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In the past decade metabolomics technology has developed rap-
idly1, facilitating large-scale studies that have highlighted the 
importance of differential molecular dynamics captured in a 

wide range of common complex diseases, including diabetes, car-
diovascular disease, asthma and dementia2–9. The human metabo-
lome is in part driven by the human genome, and new genetic 
drivers of these metabolites continue to be revealed10–13. The past 
decade has also seen major successes in understanding the rela-
tion of the human metabolome to the exposome—for example, 
lifestyle, nutrition, environment and microbiome14–16. Although the 
use of drugs is recognized as having a major effect on metabolism, 
our knowledge of drug–metabolite associations is incomplete and 
is limited to the most commonly prescribed drugs—for example, 
statins, metformin and antihypertensives17–22. In addition, even 
for commonly prescribed drugs, their metabolic and physiologic 
effects—including on- or off-target effects—are virtually unex-
plored. Mapping these unexplored drug–metabolite associations is 
crucial for pharmaco-epidemiological research and practice, as it 
may open new avenues to improve drug efficacy, enable repurpos-
ing of drugs23–25 and improve our understanding of the off-target 

effects of drugs occurring in the individual patient26,27. However, 
pointing out such associations is complicated since confounding 
may occur due to the metabolic changes that are either the cause or 
the consequence of the pathology for which the drug is prescribed. 
Furthermore, many patients are treated with multiple drugs for 
multiple diseases, raising the important question of whether drug–
metabolite associations are confounded by co-treatment28. Last, not 
but least, longitudinal observations are often lacking for relatively 
rare off-target effects, forcing the basing of clinical decision making 
on cross-sectional data.

The aim of the present study was to develop a comprehensive 
atlas of the associations between a wide range of commonly pre-
scribed drugs (Supplementary Table 1) and 150 plasma-based 
metabolites as measured by the proton nuclear magnetic reso-
nance (1H-NMR) platform of Nightingale Health (Supplementary  
Table 2). This platform allows rapid and cost-effective characteriza-
tion of metabolites in human blood, and it has been successfully 
used globally to discover and validate disease–metabolite associa-
tions29 including diabetes30, dementia6, cardiovascular diseases31,32, 
migraine33, Graves’ disease34 and mortality35,36. Nightingale Health is 
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now being validated for use in clinical care, which makes it timely to 
develop a pharmacological metabolomics atlas for this platform that 
can be used in both research and clinical care. The term ‘metabolite’ 
used throughout the manuscript does not refer to the products of 
drug metabolism but to endogenous metabolites that are naturally 
produced by an organism and, in this context, includes lipoprotein 
particles as well. In the present paper, we work through a series of 
examples of applications of the atlas, including disentangling the 
disease effect of drug–metabolite associations and exploring in 
depth the interaction of metabolites with two drugs, statins and 
proton pump inhibitors (PPIs).

Results
Overall drug–metabolite associations. We meta-analyzed 
12 datasets of ten Dutch cohorts (n = 18,873 individuals; 
Supplementary Table 3) from Biobanking and BioMolecular 
Resources Research Infrastructure of the Netherlands 
(BBMRI-NL). We discovered 2,087 significant associations out of 
13,050 meta-analyzed tests involving 87 drugs and 150 metabo-
lites in model 1, with adjustment for age and sex (Bonferroni 
P value threshold = 1.9 × 10−5). The number of drug users ranged 
from 3,023 (16.0%, for lipophilic statins) down to 20 (0.11%, 
for leukotriene receptor antagonists). Among the 13,050 tests, 
543 (4%) showed heterogeneity across datasets and for these 
we used the random-effect model to pool data across datasets. 
Supplementary Table 4 shows all drug–metabolite associations 
tested across different models, as well as disease–metabolite asso-
ciations. Among the metabolites studied, effect estimates derived 
from different datasets agreed convincingly (P = 1.67 × 10−11 to 
1.0 × 10−318 for pairwise correlation tests; Supplementary Fig. 1 
and Supplementary Table 5). Figure 1 shows the associations of 
model 1 for the top 15 drugs associated with the largest number 
of metabolites. These 15 drugs can be divided into five groups: 
(1) six antihypertensives (selective beta-blockers, angiotensin II 
antagonists, ACE inhibitors, high- and low-ceiling diuretics 
and potassium-sparing agents); (2) two glucose-lowering drugs 
(metformin and sulfonamide-urea derivatives); (3) two lipid-
modifying drugs (lipophilic and hydrophilic statins); (4) three 
other cardiovascular-related drugs (vitamin K antagonists, anti-
thrombotic agents-acetylsalicylic acid and digoxin); and (5) two 
others including PPIs and selective serotonin reuptake inhibitors 
(SSRIs). Thirteen of the top 15 drugs that were associated with 
the largest number of metabolites were cardiometabolic-related 
drugs which can, in large part, be explained by the fact that the 
numbers of users were large and the current metabolome spec-
trum contains mainly lipids correlated with each other (Extended 
Data Fig. 1).

Effects of body mass index, smoking and co-treatment as major 
confounders. Next, we studied the potential confounding effect 

of body mass index (BMI) and smoking. In total, 1,640 of the 
2,087 significant associations (78.6%) in model 1 remained signif-
icant after additional adjustment for BMI and smoking in model 2 
(Extended Data Fig. 2). The drug group for which the evidence 
for association was most dramatically impacted by adjustment for 
BMI and smoking was SSRIs: 59 of the initial 65 SSRI–metabolite 
associations (90.8%) were no longer significant after adjustment 
for BMI and smoking. A major impact of adjustment was also seen 
for two antihypertensives: 56 (60.9%) associations with high-ceil-
ing-diuretics were no longer significant, and 53 (49.1%) associa-
tions with angiotensin II antagonists lost their significance. After 
we had additionally excluded the confounding of other drugs by 
additional adjustment for co-treatments in model 3 (Extended 
Data Fig. 3), 1,071 significant associations remained to be inves-
tigated. For five out of six antihypertensives in the top 15 drugs 
(Fig. 2), associations with low-density lipoprotein (LDL) and 
intermediate-density lipoprotein (IDL) particles were explained 
by co-treatments. Notably, statin use was correlated with anti-
hypertensives and associated with LDL and IDL particles, which 
led to a false discovery association of LDL and IDL particles and 
antihypertensives. Most antihypertensive associations disap-
peared after adjusting for co-treatment, including statins, except 
for 15.4% (4/26) of selective beta-blockers and 100% of angio-
tensin II antagonists, which remained significantly associated 
with LDL and IDL particles, suggesting that these associations 
are independent of co-treatments. In our epidemiological study, 
metformin was co-prescribed with hydrophilic statins (Extended 
Data Fig. 4) and both drugs were associated with similar circu-
lating metabolites—that is, there were 85 metabolites associated 
with metformin in model 2, 59 of which were also associated with 
hydrophilic statins. However, none of the metformin–metabolite 
associations were explained by hydrophilic statins, suggesting 
that metformin and hydrophilic statins are independently associ-
ated with metabolites (Fig. 2). These results were confirmed by 
our sensitivity analysis from subsamples of patients who were 
administered one drug only: all significant associations in the 
sensitivity analyses remained significant in model 3, the model 
with co-treatment adjusted (Extended Data Fig. 5).

