
Noise2Inverse: self-supervised deep convolutional denoising for
tomography
Hendriksen, A.A.; Pelt, D.M.; Batenburg, K.J.

Citation
Hendriksen, A. A., Pelt, D. M., & Batenburg, K. J. (2020). Noise2Inverse: self-supervised
deep convolutional denoising for tomography. Ieee Transactions On Computational
Imaging, 6, 1320-1335. doi:10.1109/TCI.2020.3019647

Version: Publisher's Version
License: Licensed under Article 25fa Copyright Act/Law (Amendment Taverne)
Downloaded from: https://hdl.handle.net/1887/3304538

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3304538

1320 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

Noise2Inverse: Self-Supervised Deep Convolutional
Denoising for Tomography

Allard Adriaan Hendriksen , Daniël Maria Pelt , and K. Joost Batenburg , Member, IEEE

Abstract—Recovering a high-quality image from noisy indirect
measurements is an important problem with many applications.
For such inverse problems, supervised deep convolutional neural
network (CNN)-based denoising methods have shown strong re-
sults, but the success of these supervised methods critically depends
on the availability of a high-quality training dataset of similar
measurements. For image denoising, methods are available that
enable training without a separate training dataset by assuming
that the noise in two different pixels is uncorrelated. However, this
assumption does not hold for inverse problems, resulting in artifacts
in the denoised images produced by existing methods. Here, we pro-
pose Noise2Inverse, a deep CNN-based denoising method for linear
image reconstruction algorithms that does not require any addi-
tional clean or noisy data. Training a CNN-based denoiser is en-
abled by exploiting the noise model to compute multiple statistically
independent reconstructions. We develop a theoretical framework
which shows that such training indeed obtains a denoising CNN,
assuming the measured noise is element-wise independent, and
zero-mean. On simulated CT datasets, Noise2Inverse demonstrates
an improvement in peak signal-to-noise ratio and structural simi-
larity index compared to state-of-the-art image denoising methods,
and conventional reconstruction methods, such as Total-Variation
Minimization. We also demonstrate that the method is able to
significantly reduce noise in challenging real-world experimental
datasets.

Index Terms—Deep learning, image reconstruction, inverse
problems, reconstruction algorithms, tomography.

I. INTRODUCTION

R ECONSTRUCTION algorithms compute an image from
indirect measurements. For a subclass of these algorithms,

the relation between the reconstructed image and the measured
data can be described by a linear operator. Such linear recon-
struction methods are used in a variety of applications, including
X-ray and photo-acoustic tomography, ultrasound imaging, de-
convolution microscopy, and X-ray holography [1]–[9]. These
methods are well-suited for fast, parallel computation [10], but

Manuscript received January 31, 2020; revised June 5, 2020 and August
13, 2020; accepted August 17, 2020. Date of publication August 26, 2020;
date of current version September 14, 2020. The authors acknowledge financial
support from the Dutch Research Council (NWO), project numbers 639.073.506
and 016.Veni.192.235. The associate editor coordinating the review of this
manuscript and approving it for publication was Prof. Ulugbek S. Kamilov.
(Corresponding author: Allard Hendriksen.)

Allard Adriaan Hendriksen and Daniël Maria Pelt are with the Centrum
Wiskunde, and Informatica, 1098 Amsterdam, XG The Netherlands (e-mail:
allard.hendriksen@cwi.nl; d.m.pelt@cwi.nl).

K. Joost Batenburg is with the Centrum Wiskunde, and Informatica, 1098 Am-
sterdam, XG The Netherlands, and also with the Leiden Institute of Advanced
Computer Science, Leiden Universiteit, 2333, CA Leiden, The Netherlands
(e-mail: joost.batenburg@cwi.nl).

Digital Object Identifier 10.1109/TCI.2020.3019647

are also generally sensitive to measurement noise, leading to
errors in the reconstructed image [1], [11]. Controlling this
error, i.e., denoising, is a central problem in inverse problems in
imaging [3], [10], [12]–[16].

Supervised deep convolutional neural network (CNN)-based
methods are able to accurately denoise reconstructed images in
several inverse problems [3], [10], [12]–[14]. These networks
are trained in a supervised setting, which amounts to finding the
network parameters that best compute a mapping from noisy
to clean reconstructed images on a dataset of example image
pairs. However, the success of these supervised deep learning
methods critically depends on the availability of such a high-
quality training dataset of similar images [12], [17].

For photographic image denoising, recent work has shown
that deep learning may be possible without obtaining high qual-
ity target images, by instead training on paired noisy images [18].
Nonetheless, such Noise2Noise training still requires additional
noisy data. The feasibility of image denoising by self-supervised
training, that is, training with single instead of paired noisy
images, was demonstrated by [19]–[21]. These self-supervised
training methods, such as Noise2Self, depend on the assumption
that noise in one pixel is statistically independent from noise in
another pixel.

In inverse problems, reconstructed images may exhibit cou-
pling of the measured noise [13]. In CT, for instance, back-
projection smears out the noise in a detector pixel across a line
through the reconstructed image. Naturally, this causes the noise
in one pixel to be statistically dependent on noise in other pixels
of the reconstructed image.

In this paper, we demonstrate that a straightforward ap-
plication of Noise2Self to reconstructed CT images delivers
substantially inferior results compared to results obtained on
photographic images, for which it was developed. We analyze
the cause of this apparent mismatch, and propose Noise2Inverse,
a new approach that is specifically designed for linear recon-
struction methods in imaging to overcome these limitations.

In the proposed Noise2Inverse approach, the training regime
explicitly takes into account the structure of the noise in the
inverse problem. In its simplest form, our method splits the
measured data in two parts, from which two reconstructions
are computed. We train a CNN to transform one reconstruction
into the other, and vice versa. The properties of the physical
forward model cause the noise in the reconstructed images to
be statistically independent. This enables the CNN to perform
blind image denoising on the reconstructed images. That is, our
method does not assume a known noise model. We stress that

2333-9403 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 05,2023 at 07:32:14 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3355-9551
https://orcid.org/0000-0002-8253-0851
https://orcid.org/0000-0002-3154-8576
mailto:allard.hendriksen@cwi.nl
mailto:d.m.pelt@cwi.nl
mailto:joost.batenburg@cwi.nl

HENDRIKSEN et al.: Noise2Inverse: SELF-SUPERVISED DEEP CONVOLUTIONAL DENOISING FOR TOMOGRAPHY 1321

our method can be applied to existing datasets without acquiring
additional data.

In recent years, a range of deep learning approaches have
been developed for denoising in imaging with limited training
data. Several weight-regularized self-supervised methods exist
that require a known Gaussian noise model [22]–[25]. While
such a model is often available in direct imaging modalities,
the noise model for reconstructed images in an inverse problem
setting is often more complex and hard to characterize by such
a Gaussian model. Unsupervised approaches using the Deep
Image Prior [26]–[28] have been proposed for image restoration
and inverse problems [29], [30]. A key obstacle for the applica-
tion of such techniques to large-scale 3D image reconstruction
problems is their computational cost, as they involve training
a new network for every 2D slice of the reconstruction. For
inverse problems, approaches that rely on splitting the measure-
ment data have recently been proposed for magnetic resonance
imaging (MRI) [17], [31] and Cryo-transmission electron mi-
croscopy (Cryo-EM) [16] showing image quality improvement
with respect to denoising applied on the reconstructed image.
While these results are highly promising, a solid theoretical
underpinning that allows analysis and insights into the interplay
between the underlying noise model of the inverse problem and
the obtained solution is currently lacking.

In this paper — motivated by these promising results —
we present a framework for generalizing the self-supervised
denoising approach in the setting of linear reconstruction meth-
ods. Our framework pinpoints exactly the underlying theoretical
properties that explain the differences in observed results of
self-supervised approaches. We perform a qualitative and quan-
titative comparison to conventional iterative reconstruction and
state-of-the-art image denoising techniques. We evaluate these
methods on several simulated low-dose CT datasets, and include
results on an existing experimentally acquired CT dataset, for
which no low-noise data is available. In addition, we present
a systematic analysis of the hyper-parameters of the proposed
method.

This paper is structured as follows. In Section II, we introduce
linear inverse problems and deep learning for image denoising,
including self-supervised methods. In Section III, we introduce
the proposed Noise2Inverse method, and show its theoretical
properties, which we use to develop an implementation for
computed tomography. In Section IV, we perform experiments
to compare the performance of Noise2Inverse, conventional
reconstruction techniques, and Noise2Self-based methods on
real and simulated CT datasets. In addition, we perform a
hyper-parameter study of the proposed method. We discuss these
results in Section V, and conclude in Section VI.

