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Progress in high-throughput metabolic profiling provides unprecedented opportunities to obtain insights into the effects of
drugs on human metabolism. The Biobanking BioMolecular Research Infrastructure of the Netherlands has constructed an
atlas of drug-metabolite associations for 87 commonly prescribed drugs and 150 clinically relevant plasma-based metabo-
lites assessed by proton nuclear magnetic resonance. The atlas includes a meta-analysis of ten cohorts (18,873 persons)
and uncovers 1,071drug-metabolite associations after evaluation of confounders including co-treatment. We show that the
effect estimates of statins on metabolites from the cross-sectional study are comparable to those from intervention and
genetic observational studies. Further data integration links proton pump inhibitors to circulating metabolites, liver function,
hepatic steatosis and the gut microbiome. Our atlas provides a tool for targeted experimental pharmaceutical research and
clinical trials to improve drug efficacy, safety and repurposing. We provide a web-based resource for visualization of the atlas

(http://bbmri.researchlumc.nl/atlas/).

n the past decade metabolomics technology has developed rap-

idly', facilitating large-scale studies that have highlighted the

importance of differential molecular dynamics captured in a
wide range of common complex diseases, including diabetes, car-
diovascular disease, asthma and dementia’”’. The human metabo-
lome is in part driven by the human genome, and new genetic
drivers of these metabolites continue to be revealed'*-". The past
decade has also seen major successes in understanding the rela-
tion of the human metabolome to the exposome—for example,
lifestyle, nutrition, environment and microbiome'*-'. Although the
use of drugs is recognized as having a major effect on metabolism,
our knowledge of drug-metabolite associations is incomplete and
is limited to the most commonly prescribed drugs—for example,
statins, metformin and antihypertensives’’*%. In addition, even
for commonly prescribed drugs, their metabolic and physiologic
effects—including on- or off-target effects—are virtually unex-
plored. Mapping these unexplored drug-metabolite associations is
crucial for pharmaco-epidemiological research and practice, as it
may open new avenues to improve drug efficacy, enable repurpos-
ing of drugs”* and improve our understanding of the off-target

effects of drugs occurring in the individual patient’>”. However,
pointing out such associations is complicated since confounding
may occur due to the metabolic changes that are either the cause or
the consequence of the pathology for which the drug is prescribed.
Furthermore, many patients are treated with multiple drugs for
multiple diseases, raising the important question of whether drug-
metabolite associations are confounded by co-treatment?*. Last, not
but least, longitudinal observations are often lacking for relatively
rare off-target effects, forcing the basing of clinical decision making
on cross-sectional data.

The aim of the present study was to develop a comprehensive
atlas of the associations between a wide range of commonly pre-
scribed drugs (Supplementary Table 1) and 150plasma-based
metabolites as measured by the proton nuclear magnetic reso-
nance (‘H-NMR) platform of Nightingale Health (Supplementary
Table 2). This platform allows rapid and cost-effective characteriza-
tion of metabolites in human blood, and it has been successfully
used globally to discover and validate disease-metabolite associa-
tions” including diabetes®, dementia®, cardiovascular diseases’-*,
migraine”, Graves’ disease’ and mortality’>**. Nightingale Health is

A full list of affiliations appears at the end of the paper.
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Fig. 1| Drug-metabolite associations in model 1 versus model 2. The top 15 drugs that were associated with the largest number of metabolites in model 1
(age and sex adjusted) of linear regression are ordered and shown in the figure. The first letter of the ATC code precedes the drug name, to identify
different categories. Sample sizes of drug users and non-users in model 1and in model 2 (age, sex, BMI and smoking adjusted) are shown following

drug names, respectively. Dark red, positive significant associations in model 1 (P <1.9 x10-°); light red, positive nonsignificant associations in model 1
(P>1.9x107°); dark blue, negatively significant associations in model 1 (P <1.9 x10~®); light blue, negatively nonsignificant associations in model 1
(P>1.9%x107°). Asterisks in boxes denote that neither direction nor significance status were different between model 1and model 2 (P<1.9x107°).

Two-tailed tests were used.

now being validated for use in clinical care, which makes it timely to
develop a pharmacological metabolomics atlas for this platform that
can be used in both research and clinical care. The term ‘metabolite’
used throughout the manuscript does not refer to the products of
drug metabolism but to endogenous metabolites that are naturally
produced by an organism and, in this context, includes lipoprotein
particles as well. In the present paper, we work through a series of
examples of applications of the atlas, including disentangling the
disease effect of drug-metabolite associations and exploring in
depth the interaction of metabolites with two drugs, statins and
proton pump inhibitors (PPIs).

Results

Overall drug-metabolite associations. We meta-analyzed
12datasets of ten Dutch cohorts (n=18,873individuals;
Supplementary Table 3) from Biobanking and BioMolecular
Resources Research Infrastructure of the Netherlands
(BBMRI-NL). We discovered 2,087 significant associations out of
13,050 meta-analyzed tests involving 87 drugs and 150 metabo-
lites in model 1, with adjustment for age and sex (Bonferroni
Pvalue threshold=1.9x 107°). The number of drug users ranged
from 3,023 (16.0%, for lipophilic statins) down to 20 (0.11%,
for leukotriene receptor antagonists). Among the 13,050 tests,
543 (4%) showed heterogeneity across datasets and for these
we used the random-effect model to pool data across datasets.
Supplementary Table 4 shows all drug-metabolite associations
tested across different models, as well as disease-metabolite asso-
ciations. Among the metabolites studied, effect estimates derived
from different datasets agreed convincingly (P=1.67x107"" to
1.0x 107** for pairwise correlation tests; Supplementary Fig. 1
and Supplementary Table 5). Figure 1 shows the associations of
model 1 for the top 15drugs associated with the largest number
of metabolites. These 15drugs can be divided into five groups:
(1) six antihypertensives (selective beta-blockers, angiotensinII
antagonists, ACE inhibitors, high- and low-ceiling diuretics
and potassium-sparing agents); (2) two glucose-lowering drugs
(metformin and sulfonamide-urea derivatives); (3) two lipid-
modifying drugs (lipophilic and hydrophilic statins); (4) three
other cardiovascular-related drugs (vitamin K antagonists, anti-
thrombotic agents-acetylsalicylic acid and digoxin); and (5) two
others including PPIs and selective serotonin reuptake inhibitors
(SSRIs). Thirteen of the top 15drugs that were associated with
the largest number of metabolites were cardiometabolic-related
drugs which can, in large part, be explained by the fact that the
numbers of users were large and the current metabolome spec-
trum contains mainly lipids correlated with each other (Extended
Data Fig. 1).

