWAS summary statistics from
38 traits, which spanned a wide range of phenotypes including anthropometric
(e.g., height and body mass index (BMI)), psychiatric disorder (e.g., depressive
symptoms and schizophrenia), and autoimmune disease (e.g., rheumatoid arthritis
and celiac disease) (Supplementary Table 6). We calculated trait-specific SNP-
heritability and restricted our analysis to traits with a heritable component
(Supplementary Table 7)14. We removed the major histocompatibility complex
(MHC) region from all analysis because of its unusual LD and genetic architecture.

Estimation of SNP-heritability and genetic correlation. We estimated the SNP-
heritability due to genotyped and imputed SNPs (h2g , the proportion of phenotypic
variance causally explained by common SNPs) of each cancer using LDSC15.
Briefly, this method is based on the relationship between LD score and χ2-statistics:

E χ2j

h i
� Njh

2
g

M
lj þ 1 ð1Þ

where E χ2j

h i
denotes the expected χ2-statistics for the association between the

outcome and SNP j, Nj is the study sample size available for SNP j, M is the total
numbers of variants and lj denotes the LD score of SNP j defined as lj ¼

P
k
r2 j; kð Þ

(k denotes other variants within the LD region). Note that the quantity estimated
by LDSC is the causal heritability of common SNPs, which is different from the
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SNP-heritability as defined in Yang et al.17. To estimate h2g attributable to undis-
covered loci, we identified SNPs that were associated with a given cancer at
genome-wide significance (p < 5 × 10−8) and removed all SNPs within (+/−)
500,000 base-pairs of those loci prior to calculation (number of regions (+/−
500 kb) for each cancer that reach the 5 × 10−8 threshold and measures of effect
size are shown in Supplementary Data 1). We also converted the SNP-heritability
from observed scale to liability scale by incorporating sample prevalence (P) and
population prevalence (F) of each cancer:

h2liability ¼ h2observed
F 1� Fð Þ

ϕ Φ�1 Fð Þð Þ2
F 1� Fð Þ
P 1� Pð Þ ð2Þ

We subsequently calculated the genome-wide genetic correlations (rg) between
different cancers, and between cancers and non-cancer traits, using an algorithm14:

E βjγj

h i
¼

ffiffiffiffiffiffiffiffiffiffiffi
N1N2

p
rg

M
lj þ

Nsrffiffiffiffiffiffiffiffiffiffiffi
N1N2

p ð3Þ

where βj and γj are the effect sizes of SNP j on traits 1 and 2, rg is the genetic
covariance, M is number of SNPs, N1 and N2 are the sample sizes for trait 1 and 2,
Ns is the number of overlapping samples, r is the phenotypic correlation in
overlapping samples and lj is the LD score defined as above. For genetic correlation
between 6 cancers, the significance level is 0.05/15= 0.003; for genetic correlation
between 6 cancers and 38 traits, the significance level is 0.05/(6 × 38)= 0.0002.

Overall genetic correlations as estimated by LDSC are based on aggregated
information across all variants in the genome. It is possible that even though two
traits show negligible overall genetic correlation, there are specific regions in the
genome that contribute to both traits. We therefore examined local genetic
correlations between cancer pairs using ρ-HESS50, an algorithm which partitions
the whole genome into 1703 regions based on LD-pattern of European populations
and quantifies correlation between pairs of traits due to genetic variation restricted
to these genomic regions. Local genetic correlation was considered statistically
significant if p < 0.05/1,703= 2.9 × 10−5. In particular, we assessed the local genetic
correlations for previously reported pleiotropic regions18,51 known to harbor SNPs
affecting multiple cancers.

Directional genetic correlation analysis. In addition to the genetic correlation
analysis, which reflects overall genetic overlaps, we also attempted to identify
directions of potential genetic correlations using a subset of SNPs as proposed by
Pickrell et al.52. The method adopts the following assumption: if a trait X influences
trait Y, then SNPs influencing X should also influence Y, and the SNP-specific
effect sizes for the two traits should be correlated. Further, since Y does not
influence X, but could be influenced by mechanisms independent of X, genetic
variants that influence Y do not necessarily influence X. Based on this assumption,
the method proposes two causal models and two non-causal models; and calculates
the relative likelihood ratio (LR) of the best non-causal model compared to the best
causal model. We determined significant SNPs for each given cancer or trait in two
independent ways, (1) LD pruned SNPs: we selected genome-wide significant (p <
5 × 10−8) SNPs and pruned on LD-pattern in the European populations in Phase1
of 1KGP; (2) posterior probability of association (PPA) SNPs: we used a method
implemented in fgwas53, which splits the genome into independent blocks based on
LD patterns in 1KGP and estimates the prior probability that any block contains an
association. The model outputs posterior probability that the region contains a
variant that influences the trait. We selected the lead SNP from each of the
regions with a PPA of at least 0.9. We scanned through all pairs of cancers
and traits to identify directional correlations. Only pairs of traits with evidence
of directional correlations (LR comparing the best non-causal model over
the best causal model < 0.05) and without evidence of heteroscedasticity
(pleiotropic effects)54 were reported as relatively more likely to exhibit mediated
causation.