II. NOTATION AND CONCEPTS

As prerequisites for describing our Noise2Inverse approach,
we first discuss deep learning methods for image denoising,
including strategies for training neural networks when clean
images are unavailable. In addition, we review linear inverse
problems, where we discuss that denoising reconstructed images
introduces additional difficulties.

A. Deep Learning for Image Denoising

The goal of image denoising is to recover a 2D imagey ∈ Y =
Rm from a measurement ỹ ∈ Y that is corrupted by random
noise ε, taking values in Y . This problem is described by the
equation

ỹ = y + ε. (1)

It is common to assume that the entries of the noise vector ε
are mutually independent. Many image denoising methods rely
on this assumption [19], [32], [33]. In addition, these methods
assume that the image exhibits some statistically meaningful
structure that can be exploited to remove the noise. The popular
BM3D algorithm [33], for example, exploits non-local self-
similarity, i.e., the expectation that certain structures of the image
are repeated elsewhere in the image. Note that it is also possible
to include BM3D as a prior inside iterative algorithms for inverse
problems using a plug-and-play framework [34].

Instead of relying on an explicit image prior, prior knowledge
can be based on a range of example images, as is done in
deep learning. In particular, deep convolutional neural networks
(CNNs) have been recognized as a powerful and versatile denois-
ing technique [32]. We briefly introduce three training schemes
for denoising with CNNs: supervised [32], Noise2Noise [18],
and Noise2Self [20].

The supervised training scheme has access to a training
dataset containing pairs of noisy input and clean target images

(ỹi, yi) ∼ (y + ε, y), i = 1, . . . , N, (2)

where y is a random variable taking values in Y that represents
the clean images. The supervised training objective is to find the
regression function

h∗ = arg minhEy,ε
[‖h(y + ε)− y‖22

]
, (3)

that minimizes the expected prediction error [35]. The most
common loss function is the pixel-wise mean square error, which
we use here. Alternative training losses are also used, such as the
L1 loss and perceptual losses [18]. Solving Equation (3) is usu-
ally intractable. Therefore, the expectation is estimated by the
sample mean over the training dataset, which is minimized over
neural networks fϕ : Y → Y with parameters ϕ. The training
task is then to find the optimal parameters

ϕ̂ = arg minϕ

N∑

i=1

‖fϕ(ỹi)− yi‖22, (4)

which minimize the loss on the sampled image pairs. The trained
network fϕ̂ is applied to unseen noisy images to obtain denoised
images, as displayed in Figure 1.

The regression function that minimizes the expected predic-
tion error in Equation (3) is the conditional expectation

h∗(ỹ) = E [y | y + ε = ỹ] . (5)

In practice, the trained neural network fϕ̂ does not equal h∗ and
an approximation is obtained.

Noise2Noise training may be applied if no clean images are
available, but one can measure independent instances of the

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 05,2023 at 07:32:14 UTC from IEEE Xplore. Restrictions apply.

1322 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

Fig. 1. Three training regimes for CNN-based image denoising. Supervised training is performed with noisy and clean images, and the trained CNN is applied
to unseen noisy data. Noise2Noise training is performed with pairs of noisy images. Noise2Self training is performed with just noisy images, which are split into
input-target pairs. The loss is only computed where target pixels are non-zero. The red inset displays one of these locations. For Noise2Noise and Noise2Self, the
trained CNN can be applied to the training data to obtain clean images.

noise for each image. The training dataset contains pairs of
independent noisy images

(yi + εi, yi + δi) ∼ (y + ε, y + δ), i = 1, . . . , N, (6)

where the noise δ is a random variable that is statistically
independent of ε. The training task is to determine

ϕ̂ = arg minϕ

N∑

i=1

‖fϕ(yi + εi)− (yi + δi)‖22, (7)

and the trained neural network fϕ̂ approximates

h∗ = arg minhEy,ε,δ
[‖h(y + ε)− (y + δ)‖22

]
. (8)

If the noise δ is mean-zero, i.e., E[δ] = 0, the expected prediction
error in Equation (8) is minimized by the same regression
function h∗ as in the supervised regime (Equation (5)). In prac-
tice, Noise2Noise and supervised training indeed yield trained
networks with similar denoising performance.

Noise2Self enables training a neural network denoiser without
any additional images. The training dataset contains only noisy
images

ỹi ∼ y + ε, i = 1, . . . , N. (9)

The method depends on the assumption that the noise is element-
wise statistically independent and mean-zero, and that the clean
images exhibit some spatial correlation.

Noise2Self training uses a masking scheme that ensures that
the loss compares two statistically independent images. For sim-
plicity, we describe a simplified version of Noise2Self training,
and refer to [20] for a more in-depth explanation. In each training
step, the noisy image is split into two sub-images: one sub-image
— the target — contains non-adjacent pixels and the other
sub-image — the input — contains the remaining surrounding
pixels. The network is trained to predict the value of a noisy
pixel from its surrounding noisy pixels, as is shown in Figure 1.

The division of pixels between the input and target image
is determined by a partition J of the pixels such that adjacent
pixels are in different subsets. We denote by J ∈ J the target
section, and by JC the input section, where JC denotes the set

complement of J , containing all pixel locations not contained
in J . The input and target images 1JC ỹi and 1J ỹi have non-
zero pixels only in the input and target section, respectively.
Here, 1J denotes the indicator function such that element-wise
multiplication of 1J with an image retains pixel values in J and
sets pixels to zero elsewhere. The training task is to determine
the set of network parameters minimizing the training loss

ϕ̂ = arg minϕ

N∑

i=1

∑

J∈J
‖1Jfϕ(1JC ỹi)− 1J ỹi‖22, (10)

where the loss is only computed on the target sections.
The inference step is performed by the section-wise combined

network gϕ̂ : Y → Y ,

gϕ̂(ỹ) :=
∑

J∈J
1Jfϕ̂(1JC ỹ), (11)

that computes the output in each target section by applying the
trained network to the input section.

The piecewise-combined network is an approximation of the
regression function

g∗(ỹ) =
∑

J∈J
1JE[1Jy | 1JC (y + ε) = 1JC ỹ]. (12)

This regression function computes the conditional expectation
of the clean image in each target section using the surrounding
noisy pixels.

Although aforementioned methods can produce accurately
denoised photographic images in many cases [18], [20], [32], a
subclass of these algorithms — Noise2Self in particular — has
strong requirements on the element-wise independence of the
noise. These requirements do not generally hold for solutions of
linear inverse problems, as we discuss next.

B. Linear Inverse Problems

We are concerned with inverse problems that are described
by the equation

Ax = y, (13)

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 05,2023 at 07:32:14 UTC from IEEE Xplore. Restrictions apply.

HENDRIKSEN et al.: Noise2Inverse: SELF-SUPERVISED DEEP CONVOLUTIONAL DENOISING FOR TOMOGRAPHY 1323

where x ∈ X = Rn denotes an unknown image that we wish
to recover, and y ∈ Y = Rm denotes the indirect measurement.
The linear forward operator A : Rn → Rm describes the phys-
ical model by which the measurement arises from the image
x. As in the image denoising setting, these measurements are
corrupted by element-wise independent noise ε, and we write

ỹ = Ax+ ε. (14)

Although noise in Equation (14) is modeled as an additive term,
we note that this model also covers non-additive noise, such as
Poisson noise, where the noise term typically depends on the
signal intensity.

Reconstruction algorithms approximate the image x from
measured data y. A subclass of these reconstruction algorithms
computes a linear operator R : Y → X . Examples of linear
reconstruction algorithms include the filtered backprojection al-
gorithm for tomography and Wiener filtering for deconvolution
microscopy [1], [11]. We denote the reconstruction from a noisy
measurement by

x̃ = Rỹ = Ry +Rε, (15)

which can contain artifacts unrelated to the measurement noise,
e.g., under-sampling artifacts and/or reconstruction artifacts.
The reconstruction operator R may cause elements of the re-
constructed noise Rε to be statistically coupled, even if ε is
element-wise independent [13]. That Rε does not satisfy the
element-wise independence property is unavoidable for all but
the most trivial cases, since inverse problems are essentially
defined by the intricate coupling of the unknown image with its
indirect measurement.

This coupling of the noise seriously degrades the effectiveness
of the Noise2Self approach, as we will see in Section IV-D. In
the next section, we propose a self-supervised method that does
take into account the properties of noise in inverse problems.