Examples of applications of the atlas. Effect of indicated disease: 
drug–metabolite associations explained by indication. First, we tested 
whether indicated diseases causally related to drug-related metabo-
lites using the genetic risk score of the disease as an instrumental 
variable in Mendelian randomization (MR) (Supplementary Tables 6  
and 7). Second, we associated drug-related metabolites with the 
indicated disease in individuals who were not receiving treatment—
that is, the on-target-treatment-naive population (Supplementary 
Table 4). For instance, in the current study, metformin use was 
found to be associated with increasing alanine but we also know 
that type 2 diabetes (causally by MR) increases alanine levels in 
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C_Beta-blocking agents−selective (2,780/16,093)−(2,743/15,753)
C_Angiotensin II antagonists—plain (1,359/17,121)−(1,337/16,805)
A_Metformin (1,730/16,750)−(1,702/16,440)
C_ACE inhibitors—plain (1,947/16,533)−(1,913/16,229)
C_High-ceiling diuretics (587/16,458)−(576/16,148)
C_HMG-CoA reductase inhibitors—lipophilic statin (3,023/15,850)−(2,985/15,511)
C_Low-ceiling diuretics (1,256/17,224)−(1,242/16,900)
A_Proton pump inhibitors (1,937/16,936)−(1,909/16,587)
C_Potassium-sparing agents (538/14,379)−(533/14,046)
B_Vitamin K antagonists (576/17,904)−(569/17,573)
B_Antithrombotic agents—acetylsalicylic acid (999/14,567)−(987/14,243)
A_Sulfonamide-urea derivatives (908/17,572)−(886/17,256)
C_HMG-CoA reductase inhibitors—hydrophilic statin (849/17,631)−(831/17,311)
C_Digoxin (149/7,039)−(149/6,986)
N_Selective serotonin reuptake inhibitors (1,037/17,443)−(10,29/17,113)
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Fig. 1 | Drug–metabolite associations in model 1 versus model 2. The top 15 drugs that were associated with the largest number of metabolites in model 1  
(age and sex adjusted) of linear regression are ordered and shown in the figure. The first letter of the ATC code precedes the drug name, to identify 
different categories. Sample sizes of drug users and non-users in model 1 and in model 2 (age, sex, BMI and smoking adjusted) are shown following  
drug names, respectively. Dark red, positive significant associations in model 1 (P < 1.9 × 10−5); light red, positive nonsignificant associations in model 1  
(P ≥ 1.9 × 10−5); dark blue, negatively significant associations in model 1 (P < 1.9 × 10−5); light blue, negatively nonsignificant associations in model 1 
(P ≥ 1.9 × 10−5). Asterisks in boxes denote that neither direction nor significance status were different between model 1 and model 2 (P < 1.9 × 10−5).  
Two-tailed tests were used.
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the blood4. This finding raises the question of whether the disease  
(type 2 diabetes) or its endophenotype partially or fully explain 
the association of metformin and alanine. This hypothesis was 
supported by the finding that, after exclusion of all metformin 
users, type 2 diabetes was still associated with increasing alanine 
levels (β = 0.42, P = 8.3 × 10−19). Integration of the findings on drug–
metabolite and disease–metabolite associations suggests that ala-
nine levels in blood are most probably raised by the effect of type 2 
diabetes rather than by that of metformin.

Following the line of research outlined above, we noticed that 
hypertension or high blood pressure partially or fully explained 
the associations of very-low-density lipoprotein (VLDL) par-
ticles and various triglycerides with beta-blockers and low-
ceiling diuretics. Depression partially or fully explained the 
association of estimated degree of unsaturation of fatty acids 
and SSRIs, but not for high-density lipoprotein (HDL) par-
ticles. Notably, type 2 diabetes or its endophenotype, fasting 
glucose, partially or fully explained a substantial part of associa-
tions, including 98.8% of associations with metformin and 100% 
with sulfonamide-urea derivatives, based on a nominal signifi-
cance level in disease–metabolite associations (P < 0.05, Fig. 3).  
With such a strict exclusion of effect of the indicated disease, we 
still found that acetate was negatively associated with metfor-
min effect, and there was no evidence that the relationship had 
resulted from the effect of type 2 diabetes or fasting glucose levels.

Effects of drugs in cross-sectional and longitudinal studies. We com-
pared our results on statin–metabolite associations in the present 
cross-sectional study to those of a longitudinal study published 
by Wurtz and co-workers17. In their paper, changes in metabo-
lite concentrations in blood (two time points per individual) were 
compared between 716 patients who began statin therapy during 
follow-up and 4,874 persistent non-users17. In total, 48 metabo-
lites from that study17 overlapped with ours, in which metabolite 
and statin use were assessed simultaneously in 3,023 individuals 
prescribed lipophilic statins and 15,850 non-users, providing a 
cross-sectional snapshot. Twenty-nine (60%) metabolites showed 
consistently significant results between the two studies (Fig. 4a). 
We further checked metabolite associations with genetic variant 
rs12916-T located in gene HMGCR (3-hydroxy-3-methylglutaryl-
CoA reductase). This genetic variant was used as an instrumen-
tal variable for the effect of statins because the protective T allele 
results in low-functioning HMG-CoA reductase, which is one 
of the pharmacologically targeted effects of statins17,37. Figure 4a  
shows that 20 of 29 associations (69.0%) were consistently 
and significantly associated with rs12916-T in both the cross-
sectional and longitudinal analyses. The 20 statin–metabolite 
associations involved mainly fatty acids (30.0%) and non-HDL 
cholesterols and lipoprotein particles (50.0%). Meanwhile, 15 of 

the 19 metabolites (80%) that were inconsistently associated with 
statins between our study and the previous study17 were not asso-
ciated with rs12916-T.

We additionally identified 35 of the tested 55 statin-related 
metabolites (63.6%) associated with rs12916-T in the same direction  
as lipophilic statins (Fig. 4b and Supplementary Table 8). Twenty-
five of these are novel and complement the findings of the 
above-mentioned study by Wurtz and co-workers17. The novel 
metabolites emerging, by association with rs12916-T in our  
cross-sectional analyses, involved very small to medium VLDL par-
ticles, IDL particles, LDL particles and total phosphatidylcholine 
and other cholines.