Effects of body mass index, smoking and co-treatment as major
confounders. Next, we studied the potential confounding effect
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of body mass index (BMI) and smoking. In total, 1,640 of the
2,087 significant associations (78.6%) in model 1 remained signif-
icant after additional adjustment for BMI and smoking in model 2
(Extended Data Fig. 2). The drug group for which the evidence
for association was most dramatically impacted by adjustment for
BMI and smoking was SSRIs: 59 of the initial 65 SSRI-metabolite
associations (90.8%) were no longer significant after adjustment
for BMI and smoking. A major impact of adjustment was also seen
for two antihypertensives: 56 (60.9%) associations with high-ceil-
ing-diuretics were no longer significant, and 53 (49.1%) associa-
tions with angiotensin IT antagonists lost their significance. After
we had additionally excluded the confounding of other drugs by
additional adjustment for co-treatments in model 3 (Extended
Data Fig. 3), 1,071 significant associations remained to be inves-
tigated. For five out of six antihypertensives in the top 15drugs
(Fig. 2), associations with low-density lipoprotein (LDL) and
intermediate-density lipoprotein (IDL) particles were explained
by co-treatments. Notably, statin use was correlated with anti-
hypertensives and associated with LDL and IDL particles, which
led to a false discovery association of LDL and IDL particles and
antihypertensives. Most antihypertensive associations disap-
peared after adjusting for co-treatment, including statins, except
for 15.4% (4/26) of selective beta-blockers and 100% of angio-
tensinII antagonists, which remained significantly associated
with LDL and IDL particles, suggesting that these associations
are independent of co-treatments. In our epidemiological study,
metformin was co-prescribed with hydrophilic statins (Extended
Data Fig. 4) and both drugs were associated with similar circu-
lating metabolites—that is, there were 85 metabolites associated
with metformin in model 2, 59 of which were also associated with
hydrophilic statins. However, none of the metformin-metabolite
associations were explained by hydrophilic statins, suggesting
that metformin and hydrophilic statins are independently associ-
ated with metabolites (Fig. 2). These results were confirmed by
our sensitivity analysis from subsamples of patients who were
administered one drug only: all significant associations in the
sensitivity analyses remained significant in model 3, the model
with co-treatment adjusted (Extended Data Fig. 5).

Examples of applications of the atlas. Effect of indicated disease:
drug-metabolite associations explained by indication. First, we tested
whether indicated diseases causally related to drug-related metabo-
lites using the genetic risk score of the disease as an instrumental
variable in Mendelian randomization (MR) (Supplementary Tables 6
and 7). Second, we associated drug-related metabolites with the
indicated disease in individuals who were not receiving treatment—
that is, the on-target-treatment-naive population (Supplementary
Table 4). For instance, in the current study, metformin use was
found to be associated with increasing alanine but we also know
that type2 diabetes (causally by MR) increases alanine levels in
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Fig. 2 | Drug-metabolite associations in model 2 versus model 3. The top 15 drugs associated with the largest number of metabolites in the baseline
model (model 1) are ordered and shown. The first letter of the ATC code is shown preceding the drug name, to identify different categories. Sample sizes
of drug users and non-users in regression model 2 (age, sex, BMI and smoking adjusted) and model 3 (age, sex, BMI, smoking and co-treatment adjusted)
are shown following drug names, respectively. Dark red, positive significant associations in model 2 (P <1.9 x10~°); light red, positive nonsignificant
associations in model 2 (P>1.9 x 10-°); dark blue, negatively significant associations in model 2 (P <1.9 x 10-°); light blue, negatively nonsignificant
associations in model 2 (P>1.9x107°). Asterisks in boxes denote that neither direction nor significance status was different between models 2 and 3
(Pvalue threshold is multiple testing-corrected per drug; see Supplementary Table 4). Two-tailed tests were used.

the blood*. This finding raises the question of whether the disease
(type 2diabetes) or its endophenotype partially or fully explain
the association of metformin and alanine. This hypothesis was
supported by the finding that, after exclusion of all metformin
users, type2 diabetes was still associated with increasing alanine
levels (f=0.42, P=28.3x107"). Integration of the findings on drug-
metabolite and disease-metabolite associations suggests that ala-
nine levels in blood are most probably raised by the effect of type2
diabetes rather than by that of metformin.

Following the line of research outlined above, we noticed that
hypertension or high blood pressure partially or fully explained
the associations of very-low-density lipoprotein (VLDL) par-
ticles and various triglycerides with beta-blockers and low-
ceiling diuretics. Depression partially or fully explained the
association of estimated degree of unsaturation of fatty acids
and SSRIs, but not for high-density lipoprotein (HDL) par-
ticles. Notably, type2 diabetes or its endophenotype, fasting
glucose, partially or fully explained a substantial part of associa-
tions, including 98.8% of associations with metformin and 100%
with sulfonamide-urea derivatives, based on a nominal signifi-
cance level in disease-metabolite associations (P <0.05, Fig. 3).
With such a strict exclusion of effect of the indicated disease, we
still found that acetate was negatively associated with metfor-
min effect, and there was no evidence that the relationship had
resulted from the effect of type 2 diabetes or fasting glucose levels.

Effects of drugs in cross-sectional and longitudinal studies. We com-
pared our results on statin-metabolite associations in the present
cross-sectional study to those of a longitudinal study published
by Wurtz and co-workers'. In their paper, changes in metabo-
lite concentrations in blood (two time points per individual) were
compared between 716 patients who began statin therapy during
follow-up and 4,874 persistent non-users'’. In total, 48 metabo-
lites from that study'” overlapped with ours, in which metabolite
and statin use were assessed simultaneously in 3,023 individuals
prescribed lipophilic statins and 15,850 non-users, providing a
cross-sectional snapshot. Twenty-nine (60%) metabolites showed
consistently significant results between the two studies (Fig. 4a).
We further checked metabolite associations with genetic variant
rs12916-T located in gene HMGCR (3-hydroxy-3-methylglutaryl-
CoA reductase). This genetic variant was used as an instrumen-
tal variable for the effect of statins because the protective T allele
results in low-functioning HMG-CoA reductase, which is one
of the pharmacologically targeted effects of statins'”*’. Figure 4a
shows that 20 of 29associations (69.0%) were consistently
and significantly associated with rs12916-T in both the cross-
sectional and longitudinal analyses. The 20 statin-metabolite
associations involved mainly fatty acids (30.0%) and non-HDL
cholesterols and lipoprotein particles (50.0%). Meanwhile, 15 of

112

the 19 metabolites (80%) that were inconsistently associated with
statins between our study and the previous study'” were not asso-
ciated with rs12916-T.