Functional partitioning of SNP-heritability. To assess the importance of specific
functional annotations in SNP-heritability across cancers, we partitioned the
cancer-specific heritability using stratified-LDSC14. This method partitions SNPs
into functional categories and calculates category-specific enrichments based on the
assumption that a category of SNPs is enriched for heritability if SNPs with high
LD to that category have higher χ2 statistics than SNPs with low LD to that
category. The analysis was performed using two models14,24.

1. A full baseline-LD model including 24 publicly available annotations that are
not specific to any cell type. When performing this model, we adjusted for
MAF via MAF-stratified quantile-normalized LD score, and other LD-related
annotations such as predicted allele age and recombination rate, as
implemented by Gazal et al.24. Briefly, the 24 annotations included coding,
3′UTR and 5′UTR, promoter and intronic regions, obtained from UCSC
Genome Browser and post-processed by Gusev et al.55; the histone marks
mono-methylation (H3K4me1) and tri-methylation of histone H3 at lysine 4
(H3K4me3), acetylation of histone H3 at lysine 9 (H3K9ac) processed by
Trynka et al.56–58 and two versions of acetylation of histone H3 at lysine 27

(H3K27ac, one version processed by Hnisz et al.59, another used by the
Psychiatric Genomics Consortium (PGC)60); open chromatin, as reflected by
DNase I hypersensitivity sites (DHSs and fetal DHSs)55, obtained as a
combination of ENCODE and Roadmap Epigenomics data, processed by
Trynka et al.58; combined chromHMM and Segway predictions obtained from
Hoffman et al.61, which make use of many annotations to produce a single
partition of the genome into seven underlying chromatin states (The CCCTC-
binding factor (CTCF), promoter-flanking, transcribed, transcription start site
(TSS), strong enhancer, weak enhancer categories, and the repressed
category); regions that are conserved in mammals, obtained from Lindblad-
Toh et al.40 and post-processed by Ward and Kellis62; super-enhancers, which
are large clusters of highly active enhancers, obtained from Hnisz et al.59;
FANTOM5 enhancers with balanced bi-directional capped transcripts
identified using cap analysis of gene expression in the FANTOM5 panel of
samples, obtained from Andersson et al.63; digital genomic footprint (DGF)
and transcription factor binding site (TFBS) annotations obtained from
ENCODE and post-processed by Gusev et al.55

2. In addition to the baseline-LD model, we also performed analyses using 220 cell-
type-specific annotations for the four histone marks H3K4me1, H3K4me3,
H3K9ac, and H3K27ac. Each cell-type-specific annotation corresponds to a
histone mark in a single cell type (for example, H3K27ac in CD19 immune
cells), and there were 220 such annotations in total. We further divided these 220
cell-type-specific annotations into 10 groups (adrenal and pancreas, central
nervous system (CNS), cardiovascular, connective and bone, gastrointestinal,
immune and hematopoietic, kidney, liver, skeletal muscle, and other) by taking a
union of the cell-type-specific annotations within each group (for example, SNPs
with any of the four histone modifications in any hematopoietic and immune
cells were considered as one big category). When generating the cell-type-
specific models, we added annotations individually to the baseline model,
creating 220 separate models.

We performed a random-effects meta-analysis of the proportion of heritability
over six cancers for each functional category. We set significance thresholds for
individual annotations at p < 0.05/24 for baseline model and at p < 0.05/220 for
cell-type-specific annotation.