Cross-omics analysis exploring the association of PPIs, circulat-
ing metabolites, liver function and gut microbiome. In our study, 
PPIs were found to be associated with 55 metabolites after adjust-
ment for co-treatment (Fig. 5a), involving small to extremely large 
VLDL, large HDL and triglyceride particles, mono-unsaturated 
fatty acids, isoleucine, creatinine and glycoprotein acetyls (mainly 
a1-acid glycoprotein—glycoprotein). These associations were vali-
dated by drug dose–metabolite associations. Analysis in the pop-
ulation-based cohort, Rotterdam Study (n = 700), shows a high 
consistency of the association between PPI (yes/no) and metabolites 
and the defined daily dose in PPI users and metabolites (Extended 
Data Fig. 6).

PPIs are often administered to patients with cirrhosis, and in 
these patients they are associated with infections and worsening 
prognosis38. We next investigated, via Rotterdam Study (n = 3,436), 
whether PPI-associated metabolites are also associated with liver 
function, including biochemical variables of liver function tests and 
hepatic steatosis. Figure 5a,b shows high consistency for the pat-
terns of association between PPIs and metabolites, and between 
metabolites and liver function (Supplementary Table 9). The 
consistency of associations, in terms of the number of significant 
associations overlapping, for hepatic steatosis is 98.2% (54/55), for 
gamma-glutamyl transferase (GGT) 80.0% (44/55) and for alanine 
transaminase (ALT) 81.8% (45/55; positively associated); 90.9% 
(50/55) for the ratio of aspartate transaminase and ALT (AST/ALT) 
and 69.1% (38/55) for total bilirubin (inversely associated). Of these 
liver function variables, total bilirubin and GGT were significantly 
associated with reported PPI use in Rotterdam Study (Fig. 5b and 
Supplementary Table 10).

We then studied PPI-associated metabolites in relation to 
microbial diversity and the abundance of microbiota that are phar-
macologically driven by PPI use in a population39–43. We found 
that 94.5% (52/55) of the metabolites associated with PPIs are also 
associated with gut microbial (alpha-) diversity, in a meta-analy-
ses of 2,305 participants that did not use antibiotics (Fig. 5c and 
Supplementary Table 11). Of the 92 gut microbiota with which 
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C_Beta-blocking agents—selective (2,743/15,753)−(2,743/15,753)
C_Angiotensin II antagonists—plain (1,337/16,805)−(1,337/16,805)
A_Metformin (1,702/16,440)−(1,702/16,440)
C_ACE inhibitors—plain (1,913/16,229)−(1,913/16,229)
C_High-ceiling diuretics (576/16,148)−(576/16,148)
C_HMG-CoA reductase inhibitors—lipophilic statin (2,985/15,511)−(2,985/15,511)
C_Low-ceiling diuretics (1,242/16,900)−(1,242/16,900)
A_Proton pump inhibitors (1,909/16,587)−(1,909/16,587)
C_Potassium-sparing agents (533/14,046)−(533/14,046)
B_Vitamin K antagonists (569/17,573)−(569/17,573)
B_Antithrombotic agents—acetylsalicylic acid (987/14,243)−(987/14,243)
A_Sulfonamide-urea derivatives (886/17,256)−(886/17,256)
C_HMG-CoA reductase inhibitors—hydrophilic statin (831/17,311)−(831/17,311)
C_Digoxin (149/6,986)−(149/6,986)
N_Selective serotonin reuptake inhibitors (1,029/17,113)−(1,029/17,113)
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Fig. 2 | Drug–metabolite associations in model 2 versus model 3. The top 15 drugs associated with the largest number of metabolites in the baseline 
model (model 1) are ordered and shown. The first letter of the ATC code is shown preceding the drug name, to identify different categories. Sample sizes 
of drug users and non-users in regression model 2 (age, sex, BMI and smoking adjusted) and model 3 (age, sex, BMI, smoking and co-treatment adjusted) 
are shown following drug names, respectively. Dark red, positive significant associations in model 2 (P < 1.9 × 10−5); light red, positive nonsignificant 
associations in model 2 (P ≥ 1.9 × 10−5); dark blue, negatively significant associations in model 2 (P < 1.9 × 10−5); light blue, negatively nonsignificant 
associations in model 2 (P ≥ 1.9 × 10−5). Asterisks in boxes denote that neither direction nor significance status was different between models 2 and 3 
(P value threshold is multiple testing-corrected per drug; see Supplementary Table 4). Two-tailed tests were used.
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abundances were associated with PPI use39, 45 were available 
for testing of the association with metabolites (Supplementary 
Table 12). We found that three common microbiota (phylum 
Tenericutes, class Mollicutes and family Ruminococcaceae) show-
ing reduced abundance in PPI users had a metabolite association 
pattern consistent with that of PPI–metabolite association, but 
in the opposite direction (Fig. 5d and Supplementary Table 13). 
The genus Scardovia showed an increased abundance in the gut 
of patients using PPIs. Although this genus showed a metabolite 
association pattern similar to that of PPIs, only the association 
with glycoprotein reached statistical significance after adjusting 
for multiple testing.

Discussion
We performed a comprehensive analysis of the interaction 
between 87 commonly prescribed drugs and as many as 150 cir-
culating metabolites measured by 1H-NMR in 18,873 individuals. 
We uncovered 1,071 drug–metabolite associations after adjust-
ment for age, sex, BMI, smoking and co-treatment, covering 
a wide range of drug–metabolite associations. We also demon-
strated three examples of applications of the atlas, disentangling 
disease (for example, type 2 diabetes) and therapy (for example, 
metformin) effects, aligning longitudinal and genetic analysis 
with our large-scale cross-sectional findings and, ultimately, link-
ing PPI–metabolite interactions to gut microbiome abundance 
and liver function.

Although many of the metabolites cluster strongly in popula-
tions (Extended Data Fig. 1), our analysis shows that the direction 
and significance of drug–metabolite associations are not always 
the same among different metabolites in the same cluster, and this 
is especially true for VLDL and HDL particles. This is consistent 
with previous studies on the role of lipid particle profiles and 
diseases4,6,31–34,44,45, and is also true for amino acids. In Rotterdam 