We additionally identified 35 of the tested 55statin-related
metabolites (63.6%) associated with rs12916-T in the same direction
as lipophilic statins (Fig. 4b and Supplementary Table 8). Twenty-
five of these are novel and complement the findings of the
above-mentioned study by Wurtz and co-workers'”. The novel
metabolites emerging, by association with rs12916-T in our
cross-sectional analyses, involved very small to medium VLDL par-
ticles, IDL particles, LDL particles and total phosphatidylcholine
and other cholines.

Cross-omics analysis exploring the association of PPIs, circulat-
ing metabolites, liver function and gut microbiome. In our study,
PPIs were found to be associated with 55 metabolites after adjust-
ment for co-treatment (Fig. 5a), involving small to extremely large
VLDL, large HDL and triglyceride particles, mono-unsaturated
fatty acids, isoleucine, creatinine and glycoprotein acetyls (mainly
al-acid glycoprotein—glycoprotein). These associations were vali-
dated by drug dose-metabolite associations. Analysis in the pop-
ulation-based cohort, Rotterdam Study (n=700), shows a high
consistency of the association between PPI (yes/no) and metabolites
and the defined daily dose in PPI users and metabolites (Extended
Data Fig. 6).

PPIs are often administered to patients with cirrhosis, and in
these patients they are associated with infections and worsening
prognosis®™. We next investigated, via Rotterdam Study (n=3,436),
whether PPI-associated metabolites are also associated with liver
function, including biochemical variables of liver function tests and
hepatic steatosis. Figure 5a,b shows high consistency for the pat-
terns of association between PPIs and metabolites, and between
metabolites and liver function (Supplementary Table 9). The
consistency of associations, in terms of the number of significant
associations overlapping, for hepatic steatosis is 98.2% (54/55), for
gamma-glutamyl transferase (GGT) 80.0% (44/55) and for alanine
transaminase (ALT) 81.8% (45/55; positively associated); 90.9%
(50/55) for the ratio of aspartate transaminase and ALT (AST/ALT)
and 69.1% (38/55) for total bilirubin (inversely associated). Of these
liver function variables, total bilirubin and GGT were significantly
associated with reported PPI use in Rotterdam Study (Fig. 5b and
Supplementary Table 10).

We then studied PPI-associated metabolites in relation to
microbial diversity and the abundance of microbiota that are phar-
macologically driven by PPI use in a population®*. We found
that 94.5% (52/55) of the metabolites associated with PPIs are also
associated with gut microbial (alpha-) diversity, in a meta-analy-
ses of 2,305 participants that did not use antibiotics (Fig. 5c and
Supplementary Table 11). Of the 92 gut microbiota with which
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Fig. 3 | Drug-metabolite associations in model 3 versus significance after disentangling the indicated disease/endophenotype effect. The top 15drugs
associated with the largest number of metabolites in the baseline model (model 1) are ordered and shown. The first letter of the ATC code is shown
preceding the drug name, to identify the different categories. Sample sizes of drug users and non-users in regression model 3 (age, sex, BMI, smoking
and co-treatment adjusted) and those of cases and controls in disease-metabolite associations are shown following drug names, respectively. Dark

red, positive significant associations in model 3; light red, positive nonsignificant associations in model 3; dark blue, negatively significant associations

in model 3; light blue, negatively nonsignificant associations in model 3. Asterisks in boxes denote significant associations confirmed after disentangling
the disease/endophenotype effect (P<0.05 is the threshold for the significance in disease-metabolite associations). Quote marks in boxes denote
associations confirmed after disentangling the disease/endophenotype effect (P < the threshold after multiple testing-corrected per diseaseis the
threshold for the significance in disease-metabolite associations; see Supplementary Table 4). Two-tailed tests were used.

abundances were associated with PPI use®, 45 were available
for testing of the association with metabolites (Supplementary
Table 12). We found that three common microbiota (phylum
Tenericutes, class Mollicutes and family Ruminococcaceae) show-
ing reduced abundance in PPI users had a metabolite association
pattern consistent with that of PPI-metabolite association, but
in the opposite direction (Fig. 5d and Supplementary Table 13).
The genus Scardovia showed an increased abundance in the gut
of patients using PPIs. Although this genus showed a metabolite
association pattern similar to that of PPIs, only the association
with glycoprotein reached statistical significance after adjusting
for multiple testing.

Discussion

We performed a comprehensive analysis of the interaction
between 87 commonly prescribed drugs and as many as 150 cir-
culating metabolites measured by 'H-NMR in 18,873 individuals.
We uncovered 1,071 drug-metabolite associations after adjust-
ment for age, sex, BMI, smoking and co-treatment, covering
a wide range of drug-metabolite associations. We also demon-
strated three examples of applications of the atlas, disentangling
disease (for example, type2 diabetes) and therapy (for example,
metformin) effects, aligning longitudinal and genetic analysis
with our large-scale cross-sectional findings and, ultimately, link-
ing PPI-metabolite interactions to gut microbiome abundance
and liver function.

Although many of the metabolites cluster strongly in popula-
tions (Extended Data Fig. 1), our analysis shows that the direction
and significance of drug-metabolite associations are not always
the same among different metabolites in the same cluster, and this
is especially true for VLDL and HDL particles. This is consistent
with previous studies on the role of lipid particle profiles and
diseases**>'=***»*> and is also true for amino acids. In Rotterdam