Data availability
The datasets generated during and/or analyzed during the current study are
available from the authors on request. Breast cancer: summary results for all
variants are available at http://bcac.ccge.medschl.cam.ac.uk/. Requests for further
data should be made through the Data Access Coordination Committee (http://
bcac.ccge.medschl.cam.ac.uk/). Ovarian cancer: summary results are available from
the Ovarian Cancer Association Consortium (OCAC) (http://ocac.ccge.medschl.
cam.ac.uk/). Requests for further data can be made to the Data Access Coordi-
nation Committee (http://cimba.ccge.medschl.cam.ac.uk/). Prostate cancer: sum-
mary results are publicly available at the PRACTICAL website (http://practical.icr.
ac.uk/blog/). Lung cancer: genotype data for lung cancer are available at the
database of Genotypes and Phenotypes (dbGaP) under accession phs001273.v1.p1.
Readers interested in obtaining a copy of the original data can do so by completing
the proposal request form at http://oncoarray.dartmouth.edu/. Head/neck cancer:
genotype data for the oral and pharyngeal OncoArray study have been deposited at
the database of Genotypes and Phenotypes (dbGaP) under accession phs001202.v1.
p1. Colorectal cancer: genotype data have been deposited at the database of
Genotypes and Phenotypes (dbGaP) under accession number phs001415.v1.p1 and
phs001078.v1.p1.
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UM1 CA164920 from the National Cancer Institute (USA). The content of this manu-
script does not necessarily reflect the views or policies of the National Cancer Institute or
any of the collaborating centers in the Breast Cancer Family Registry (BCFR), nor does
mention of trade names, commercial products, or organizations imply endorsement by
the USA Government or the BCFR. The Carolina Breast Cancer Study was funded by
Komen Foundation, the National Cancer Institute (P50 CA058223, U54 CA156733, and
U01 CA179715), and the North Carolina University Cancer Research Fund. The
NGOBCS was supported by Grants-in-Aid for the Third Term Comprehensive Ten-Year
Strategy for Cancer Control from the Ministry of Health, Labor and Welfare of Japan, and
for Scientific Research on Priority Areas, 17015049 and for Scientific Research on
Innovative Areas, 221S0001, from the Ministry of Education, Culture, Sports, Science, and
Technology of Japan. The NHS was supported by NIH grants P01 CA87969, UM1
CA186107, and U19 CA148065. The NHS2 was supported by NIH grants UM1
CA176726 and U19 CA148065. The OBCS was supported by research grants from the
Finnish Cancer Foundation, the Academy of Finland (grant number 250083, 122715 and
Center of Excellence grant number 251314), the Finnish Cancer Foundation, the Sigrid
Juselius Foundation, the University of Oulu, the University of Oulu Support Foundation,
and the special Governmental EVO funds for Oulu University Hospital-based research
activities. The ORIGO study was supported by the Dutch Cancer Society (RUL 1997-
1505) and the Biobanking and Biomolecular Resources Research Infrastructure (BBMRI-
NL CP16). The PBCS was funded by Intramural Research Funds of the National Cancer
Institute, Department of Health and Human Services, USA. Genotyping for PLCO was
supported by the Intramural Research Program of the National Institutes of Health, NCI,
Division of Cancer Epidemiology and Genetics. The PLCO is supported by the Intramural
Research Program of the Division of Cancer Epidemiology and Genetics and supported by
contracts from the Division of Cancer Prevention, National Cancer Institute, National
Institutes of Health. The POSH study is funded by Cancer Research UK (grants C1275/
A11699, C1275/C22524, C1275/A19187, C1275/A15956, and Breast Cancer Campaign
2010PR62, 2013PR044. PROCAS is funded from NIHR grant PGfAR 0707-10031. The
RBCS was funded by the Dutch Cancer Society (DDHK 2004-3124, DDHK 2009-4318).
The SASBAC study was supported by funding from the Agency for Science, Technology
and Research of Singapore (A*STAR), the US National Institute of Health (NIH) and the
Susan G. Komen Breast Cancer Foundation. The SBCGS was supported primarily by NIH
grants R01CA64277, R01CA148667, UMCA182910, and R37CA70867. Biological sample
preparation was conducted the Survey and Biospecimen Shared Resource, which is