Study, histon clusters strongly with leucine, valine and isoleucine 
(in correlation tests, P = 3.3 × 10−23). However, histone is negatively  
associated with selective beta-blocker use (Fig. 2) while leu-
cine, valine and isoleucine are positively associated. We showed 
that BMI is a major confounder of associations with SSRIs. The 
high proportion of elimination in SSRI–metabolite associations 
(90.8%) after adjustment for smoking and BMI may be explained 
by the fact that body weight is a strong determinant of circulat-
ing metabolites and significant weight loss when neither dieting 
nor weight gain is part of the diagnostic criteria for depression46. 
After adjustment for co-treatment, the similar significant associa-
tion patterns between different drugs (for example, angiotensin II 
antagonists and metformin) may imply that drug–metabolite 
associations are independently associated with a similar shift 
in metabolism, but this is true only if the pathology for which 
the two drugs are prescribed does not explain the drug–metab-
olite association. For instance, if metabolic syndrome is associ-
ated with a shift in circulating metabolites, this may result in a 
false discovery association with drugs often prescribed to these 
patients (for example, statins, antihypertensives and metformin). 
This type of confounding was further addressed by investigating 
whether drug–metabolite associations are related to the pathology 
(for example diabetes, hypertension, dyslipidemia) that indicated 
prescription. As a typical metabolic disorder, evidence shows 
that type 2 diabetes explains a substantial association between 
glucose lowering and drug–metabolite associations. Validation 
of the effects awaits clinical trials or prospective studies, but our 
example illustrates how the drug–metabolite atlas can be used in 
combination with disease–metabolite studies to tease out drug 
and disease effects and generate a testable hypothesis for future 
trials. We further showed that, to some extent, statin–metabo-
lite associations in a large-scale, cross-sectional study can mimic 
those of the longitudinal effect of statin administration, which 
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C_Beta-blocking agents—selective (2,743/15,753)−(2,509/2,263)

C_Angiotensin II antagonists—plain (1,337/16,805)−(2,509/2,263)

A_Metformin (1,702/16,440)−(815/10,620)

C_ACE inhibitors—plain (1,913/16,229)−(2,509/2,263)

C_High-ceiling diuretics (576/16,148)−(2,509/2,263)

C_HMG-CoA reductase inhibitors—lipophilic statin (2,985/15,511)−(2,451/2,956)

C_Low-ceiling diuretics (1,242/16,900)−(2,509/2,263)

C_Potassium-sparing agents (533/14,046)−(2,509/2,263)

A_Sulfonamide-urea derivatives (886/17,256)−(815/10,620)

C_HMG-CoA reductase inhibitors—hydrophilic statin (831/17,311)−(2,451/2,956)

N_Selective serotonin reuptake inhibitors (1,029/17,113)−(3,966/8,887)
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Fig. 3 | Drug–metabolite associations in model 3 versus significance after disentangling the indicated disease/endophenotype effect. The top 15 drugs 
associated with the largest number of metabolites in the baseline model (model 1) are ordered and shown. The first letter of the ATC code is shown 
preceding the drug name, to identify the different categories. Sample sizes of drug users and non-users in regression model 3 (age, sex, BMI, smoking 
and co-treatment adjusted) and those of cases and controls in disease–metabolite associations are shown following drug names, respectively. Dark 
red, positive significant associations in model 3; light red, positive nonsignificant associations in model 3; dark blue, negatively significant associations 
in model 3; light blue, negatively nonsignificant associations in model 3. Asterisks in boxes denote significant associations confirmed after disentangling 
the disease/endophenotype effect (P < 0.05 is the threshold for the significance in disease–metabolite associations). Quote marks in boxes denote 
associations confirmed after disentangling the disease/endophenotype effect (P < the threshold after multiple testing-corrected per disease is the 
threshold for the significance in disease-metabolite associations; see Supplementary Table 4). Two-tailed tests were used.

Fig. 4 | Comparison of statin–metabolite associations between cross-sectional, longitudinal and genetic studies. a, Comparison of statin–
metabolite associations among the current cross-sectional study, a longitudinal study by Wurtz and co-workers17 and a genetic study. results in the 
longitudinal study (n = 716/4,874) are shown as Wurtz and co-workers’ study in both s.d.-scaled metabolite concentration units (upper x axis) and 
relative to the lowering effect on LDL cholesterol (lower x axis). The results of metabolite–rs12916-T associations (n = 27,914) are shown as effect 
estimate per s.d. and relative to the lowering effect on LDL cholesterol (lower x axis). b, Comparison of significant statin–metabolite associations in 
the cross-sectional study (n = 3,023/15,850 for lipophilic statin, n = 849/17,631 for hydrophilic statin) and genetic study (n = 24,925). The results 
of statin–metabolite associations are shown in the effect estimate (standardized metabolite concentration units, lower x axis), and the results of 
metabolite–rs12916-T associations are represented as fivefold the effect estimate (standardized metabolite concentration units, upper x axis). Error 
bars, 95% confidence intervals, were statistically corrected for multiple testing; this means that, if the error bar crosses the zero line, the association 
is not significant at the multiple testing significance level. Statistical data were extracted from the previous longitudinal study by Wurtz and co-
workers17. Two-tailed tests were used.
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are preferred from a methodological perspective. This premise is 
strengthened by the fact that both studies are benchmarked by 
MR. These findings suggest that the atlas yields informative asso-
ciations that could be tested in future trials and follow-up studies.

The third—and, by far the most exciting—example integrates 
the atlas data into state-of-the-art research questions. The find-
ing that PPIs are associated with lower gut microbial diver-
sity and a shift in composition of the gut microbiome has been 
long recognized39,41,47. Interestingly, one recent study48 reported 
that non-diabetic obese patients with hepatic steatosis have low 
microbial gene richness and increased genetic potential for pro-
cessing of dietary lipids and dysregulation of branched-chain 
amino acid metabolism, which is highly consistent with our find-
ings. Focusing on oral bacteria, levels of the genus Scardovia were 
found to be increased in the gut microbiome of PPI users39. This 
raises the hypothesis that, due to PPI-related changes in gastric 
acid secretion, these microbiotas are reaching the gastrointesti-
nal tract, very similar to the mechanism described in mice40 and 
in a study of the human gut microbiome in patients with liver 
cirrhosis49. Scardovia was most strongly and significantly asso-
ciated with acute-phase glycoprotein, which is an intriguing 
metabolite from a clinical and epidemiological perspective as it 
is synthesized in the liver50 and associated with a wide spectrum 
of incident diseases51, including cardiovascular disease52, type 2 
diabetes53, cognition6 and all-cause mortality36. A key question 
in future studies is to what extent glycoprotein plays a mediat-
ing role in the relation between gut microbiome and morbidity. 
Our analysis validated previous findings—that the human gut 
microbiome is altered in patients with liver cirrhosis49 and that 
withdrawal of PPIs in these patients decreases oral-origin taxa38—
in a general-population study with a very low prevalence (<3%) 
of severe diseases such as advanced liver or kidney disease. Our 
study also showed associations of PPIs with liver function vari-
ables, gut microbiota and metabolites in the blood circulation. 
Again, a longitudinal or intervention study is required to examine 
this hypothesis.

Another point of interest is that the experimental study on the 
effect of PPIs on the gut microbiome in patients with cirrhosis 
was based on omeprazole38. When we compared the various drugs 
included in the PPI category, we found that omeprazole is indeed 
associated with those metabolites identified in the drug category 

analysis (Extended Data Fig. 7). However, we also found that other 
drugs such as lansoprazole are even more strongly and significantly 
associated, while the association with rabeprazole and esomepra-
zole is less strong and nonsignificant. These are interesting findings 
that should be followed up.