III. NOISE2INVERSE

In this section, we present the proposed Noise2Inverse
method. First, we describe the assumed noise model, and give a
general description of the method. In Section III-A, we provide
a theoretical explanation how and why the convolutional neural
network learns to denoise. Here, we also discuss how these
results can guide implementation in practice. In Section III-B,
we give a more practical description of the implementation for
tomography, and discuss implementation choices with regard to
the obtained theoretical results.

Suppose that we wish to examine several unknown images
x1, . . . , xN ∼ x, sampled from some random variable x. We
obtain noisy indirect measurements

ỹi ∼ Axi + ε, i = 1, . . . , N, (16)

where we assume that the noise ε is element-wise independent
and mean-zero conditional on the data, i.e.,

Ex,ε [Ax + ε | Ax = y] = y. (17)

As in Equation (14), we assume the noisy may be non-additive.
Our goal is to recover the clean reconstructions that would have

been obtained in the absence of noise, i.e., x∗i = Ryi with yi =
Axi, i = 1, . . . , N .

One approach is to compute noisy reconstructions, and use
Noise2Self to remove the noise in the reconstructed images.
Given the noisy reconstructions x̃i = Rỹi, i = 1, . . . , N , the
training task is to determine the network parameters minimizing
the training loss

ϕ̂ = arg minϕ
∑

J∈Jx

N∑

i=1

‖1Jfϕ(1JC x̃i)− 1J x̃i‖22, (18)

where the target sections are contained in Jx, a partition of the
pixels of the reconstructed images. As discussed before, how-
ever, the noise in the input and target pixels of the reconstructed
images are unlikely to be statistically independent.

The key idea of the proposed Noise2Inverse method is that
it partitions the data in the measurement domain — where the
noise is element-wise independent — but trains the CNN in the
reconstruction domain. In each training step, the measured data
is partitioned into an input and target component, and a neural
network is trained to predict the reconstruction of one from the
reconstruction of the other. After training, the neural network is
applied to denoise the reconstructions.

The division of measured data between input and target
is determined by the collection J of target sections J ⊂
{1, 2, . . . ,m} that represent subsets of the measurement domain
Y = Rm. We note that J can be chosen such that it contains
structured subsets of the measurement domain, rather than all
subsets. For each target section J ∈ J , the measurement is
split into input and target sub-measurements ỹi,JC and ỹi,J ,
where JC denotes the set complement of J with respect to
{1, 2, . . . ,m}. The input and target sub-reconstructions are
computed by linear reconstruction operators RJ : YJ → X that
take into account only the measurements in section J ∈ J . We
define

x̃i,JC = RJC ỹi,JC and x̃i,J = RJ ỹi,J

to be the input and target sub-reconstructions of ỹi, respectively.
The training task is to determine the parameters

ϕ̂ = arg minϕ
1

|J |
∑

J∈J

N∑

i=1

‖fϕ(x̃i,JC)− x̃i,J‖22, (19)

that best enable the network fϕ̂ to predict the tar-
get sub-reconstruction from the complementary input sub-
reconstruction.

The final output is computed by the section-wise averaged
network, which applies the trained network to each input sub-
reconstruction, and computes the average, yielding

x∗i,out =
1

|J |
∑

J∈J
fϕ̂

(
x̃i,JC

)
. (20)

In the next section, we show why the final result approximates
the clean reconstruction.

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 05,2023 at 07:32:14 UTC from IEEE Xplore. Restrictions apply.

1324 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

A. Theoretical Framework

In this section, we embed Noise2Inverse in a theoretical
framework that explains why it is an accurate denoising method.
In addition, we describe design considerations that enable it to
operate successfully.

Below, we show that Noise2Inverse recovers an average
clean reconstruction in theory. This result is founded upon
Proposition 1, which shows that the expected prediction error
is the sum of the variance of the reconstructed noise and the
supervised prediction error, which is the expected prediction
error that would have obtained if the target reconstructions were
noise-free. Hence, the regression function that minimizes the
expected prediction error also minimizes the loss with respect to
the unknown clean reconstruction. Therefore, it predicts a clean
sub-reconstruction when given a noisy sub-reconstruction.

As before, we represent the clean and noisy measurements
by the random variables y = Ax and ỹ = y + ε. The input and
target sub-reconstructions are represented by random variables
x̃JC = RJC ỹJC and x̃J = RJ ỹJ for J ∈ J . In this case, the
trained network fϕ̂ obtained in Equation (19) approximates the
regression function

h∗ = arg minh

1

|J |
∑

J∈J
Ex,ε‖h(x̃JC)− x̃J‖2, (21)

which minimizes the expected prediction error. We randomize
the sectionJ as well, representing it by J taking values uniformly
at random inJ . The input and target sub-reconstructions become
random in J as well, which is denoted by x̃JC = RJC ỹJC and
x̃J = RJỹJ. The expected prediction error then becomes

1

|J |
∑

J∈J
Ex,ε‖h(x̃JC)− x̃J‖2 = Eμ‖h(x̃JC)− x̃J‖2,

where we replace the average over J ∈ J by the expectation
with respect to J. We denote with μ the joint measure of x, ε,
and J. Define the sub-reconstruction of the clean measurement

x∗J = RJyJ, (22)

which describes the clean target reconstruction. Now the ex-
pected prediction error can be decomposed into two parts.

Proposition 1 (Expected prediction error decomposition):
Let x̃J, x̃JC , x∗J, and μ be as above. Let ε be element-wise inde-
pendent and satisfy (17). Let RJ be linear for all J ∈ J . Then,
for any measurable function h : X → X , we have

Eμ‖h(x̃C
J)− x̃J‖22 = Eμ‖h(x̃C

J)− x*
J‖22

+ Eμ‖x*
J − x̃J‖22. (23)

Proposition 1 states that the expected prediction error can be
decomposed into the supervised prediction error, which depends
on the choice of h, and the variance of the reconstruction noise,
which does not depend on h. Therefore, when minimizing (23),
the function h minimizes the difference between its output and
the unknown clean target sub-reconstruction x*

J. Note that the
minimization of h occurs with respect to x*

J instead of the fully
sampled reconstruction x∗. When the target sections have been

chosen such that EJ[x*
J] = x∗ holds, however, the difference is

minimized.
The supervised prediction error, Eμ‖h(x̃JC)− x*

J‖22, is mini-
mized [36] by the regression function

h∗(x̃) = Eμ

[
x*

J | x̃JC = x̃
]
. (24)

The section-wise averaged network, defined in Equation (20),
therefore approximates the section-wise average of the regres-
sion function, defined by

g∗(ỹ) =
1

|J |
∑

J∈J
Eμ

[
x*

J | x̃JC = x̃JC

]
, (25)

where we write x̃JC = RJC ỹJC for ỹ ∈ Y and J ∈ J .
Using these results, we can explain why the section-wise

average obtains a denoised output. A noisy sub-reconstruction
can be explained by different values of the clean reconstruction
x*. The expectation Eμ[x*

J | x̃JC = x̃JC] is the mean of noiseless
reconstructed images consistent with the observed noisy recon-
struction x̃JC . Equation (24) therefore predicts that our method
produces denoised images. In fact, our method computes the
mean over all clean sub-reconstructions indicated by J ∈ J .

The obtained results may be used to guide implementation in
practice. Equation (25) explains how to choose subsets J . First
of all, the mean of the clean sub-reconstructions 1

|J |
∑

J∈J x*
J

must resemble the desired clean image. This can be achieved
by choosing J to be a partition of {1, . . . ,m}, or, by choosing
J such that each measured data point is contained in the same
number of overlapping subsets J ∈ J . Not doing so introduces
a systematic bias into the reconstruction.

Second, the sub-reconstructions should be homogeneously
informative throughout the image. If the sub-reconstructions are
very different, or contain limited information about large parts
of the image, then many dissimilar clean images are consistent
with the observed noisy reconstruction, and the average over all
these images will become blurred.

We note that x* denotes the clean reconstruction, rather than
the unknown image. This has two consequences. First, the theory
predicts that artifacts that are unrelated to the measurement
noise, e.g. under-sampling artifacts and reconstruction artifacts,
will not be removed by the proposed network. Second, if the
reconstruction method also performs denoising operations, for
instance by blurring, then the result of our method might be-
come blurred. The same effect might occur when a non-linear
reconstruction method is used, for which Proposition 1 does not
generally hold. In this case, the regression function averages the
bias introduced by the non-linear reconstruction of the noise. In
the next section, we use the considerations discussed above to
devise an approach for computed tomography.

B. Noise2Inverse for Computed Tomography

In this section, we describe our implementation of
Noise2Inverse for 3D parallel-beam tomography, and discuss
how the implementation relates to the theoretical considerations
discussed before.