Study, histon clusters strongly with leucine, valine and isoleucine
(in correlation tests, P=3.3 X 1072*). However, histone is negatively
associated with selective beta-blocker use (Fig. 2) while leu-
cine, valine and isoleucine are positively associated. We showed
that BMI is a major confounder of associations with SSRIs. The
high proportion of elimination in SSRI-metabolite associations
(90.8%) after adjustment for smoking and BMI may be explained
by the fact that body weight is a strong determinant of circulat-
ing metabolites and significant weight loss when neither dieting
nor weight gain is part of the diagnostic criteria for depression®.
After adjustment for co-treatment, the similar significant associa-
tion patterns between different drugs (for example, angiotensin II
antagonists and metformin) may imply that drug-metabolite
associations are independently associated with a similar shift
in metabolism, but this is true only if the pathology for which
the two drugs are prescribed does not explain the drug-metab-
olite association. For instance, if metabolic syndrome is associ-
ated with a shift in circulating metabolites, this may result in a
false discovery association with drugs often prescribed to these
patients (for example, statins, antihypertensives and metformin).
This type of confounding was further addressed by investigating
whether drug-metabolite associations are related to the pathology
(for example diabetes, hypertension, dyslipidemia) that indicated
prescription. As a typical metabolic disorder, evidence shows
that type2 diabetes explains a substantial association between
glucose lowering and drug-metabolite associations. Validation
of the effects awaits clinical trials or prospective studies, but our
example illustrates how the drug-metabolite atlas can be used in
combination with disease-metabolite studies to tease out drug
and disease effects and generate a testable hypothesis for future
trials. We further showed that, to some extent, statin-metabo-
lite associations in a large-scale, cross-sectional study can mimic
those of the longitudinal effect of statin administration, which

\/

Fig. 4 | Comparison of statin-metabolite associations between cross-sectional, longitudinal and genetic studies. a, Comparison of statin-
metabolite associations among the current cross-sectional study, a longitudinal study by Wurtz and co-workers'” and a genetic study. Results in the
longitudinal study (n=716/4,874) are shown as Wurtz and co-workers' study in both s.d.-scaled metabolite concentration units (upper x axis) and
relative to the lowering effect on LDL cholesterol (lower x axis). The results of metabolite-rs12916-T associations (n=27,914) are shown as effect
estimate per s.d. and relative to the lowering effect on LDL cholesterol (lower x axis). b, Comparison of significant statin-metabolite associations in
the cross-sectional study (n=3,023/15,850 for lipophilic statin, n=849/17,631 for hydrophilic statin) and genetic study (n=24,925). The results

of statin-metabolite associations are shown in the effect estimate (standardized metabolite concentration units, lower x axis), and the results of
metabolite-rs12916-T associations are represented as fivefold the effect estimate (standardized metabolite concentration units, upper xaxis). Error
bars, 95% confidence intervals, were statistically corrected for multiple testing; this means that, if the error bar crosses the zero line, the association
is not significant at the multiple testing significance level. Statistical data were extracted from the previous longitudinal study by Wurtz and co-

workers'. Two-tailed tests were used.
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Fig. 5 | Integrated data of PPIs, metabolites, liver function measurements and gut microbiome. Significant results after integrating the directions of
association among PPls, metabolites, liver function measurements and gut microbiome by linear regression. Red, positive association; blue, negative
association; the depth of color represents the value of effect estimate per s.e.m: range from O (white) to 15 (red) or -15 (blue). Gray, associations were not
performed. Asterisks denote significance of associations. Two-tailed tests were used.

are preferred from a methodological perspective. This premise is
strengthened by the fact that both studies are benchmarked by
MR. These findings suggest that the atlas yields informative asso-
ciations that could be tested in future trials and follow-up studies.

The third—and, by far the most exciting—example integrates
the atlas data into state-of-the-art research questions. The find-
ing that PPIs are associated with lower gut microbial diver-
sity and a shift in composition of the gut microbiome has been
long recognized**"*. Interestingly, one recent study* reported
that non-diabetic obese patients with hepatic steatosis have low
microbial gene richness and increased genetic potential for pro-
cessing of dietary lipids and dysregulation of branched-chain
amino acid metabolism, which is highly consistent with our find-
ings. Focusing on oral bacteria, levels of the genus Scardovia were
found to be increased in the gut microbiome of PPI users®. This
raises the hypothesis that, due to PPI-related changes in gastric
acid secretion, these microbiotas are reaching the gastrointesti-
nal tract, very similar to the mechanism described in mice and
in a study of the human gut microbiome in patients with liver
cirrhosis®. Scardovia was most strongly and significantly asso-
ciated with acute-phase glycoprotein, which is an intriguing
metabolite from a clinical and epidemiological perspective as it
is synthesized in the liver*® and associated with a wide spectrum
of incident diseases™, including cardiovascular disease™, type2
diabetes®, cognition® and all-cause mortality™. A key question
in future studies is to what extent glycoprotein plays a mediat-
ing role in the relation between gut microbiome and morbidity.
Our analysis validated previous findings—that the human gut
microbiome is altered in patients with liver cirrhosis* and that
withdrawal of PPIs in these patients decreases oral-origin taxa*—
in a general-population study with a very low prevalence (<3%)
of severe diseases such as advanced liver or kidney disease. Our
study also showed associations of PPIs with liver function vari-
ables, gut microbiota and metabolites in the blood circulation.
Again, alongitudinal or intervention study is required to examine
this hypothesis.

Another point of interest is that the experimental study on the
effect of PPIs on the gut microbiome in patients with cirrhosis
was based on omeprazole®*. When we compared the various drugs
included in the PPI category, we found that omeprazole is indeed
associated with those metabolites identified in the drug category
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analysis (Extended Data Fig. 7). However, we also found that other
drugs such as lansoprazole are even more strongly and significantly
associated, while the association with rabeprazole and esomepra-
zole is less strong and nonsignificant. These are interesting findings
that should be followed up.

This comprehensive drug-metabolite atlas provides a basis for
future exploration of drug-metabolite interactions, using either
our omics-based approach or other, future, (un)targeted experi-
mental and longitudinal pharmaceutical research. Our study
includes examples of how to use the atlas that can be extended
to other settings. We have limited the atlas to the most common
drugs, but it could be expanded in the future to include rare drugs
following the generation of such data for this platform in larger
cohorts, such as UK Biobank. These ‘mega-cohorts’ would also
facilitate systematic study of the interaction of multiple drug
intake with sufficient statistical power. On the other hand, the
current atlas could be a starting point for future research focusing
on a limited number of drugs with metabolomics, to check drug
interactions. Another future challenge is to extend the atlas to a
wider range of metabolites measured using other platforms (for
example, mass spectrometry) and tissues (for example, urine).
The use of MR is a strength of the current study, because it enables
us to disentangle the effect of drugs and indicated diseases.
However, we are not always able to capture strong instruments for
the MR test, which may reduce the power of our analyses when
aiming to exclude disease effects. Since our knowledge of the
gene-mimicking effects of drugs and diseases is rapidly expand-
ing, we are optimistic that more powerful genetic instrumental
variables will be identified in the near future, opening windows
of opportunity into MR analyses in both pharmacometabolomic
research and clinical trials.