This comprehensive drug–metabolite atlas provides a basis for 
future exploration of drug–metabolite interactions, using either 
our omics-based approach or other, future, (un)targeted experi-
mental and longitudinal pharmaceutical research. Our study 
includes examples of how to use the atlas that can be extended 
to other settings. We have limited the atlas to the most common 
drugs, but it could be expanded in the future to include rare drugs 
following the generation of such data for this platform in larger 
cohorts, such as UK Biobank. These ‘mega-cohorts’ would also 
facilitate systematic study of the interaction of multiple drug 
intake with sufficient statistical power. On the other hand, the 
current atlas could be a starting point for future research focusing 
on a limited number of drugs with metabolomics, to check drug 
interactions. Another future challenge is to extend the atlas to a 
wider range of metabolites measured using other platforms (for 
example, mass spectrometry) and tissues (for example, urine). 
The use of MR is a strength of the current study, because it enables 
us to disentangle the effect of drugs and indicated diseases. 
However, we are not always able to capture strong instruments for 
the MR test, which may reduce the power of our analyses when 
aiming to exclude disease effects. Since our knowledge of the 
gene-mimicking effects of drugs and diseases is rapidly expand-
ing, we are optimistic that more powerful genetic instrumental 
variables will be identified in the near future, opening windows 
of opportunity into MR analyses in both pharmacometabolomic 
research and clinical trials.

Our comprehensive in vivo reference atlas will empower future 
clinical and pharmacological research in a number of areas. This 
will not only advance knowledge on the mechanisms of both on- and  
off-target drug effects, but may also provide evidence for the dis-
covery of novel therapeutic applications of known drugs. By mak-
ing the atlas freely available through a web-based browser with 
downloadable datasets (http://bbmri.researchlumc.nl/atlas/),  
we hope to facilitate the use of the data by pharmacists, drug 
developers and clinical researchers on their drug or disease  
of interest.
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Fig. 5 | Integrated data of PPIs, metabolites, liver function measurements and gut microbiome. Significant results after integrating the directions of 
association among PPIs, metabolites, liver function measurements and gut microbiome by linear regression. red, positive association; blue, negative 
association; the depth of color represents the value of effect estimate per s.e.m: range from 0 (white) to 15 (red) or –15 (blue). Gray, associations were not 
performed. Asterisks denote significance of associations. Two-tailed tests were used.
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Methods
Study population. The research was performed within BBMRI-NL. The study 
included 18,873 individuals from 12 datasets of 10 Dutch cohorts who had 
metabolites measured by Nightingale Health, drug information based on the 
Anatomical Therapeutic Chemical (ATC) Classification and clinical phenotypes 
that allowed us to control for confounders. These cohorts included Rotterdam 
Study (RS), with three datasets (RS Dataset 1: n = 2,975, RS Dataset 2: n = 729, RS 
Dataset 3: n = 1,487)54; Netherlands Twin Register (NTR, n = 3,563)55; Netherlands 
Study of Depression and Anxiety (NESDA, n = 2,914)56; Leiden Longevity 
Study (LLS, n = 1,873)57; LifeLines DEEP cohort (n = 1,435)58; Hoorn Diabetes 
Care System Cohort (Hoorn DCS, n = 995)59; Alpha Omega Cohort (n = 877)60; 
The Maastricht Study (TMS, n = 854)61; Erasmus Rucphen Family study (ERF, 
n = 778)62; and Leiden University MIgraine Neuro-Analysis (LUMINA, n = 393)63.

In examples from the application atlas, we additionally involved the 
Netherlands Epidemiology of Obesity Study (NEO, n = 6,603)64, which is an obese 
cohort but adjusted for BMI in type 2 diabetes–metabolite associations by inverse 
probability weighting on BMI to make the results comparable to the Dutch general 
population. Cohort descriptions, specific data processing and ethical compliance 
can be found in Supplementary Table 3. All studies were approved by the respective 
institutional review boards’ local research ethics committees, and all participants 
provided written informed consent to the original study.

Metabolite measurements. The present study included 150 absolute-value-based 
metabolites measured by high-throughput 1H-NMR metabolomics (Brainshake/
Nightingale Health). Details on metabolites are given in Supplementary Table 2.  
These include quantitative molecular data on 14 lipoprotein subclasses, 
apolipoproteins A-I and B, multiple cholesterol and triglyceride measures, albumin, 
various fatty acids and on numerous low-molecular-weight metabolites, including 
amino acids, glycolysis-related measures and ketone bodies. The 14 lipoprotein 
subclasses include IDL, six VLDL subclasses, three LDL subclasses and four 
HDL subclasses based on particle diameter. The components of these lipoprotein 
subclasses were quantified on total lipids (L), total cholesterol (C), particle 
concentration (P), phospholipids (PL), triglycerides (TG), free cholesterol (FC) and 
cholesterol esters (CE). The values of the representative coefficients of variation 
for metabolites ranged between 0.3 and 19.5% (mean 4.5%), and most values are 
comparable to clinical chemistry assays11,65.

The blood samples obtained from the cohorts were collated at Leiden 
University Medical Center and were shipped to and analyzed by Nightingale 
Health as part of a national initiative. A standardized protocol of metabolite 
measurement was applied to all cohorts following the comprehensive quantitative 
platform generated by Nightingale Health and described originally by Soininen 
et al.11,65,66. The protocol includes sample quality control and sample preparation, 
data storage and automated spectral analyses. Metabolite values that were suggested 
as being uncreditable in the quality control provided by Nightingale Health during 
the measurement procedure were treated as missing. Within the consortium, 
we checked and reported the distribution of zero values in our previous study67. 
Quality control was unified and included in-depth evaluation of the consistency of 
findings across datasets, a metabolite correlation matric and principal component 
analysis (PCA) of cohorts of varying population structure. Pearson’s correlation 
test was used to check pairwise correlation of the overall estimated values of 
drug–metabolite associations in model 1 between datasets. We also checked the 
correlation matrix of metabolites in a population-based cohort, Rotterdam Study 
(n = 5,191), by Pearson’s correlation and hierarchical cluster analysis, reporting 
that the distinct clustering groups were in accordance with biochemical pathways 
(Extended Data Fig. 1 and Supplementary Table 14). The effect of population 
structure on metabolite clustering was checked by PCA using joint data from 
four cohorts markedly differing in population: (1) one population-based study, 
Rotterdam Study54, (2) one family-based, ERF62, (3) one disease-based, TMS61—
which includes only patients with type 2 diabetes in the current dataset—and  
(4) a case-control, Alpha Omega Cohort60, including patients with cardiovascular 
disease and non-disease controls (details are given in Supplementary Table 3).  
The obvious difference between Alpha Omega Cohort and TMS underscores the 
fact that meta-analysis should be performed, rather than joint analysis, with pooled 
data (Extended Data Fig. 8): the fixed-effect meta-analysis assumes a similar effect 
and structure among cohorts, while the random-effect meta-analysis allows for 
high heterogeneity.