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 05,2023 at 07:32:14 UTC from IEEE Xplore. Restrictions apply.

HENDRIKSEN et al.: Noise2Inverse: SELF-SUPERVISED DEEP CONVOLUTIONAL DENOISING FOR TOMOGRAPHY 1325

Fig. 2. Noise2Inverse for computed tomography. First, 3D parallel-beam
tomography obtains a stack of noisy sinograms by integrating over parallel lines
at several angles. Next, the stack of sinograms is split along the angular axis.
Then, the split sinograms are reconstructed to act as training dataset. During
training, a dynamic subset of slices is averaged to form the input; the target is
the average of the remaining slices. To obtain a low-noise result, the trained
CNN is applied to all arrangements of input slices and averaged.

The 3D parallel-beam tomography problem may be consid-
ered as a stack of 2D parallel-beam problems. In 2D parallel-
beam tomography, a parallel X-ray beam penetrates an object,
after which it is measured on a line detector. The line detector
rotates around the object while capturing the intensity of the
attenuated X-ray beam, as illustrated in the top panel of Figure 2.

In practice, a finite number of Nθ projections are acquired
on a line grid of Np detector elements at fixed angular intervals.
Hence, the projection data can be described by a vector ỹ ∈ Y =
Rm,m = Nθ ×Np, which is known as the sinogram. Likewise,
the two-dimensional imaged object is represented by a vector
x ∈ X = Rn, n = N2

x . We can formulate 2D parallel-beam to-
mography as a discrete linear inverse problem, whereA = (aij)
is an m× n matrix such that aij represents the contribution of
object pixel j to detector pixel i. In 3D tomography, a sequence
of 2D projection images of the 3D structure is acquired, which
may be converted to a stack of 2D sinograms.

The imaged object can be recovered from the sinogram by
a reconstruction algorithm, such as the filtered back-projection
algorithm (FBP) [11]. FBP is an example of a linear operator that
couples the measured noise in the reconstruction, as described
in Equation (15). In addition, it is typically fast to compute,
although its reconstructions tend to be noisy [15].

The Noise2Inverse method is well-suited to denoise this
kind of problem. Suppose we have obtained a stack of 2D
noisy sinograms ỹ1, ỹ2, . . . , ỹN , acquired from a range of Nθ

equally-spaced angles θ1, θ2, . . . , θNθ
. Our approach follows the

following steps.
First, we split each sinogram ỹi into K sub-sinograms

ỹi,1, . . . , ỹi,K such that each sub-sinogram ỹi,j contains pix-
els from every Kth angle θj , θj+K , θj+2K , . . . , θj+Nθ−K . The
number of splits K is a hyper-parameter of the method.

Using the FBP algorithm, we compute sub-reconstructions

x̃i,j = Rj(ỹi,j), j = 1, . . . ,K. (26)

For training, the division of the sub-reconstructions over the
input and target is determined by a collection J , which contains
subsets J ⊂ {1, . . . ,K}. For J ⊂ {1, . . . ,K}, we define the
mean sub-reconstruction as

x̃i,J =
1

|J |
∑

j∈J
x̃i,j . (27)

As before, training of the neural network fϕ aims to find

ϕ̂ = arg minϕ

N∑

i=1

∑

J∈J
‖fϕ

(
x̃i,JC

)− x̃i,j‖22. (28)

The final output,x∗i,out, is computed slice by slice by section-wise
averaging of the output of the trained network

x∗i,out =
1

|J |
∑

J∈J
fϕ̂

(
x̃i,JC

)
.

In this paper, we identify two training strategies specifying J :
X:1 Using this strategy, the input is the mean of K − 1

sub-reconstructions, and the target is the remaining sub-
reconstruction, i.e.,

JX:1 = {{1}, {2}, . . . , {K}}. (29)

1:X This is the reverse of the previous strategy: the input is a
single sub-reconstruction, and the target is the mean of
the remaining sub-reconstructions, i.e.,

J1:X = {JC | J ∈ JX:1}. (30)

In the 1:X strategy, the input is noisier than the target image,
which corresponds to supervised training, where the quality of
the target images is usually higher than the input images. The
opposite is the case for the X:1 strategy, which corresponds
more closely to Noise2Self denoising in its distribution of data
between input and target, where more pixels are used to compute
the input than to compute the target images. Note that other splits
are possible, but we focus on these two strategies because they
represent two extremes in the trade-off between input quality
and target quality.

Our implementation of Noise2Inverse for tomography is
consistent with the theoretical considerations discussed in the
previous section. In both strategies, we prevent biasing the
reconstructions, by ensuring that each projection angle occurs in
reconstructions at the same rate. In fact, a property of FBP is that
the full reconstruction is the mean of the sub-reconstructions.
In theory, this means that training converges to the conditional

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 05,2023 at 07:32:14 UTC from IEEE Xplore. Restrictions apply.

1326 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

Fig. 3. Displays of the clean reconstruction (left) and low-dose reconstructions of the central slice of the foam phantom. Both α, the absorption of the phantom
and I0, the initial photon count per pixel, were varied. The yellow insets show an enlarged view of the reconstructions.

expectation of the full clean FBP reconstruction. Furthermore,
we use every Kth projection angle to compute the reconstruc-
tions. This ensures that the reconstructions are homogeneously
informative throughout the image, and we prevent missing
wedge artifacts, which occur when adjacent projection angles
are used [37]. In addition, we use the FBP algorithm with the
Ram-Lak filter [11], which does not blur the reconstructions
to remove noise. Finally, we remark that our method is not
geometry-specific, and can also be applied to non-parallel ge-
ometries, as is demonstrated in Section IV-C. In the next section,
we describe the performance of this implementation in practice.

IV. RESULTS

We performed several experiments on tomographic recon-
struction problems. These experiments were performed with the
aim of assessing the performance of the proposed Noise2Inverse
method, determining the suitability of Noise2Self denoising
for tomographic images, and analyzing the impact of hyper-
parameters on the performance of Noise2Inverse.

Comparison to denoising techniques Noise2Inverse is com-
pared to tomographic reconstruction algorithms, an image de-
noising method, and an unsupervised deep learning method
in Sections IV-A, IV-B, and IV-C. These sections describe a
quantitative evaluation on simulated tomographic data, medical
CT data with simulated noise, and a qualitative evaluation on an
existing experimental dataset.

Noise2Self on tomographic images The experiments in
Section IV-D investigate a transfer of Noise2Self denoising to
inverse problems. The Noise2Self method was evaluated on
two datasets: one dataset with noise common to tomographic
reconstructions and one with similar but element-wise indepen-
dent noise. In addition, Noise2Inverse was compared to several
variations of Noise2Self.

Hyper-parameters In Section IV-F, the impact on the recon-
struction quality of several variables was investigated, specifi-
cally, the number of projection angles Nθ, the number of splits
K, the training strategy J , and the neural network architecture.
In addition, we analyze the generalization performance of the
Noise2Inverse approach by training on progressively smaller
subsets of the training dataset.

We first describe the simulated tomographic dataset and our
implementation of Noise2Inverse. Both are used throughout the
experiments.

Simulated data A cylindrical foam phantom was generated
containing 100,000 randomly-placed non-overlapping bubbles.
Analytical projection images of the phantom were computed
using the open-source foam_ct_phantom package [10]. The
value of each detector pixel was calculated by taking the average
projection value of four equally-spaced rays through the pixel.
Projection images were acquired from 1024 equally spaced
angles.

The projection images of the foam dataset were corrupted
with various levels of Poisson noise. The noise was varied by
altering the average absorption of the sample α and the incident
photon count per pixel I0. The average absorption of the sample
was calculated as the mean of the vector 1− e−yi for positions
i where yi was non-zero, and it was adjusted by modifying the
intensity of the sinogram. The pixels in the noisy projections
where sampled from p̃, which for clean pixel value p was
distributed as

I0e
−p̃ ∼ Poisson

(
I0e

−p
)
.

i.e., a Poisson distribution on the pre-log raw data. Depending on
the photon count and attenuation of the object, this type of noise
is mean-zero conditional on the clean projections, as described
in Equation (17).

FBP reconstructions were computed on a 5123 voxel grid
with the Ram-Lak filter using the ASTRA toolbox [38]. On this
grid, the radius of the random spheres ranged between 1.5 and 51
voxels. A reconstruction of the central slice of the foam phantom
can be found in Figure 3, along with reconstructions of the noisy
projection datasets.

Noise2Inverse We describe the Noise2Inverse implementa-
tion in terms of neural network architecture and training proce-
dure.