supported by P30 CA68485. The scientific development and funding of this project were,
in part, supported by the Genetic Associations and Mechanisms in Oncology (GAME-
ON) Network U19 CA148065. The SBCS was supported by Sheffield Experimental Cancer
Medicine Centre and Breast Cancer Now Tissue Bank. The SCCS is supported by a grant
from the National Institutes of Health (R01 CA092447). Data on SCCS cancer cases used
in this publication were provided by the Alabama Statewide Cancer Registry; Kentucky
Cancer Registry, Lexington, KY; Tennessee Department of Health, Office of Cancer
Surveillance; Florida Cancer Data System; North Carolina Central Cancer Registry, North
Carolina Division of Public Health; Georgia Comprehensive Cancer Registry; Louisiana
Tumor Registry; Mississippi Cancer Registry; South Carolina Central Cancer Registry;
Virginia Department of Health, Virginia Cancer Registry; Arkansas Department of
Health, Cancer Registry, 4815W. Markham, Little Rock, AR 72205. The Arkansas Central
Cancer Registry is fully funded by a grant from National Program of Cancer Registries,
Centers for Disease Control and Prevention (CDC). Data on SCCS cancer cases from
Mississippi were collected by the Mississippi Cancer Registry which participates in the
National Program of Cancer Registries (NPCR) of the Centers for Disease Control and
Prevention (CDC). The contents of this publication are solely the responsibility of the
authors and do not necessarily represent the official views of the CDC or the Mississippi
Cancer Registry. SEARCH is funded by Cancer Research UK [C490/A10124, C490/
A16561] and supported by the UK National Institute for Health Research Biomedical
Research Centre at the University of Cambridge. The University of Cambridge has
received salary support for PDPP from the NHS in the East of England through the
Clinical Academic Reserve. SEBCS was supported by the BRL (Basic Research Laboratory)
program through the National Research Foundation of Korea funded by the Ministry of
Education, Science and Technology (2012-0000347). SGBCC is funded by the NUS start-
up Grant, National University Cancer Institute Singapore (NCIS) Centre Grant and the
NMRC Clinician Scientist Award. Additional controls were recruited by the Singapore
Consortium of Cohort Studies-Multi-ethnic cohort (SCCS-MEC), which was funded by
the Biomedical Research Council, grant number: 05/1/21/19/425. The Sister Study (SIS-
TER) is supported by the Intramural Research Program of the NIH, National Institute of
Environmental Health Sciences (Z01-ES044005 and Z01-ES049033). The Two Sister
Study (2SISTER) was supported by the Intramural Research Program of the NIH,
National Institute of Environmental Health Sciences (Z01-ES044005 and Z01-ES102245),
and, also by a grant from Susan G. Komen for the Cure, grant FAS0703856. SKKDKFZS is
supported by the DKFZ. The SMC is funded by the Swedish Cancer Foundation. The
SZBCS was supported by Grant PBZ_KBN_122/P05/2004. The TBCS was funded by The
National Cancer Institute, Thailand. The TNBCC was supported by a Specialized Program
of Research Excellence (SPORE) in Breast Cancer (CA116201), a grant from the Breast
Cancer Research Foundation, a generous gift from the David F. and Margaret T. Grohne
Family Foundation. The TWBCS is supported by the Taiwan Biobank project of the
Institute of Biomedical Sciences, Academia Sinica, Taiwan. The UCIBCS component of
this research was supported by the NIH [CA58860, CA92044] and the Lon V Smith
Foundation [LVS39420]. The UKBGS is funded by Breast Cancer Now and the Institute
of Cancer Research (ICR), London. ICR acknowledges NHS funding to the NIHR Bio-
medical Research Centre. The UKOPS study was funded by The Eve Appeal (The Oak
Foundation) and supported by the National Institute for Health Research University
College London Hospitals Biomedical Research Centre. The US3SS study was supported
by Massachusetts (K.M.E., R01CA47305), Wisconsin (P.A.N., R01 CA47147) and New
Hampshire (L.T.-E., R01CA69664) centers, and Intramural Research Funds of the
National Cancer Institute, Department of Health and Human Services, USA. The USRT
Study was funded by Intramural Research Funds of the National Cancer Institute,
Department of Health and Human Services, USA. The WAABCS study was supported by
grants from the National Cancer Institute of the National Institutes of Health (R01
CA89085 and P50 CA125183 and the D43 TW009112 grant), Susan G. Komen
(SAC110026), the Dr. Ralph and Marian Falk Medical Research Trust, and the Avon
Foundation for Women. The WHI program is funded by the National Heart, Lung, and
Blood Institute, the US National Institutes of Health and the US Department of Health
and Human Services (HHSN268201100046C, HHSN268201100001C,
HHSN268201100002C, HHSN268201100003C, HHSN268201100004C, and
HHSN271201100004C). This work was also funded by NCI U19 CA148065-01. D.G.E. is
supported by the all Manchester NIHR Biomedical research center Manchester (IS-BRC-
1215-20007). HUNBOCS, Hungarian Breast and Ovarian Cancer Study was supported by
Hungarian Research Grant KTIA-OTKA CK-80745, NKFI_OTKA K-112228. C.I.
received support from the Nontherapeutic Subject Registry Shared Resource at George-
town University (NIH/NCI P30-CA-51008) and the Jess and Mildred Fisher Center for
Hereditary Cancer and Clinical Genomics Research. K.M. is supported by CRUK C18281/
A19169. City of Hope Clinical Cancer Community Research Network and the Hereditary
Cancer Research Registry, supported in part by Award Number RC4CA153828 (PI: J
Weitzel) from the National Cancer Institute and the office of the Directory, National
Institutes of Health. The content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of Health. The colorectal
cancer genome-wide association analyses: Colorectal Transdisciplinary Study (CORECT):
The content of this manuscript does not necessarily reflect the views or policies of the
National Cancer Institute or any of the collaborating centers in the CORECT Consortium,
nor does mention of trade names, commercial products or organizations imply endor-
sement by the US Government or the CORECT Consortium. We are incredibly grateful
for the contributions of Dr. Brian Henderson and Dr. Roger Green over the course of this
study and acknowledge them in memoriam. We are also grateful for support from Daniel
and Maryann Fong. ColoCare: we thank the many investigators and staff who made this
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research possible in ColoCare Seattle and ColoCare Heidelberg. ColoCare was initiated