Because some distributions of metabolites were skewed, we transformed the 
metabolite values in each cohort to normal distribution. We first added a value of 1 
to all metabolites before performing natural logarithm transformation, to include 
samples labeled zero with metabolite levels below the detectable value; we then 
scaled these transformed values to s.d. units.

Drug categories. Drug information was classified by ATC codes in each cohort. 
In brief, drug information by cohort was obtained from either pharmacy records 
or questionnaires during the interview. Details on drug administration for each 
cohort can be found in Supplementary Table 3. We used drug category rather than 
the individual compound in all analyses. We merged drugs with similar chemical, 
pharmacodynamics, pharmacokinetics and/or therapeutic characteristics into  
one category. Regarding ATC codes used for combinations of active ingredients, 

we categorized these separately where possible. We excluded categories with five or 
fewer users in each cohort, or <20 users in total, from all cohorts. We thus ended 
up with 87 drug categories (Supplementary Table 1). Drug categorization was 
confirmed by two experienced pharmacologists, L. L. and B.H.C.S. Throughout 
the following text, the term drug category is referred to simply as drug. Individuals 
for whom both metabolite and drug information was available were included in 
the analysis.

Statistical analysis. All statistical analyses were performed using R statistical 
software, using two-tailed testing.

Drug–metabolite associations. To check for drug–metabolite associations, linear 
regression was performed in each cohort, with drug use as an independent variable 
and metabolite as a dependent variable. Linear regression was used in individual 
cohorts. Specific family relationships were considered in the three family-based 
cohorts (see details in Supplementary Table 3). In the baseline analysis, we used age 
and sex as the covariates (model 1); we additionally adjusted for smoking (current 
smoking: yes/no), which is a major common risk factor in pathology68, and BMI 
(kg m–2), which is a major determinant of circulating metabolites that captures the 
effects of diet and physical activity69 (model 2). Meta-analysis was performed with 
either the inverse variance-weighted fixed-effect model (no heterogeneity between 
cohorts) or the maximum-likelihood random-effect model (significant heterogeneity 
between cohorts). The degree of heterogeneity was based on Cochran’s Q-test. The 
P value threshold for both Cochran’s Q-test and the meta-analysis was Bonferroni 
corrected with 30 independent equivalents of the 150 metabolites and 87 drugs tested 
(P < 1.9 × 10−5). Matrix spectral decomposition was used to calculate the number 
of independent equivalents70 in the largest population-based dataset, RS Dataset 1. 
R-package metafor was used for the meta-analysis71.

Effects of co-treatment—drugs prescribed simultaneously. We next checked 
the potential confounding of drugs prescribed simultaneously (model 3) in 
each significant drug–metabolite pair. A co-treatment matrix with Spearman’s 
correlation was made separately in the two population-based cohorts (Rotterdam 
Study and LifeLines DEEP, n = 6,631) and meta-analyzed. Potential confounding 
co-treatment for each drug–metabolite pair was defined if: (1) a drug was 
positively correlated with the target drug (explained as prescribed simultaneously; 
Extended Data Fig. 4 and Supplementary Table 15) and (2) this drug and the 
target drug were associated with the target metabolite in the same direction. We 
used Bonferroni P value correction with the 85 drugs available in the co-treatment 
matrix (P < 5.9 × 10−4). We then performed the same regression analysis as above 
in each dataset (12 datasets) and meta-analyzed, with age, sex, BMI, smoking and 
all available confounding co-treatments as covariates in each significant drug–
metabolite pair (model 3). Sensitivity analysis was performed in the subsamples 
of patients administered one drug only (one-drug-users) and all-treatment-naive 
controls adjusting for age, sex, BMI and smoking. We used the Bonferroni P value 
threshold by correcting the independent equivalents of the number of tested 
significant metabolites for each drug.

Checking the effect of indicated disease on metabolites with MR. We further 
focused on drugs in the top 15 drug lists that had the largest number of related 
metabolites and metabolite associations after adjustment for co-treatments. We 
explored the confounding effect of the disease indicating the prescription of the 
drug by MR. MR is a statistical method that uses the effect of genetic variants in 
determining an exposure, and tests its association with the outcome under study 
based on the assumption that the genetic variant is inherited independently of 
the confounding variables72. Thus, we tested whether the genetic determinants 
driving indicated diseases are also related to metabolites, using the genetic risk 
score of the disease as an instrumental variable of exposure. Genetic risk scores 
comprising more than five genetic single-nucleotide polymorphisms (SNPs) and 
explaining >1% of variance in exposure were taken forward. For type 2 diabetes we 
analyzed the results from our previous well-organized MR research4, from which 
16 metabolites were found to be associated with either metformin or sulfonamide-
urea derivatives. In brief, this research was a two-sample, bi-directional MR study 
checking the causation of metabolites and type 2 diabetes and fasting glucose, 
following by biological knowledge-based sensitivity analysis to control for the 
pleiotropic effect of SNPs in the instrumental variables4. We concurrently used 
the results of backward MR to check the association of the genetic score of type 2 
diabetes and metabolites.

For hypertension and depression, we performed two-sample MR based on 
previous Genome-wide Association Study (GWAS) results for blood pressure73 
(n = 317,754), major depression74 (n = 135,458 cases and n = 344,901 controls) 
and NMR metabolite GWAS11 (n = 24,925). Among the 123 metabolites associated 
with antihypertensives, 96 were available on which to perform MR for systolic 
and diastolic blood pressure. We also performed MR on major depression with six 
metabolites associated with SSRIs. We did not perform MR for dyslipidemia over 
statin-associated metabolites, because most of the latter are lipoproteins that are 
included in the definition of dyslipidemia.

The R package TwoSampleMR was used for two-sample MR tests75. Genetic loci 
of major depression were extracted from a previous paper74 because the original 
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GWAS was not available. The default pipeline in the TwoSampleMR package75 
was used. In brief, the genetic score was based on the top genetic determinant 
SNPs (P < 5 × 10−8) with linkage disequilibrium R2 < 0.001 within 10,000-base pair 
clumping distance. Proxy SNPs were searched for if SNPs were not available in 
the metabolite GWAS (R2 > 0.8). Palindromic SNPs with minor allele frequency 
<0.3 were excluded, resulting in 161 independent SNPs for systolic blood 
pressure (R2 = 2.6%), 174 for diastolic blood pressure (R2 = 2.8%) and 40 for major 
depression (R2 = 1.1%). Inverse variance-weighted MR, maximum-likelihood MR, 
MR Egger analysis and median-based estimator were also performed to check the 
significant results75. We used the Bonferroni P value threshold by correcting the 
independent equivalents of the number of tests per disease: P < 2.3 × 10−3 for blood 
pressure and P < 0.025 for depression.