The principal network architecture used throughout the ex-
periments was the mixed-scale dense (MS-D) network [39],
of which we used the open-source msd_pytorch implemen-
tation [40]. The MS-D network has 100 single-channel inter-
mediate layers, and the convolutions in layer i are dilated by
di = 1 + (i mod 10). With 45,652 trainable network parame-
ters, the MS-D architecture has considerably fewer parameters
than comparable network architectures, reducing the risk of
overfitting to the noise. The MS-D architecture is compared with
other architectures in Section IV-F.

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 05,2023 at 07:32:14 UTC from IEEE Xplore. Restrictions apply.

HENDRIKSEN et al.: Noise2Inverse: SELF-SUPERVISED DEEP CONVOLUTIONAL DENOISING FOR TOMOGRAPHY 1327

Fig. 4. Results of supervised training, Noise2Inverse, Deep Image Prior (DIP), TV-MIN, BM3D, and SIRT on simulated foam phantoms with varying absorption
α and photon count I0. Results are shown on the central slice. The insets display the noisy and clean reconstructions (yellow) and the algorithm output (red).

The networks were trained for 100 epochs using the ADAM
algorithm [41] with a mini-batch size of 12 and a learning rate
of 10−3.

A. Simulation Study

In this section, Noise2Inverse is compared to two conventional
iterative reconstruction techniques: the simultaneous iterative
reconstruction technique (SIRT) [42] and Total-Variation Mini-
mization (TV-MIN) [43]. In addition, we compare to the BM3D
image denoising algorithm [33], the Deep Image Prior [26],
and to supervised training. The reconstruction quality of these
methods is assessed on a simulated foam phantom dataset with
various noise profiles.

For Noise2Inverse, we used the X:1 training strategy with
K = 4 splits. We show that this is a robust choice in
Section IV-F.

Iterative reconstruction The hyper-parameters of SIRT and
TV-MIN were tuned using the usually unavailable clean recon-
structions. Therefore, the results of SIRT and TV-MIN might
be better than what is achievable in practice, but they serve
as a useful reference for comparison to Noise2Inverse. SIRT
has no explicit hyper-parameters, but its iterative nature can be
exploited for regularization: early stopping of the algorithm can
attenuate high-frequency noise in the reconstructed image [42].
We selected the number of iterations (with a maximum of 1000)
with the lowest Peak Signal to Noise Ratio (PSNR) on the central
slice with respect to the clean reconstruction.

The FISTA algorithm [43] was used to calculate the TV-MIN
reconstruction. TV-MIN has a regularization parameter λ that
effectively penalizes steps in the gray value of the reconstructed
image. As with SIRT, we selected the optimal number of itera-
tions (with a maximum of 500) based on the PSNR of the central
slice with respect to the clean reconstruction, and the value of
the λ parameter maximizing the PSNR was determined using
the Nelder-Mead method [44].

BM3D We used the BM3D implementation described in [45].
The BM3D algorithm was applied to the noisy FBP reconstruc-
tions and provided with the standard deviation of the noise,
which was calculated from the difference image between the
noisy and clean FBP reconstruction. The addition of a prewhiten-
ing step can improve denoising performance [46], but was not
included as its computation becomes infeasible for large image
sizes.

Supervised A separate training dataset was created to train
MS-D networks with a supervised training approach. Here, the
input and target images were noisy and clean reconstructions,
respectively. The training parameters for supervised training —
learning rate, batch size, network architecture — were exactly
the same as for the Noise2Inverse network.

Deep Image Prior We used the Deep Image Prior implemen-
tation from [26]. The quality of the result can be improved by
adding noise to the input and by employing an exponentially
decaying average of recent iterations [27]. We used both tech-
niques. To maximize the PSNR with respect to the ground truth,
the training is stopped early with a maximum of 10000 iterations,
and the σ parameter of the input noise is optimized using a line
search.

Metrics and evaluation The output of each method was
compared to the clean FBP reconstruction using two metrics:
the structural similarity index (SSIM) [47] and the Peak Signal
to Noise Ratio (PSNR). Because the reconstructed images did
not fall in the [0, 1] range, these metrics were computed with a
data range that was determined by the minimum and maximum
intensity of the clean reconstructed images. The metrics were
calculated on the convex hull surrounding the object, which
diminishes the importance of the background image quality. Due
to the computational demands of deep image prior, we compute
metrics on a single slice of the reconstruction rather than on the
whole volume.

The top row of Figure 4 displays the output of Noise2Inverse
for the central slice of the three simulated datasets. Denoising

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 05,2023 at 07:32:14 UTC from IEEE Xplore. Restrictions apply.

1328 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

Fig. 5. Original high-dose reconstructions of low-dose CT grand challenge (clean) and reconstructions with simulated noise (noisy).

TABLE I
ON THE FULL VOLUME AND ON THE CENTRAL SLICE: COMPARISON OF PSNR

AND SSIM METRICS FOR SIRT, TV-MIN, BM3D, DEEP IMAGE PRIOR,
NOISE2INVERSE, AND A SUPERVISED CNN AT SEVERAL NOISE PROFILES.

BOLD FONT IS USED TO EMPHASIZE THE BEST METRICS, EXCLUDING

SUPERVISED TRAINING, WHICH SERVES AS AN ORACLE

CASE FOR COMPARISON

these datasets is challenging, as can be seen when compar-
ing with SIRT and TV-MIN: these algorithms fail to recover
several fine details. In contrast, our method achieves a much
improved visual impression on all three datasets. As can be seen
in Table I, the PSNR and SSIM metrics of the Noise2Inverse
method are considerably higher. The supervised network attains
the best metrics, although by a slight margin compared to the
Noise2Inverse method.

B. Medical CT

To assess the quality of reconstruction on medical data, we
evaluate our method on simulated data from human abdomen
CT scans from the low-dose CT Grand Challenge dataset [3].
This dataset contains full-dose reconstructions of 10 patients,
consisting of a total of 2378 slices of 512× 512 pixels. Follow-
ing [48], sinograms were computed from these reconstructions
by projecting onto a fan-beam geometry. Noise was applied,
corresponding to a photon count of 10,000 incident photons per
pixel. Reconstructions are shown in Figure 5.

We compare the same methods as before. The dataset was
split into a training dataset, consisting of nine patients, and a
test set, containing the remaining patient. Both Noise2Inverse
and the supervised CNN were trained on the training set. The
optimal hyperparameters for SIRT, TV-MIN, and BM3D were
determined on the training set. The Deep Image Prior, including
its hyperparameters, was directly optimized with respect to the
slices displayed in Figure 6. Metrics were calculated on the full
volume of the test patient, and on the top displayed slice in
Figure 6.

Results are shown in Figure 6 and Table II. The Noise2Inverse
method achieves similar results to TV-MIN, but without the
staircasing artifacts. The difference between the methods is
smaller in this experiment. For the SSIM metric, this is likely due
to the low contrast of structures of interest compared to the full
intensity range of the reconstructions. In general, compared to
previous experiments, the noise has significantly lower intensity,
and many different objects structures are present, each of which
must be learned by the neural network.

C. Experimental Data

The Noise2Inverse method was compared to SIRT and TV-
MIN on an existing real-world experimental dataset from To-
moBank [49]. The dataset, Dorthe_F_002, was acquired at
the Advanced Photon Source at Argonne National Laboratory,
and contained 900 noisy projection images of 960× 600 pix-
els depicting a cylinder of glass beads that was scanned at
experimental conditions designed to capture the dynamics of
fast evolving samples. At 6 milliseconds per projection image,
the exposure time was therefore much shorter than what is
required for low-noise data acquisition [49]. The data was pre-
processed with the TomoPy software package [50] and recon-
structed with FBP [38], resulting in 900 2D slices of 960× 960
pixels. We stress that no low-noise projection images were
available.

For Noise2Inverse, an MS-D network was trained with the X:1
strategy and 4 splits for 100 epochs. The best parameter settings
for SIRT and TV-MIN were determined by visual inspection. For
SIRT, the best reconstruction was chosen from 1000 iterations on
the central slice. For TV-MIN, the number of iterations was fixed
at 500, and the optimal value of the regularization parameter was
chosen from several values regularly spaced on an exponential
grid. For BM3D, the best image was chosen from various values
of the standard deviation parameter. We have omitted the Deep

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 05,2023 at 07:32:14 UTC from IEEE Xplore. Restrictions apply.

HENDRIKSEN et al.: Noise2Inverse: SELF-SUPERVISED DEEP CONVOLUTIONAL DENOISING FOR TOMOGRAPHY 1329

Fig. 6. Results of supervised training, Noise2Inverse, Deep Image Prior, TV-MIN, BM3D, and SIRT on Low-dose CT grand challenge data with simulated noise.
The red insets display the algorithm output.