and developed at the Fred Hutchinson Cancer Research Center by Drs. Ulrich and Grady.
CCFR: the Colon CFR graciously thanks the generous contributions of their study par-
ticipants, dedication of study staff, and financial support from the U.S. National Cancer
Institute, without which this important registry would not exist. Galeon: GALEON wishes
to thank the Department of Surgery of University Hospital of Santiago (CHUS), Sara
Miranda Ponte, Carmen M Redondo, and the staff of the Department of Pathology and
Biobank of CHUS, Instituto de Investigación Sanitaria de Santiago (IDIS), Instituto de
Investigación Sanitaria Galicia Sur (IISGS), SERGAS, Vigo, Spain, and Programa Grupos
Emergentes, Cancer Genetics Unit, CHUVI Vigo Hospital, Instituto de Salud Carlos III,
Spain. MCCS: this study was made possible by the contribution of many people, including
the original investigators and the diligent team who recruited participants and continue to
work on follow-up. We would also like to express our gratitude to the many thousands of
Melbourne residents who took part in the study and provided blood samples. SEARCH:
We acknowledge the contributions of Mitul Shah, Val Rhenius, Sue Irvine, Craig Luc-
carini, Patricia Harrington, Don Conroy, Rebecca Mayes, and Caroline Baynes. The
Swedish low-risk colorectal cancer study: we thank Berith Wejderot and the Swedish low-
risk colorectal cancer study group. Genetics & Epidemiology of Colorectal Cancer Con-
sortium (GECCO): we thank all those at the GECCO Coordinating Center for helping
bring together the data and people that made this project possible. ASTERISK: we are very
grateful to Dr. Bruno Buecher without whom this project would not have existed. We also
thank all those who agreed to participate in this study, including the patients and the
healthy control persons, as well as all the physicians, technicians and students. DACHS:
we thank all participants and cooperating clinicians, and Ute Handte-Daub, Renate
Hettler-Jensen, Utz Benscheid, Muhabbet Celik, and Ursula Eilber for excellent technical
assistance. HPFS, NHS and PHS: we acknowledge Patrice Soule and Hardeep Ranu of the
Dana-Farber Harvard Cancer Center High-Throughput Polymorphism Core who assisted
in the genotyping for NHS, HPFS, and PHS under the supervision of Dr. Immaculata
Devivo and Dr. David Hunter, Qin (Carolyn) Guo, and Lixue Zhu who assisted in
programming for NHS and HPFS and Haiyan Zhang who assisted in programming for
the PHS. We thank the participants and staff of the Nurses’ Health Study and the Health
Professionals Follow-Up Study, for their valuable contributions as well as the following
state cancer registries for their help: A.L., A.Z., A.R., C.A., C.O., C.T., D.E., F.L., G.A., I.D.,
I.L., I.N., I.A., K.Y., L.A., M.E., M.D., M.A., M.I., N.E., N.H., N.J., N.Y., N.C., N.D., O.H.,
O.K., O.R., P.A., R.I., S.C., T.N., T.X., V.A., W.A., W.Y. In addition, this study was
approved by the Connecticut Department of Public Health (DPH) Human Investigations
Committee. Certain data used in this publication were obtained from the DPH. We
assume full responsibility for analyses and interpretation of these data. PLCO: we thank
Drs. Christine Berg and Philip Prorok, Division of Cancer Prevention, National Cancer
Institute, the Screening Center investigators and staff or the Prostate, Lung, Colorectal and
Ovarian (PLCO) Cancer Screening Trial, Mr. Tom Riley and staff, Information Man-
agement Services Inc., Ms. Barbara O’Brien and staff, Westat Inc. and Drs. Bill Kopp, Wen
Shao and staff, SAIC-Frederick. Most importantly, we acknowledge the study participants
for their contributions for making this study possible. The statements contained herein are
solely those of the authors and do not represent or imply concurrence or endorsement by
NCI. PMH: we thank the study participants and staff of the Hormones and Colon Cancer
study. WHI: we thank the WHI investigators and staff for their dedication, and the study
participants for making the program possible. A full listing of WHI investigators can be
found at https://cleo.whi.org/researchers/Documents%20%20Write%20a%20Paper/WHI
%20Investigator%20Short20List.pdf. CORECT: The CORECT Study was supported by the
National Cancer Institute, National Institutes of Health (NCI/NIH), U.S. Department of
Health and Human Services (grant numbers U19 CA148107, R01 CA81488, P30
CA014089, R01 CA197350; P01 CA196569; and R01 CA201407) and National Institutes
of Environmental Health Sciences, National Institutes of Health (grant number T32
ES013678). The ATBC Study was supported by the US Public Health Service contracts
(N01-CN-45165, N01-RC-45035, N01-RC-37004, and HHSN261201000006C) from the
National Cancer Institute. The Cancer Prevention Study-II Nutrition Cohort is funded by
the American Cancer Society. ColoCare: This work was supported by the National
Institutes of Health (grant numbers R01 CA189184, U01 CA206110, 2P30CA015704-40
(Gilliland)), the Matthias Lackas-Foundation, the German Consortium for Translational
Cancer Research, and the EU TRANSCAN initiative. Genetics and Epidemiology of
Colorectal Cancer Consortium (GECCO): funding for GECCO was provided by the
National Cancer Institute, National Institutes of Health, U.S. Department of Health and
Human Services (grant numbers U01 CA137088, R01 CA059045, and U01 CA164930).
This research was funded in part through the NIH/NCI Cancer Center Support Grant P30
CA015704. The Colon Cancer Family Registry (CFR) Illumina GWAS was supported by
funding from the National Cancer Institute, National Institutes of Health (grant numbers
U01 CA122839, R01 CA143247). The Colon CFR/CORECT Affymetrix Axiom GWAS
and OncoArray GWAS were supported by funding from National Cancer Institute,
National Institutes of Health (grant number U19 CA148107 to S.G.). The Colon CFR
participant recruitment and collection of data and biospecimens used in this study were
supported by the National Cancer Institute, National Institutes of Health (grant number
UM1 CA167551) and through cooperative agreements with the following Colon CFR
centers: Australasian Colorectal Cancer Family Registry (NCI/NIH grant numbers U01
CA074778 and U01/U24 CA097735), USC Consortium Colorectal Cancer Family Reg-
istry (NCI/NIH grant numbers U01/U24 CA074799), Mayo Clinic Cooperative Family
Registry for Colon Cancer Studies (NCI/NIH grant number U01/U24 CA074800),
Ontario Familial Colorectal Cancer Registry (NCI/NIH grant number U01/U24
CA074783), Seattle Colorectal Cancer Family Registry (NCI/NIH grant number U01/U24