Effect of indicated disease on indicated disease–metabolite associations. We 
associated drug-related metabolites with the indicated disease in patients not 
receiving the drug under study—that is, the on-target-treatment-naive population. 
This was focused on type 2 diabetes, dyslipidemia, hypertension and depression. 
Type 2 diabetes analyses were performed based on Rotterdam Study and NEO. 
Type 2 diabetes was defined as fasting glucose ≥7.0 mmol l–1, excluding cases 
of patients using glucose-lowering drugs from the analysis (n = 815 cases and 
n = 10,619 non-diabetic controls in the meta-analysis). We performed a regression 
model with type 2 diabetes status as an independent variable and glucose-lowering 
drug-related metabolite as the dependent variable. Covariates included age, sex, 
BMI, smoking and lipid-modifying drugs.

Dyslipidemia and hypertension were tested in ERF and Rotterdam Study. 
We tested the association of 87 lipid-modifying drug-related metabolites and 
dyslipidemia. Dyslipidemia was defined according to the National Cholesterol 
Education Program–Adult Treatment Panel III as either total cholesterol 
≥240 mg dl–1, LDL-C ≥160 mg dl–1, HDL-C <40 mg dl–1 or triglyceride ≥200 mg dl–176  
(n = 2,451 cases and n = 2,956 controls in the meta-analysis). We excluded subjects 
prescribed lipid-modifying drugs and adjusted for age, sex, BMI and smoking 
in the model. The associations of 123 antihypertensive-related metabolites and 
hypertension were analyzed. Hypertension was defined as either systolic blood 
pressure ≥140 mmHg or diastolic blood pressure ≥90 mmHg (n = 2,506 cases 
and n = 2,263 controls in the meta-analysis). We excluded subjects prescribed 
antihypertensives and adjusted for age, sex, BMI, smoking and lipid-modifying 
drugs in the model.

In regard to depression, we tested associations between the six SSRI-related 
metabolites and depressed mood in participants not prescribed an antidepressant 
drug (ATC code, N06A)77. Depressed mood was measured by either diagnostic 
interviews or validated depression questionnaires (n = 3,966 cases and 
n = 8,887 controls in the meta-analysis). Detailed definitions of cases and controls 
in cohorts are given in our previous publication77. We adjusted for age, sex, fasting 
status, lipid-modifying drugs and current smoking status.

In addition, we checked the association of fasting glucose and glucose-
lowering drug-related metabolites in the non-diabetes population 
(n = 5,871) and the association of systolic and diastolic blood pressure and 
antihypertensive-related metabolites in the non-hypertension population 
(n = 2,263) in ERF and Rotterdam Study. The non-diabetes population was 
defined as individuals with fasting glucose ≤6.9 mg dl–1 and not prescribed 
anti-diabetic treatment; the non-hypertension population was defined as 
individuals whose systolic blood pressure was <140 mmHg, diastolic blood 
pressure <90 mmHg and not prescribed antihypertensives. Linear regression 
was performed with adjustment for age, sex, BMI, smoking and lipid-modifying 
drugs in the model. The P value threshold for significance of associations 
was corrected for the number of independently tested metabolite equivalents 
per disease or endophenotype. Nominal significance between disease/
endophenotype and metabolite was also considered (P < 0.05).

Comparison of cross-sectional and longitudinal studies and benchmarking 
findings by genetics using statin as an example. Forty-eight metabolites in the 
current cross-sectional study were also studied in a previous longitudinal study 
by Wurtz and co-workers, which also quantified 1H-NMR metabolic profiles in 
blood samples but focused on the change in metabolite concentrations at two time 
points—baseline and follow-up17. Because the longitudinal study adjusted only 
for age and sex, we used the same model in the present cross-sectional study to 
allow a fair comparison. Since the effects of lipophilic and hydrophilic statins were 
similar in the current study, we used the results of the former, which had the largest 
sample size for the comparison. The results of MR analysis and the association of 
rs12916-T and metabolites17 were also used in the comparison17.

We then compared significant statin–metabolite associations in the current 
cross-sectional study with those of rs12916-T and metabolites. We used the 
GWAS results of NMR metabolites from our previous paper, which included 
24,925 individuals not prescribed lipid-modifying medication11. This resulted in 
55 metabolites being included in the comparison.

PPIs, circulating metabolites and liver function. We studied biochemical 
variables used in liver function tests—that is, ALT, AST, GGT, AST/ALT, total 
bilirubin and alkaline phosphatase, and hepatic steatosis. The liver function 

test used automatic enzymatic procedures (Roche Diagnostics)78. Abdominal 
ultrasonography was performed by a certified and experienced technician  
(P. Taimr) on a Hitachi HI VISION 900. Images were stored digitally and  
re-evaluated by a single hepatologist with >10 years of experience in 
ultrasonography. The diagnosis of steatosis was determined by the ultrasound 
technician according to the protocol of Hamaguchi et al.79.

Linear regression was performed in Rotterdam Study (n = 3,436), with liver 
function measurements as an independent variable and metabolite levels as a 
dependent variable. Covariates included age, sex, BMI, smoking, lipid-modifying 
drugs, PPIs and daily alcohol intake calculated from questionnaires. The 
P value threshold was Bonferroni corrected with 10 independent equivalents of 
55 PPI-related metabolites and 6 independent equivalents of the 7 liver function 
measurements (P < 8.3 × 10−4). We further checked the association of PPI use and 
liver function measurements by linear regression, with adjustment for age, sex, 
BMI, smoking and daily alcohol intake (P < 8.3 × 10−3).

PPIs, circulating metabolites and gut microbiome. We extracted the associations 
of PPIs with gut microbiota and (alpha-) diversity from a previous paper by 
Imhann and co-workers39. Age, sex, BMI, antibiotic use and sequence read depth 
were corrected in the association analysis39. In total, 92 bacterial taxa abundances—
assessed by tag sequencing of the 16 S rRNA gene58 and Shannon’s diversity index 
(alpha-diversity)—were reported to be significantly different between PPI users 
and non-users (211 PPI users and 1,594 non-users, false discovery rate < 0.05). 
Forty-five of the 92 bacterial taxa abundance and alpha-diversity factors were 
also tested for association with metabolites as measured by Nightingale Health 
in our previous study80. In brief, this included 2,309 individuals not prescribed 
antibiotics from Rotterdam Study (n = 1,390) and LifeLines DEEP (n = 915)47,58. 
Age, sex, BMI, technical covariates (time in mail and storage time) and medication 
use (lipid-modifying drugs, metformin and PPIs) were adjusted in the association 
analysis. The P value threshold for gut microbiota was Bonferroni corrected with 
10 independent equivalents of 55 PPI-related metabolites and 15 independent 
equivalents of the 45 gut microbiota (P < 3.3 × 10−4). The P value threshold for 
alpha-diversity was 5.0 × 10−3.