Our comprehensive in vivo reference atlas will empower future
clinical and pharmacological research in a number of areas. This
willnotonlyadvanceknowledge onthe mechanismsofboth on-and
off-target drug effects, but may also provide evidence for the dis-
covery of novel therapeutic applications of known drugs. By mak-
ing the atlas freely available through a web-based browser with
downloadable datasets (http://bbmri.researchlumc.nl/atlas/),
we hope to facilitate the use of the data by pharmacists, drug
developers and clinical researchers on their drug or disease
of interest.
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Methods
Study population. The research was performed within BBMRI-NL. The study
included 18,873 individuals from 12 datasets of 10 Dutch cohorts who had
metabolites measured by Nightingale Health, drug information based on the
Anatomical Therapeutic Chemical (ATC) Classification and clinical phenotypes
that allowed us to control for confounders. These cohorts included Rotterdam
Study (RS), with three datasets (RS Dataset 1: n=2,975, RS Dataset2: n=729, RS
Dataset 3: n=1,487)"; Netherlands Twin Register (NTR, n=3,563)"; Netherlands
Study of Depression and Anxiety (NESDA, n=2,914)"; Leiden Longevity
Study (LLS, n=1,873)"’; LifeLines DEEP cohort (n=1,435)"%; Hoorn Diabetes
Care System Cohort (Hoorn DCS, n=995)"; Alpha Omega Cohort (n=2877)*";
The Maastricht Study (TMS, n=2854)"'; Erasmus Rucphen Family study (ERF,
n=778)"; and Leiden University MIgraine Neuro-Analysis (LUMINA, n=393)".
In examples from the application atlas, we additionally involved the
Netherlands Epidemiology of Obesity Study (NEO, n=6,603), which is an obese
cohort but adjusted for BMI in type 2 diabetes—metabolite associations by inverse
probability weighting on BMI to make the results comparable to the Dutch general
population. Cohort descriptions, specific data processing and ethical compliance
can be found in Supplementary Table 3. All studies were approved by the respective
institutional review boards’ local research ethics committees, and all participants
provided written informed consent to the original study.

Metabolite measurements. The present study included 150 absolute-value-based
metabolites measured by high-throughput 'H-NMR metabolomics (Brainshake/
Nightingale Health). Details on metabolites are given in Supplementary Table 2.
These include quantitative molecular data on 14lipoprotein subclasses,
apolipoproteins A-I and B, multiple cholesterol and triglyceride measures, albumin,
various fatty acids and on numerous low-molecular-weight metabolites, including
amino acids, glycolysis-related measures and ketone bodies. The 14lipoprotein
subclasses include IDL, six VLDL subclasses, three LDL subclasses and four

HDL subclasses based on particle diameter. The components of these lipoprotein
subclasses were quantified on total lipids (L), total cholesterol (C), particle
concentration (P), phospholipids (PL), triglycerides (TG), free cholesterol (FC) and
cholesterol esters (CE). The values of the representative coefficients of variation

for metabolites ranged between 0.3 and 19.5% (mean 4.5%), and most values are
comparable to clinical chemistry assays'".

The blood samples obtained from the cohorts were collated at Leiden
University Medical Center and were shipped to and analyzed by Nightingale
Health as part of a national initiative. A standardized protocol of metabolite
measurement was applied to all cohorts following the comprehensive quantitative
platform generated by Nightingale Health and described originally by Soininen
et al.'*>, The protocol includes sample quality control and sample preparation,
data storage and automated spectral analyses. Metabolite values that were suggested
as being uncreditable in the quality control provided by Nightingale Health during
the measurement procedure were treated as missing. Within the consortium,
we checked and reported the distribution of zero values in our previous study*’.
Quality control was unified and included in-depth evaluation of the consistency of
findings across datasets, a metabolite correlation matric and principal component
analysis (PCA) of cohorts of varying population structure. Pearson’s correlation
test was used to check pairwise correlation of the overall estimated values of
drug-metabolite associations in model 1 between datasets. We also checked the
correlation matrix of metabolites in a population-based cohort, Rotterdam Study
(n=5,191), by Pearson’s correlation and hierarchical cluster analysis, reporting
that the distinct clustering groups were in accordance with biochemical pathways
(Extended Data Fig. 1 and Supplementary Table 14). The effect of population
structure on metabolite clustering was checked by PCA using joint data from
four cohorts markedly differing in population: (1) one population-based study,
Rotterdam Study*™, (2) one family-based, ERF®, (3) one disease-based, TMS*'—
which includes only patients with type 2 diabetes in the current dataset—and
(4) a case-control, Alpha Omega Cohort®, including patients with cardiovascular
disease and non-disease controls (details are given in Supplementary Table 3).

The obvious difference between Alpha Omega Cohort and TMS underscores the
fact that meta-analysis should be performed, rather than joint analysis, with pooled
data (Extended Data Fig. 8): the fixed-effect meta-analysis assumes a similar effect
and structure among cohorts, while the random-effect meta-analysis allows for
high heterogeneity.

Because some distributions of metabolites were skewed, we transformed the
metabolite values in each cohort to normal distribution. We first added a value of 1
to all metabolites before performing natural logarithm transformation, to include
samples labeled zero with metabolite levels below the detectable value; we then
scaled these transformed values to s.d. units.

Drug categories. Drug information was classified by ATC codes in each cohort.
In brief, drug information by cohort was obtained from either pharmacy records
or questionnaires during the interview. Details on drug administration for each
cohort can be found in Supplementary Table 3. We used drug category rather than
the individual compound in all analyses. We merged drugs with similar chemical,
pharmacodynamics, pharmacokinetics and/or therapeutic characteristics into

one category. Regarding ATC codes used for combinations of active ingredients,

we categorized these separately where possible. We excluded categories with five or
fewer users in each cohort, or <20 users in total, from all cohorts. We thus ended
up with 87 drug categories (Supplementary Table 1). Drug categorization was
confirmed by two experienced pharmacologists, L. L. and B.H.C.S. Throughout
the following text, the term drug category is referred to simply as drug. Individuals
for whom both metabolite and drug information was available were included in
the analysis.

Statistical analysis. All statistical analyses were performed using Rstatistical
software, using two-tailed testing.