CA074794), and University of Hawaii Colorectal Cancer Family Registry (NCI/NIH grant
number U01/U24 CA074806), Additional support for case ascertainment was provided
from the Surveillance, Epidemiology and End Results (SEER) Program of the National
Cancer Institute to Fred Hutchinson Cancer Research Center (Control Nos. N01-CN-
67009 and N01-PC-35142, and Contract No. HHSN2612013000121), the Hawai’i
Department of Health (Control Nos. N01-PC-67001 and N01-PC-35137, and Contract
No. HHSN26120100037C, and the California Department of Public Health (contracts
HHSN261201000035C awarded to the University of Southern California, and the fol-
lowing state cancer registries: A.Z., C.O., M.N., N.C., N.H., and by the Victoria Cancer
Registry and Ontario Cancer Registry. ESTHER/VERDI was supported by grants from the
Baden–Württemberg Ministry of Science, Research and Arts and the German Cancer Aid.
MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria.
GALEON: FIS Intrasalud (PI13/01136). The MCCS was further supported by Australian
NHMRC grants 509348, 209057, 251553, and 504711 and by infrastructure provided by
Cancer Council Victoria. Cases and their vital status were ascertained through the Vic-
torian Cancer Registry (VCR) and the Australian Institute of Health and Welfare
(AIHW), including the National Death Index and the Australian Cancer Database.
MSKCC: the work at Sloan Kettering in New York was supported by the Robert and Kate
Niehaus Center for Inherited Cancer Genomics and the Romeo Milio Foundation. Moffitt:
This work was supported by funding from the National Institutes of Health (grant
numbers R01 CA189184, P30 CA076292), Florida Department of Health Bankhead-Coley
Grant 09BN-13, and the University of South Florida Oehler Foundation. Moffitt con-
tributions were supported in part by the Total Cancer Care Initiative, Collaborative Data
Services Core, and Tissue Core at the H. Lee Moffitt Cancer Center & Research Institute, a
National Cancer Institute-designated Comprehensive Cancer Center (grant number P30
CA076292). SEARCH: Cancer Research UK (C490/A16561). The Spanish study was
supported by Instituto de Salud Carlos III, co-funded by FEDER funds –a way to build
Europe– (grants PI14-613 and PI09-1286), Catalan Government DURSI (grant
2014SGR647), and Junta de Castilla y León (grant LE22A10-2). The Swedish Low-risk
Colorectal Cancer Study: the study was supported by grants from the Swedish research
council; K2015-55 × -22674-01-4, K2008-55 × -20157-03-3, K2006-72 × -20157-01-2 and
the Stockholm County Council (ALF project). CIDR genotyping for the Oncoarray was
conducted under contract 268201200008I (to K.D.), through grant 101HG007491-01 (to
C.I.A.). The Norris Cotton Cancer Center - P30CA023108, The Quantitative Biology
Research Institute - P20GM103534, and the Coordinating Center for Screen Detected
Lesions - U01CA196386 also supported efforts of C.I.A. This work was also supported by
the National Cancer Institute (grant numbers U01 CA1817700, R01 CA144040).
ASTERISK: a Hospital Clinical Research Program (PHRC) and supported by the Regional
Council of Pays de la Loire, the Groupement des Entreprises Françaises dans la Lutte
contre le Cancer (GEFLUC), the Association Anne de Bretagne Génétique and the Ligue
Régionale Contre le Cancer (LRCC). COLO2&3: National Institutes of Health (grant
number R01 CA060987). DACHS: This work was supported by the German Research
Council (BR 1704/6-1, BR 1704/6-3, BR 1704/6-4, CH 117/1-1, HO 5117/2-1, HE 5998/2-
1, KL 2354/3-1, RO 2270/8-1, and BR 1704/17-1), the Interdisciplinary Research Program
of the National Center for Tumor Diseases (NCT), Germany, and the German Federal
Ministry of Education and Research (01KH0404, 01ER0814, 01ER0815, 01ER1505A, and
01ER1505B). DALS: National Institutes of Health (grant number R01 CA048998 to M.L.
S). HPFS is supported by National Institutes of Health (grant numbers P01 CA055075,
UM1 CA167552, R01 137178, and P50 CA127003), NHS by the National Institutes of
Health (grant numbers UM1 CA186107, R01 CA137178, P01 CA087969, and P50
CA127003), NHSII by the National Institutes of Health (grant numbers R01 050385CA
and UM1 CA176726), and PHS by the National Institutes of Health (grant number R01
CA042182). MEC: National Institutes of Health (grant numbers R37 CA054281, P01