Fig. 7. Reconstructions of cylinder containing glass beads [49] using: FBP, SIRT, BM3D, TV-MIN, and the proposed Noise2Inverse method. The red insets show
an enlarged view of the algorithm output.

TABLE II
MEDICAL DATA: COMPARISON OF PSNR AND SSIM METRICS FOR SIRT,

TV-MIN, BM3D, DEEP IMAGE PRIOR, A SUPERVISED CNN, AND

NOISE2INVERSE. BOLD FONT IS USED TO EMPHASIZE THE BEST METRICS,
EXCLUDING SUPERVISED TRAINING, WHICH SERVES AS AN ORACLE

CASE FOR COMPARISON

Image Prior since there was no ground truth with respect to
which to perform early stopping.

After initial reconstructions, we found that the reported value
of the center of rotation offset — 4.5 pixels from center —
yielded unsatisfactory results. The reconstructions in Figure 7
were computed with a center of rotation that was shifted by 8.9
pixels. Results are shown for the central slice of the reconstructed
volume. The FBP and SIRT reconstructions exhibit severe noise.
The TV-MIN reconstruction improves on the level of noise, but
contains stepping artifacts that reduce the effective resolution.
Our method is able to remove the noise while retaining the finer
structure of the image.

D. Self-Supervised Image Denoising for Tomography

The performance of Noise2Self on tomographic images
was evaluated in two experiments. The first experiment tested
the element-wise independence requirement, by evaluating
Noise2Self on images corrupted by element-wise independent
noise and on images reconstructed from noisy projection data.
The second experiment was a comparison of Noise2Inverse to
Noise2Self, including variations of Noise2Self applied to pro-
jection and sinogram images. We first describe the Noise2Self
implementation.

Noise2Self The original implementation of Noise2Self [20]
was used, which obtains better performance than the simplified
scheme discussed in Section II-A. The training procedure was
the same as for Noise2Inverse: an MS-D network was trained
for 100 epochs as described at the beginning of Section IV.

Tomographic versus photographic noise Noise2Self was
applied to images with coupled reconstructed noise and to sim-
ilar but element-wise independent noise. In these experiments,
the same foam phantom was used as before, and Gaussian noise
was used throughout the comparison to strictly compare the
independence properties of the noise. First, we confirmed that
Noise2Self obtained denoised images when the noise satisfied
the element-wise independence property. In this first case, a
clean reconstruction was computed on a 5123 voxel grid, and
independent and identically distributed (i.i.d.) Gaussian noise
was added to the reconstructed images. The PSNR of the noisy

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 05,2023 at 07:32:14 UTC from IEEE Xplore. Restrictions apply.

1330 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

Fig. 8. The effect of element-wise independence of the noise on the Noise2Self method. In the top row, Gaussian noise is added to a reconstruction, and Noise2Self
is applied to remove it. In the bottom row, Gaussian noise is added to the projections before reconstruction, resulting in a reconstructed image with similar but
coupled noise. Noise2Self achieves lower PSNR in the bottom row than in the top row.

volume with respect to the clean reconstruction was 11.06.
Then, Noise2Self was applied to obtain a denoised volume with
significantly improved PSNR of 25.23. This process is displayed
in the top row of Figure 8.

Next, we investigated how Noise2Self performed on coupled
reconstructed noise. In this case, i.i.d. Gaussian noise was added
to the projection images, and a reconstruction was computed
afterwards. The PSNR of this noisy reconstruction with respect
to the clean reconstruction was 11.59. When Noise2Self was
applied to the noisy reconstructed volume, it obtained a PSNR
of 16.14, which is only half of the improvement that it obtained
in the first case. This process is displayed in the bottom row of
Figure 8.

The results displayed in Figure 8 demonstrate that the perfor-
mance of Noise2Self is substantially degraded when the noise is
not element-wise independent. Even though the starting PSNR
in the bottom row is slightly higher, the PSNR improvement
is only half of the top row. In the top row, the validation error
continued to improve for 100 epochs, whereas in the bottom row,
training started to overfit to the noise within the first 10 epochs
of training, which could be caused by the statistical dependence
between the input and target images.

Noise2Self on sinogram and projections To mitigate the
effect of coupled noise, Noise2Self was also applied to images
that do satisfy the pixel-wise independence property: the pro-
jection images and sinograms. In these cases, Noise2Self was
first applied to denoise the raw images, and reconstructions were
computed from the denoised projection images or sinograms.

As can be seen in Figure 9, the variations of Noise2Self
did improve results, but not beyond Noise2Inverse. Although
applying Noise2Self on the projection and sinogram images did
accurately denoise the raw images, the resulting reconstructions
of these denoised images exhibited some blurring (projections)
and streaks (sinograms).

Fig. 9. From top to bottom, results on the central slice of the foam phantom
of Noise2Self applied to reconstructed, projection, and sinogram images. For
comparison, the insets show the output of Noise2Inverse (yellow) and Noise2Self
(red).

As displayed in Table III, the Noise2Self-based method with
the best metrics, Noise2Self on sinograms, obtains PSNR on par
with TV-MIN and SSIM worse than TV-MIN, see Table I.

E. Noise2Inverse and Missing Wedge Artifacts

The quality of tomographic reconstructions may be degraded
due to artifacts other than measurements noise, such as missing

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 05,2023 at 07:32:14 UTC from IEEE Xplore. Restrictions apply.

HENDRIKSEN et al.: Noise2Inverse: SELF-SUPERVISED DEEP CONVOLUTIONAL DENOISING FOR TOMOGRAPHY 1331

TABLE III
COMPARISON OF PSNR AND SSIM METRICS FOR NOISE2SELF ON

RECONSTRUCTION, PROJECTION, AND SINOGRAM IMAGES

Fig. 10. Noise2Inverse applied to a noisy dataset with missing wedge artifacts.
The red and yellow insets show an enlarged view of the output and ground-truth,
respectively.

wedge artifacts. These artifacts arise when projection data is
acquired along an arc spanning less than 180◦. The theoretical
results in Section III-A predict that Noise2Inverse preserves
these artifacts.

To test this prediction, we apply Noise2Inverse to a foam
dataset where the reconstructions are computed from 400 projec-
tion images along an arc of approximately 60°. Noise is applied
consistent with an absorption of 10% and an incident photon
count of 1000 photons per pixel. As can be seen in Figure 10,
Noise2Inverse accurately denoises the reconstructed image, but
leaves the missing wedge artifacts intact.

F. Hyper-Parameters

We analyzed the influence of the number of splits, training
strategy, number of projection angles, and neural network archi-
tecture on the effectiveness of Noise2Inverse. In addition, we
tested the generalization by training on subsets of the data.

The same foam phantom was used, and noisy projection
data were acquired from 512, 1024, and 2048 angles, of which
the first and last acquisitions were under-sampling and over-
sampling the projection angles, respectively. For each dataset,
the total number of incident photons remained constant: we used
I0 = 400, 200, 100 forNθ = 512, 1024, 2048, respectively. The
average absorption was 23%, which is the default value of the
foam_ct_phantom package.

Splits and strategy The performance of the Noise2Inverse
method was evaluated with a number of splits K =
2, 4, 8, 16, 32, and with strategies X:1 and 1:X, see Equa-
tions (29) and (30). These experiments were performed with

Fig. 11. The PSNR metric for the Noise2Inverse method with the MS-D
network applied on the foam phantom with varying number of splits, angles, and
varying input-target splitting strategies. The X:1 strategy attains higher PSNR
than the 1:X strategy.

MS-D networks, which were trained for 100 epochs, and used
the same training procedure as before.

The PSNR metrics are displayed in Figure 11. The figure
shows that the X:1 strategy yields considerably better results
than the 1:X strategy, except for K = 2, where they are equiv-
alent. Setting the number of splits to K = 2 yields good results
across the board, but the PSNR can be improved by setting K
to 4 or 8, if the projection angles are not under-sampled. In
general, the figure shows that increasing the number of acquired
projection images can improve reconstruction quality without
increasing the photon count. On the other hand, we note that
reducing the number of projection images further can reduce
the reconstruction quality as the artifacts arising from under-
sampling are not removed by the neural network.

Neural network architectures We compared three neural
network architectures: the U-Net [51], DnCNN [32], and the
previously described MS-D [39] network architectures, all of
which were implemented in PyTorch [52].