Drug-metabolite associations. To check for drug-metabolite associations, linear
regression was performed in each cohort, with drug use as an independent variable
and metabolite as a dependent variable. Linear regression was used in individual
cohorts. Specific family relationships were considered in the three family-based
cohorts (see details in Supplementary Table 3). In the baseline analysis, we used age
and sex as the covariates (model 1); we additionally adjusted for smoking (current
smoking: yes/no), which is a major common risk factor in pathology®, and BMI
(kgm™), which is a major determinant of circulating metabolites that captures the
effects of diet and physical activity” (model 2). Meta-analysis was performed with
either the inverse variance-weighted fixed-effect model (no heterogeneity between
cohorts) or the maximum-likelihood random-effect model (significant heterogeneity
between cohorts). The degree of heterogeneity was based on Cochran’s Q-test. The
Pvalue threshold for both Cochran’s Q-test and the meta-analysis was Bonferroni
corrected with 30independent equivalents of the 150 metabolites and 87 drugs tested
(P<1.9%107°). Matrix spectral decomposition was used to calculate the number

of independent equivalents™ in the largest population-based dataset, RS Dataset 1.
R-package metafor was used for the meta-analysis’'.

Effects of co-treatment—drugs prescribed simultaneously. We next checked
the potential confounding of drugs prescribed simultaneously (model 3) in

each significant drug-metabolite pair. A co-treatment matrix with Spearman’s
correlation was made separately in the two population-based cohorts (Rotterdam
Study and LifeLines DEEP, n=6,631) and meta-analyzed. Potential confounding
co-treatment for each drug-metabolite pair was defined if: (1) a drug was
positively correlated with the target drug (explained as prescribed simultaneously;
Extended Data Fig. 4 and Supplementary Table 15) and (2) this drug and the
target drug were associated with the target metabolite in the same direction. We
used Bonferroni Pvalue correction with the 85 drugs available in the co-treatment
matrix (P<5.9x107*). We then performed the same regression analysis as above
in each dataset (12 datasets) and meta-analyzed, with age, sex, BMI, smoking and
all available confounding co-treatments as covariates in each significant drug-
metabolite pair (model 3). Sensitivity analysis was performed in the subsamples
of patients administered one drug only (one-drug-users) and all-treatment-naive
controls adjusting for age, sex, BMI and smoking. We used the Bonferroni Pvalue
threshold by correcting the independent equivalents of the number of tested
significant metabolites for each drug.

Checking the effect of indicated disease on metabolites with MR. We further
focused on drugs in the top 15 drug lists that had the largest number of related
metabolites and metabolite associations after adjustment for co-treatments. We
explored the confounding effect of the disease indicating the prescription of the
drug by MR. MR is a statistical method that uses the effect of genetic variants in
determining an exposure, and tests its association with the outcome under study
based on the assumption that the genetic variant is inherited independently of
the confounding variables™. Thus, we tested whether the genetic determinants
driving indicated diseases are also related to metabolites, using the genetic risk
score of the disease as an instrumental variable of exposure. Genetic risk scores
comprising more than five genetic single-nucleotide polymorphisms (SNPs) and
explaining >1% of variance in exposure were taken forward. For type 2 diabetes we
analyzed the results from our previous well-organized MR research’, from which
16 metabolites were found to be associated with either metformin or sulfonamide-
urea derivatives. In brief, this research was a two-sample, bi-directional MR study
checking the causation of metabolites and type2 diabetes and fasting glucose,
following by biological knowledge-based sensitivity analysis to control for the
pleiotropic effect of SNPs in the instrumental variables*. We concurrently used
the results of backward MR to check the association of the genetic score of type2
diabetes and metabolites.

For hypertension and depression, we performed two-sample MR based on
previous Genome-wide Association Study (GWAS) results for blood pressure”
(n=317,754), major depression’ (n=135,458 cases and n=344,901 controls)
and NMR metabolite GWAS'' (n=24,925). Among the 123 metabolites associated
with antihypertensives, 96 were available on which to perform MR for systolic
and diastolic blood pressure. We also performed MR on major depression with six
metabolites associated with SSRIs. We did not perform MR for dyslipidemia over
statin-associated metabolites, because most of the latter are lipoproteins that are
included in the definition of dyslipidemia.

The R package TwoSampleMR was used for two-sample MR tests”. Genetic loci
of major depression were extracted from a previous paper’ because the original
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GWAS was not available. The default pipeline in the TwoSampleMR package”
was used. In brief, the genetic score was based on the top genetic determinant
SNPs (P < 5% 10~*) with linkage disequilibrium R*<0.001 within 10,000-base pair
clumping distance. Proxy SNPs were searched for if SNPs were not available in
the metabolite GWAS (R*>0.8). Palindromic SNPs with minor allele frequency
<0.3 were excluded, resulting in 161 independent SNPs for systolic blood
pressure (R*=2.6%), 174 for diastolic blood pressure (R*=2.8%) and 40 for major
depression (R*=1.1%). Inverse variance-weighted MR, maximum-likelihood MR,
MR Egger analysis and median-based estimator were also performed to check the
significant results”. We used the Bonferroni Pvalue threshold by correcting the
independent equivalents of the number of tests per disease: P<2.3x 10~ for blood
pressure and P <0.025 for depression.

Effect of indicated disease on indicated disease-metabolite associations. We
associated drug-related metabolites with the indicated disease in patients not
receiving the drug under study—that is, the on-target-treatment-naive population.
This was focused on type2 diabetes, dyslipidemia, hypertension and depression.
Type2 diabetes analyses were performed based on Rotterdam Study and NEO.
Type2 diabetes was defined as fasting glucose >7.0 mmoll™, excluding cases

of patients using glucose-lowering drugs from the analysis (1 =815 cases and
n=10,619 non-diabetic controls in the meta-analysis). We performed a regression
model with type 2 diabetes status as an independent variable and glucose-lowering
drug-related metabolite as the dependent variable. Covariates included age, sex,
BMI, smoking and lipid-modifying drugs.

Dyslipidemia and hypertension were tested in ERF and Rotterdam Study.

We tested the association of 87 lipid-modifying drug-related metabolites and
dyslipidemia. Dyslipidemia was defined according to the National Cholesterol
Education Program-Adult Treatment Panel III as either total cholesterol
>240mgdl™, LDL-C >160 mgdl~, HDL-C <40 mgdl or triglyceride >200 mgdl-"
(n=2,451 cases and n=2,956 controls in the meta-analysis). We excluded subjects
prescribed lipid-modifying drugs and adjusted for age, sex, BMI and smoking

in the model. The associations of 123 antihypertensive-related metabolites and
hypertension were analyzed. Hypertension was defined as either systolic blood
pressure >140 mmHg or diastolic blood pressure >90 mmHg (n=2,506 cases

and n=2,263 controls in the meta-analysis). We excluded subjects prescribed
antihypertensives and adjusted for age, sex, BMI, smoking and lipid-modifying
drugs in the model.