CA033619, and R01 CA063464). OFCCR: National Institutes of Health, through funding
allocated to the Ontario Registry for Studies of Familial Colorectal Cancer (grant number
U01 CA074783); see Colon CFR section above. As subset of ARCTIC, OFCCR is sup-
ported by a GL2 grant from the Ontario Research Fund, the Canadian Institutes of Health
Research, and the Cancer Risk Evaluation (CaRE) Program grant from the Canadian
Cancer Society Research Institute. T.J.H. and B.W.Z. are recipients of Senior Investigator
Awards from the Ontario Institute for Cancer Research, through generous support from
the Ontario Ministry of Research and Innovation. PLCO: Intramural Research Program of
the Division of Cancer Epidemiology and Genetics and supported by contracts from the
Division of Cancer Prevention, National Cancer Institute, NIH, DHHS. Additionally, a
subset of control samples was genotyped as part of the Cancer Genetic Markers of
Susceptibility (CGEMS) Prostate Cancer GWAS, Colon CGEMS pancreatic cancer scan
(PanScan), and the Lung Cancer and Smoking study. The prostate and PanScan study
datasets were accessed with appropriate approval through the dbGaP online resource
(http://cgems.cancer.gov/data/) accession numbers phs000207.v1.p1 and phs000206.v3.
p2, respectively, and the lung datasets were accessed from the dbGaP website (http://www.
ncbi.nlm.nih.gov/gap) through accession number phs000093.v2.p2. Funding for the Lung
Cancer and Smoking study was provided by National Institutes of Health (NIH), Genes,
Environment and Health Initiative (GEI) Z01 CP 010200, NIH U01 HG004446, and NIH
GEI U01 HG 004438. For the lung study, the GENEVA Coordinating Center provided
assistance with genotype cleaning and general study coordination, 23 and the Johns
Hopkins University Center for Inherited Disease Research conducted genotyping.
PMH: National Institutes of Health (grant number R01 CA076366). VITAL: National
Institutes of Health (grant number K05-CA154337). WHI: The WHI program is funded
by the National Heart, Lung, and Blood Institute, National Institutes of Health, U.S.
Department of Health and Human Services through contracts HHSN268201600018C,
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HHSN268201600001C, HHSN268201600002C, HHSN268201600003C, and HHSN26
8201600004C. The head and neck cancer genome-wide association analyses: The study
was supported by NIH/NCI: P50 CA097190, and P30 CA047904, Canadian Cancer
Society Research Institute (no. 020214) and Cancer Care Ontario Research Chair to R.H.
The Princess Margaret Hospital Head and Neck Cancer Translational Research Program
is funded by the Wharton family, Joe’s Team, Gordon Tozer, Bruce Galloway and the Elia
family. Geoffrey Liu was supported by the Posluns Family Fund and the Lusi Wong
Family Fund at the Princess Margaret Foundation, and the Alan B. Brown Chair in
Molecular Genomics. This publication presents data from Head and Neck 5000
(H&N5000). H&N5000 was a component of independent research funded by the UK
National Institute for Health Research (NIHR) under its Programme Grants for Applied
Research scheme (RP-PG-0707-10034). The views expressed in this publication are those
of the author(s) and not necessarily those of the NHS, the NIHR or the Department of
Health. Human papillomavirus (HPV) in H&N5000 serology was supported by a Cancer
Research UK Programme Grant, the Integrative Cancer Epidemiology Programme (grant
number: C18281/A19169). National Cancer Institute (R01-CA90731); National Institute
of Environmental Health Sciences (P30ES10126). The authors thank all the members of
the GENCAPO team/The Head and Neck Genome Project (GENCAPO) was supported
by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Grant
numbers 04/12054-9 and 10/51168-0). CPS-II recruitment and maintenance is supported
with intramural research funding from the American Cancer Society. Genotyping per-
formed at the Center for Inherited Disease Research (CIDR) was funded through the U.S.
National Institute of Dental and Craniofacial Research (NIDCR) grant 1 × 01HG007780-
0. The University of Pittsburgh head and neck cancer case-control study is supported by
National Institutes of Health grants P50 CA097190 and P30 CA047904. The Carolina
Head and Neck Cancer Study (CHANCE) was supported by the National Cancer Institute