The U-net is based on a widely available open source
implementation,1 which is a mix of the architectures described
in [51], [53]. Like [51], the images are down-sampled four
times using 2× 2 max-pooling, the “up-convolutions” have
trainable parameters, and the convolutions have 3× 3 kernels.
Like [53], this implementation uses batch normalization be-
fore each ReLU, the smallest image layers are 512 channels
instead of 1024 channels, and zero-padding is used instead
of reflection-padding. The resulting network has 14,787,777
trainable network parameters.

We used the DnCNN implementation from [20] with a
depth of 20 layers, which is advised for non-Gaussian denois-
ing [32]. The resulting network has 667,008 trainable network
parameters.

The previous experiment was repeated on the dataset con-
taining 1024 projection images. The networks were trained for
100 epochs, and used the same training procedure as before.
The results are displayed in Figure 12. The figure shows that
the U-net achieved overall highest performance using the X:1
strategy with 4 splits. In addition, the effect of the number
of splits K is roughly the same across strategies and network
architectures, except for U-net. In fact, the PSNR metric of
the U-Net with the 1:X strategy initially increases when K is

1[Online]. Available: https://github.com/milesial/Pytorch-UNet/

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 05,2023 at 07:32:14 UTC from IEEE Xplore. Restrictions apply.

https://github.com/milesial/Pytorch-UNet/

1332 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

Fig. 12. Comparison of the PSNR metric. The MS-D, U-Net, and DnCNN
networks were trained for 100 epochs on the foam phantom with 1024 projection
angles.

Fig. 13. The PSNR on the central slice as training progressed. A U-Net,
DnCNN, and MS-D network were trained with the X:1 strategy and number
of splits K = 4 for 1000 epochs on the foam phantom reconstructed from 1024
projection angles.

increased, which might be due to the large network architecture
and number of parameters compared to the other two neural net-
work architectures. Nonetheless, the X:1 strategy consistently
attains higher PSNR than the 1:X for the U-net as well. We note
that the U-Nets performed worse than the other networks with 2
splits, which suggests that training might have overfit the noise.

Overfitting We tested if the networks overfit the noise when
trained for a long time. All three networks were trained for 1000
epochs using the X:1 strategy and K = 4 on the same foam
dataset with 1024 projection angles. The resulting PSNR on the
central slice as training progressed is displayed in Figure 13.
The figure shows that U-Net and DnCNN started to fit the noise,
whereas the PSNR of the MS-D network continued to increase.
This matches earlier results on overfitting [10], [39], [54]. If the
training dataset had been larger, these effects could have been
less pronounced.

Generalization We tested whether the network could be
trained on fewer data samples and generalize to unseen data.
We used the 1024-angle foam dataset, the MS-D network, 4
splits, and the X:1 strategy. The network was trained on the first
4, 8, 16, 32, 64, 128, and 256 slices of the data. We report PSNR
metrics on this training set and on the remaining slices, which
we refer to as the test set. The number of epochs was corrected
for the smaller dataset size, such that all networks were trained
for the same number of iterations. When the training set exceeds
32 slices, the PSNR on the training and test set is comparable,
as can be seen in Figure 14.

Fig. 14. An MS-D network was trained on subsets of the data. The PSNR on
the training set (black) and test set (remaining data; red) are displayed.

V. DISCUSSION

The results show that the proposed Noise2Inverse method
outperforms conventional reconstruction algorithms SIRT and
TV-MIN by a large margin as measured in PSNR and SSIM. This
improvement is accomplished despite optimizing the hyper-
parameters of SIRT and TV-MIN on the clean reconstruc-
tion and without likewise optimizing the Noise2Inverse hyper-
parameters. In addition, Noise2Inverse is able to significantly
reduce noise in challenging real-world experimental data, im-
proving on the visual impression obtained by SIRT and TV-MIN.

Extending the Noise2Self framework [20], we describe a
general framework for denoising linear image reconstructions
that provides a theoretical rationale for the success of our
method. The framework shows that clean reconstructions may
be recovered from noisy measurements without observing clean
measurements, under the common assumption that the measured
noise is element-wise independent and mean-zero. We remark
that in low-noise situations, the trained network does not intro-
duce additional artifacts in its output, as predicted by the theory.

We now focus on the comparison between the proposed
Noise2Inverse approach and the existing Noise2Noise and
Noise2Self approaches. As in Noise2Noise, the network is pre-
sented with two noisy images during training. In Noise2Inverse,
however, these images are sub-sampled reconstructions, and
since the artifacts arising from sub-sampling the data are cor-
related, the input and target images are not statistically inde-
pendent — although the reconstructed noise in these images is
statistically independent. Therefore, our results fall outside of
the Noise2Noise framework. As in Noise2Self, Noise2Inverse
trains a denoiser from unpaired measurements. The key dif-
ference is that the noise is element-wise independent in the
measurement domain, rather than in the reconstruction domain,
where denoising takes place. Therefore, the results from [20] do
not carry over to the inverse problems setting. However, we are
able to prove Proposition 1 using essentially similar arguments
to those in [20].

The framework points the way to new applications of
Noise2Inverse to linear image reconstruction methods. The
implementation of Noise2Inverse for tomography shows that
several aspects are worth considering. If reconstruction artifacts
arise in the absence of noise, they will be preserved. In addition,

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 05,2023 at 07:32:14 UTC from IEEE Xplore. Restrictions apply.

HENDRIKSEN et al.: Noise2Inverse: SELF-SUPERVISED DEEP CONVOLUTIONAL DENOISING FOR TOMOGRAPHY 1333

if the reconstruction algorithm filters the noise at the expense of
resolution, this will cause blurring in the output of our method.
Moreover, splitting the measurement uniformly can avoid bias-
ing the output of the method towards a particular subset of the
measured data. Finally, the performance of the neural network
can be improved by ensuring that the sub-reconstructions are
homogeneously informative throughout the image.

Noise2Inverse is well-suited to imaging modalities that permit
trading acquisition speed for measurement noise, as it aims to
remove measurement noise but does not remove artifacts re-
sulting from under-sampling, Whether this trade-off is possible,
depends on the specifics of the imaging modality. Tomographic
acquisition, for instance, permits acquiring the same number of
projection images by lowering the exposure time at the cost of
increased noise [3]. Magnetic Resonance Imaging (MRI), on
the other hand, is usually accelerated by reducing the number
of measurements, rather than by acquiring noisier measure-
ments [55]. Examples of imaging modalities that permit trading
speed for noise include ultrasound imaging [4], deconvolution
microscopy [1], and X-ray holography [7].

The comparison of Noise2Inverse with Noise2Self demon-
strates that the success of our method depends not only on
considerations of statistical independence, but also on taking
account of the physical forward model. Regarding statistical
independence, we have demonstrated that a straightforward
application of Noise2Self fails on noisy tomographic reconstruc-
tions due to coupling of the noise. Regarding the forward model,
we have investigated a two-step approach, where Noise2Self is
applied to projection or sinogram images — which do satisfy
the element-wise independence requirement — before recon-
structing. This approach performs worse than TV-MIN and
Noise2Inverse in terms of visual impression and quality metrics.
This matches earlier results [16], and could result from the fact
that the consistency of the projection and sinogram images with
respect to the forward operator is not necessarily preserved.
These results suggest that taking into account the properties of
the inverse problem — as Noise2Inverse does — significantly
improves the quality of the reconstruction.

Several variables affect the performance of Noise2Inverse.
Most importantly, the training strategy that reconstructs the input
images from at least as many projection angles as the target
images — the X:1 strategy — yields better results than vice
versa. This conclusion holds regardless of network architecture,
number of splits, or number of projection angles. This suggests
that noise in the gradient is less problematic than noise in the
input for neural network training, as was observed before [18].
Another variable that consistently predicts performance is the
number of angles; acquiring more projections yields a small but
consistent performance boost. The number of parts in which the
measured data is split, however, deserves more nuance: when
the projection angles are under-sampled, the results indicate
that two parts yield the best results; otherwise, splitting into
more parts yields better results. Finally, maximal performance
can be obtained by tuning the neural network architecture and
number of training iterations. When tuning is not an option, an
MS-D network can be trained with limited risk of overfitting the
noise. Finally, the object under study influences the comparative
advantage of our method to conventional reconstruction

techniques. When the aim is to retrieve low-contrast details from
low-noise reconstructions, the difference may be minimal. When
the object is self-similar and the noise has high intensity, on
the other hand, our method can significantly outperform other
methods.

VI. CONCLUSION

We have proposed Noise2Inverse, a CNN-based method for
denoising linear image reconstructions that does not require any
additional clean or noisy data beyond the acquired noisy dataset.
On tomographic reconstruction problems, it strongly outper-
forms both standard reconstruction techniques such as Total-
Variation Minimization, and self-supervised image denoising-
based techniques, such as Noise2Self. We also demonstrate that
the method is able to significantly reduce noise in challenging
real-world experimental datasets.