In regard to depression, we tested associations between the six SSRI-related
metabolites and depressed mood in participants not prescribed an antidepressant
drug (ATC code, N06A)”. Depressed mood was measured by either diagnostic
interviews or validated depression questionnaires (n=3,966 cases and
n=8,887 controls in the meta-analysis). Detailed definitions of cases and controls
in cohorts are given in our previous publication””. We adjusted for age, sex, fasting
status, lipid-modifying drugs and current smoking status.

In addition, we checked the association of fasting glucose and glucose-
lowering drug-related metabolites in the non-diabetes population
(n=5,871) and the association of systolic and diastolic blood pressure and
antihypertensive-related metabolites in the non-hypertension population
(n=2,263) in ERF and Rotterdam Study. The non-diabetes population was
defined as individuals with fasting glucose <6.9 mgdl™! and not prescribed
anti-diabetic treatment; the non-hypertension population was defined as
individuals whose systolic blood pressure was <140 mmHg, diastolic blood
pressure <90 mmHg and not prescribed antihypertensives. Linear regression
was performed with adjustment for age, sex, BMI, smoking and lipid-modifying
drugs in the model. The Pvalue threshold for significance of associations
was corrected for the number of independently tested metabolite equivalents
per disease or endophenotype. Nominal significance between disease/
endophenotype and metabolite was also considered (P <0.05).

Comparison of cross-sectional and longitudinal studies and benchmarking
findings by genetics using statin as an example. Forty-eight metabolites in the
current cross-sectional study were also studied in a previous longitudinal study
by Wurtz and co-workers, which also quantified 'H-NMR metabolic profiles in
blood samples but focused on the change in metabolite concentrations at two time
points—baseline and follow-up'’. Because the longitudinal study adjusted only

for age and sex, we used the same model in the present cross-sectional study to
allow a fair comparison. Since the effects of lipophilic and hydrophilic statins were
similar in the current study, we used the results of the former, which had the largest
sample size for the comparison. The results of MR analysis and the association of
rs12916-T and metabolites'” were also used in the comparison'’.

We then compared significant statin-metabolite associations in the current
cross-sectional study with those of rs12916-T and metabolites. We used the
GWAS results of NMR metabolites from our previous paper, which included
24,925 individuals not prescribed lipid-modifying medication'’. This resulted in
55 metabolites being included in the comparison.

PPIs, circulating metabolites and liver function. We studied biochemical
variables used in liver function tests—that is, ALT, AST, GGT, AST/ALT, total
bilirubin and alkaline phosphatase, and hepatic steatosis. The liver function
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test used automatic enzymatic procedures (Roche Diagnostics)’. Abdominal
ultrasonography was performed by a certified and experienced technician

(P. Taimr) on a Hitachi HI VISION 900. Images were stored digitally and
re-evaluated by a single hepatologist with >10years of experience in
ultrasonography. The diagnosis of steatosis was determined by the ultrasound
technician according to the protocol of Hamaguchi et al.”.

Linear regression was performed in Rotterdam Study (n = 3,436), with liver
function measurements as an independent variable and metabolite levels as a
dependent variable. Covariates included age, sex, BMI, smoking, lipid-modifying
drugs, PPIs and daily alcohol intake calculated from questionnaires. The
Pvalue threshold was Bonferroni corrected with 10independent equivalents of
55 PPI-related metabolites and 6 independent equivalents of the 7liver function
measurements (P <8.3x10~*). We further checked the association of PPI use and
liver function measurements by linear regression, with adjustment for age, sex,
BMI, smoking and daily alcohol intake (P <8.3%x107?).

PPIs, circulating metabolites and gut microbiome. We extracted the associations
of PPIs with gut microbiota and (alpha-) diversity from a previous paper by
Imhann and co-workers™. Age, sex, BMI, antibiotic use and sequence read depth
were corrected in the association analysis®. In total, 92 bacterial taxa abundances—
assessed by tag sequencing of the 16 S rRNA gene’® and Shannon’s diversity index
(alpha-diversity) —were reported to be significantly different between PPI users
and non-users (211 PPI users and 1,594 non-users, false discovery rate <0.05).
Forty-five of the 92 bacterial taxa abundance and alpha-diversity factors were

also tested for association with metabolites as measured by Nightingale Health

in our previous study®. In brief, this included 2,309 individuals not prescribed
antibiotics from Rotterdam Study (n=1,390) and LifeLines DEEP (n=915)""".
Age, sex, BMI, technical covariates (time in mail and storage time) and medication
use (lipid-modifying drugs, metformin and PPIs) were adjusted in the association
analysis. The Pvalue threshold for gut microbiota was Bonferroni corrected with
10independent equivalents of 55 PPI-related metabolites and 15independent
equivalents of the 45 gut microbiota (P < 3.3 X 10~*). The Pvalue threshold for
alpha-diversity was 5.0 10>

Reporting Summary. Further information on life sciences study design is available
in the Nature Research Reporting Summary linked to this article.

Data availability

All summary statistics of the meta-analysis, and those utilized in compilation

of the figures, are made available through the Supplementary tables. In regard

to the availability of the raw data, the analyses are based on a meta-analysis of
multiple Dutch studies. The raw metabolomics data of the studies are pooled

in a single database. The quantified metabolic biomarker datasets included

in this study are available through the BBMRI-NL website http://www.bbmri.
nl/omics-metabolomics/, where details of how to access the data through
centralized computational facilities are described. To request data, researchers
are required to fill out and sign the data access request and code-of-conduct
forms. Applications compliant with ethical and legal legislations will be reviewed
by the BBMRI-NL board in regard to overlap with other ongoing projects before
access is granted. Data on medication used in the current study are available
through the individual studies on reasonable request. To obtain these, the
principal investigator of the cohorts can be contacted through http://www.bbmri.
nl/omics-metabolomics/. No custom code or mathematical algorithm was used
in the current study.
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Extended Data Fig. 1| Correlation between metabolites in Rotterdam Study. The correlation matrix of metabolites were performed by Pearson’s
correlation (n=5,191). The hierarchical cluster analysis was used in the clustering. Color in the boxes, correlation coefficient.