(R01-CA90731). The Head and Neck Genome Project (GENCAPO) was supported by the
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (Grant numbers 04/
12054-9 and 10/51168-0). The authors thank all the members of the GENCAPO team.
The HN5000 study was funded by the National Institute for Health Research (NIHR)
under its Programme Grants for Applied Research scheme (RP-PG-0707-10034), the
views expressed in this publication are those of the author(s) and not necessarily those of
the NHS, the NIHR or the Department of Health. The Toronto study was funded by the
Canadian Cancer Society Research Institute (020214) and the National Cancer Institute
(U19-CA148127) and the Cancer Care Ontario Research Chair. The alcohol-related
cancers and genetic susceptibility study in Europe (ARCAGE) was funded by the Eur-
opean Commission’s 5th Framework Program (QLK1-2001-00182), the Italian Associa-
tion for Cancer Research, Compagnia di San Paolo/FIRMS, Region Piemonte, and Padova
University (CPDA057222). The Rome Study was supported by the Associazione Italiana
per la Ricerca sul Cancro (AIRC) IG 2011 10491 and IG2013 14220 to S.B., and Fon-
dazione Veronesi to S.B. The IARC Latin American study was funded by the European
Commission INCO-DC programme (IC18-CT97-0222), with additional funding from
Fondo para la Investigacion Cientifica y Tecnologica (Argentina) and the Fundação de
Amparo à Pesquisa do Estado de São Paulo (01/01768-2). We thank Leticia Fernandez,
Instituto Nacional de Oncologia y Radiobiologia, La Habana, Cuba and Sergio and
Rosalina Koifman, for their efforts with the IARC Latin America study São Paulo center.
The IARC Central Europe study was supported by European Commission’s INCO-
COPERNICUS Program (IC15- CT98-0332), NIH/National Cancer Institute grant
CA92039, and the World Cancer Research Foundation grant WCRF 99A28. The IARC
Oral Cancer Multicenter study was funded by grant S06 96 202489 05F02 from Europe
against Cancer; grants FIS 97/0024, FIS 97/0662, and BAE 01/5013 from Fondo de
Investigaciones Sanitarias, Spain; the UICC Yamagiwa-Yoshida Memorial International
Cancer Study; the National Cancer Institute of Canada; Associazione Italiana per la
Ricerca sul Cancro; and the Pan-American Health Organization. Coordination of the
EPIC study is financially supported by the European Commission (DG-SANCO) and the
International Agency for Research on Cancer. The lung cancer genome-wide association
analyses: Transdisciplinary Research for Cancer in Lung (TRICL) of the International
Lung Cancer Consortium (ILCCO) was supported by (U19-CA148127, CA148127S1,
U19CA203654, and Cancer Prevention Research Institute of Texas RR170048). The
ILCCO data harmonization is supported by Cancer Care Ontario Research Chair of
Population Studies to R. H. and Lunenfeld-Tanenbaum Research Institute, Sinai Health
System. The TRICL-ILCCO OncoArray was supported by in-kind genotyping by the
Centre for Inherited Disease Research (26820120008i-0-26800068-1). The CAPUA study
was supported by FIS-FEDER/Spain grant numbers FIS-01/310, FIS-PI03-0365, and FIS-
07-BI060604, FICYT/Asturias grant numbers FICYT PB02-67 and FICYT IB09-133, and
the University Institute of Oncology (IUOPA), of the University of Oviedo and the Ciber
de Epidemiologia y Salud Pública. CIBERESP, SPAIN. The work performed in the
CARET study was supported by the National Institute of Health/National Cancer Insti-
tute: UM1 CA167462 (PI: Goodman), National Institute of Health UO1-CA6367307 (PIs
Omen, Goodman); National Institute of Health R01 CA111703 (PI Chen), National
Institute of Health 5R01 CA151989-01A1(PI Doherty). The Liverpool Lung project is
supported by the Roy Castle Lung Cancer Foundation. The Harvard Lung Cancer Study
was supported by the NIH (National Cancer Institute) grants CA092824, CA090578,
CA074386. The Multi-ethnic Cohort Study was partially supported by NIH Grants
CA164973, CA033619, CA63464, and CA148127. The work performed in MSH-PMH
study was supported by The Canadian Cancer Society Research Institute (020214),
Ontario Institute of Cancer and Cancer Care Ontario Chair Award to R.J.H. and G.L. and
the Alan Brown Chair and Lusi Wong Programs at the Princess Margaret Hospital
Foundation. NJLCS was funded by the State Key Program of National Natural Science of
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