Reporting Summary. Further information on life sciences study design is available 
in the Nature Research Reporting Summary linked to this article.

Data availability
All summary statistics of the meta-analysis, and those utilized in compilation 
of the figures, are made available through the Supplementary tables. In regard 
to the availability of the raw data, the analyses are based on a meta-analysis of 
multiple Dutch studies. The raw metabolomics data of the studies are pooled 
in a single database. The quantified metabolic biomarker datasets included 
in this study are available through the BBMRI-NL website http://www.bbmri.
nl/omics-metabolomics/, where details of how to access the data through 
centralized computational facilities are described. To request data, researchers 
are required to fill out and sign the data access request and code-of-conduct 
forms. Applications compliant with ethical and legal legislations will be reviewed 
by the BBMRI-NL board in regard to overlap with other ongoing projects before 
access is granted. Data on medication used in the current study are available 
through the individual studies on reasonable request. To obtain these, the 
principal investigator of the cohorts can be contacted through http://www.bbmri.
nl/omics-metabolomics/. No custom code or mathematical algorithm was used 
in the current study.
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extended data Fig. 1 | Correlation between metabolites in Rotterdam Study. The correlation matrix of metabolites were performed by Pearson’s 
correlation (n = 5,191). The hierarchical cluster analysis was used in the clustering. Color in the boxes, correlation coefficient.
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extended data Fig. 2 | Drug–metabolite associations in model 1 versus model 2. The drugs with at least one significant metabolite association in  
baseline model (model 1) by linear regression are shown. The first letter of the ATC code precedes the drug name, to identify different categories. Sample 
sizes of the drug users and non-users in model 1 (age and sex adjusted) and model 2 (age, sex, BMI and smoking adjusted) are shown following drug 
names, respectively. Dark red, positive significant associations in model 1 (P-value < 1.9 × 10−5); light red, positive nonsignificant associations in model 1  
(P-value ≥ 1.9 × 10−5); dark blue, negatively significant associations in model 1 (P-value < 1.9 × 10−5); light blue, negatively nonsignificant associations 
in model 1 (P-value ≥ 1.9 × 10−5). Asterisks in boxes denote that neither direction nor significance status were different between model 1 and model 2 
(P-value < 1.9 × 10−5). Two-tailed tests were used.
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extended data Fig. 3 | Drug–metabolite associations in model 2 versus model 3. The drugs with at least one significant metabolite association in model 2  
(age, sex, BMI and smoking adjusted) by linear regression are shown. The first letter of the ATC code is shown preceding the drug name, to identify 
different categories. Sample sizes of the drug users and non-users in model 2 and model 3 (age, sex, BMI, smoking and co-treatment adjusted) are 
shown following drug names, respectively. Dark red, positive significant associations in model 2 (P-value < 1.9 × 10−5); light red, positive nonsignificant 
associations in model 2 (P-value ≥ 1.9 × 10−5) dark blue, negatively significant associations in in model 2 (P-value < 1.9 × 10−5); light blue, negatively 
nonsignificant associations in in model 2 (P-value ≥ 1.9 × 10−5). Asterisks in boxes denote that neither direction nor significance status was different 
between model 2 and model 3 (P-value threshold is multiple testing-corrected per drug; See Supplementary Table 4). Two-tailed tests were used.
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extended data Fig. 4 | Correlation between drugs. The correlation matrix of metabolites were performed by Spearman’s correlation (n = 6,631).  
The first letter of the ATC code is shown preceding the drug name, to identify different categories. Sample size of the drug users and non-users is shown 
following drug names. The depth of the color refers to the correlation coefficients. Asterisks in boxes denote the positively significant correlations 
(P-value < 5.9 × 10−4). Two-tailed tests were used.
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extended data Fig. 5 | Drug–metabolite Associations in model 3 versus single drug test. The first letter of the ATC code is shown preceding the drug 
name, to identify different categories. Single drug test: Association analysis (linear regression) in the sub-samples of patients who use one drug only 
(one-drug-users) and all-treatment-naive controls. Sample size of the drug users and non-users in model 3 (age, sex, BMI, smoking and co-treatment 
adjusted) and the single drug test are shown following drug names, respectively. Dark red, positive significant associations in model 3 which are available 
for the single drug test; light red, positive non-significant associations in model 3 or not available for the single drug test; dark blue, negatively significant 
associations in model 3 which are available for the single drug test; light blue, negatively non-significant associations in model 3 or not available for the 
single drug test. Asterisks in boxes denote that the significant associations confirmed in the single drug test (P threshold is multiple testing-corrected  
per drug; see Supplementary Table 4). Two-tailed tests were used.

Articles | FOCUS Nature MediciNe FOCUS | ArticlesNature MediciNe FOCUS | ArticlesNature MediciNeArticles | FOCUS Nature MediciNeFOCUS | ArticlesNaTuRe MedIcINe FOCUS | ArticlesNaTuRe MedIcINe

NATURE MEDICINE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


extended data Fig. 6 | Association of PPI/dosage and the PPI-related metabolites. The association of dosage of PPI and metabolites were tested by 
linear regression in rotterdam Study (n = 700). The PPI-related metabolites were selected in model 3. DDD, defined daily dose of PPI. (/), sample size of 
user/non-user. red, positive association, blue, negative association. The depth of the color refers to the association estimates. Asterisks in boxes denote 
significance after correcting for multiple test (P-value < 0.004). Two-tailed tests were used.
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extended data Fig. 7 | Association of specific PPI drugs and the PPI-related metabolites. The association of PPI drugs (A02BC) and metabolites were 
tested by linear regression in rotterdam Study. The PPI-related metabolites were selected in model 3. A02BC01, omeprazole; A02BC02, pantoprazole; 
A02BC03, lansoprazole; A02BC04, rabeprazole; A02BC05, esomeprazole. (/), sample size of user/non-user. red, positive association; blue: negative 
association. The depth of the color refers to the association estimates. Asterisks in boxes denote significance after correcting for multiple test 
(P-value < 0.004). Two-tailed tests were used.
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extended data Fig. 8 | The effect of population structure on metabolite clustering across datasets. Principal component (PC) analysis was performed 
using joint metabolite data from the cohorts (AlphaOmega, n = 877; ErF, n = 778; rS1, rS Dataset 1, n = 2,975; rS2, rS Dataset 2, n = 729; rS3, rS Dataset 3,  
n = 1,487; TMS, n = 854). Two-tailed tests were used.
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