NATURE MEDICINE | www.nature.com/naturemedicine


http://www.nature.com/naturemedicine

NATURE MEDICINE FOCUS | ARTICLES

A_H2-roceplorantagoniss 40/ 16076)-(238/15757)
Proton pump inhiors(1637/16936)-(1908116567)
A nsuln and analogues-fas-acting(407/12546)-(397/12642)
A Insuln andansogues-lomediat-actng(22287T1)-(2161724)
Aduins ond e Jong acing(a491 0701 (41T 103T)
eomin(730/16750)-(1702/16440)
00U 7572 asr7250)

A son
ACVitamin D and analogues(168/6339)-
& Viamin K anagonslsro 1004 (2007579
& Clopidoga1831064)-(18110505
agenis-Acetyisalicyc acid(999/14567)-(987/14243)
B Carvosate ca lcmmu:kwmw) (1366/16776)
87)-(551

8 Hydr

Pl a1 16268 (191/17551)
inmics-class 11(62/5514)-(61/5454)

(G Organic itiates(786/16259)-(780115044)

G Low-calling duretics(1256/17224)-(1242/16900)

€ Hgh-osing dursics(SeTIesse)-GTEENE)

x ing agenis-non-selecive(336/ uasmsam
c ing Az?wmm:ﬂﬂ
ridin dervalives(957/17523)-(6
ihiazepine derivatives(211/12433)-(21112114)
(CACE inhibiors-plain(1847/16533)-(1913/
c nsin Il antagonists-plain(1359/17121)-(1337/1

¥ 5309
‘G HMG CoA reductase inhbiors-Lipophilc statin(3023/15850)-(2985/1551 )
TG Con roductnse btors i (4817651 G811711)

B C_Fibrates(43/7577)-(43/7526)
oopoen c,m bmzs/mm-x 124/7694)
a a a opoooooooon -} -] gog oo B g ns(379/16495) (JTﬂ“ﬁWi}
a oog EDDDoooDonog a g o oa moo a o g G EwoqcnﬂlfwmmH 16822)
o a -] B H_Corticosteroids for sys !Iemw mawmnmwuw (186! 16538)
L L ] M_Antiinflammatory and antitheumatic products-non-steroids(1157/17323)-(1146/16996)
-] -] a -] ;e ] ] -] oo B M_Preparations inhibiting umm\d pmdmk:»{!zz/mm) (1201
e
a M_Quinine and ﬂuwﬂlw«{ﬂ/&ﬁﬂ'ﬁ%ﬁﬁ
oo oooooo ooooeg oooopD Dopooo ooooos og o o oo | ] N_Salicylic acid and derivatives(2: )
oo n " L] [ ] W N_Benzodiazepine derivatives(1400/17071)-(1384/16758)
a N_Carboxamide derivatives(31/10298)-(31,
a N_Fatty a anmm(ﬁz 280)-(4
H sy
M N_Non-selective munoemma reuptake inhibitors(283/18197)-(281/17861)
5  EEECEEN EEECON LI B | m L] a ] Selective serolonin reuptake inhibitors(1037/17443)~(1029/17113)
e L L] a L} a n N vmmaxm-(:mmzal} -(200111960)
oo o oom 1
a Dunmm anticholinergics(363/16682)-(358/16366)
on -] Mucolytics(79/13896)-(77/13609)
5 o mopeewospee sonpe 993 gosasooug  gooooeeRe T8 ESPISSISTEY SAIONNZEE PR S
R B S S R s wem
£ Sgedinagied SN piees fddd™ f 3

Extended Data Fig. 2 | Drug-metabolite associations in model 1 versus model 2. The drugs with at least one significant metabolite association in
baseline model (model 1) by linear regression are shown. The first letter of the ATC code precedes the drug name, to identify different categories. Sample
sizes of the drug users and non-users in model 1 (age and sex adjusted) and model 2 (age, sex, BMI and smoking adjusted) are shown following drug
names, respectively. Dark red, positive significant associations in model 1 (P-value <1.9 x10-°); light red, positive nonsignificant associations in model 1
(P-value >1.9 x107°); dark blue, negatively significant associations in model 1 (P-value <1.9 x107%); light blue, negatively nonsignificant associations

in model 1 (P-value >1.9 x10-°). Asterisks in boxes denote that neither direction nor significance status were different between model 1 and model 2
(P-value <1.9 x10~°). Two-tailed tests were used.
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Extended Data Fig. 3 | Drug-metabolite associations in model 2 versus model 3. The drugs with at least one significant metabolite association in model 2
(age, sex, BMI and smoking adjusted) by linear regression are shown. The first letter of the ATC code is shown preceding the drug name, to identify
different categories. Sample sizes of the drug users and non-users in model 2 and model 3 (age, sex, BMI, smoking and co-treatment adjusted) are
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(P-value < 5.9 x107%). Two-tailed tests were used.
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Extended Data Fig. 5 | Drug-metabolite Associations in model 3 versus single drug test. The first letter of the ATC code is shown preceding the drug
name, to identify different categories. Single drug test: Association analysis (linear regression) in the sub-samples of patients who use one drug only
(one-drug-users) and all-treatment-naive controls. Sample size of the drug users and non-users in model 3 (age, sex, BMI, smoking and co-treatment
adjusted) and the single drug test are shown following drug names, respectively. Dark red, positive significant associations in model 3 which are available
for the single drug test; light red, positive non-significant associations in model 3 or not available for the single drug test; dark blue, negatively significant
associations in model 3 which are available for the single drug test; light blue, negatively non-significant associations in model 3 or not available for the
single drug test. Asterisks in boxes denote that the significant associations confirmed in the single drug test (P threshold is multiple testing-corrected
per drug; see Supplementary Table 4). Two-tailed tests were used.
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Extended Data Fig. 6 | Association of PPl/dosage and the PPI-related metabolites. The association of dosage of PPl and metabolites were tested by
linear regression in Rotterdam Study (n=700). The PPI-related metabolites were selected in model 3. DDD, defined daily dose of PPI. (/), sample size of
user/non-user. Red, positive association, blue, negative association. The depth of the color refers to the association estimates. Asterisks in boxes denote

significance after correcting for multiple test (P-value < 0.004). Two-tailed tests were used.
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Extended Data Fig. 8 | The effect of population structure on metabolite clustering across datasets. Principal component (PC) analysis was performed
using joint metabolite data from the cohorts (AlphaOmega, n=877; ERF, n=778; RS1, RS Dataset 1, n=2,975; RS2, RS Dataset 2, n=729; RS3, RS Dataset 3,
n=1487; TMS, n=854). Two-tailed tests were used.
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