APPENDIX

Proof: [of Proposition 1] First, expand the squared norm [56,
Lemma 3.12]

‖h(x̃JC)− x̃J‖2 = ‖h(x̃JC)− x*
J + x*

J − x̃J‖2

= ‖h(x̃JC)− x*
J‖2 + ‖x*

J − x̃J‖2

+ 2〈h(x̃JC)− x*
J, x

*
J − x̃J〉.

Let x ∈ X , y = Ax, and J ∈ J . Then, from Equation (17),
we obtain

Eμ [x̃J | x, J] = Eμ [RJ ỹJ | x, J]
= RJ Ex,ε [yJ + εJ | x]
= RJ yJ

= x∗
J , (31)

where we use that RJ is linear.
The noisy random variables x̃JC and x̃J are independent condi-

tioned onx andJ , since domains ofRJ andRJC do not overlap,
and the noise ε is element-wise statistically independent. This
independence condition allows us to interchange the order of
the expectation and inner product [57, Proposition 2.3], which
yields, using Equation (31),

E
[〈h(x̃JC)− x*

J, x
*
J − x̃J〉 | x, J

]

= 〈E [
h(x̃JC)− x*

J | x, J] ,E [
x*

J − x̃J | x, J]〉
= 〈E [

h(x̃JC)− x*
J | x, J] , 0〉

= 0.

Using the tower property of expectation, we obtain

Eμ‖h(x̃JC)− x̃J‖2

= E
[
E
[‖h(x̃JC)− x̃J‖2 | x, J

]]

= E
[
E
[‖h(x̃JC)− x*

J‖2 + ‖x*
J − x̃J‖2 | x, J

]]

= Eμ‖h(x̃JC)− x*
J‖2 + Eμ‖x*

J − x̃J‖2.
�

Similar proofs can be found in [20], [36].

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 05,2023 at 07:32:14 UTC from IEEE Xplore. Restrictions apply.

1334 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 6, 2020

ACKNOWLEDGMENT

The authors would like to express their appreciation for the
discussions with Nicola Vigano, Jan-Willem Buurlage, Sophia
Coban, and Felix Lucka. The authors have made use of the
following additional software packages to compute and visualize
the experiments: Snakemake, Sacred, Matplotlib, pandas, and
scikit-image [58]–[62].

REFERENCES

[1] J.-B. Sibarita, “Deconvolution microscopy,” Adv. Biochem.
Eng./Biotechnol., pp. 201–243, 2005. [Online]. Available: https:
//doi.org/10.1007/b102215

[2] F. Marone and M. Stampanoni, “Regridding reconstruction algorithm for
real-time tomographic imaging,” J. Synchrotron Radiat., vol. 19, no. 6,
pp. 1029–1037, 2012.

[3] C. H. McCollough et al., “Low-dose CT for the detection and classifica-
tion of metastatic liver lesions: Results of the 2016 low dose CT grand
challenge,” Med. Phys., vol. 44, no. 10, p. e339–e352, 2017.

[4] G. Matrone, A. S. Savoia, G. Caliano, and G. Magenes, “The delay multiply
and sum beamforming algorithm in ultrasound B-mode medical imaging,”
IEEE Trans. Med. Imag., vol. 34, no. 4, pp. 940–949, 2015.

[5] P. Kuchment and L. Kunyansky, Mathematics of Photoacoustic and
Thermoacoustic Tomography. New York, NY: Springer New York,
2011, pp. 817–865. [Online]. Available: https://doi.org/10.1007/978-0-
387-92920-0_19

[6] J. Poudel, Y. Lou, and M. A. Anastasio, “A survey of computational
frameworks for solving the acoustic inverse problem in three-dimensional
photoacoustic computed tomography,” Phy. Med. & Biol., vol. 64, no. 14,
p. 14TR01, 2019. [Online]. Available: https://doi.org/10.1088/1361-6560/
ab2017

[7] S. Zabler, P. Cloetens, J.-P. Guigay, J. Baruchel, and M. Schlenker,
“Optimization of phase contrast imaging using hard X rays,” Rev. of
Scientific Instrum., vol. 76, no. 7, p. 073705, 2005. [Online]. Available:
https://doi.org/10.1063/1.1960797

[8] G. Artioli et al., “X-ray diffraction microtomography (XRD-CT), a novel
tool for non-invasive mapping of phase development in cement materials,”
Anal. Bioanal. Chem., vol. 397, no. 6, pp. 2131–2136, 2010. [Online].
Available: https://doi.org/10.1007/s00216-010-3649-0

[9] G. L. Zeng, Y. Li, and Q. Huang, “Analytic time-of-flight positron emission
tomography reconstruction: Two-dimensional case,” Vis. Comput. Ind.,
Biomed., and Art, vol. 2, no. 1, 2019. [Online]. Available: https://doi.org/
10.1186/s42492-019-0035-4

[10] D. M. Pelt, K. J. Batenburg, and J. A. Sethian, “Improving tomographic
reconstruction from limited data using mixed-scale dense convolutional
neural networks,” J. Imag., vol. 4, no. 11, p. 128, 2018.

[11] T. M. Buzug, Computed Tomography: from Photon Statistics to Modern
Cone-Beam CT. Springer, 2008.

[12] C. Belthangady and L. A. Royer, “Applications, promises, and pitfalls
of deep learning for fluorescence image reconstruction,” Nature Methods,
vol. 16, no. 12, pp. 1215–1225, 2019.

[13] E. Kang, J. Min, and J. C. Ye, “A deep convolutional neural network using
directional wavelets for low-dose X-ray CT reconstruction,” Med. Phys.,
vol. 44, no. 10, pp. e360–e375, 2017.

[14] Y. Sun, Z. Xia, and U. S. Kamilov, “Efficient and accurate inversion of
multiple scattering with deep learning,” Opt. Express, vol. 26, no. 11,
p. 14678, 2018.

[15] W. Chang, J. M. Lee, K. Lee, J. H. Yoon, M. H. Yu, J. K. Han, and
B. I. Choi, “Assessment of a model-based, iterative reconstruction al-
gorithm (MBIR) regarding image quality and dose reduction in liver
computed tomography,” Investigative Radiol., vol. 48, no. 8, pp. 598–606,
2013.

[16] T.-O. Buchholz, M. Jordan, G. Pigino, and F. Jug, “Cryo-care: Content-
aware image restoration for cryo-transmission electron microscopy data,”
in Proc. IEEE 16th Int. Symp. Biomed. Imag. (ISBI 2019), 2019.

[17] J. Liu, Y. Sun, C. Eldeniz, W. Gan, H. An, and U. S. Kamilov, “RARE:
Image reconstruction using deep priors learned without ground truth,”
IEEE J. Selected Topics in Signal Proc., p. 1-1, 2020.

[18] J. Lehtinen, J. Munkberg, J. Hasselgren, S. Laine, T. Karras, M. Aittala, and
T. Aila, “Noise2Noise: Learning image restoration without clean data,” in
Proc. 35th Int. Conf. Mach. Learn., vol. 80. PMLR, 2018, pp. 2965–2974.

[19] A. Krull, T.-O. Buchholz, and F. Jug, “Noise2Void - Learning denoising
from single noisy images,” in Proc. IEEE Conf. Comput. Vision Pattern
Recognit., 2019.

[20] J. Batson and L. Royer, “Noise2Self: Blind denoising by self-supervision,”
in Proc. 36th Int. Conf. Mach. Learn., vol. 97. PMLR, 2019, pp. 524–533.

[21] S. Laine, T. Karras, J. Lehtinen, and T. Aila, “High-quality self-supervised
deep image denoising,” in Adv. Neural Inf. Process. Syst. 32. Curran
Associates, Inc., 2019, pp. 6970–6980.

[22] S. Soltanayev and S. Y. Chun, “Training deep learning based denoisers
without ground truth data,” in Adv. Neural Inf. Process. Syst. 31. Curran
Associates, Inc., 2018, pp. 3261–3271.

[23] M. Zhussip, S. Soltanayev, and S. Y. Chun, “Extending Stein s unbiased
risk estimator to train deep denoisers with correlated pairs of noisy
images,” in Adv. Neural Inf. Process. Syst. 32. Curran Associates, Inc.,
2019, pp. 1465–1475.

[24] C. A. Metzler, A. Mousavi, R. Heckel, and R. G. Baraniuk, “Unsupervised
learning with Stein’s unbiased risk estimator,” CoRR, 2018.

[25] E. Cha, J. Jang, J. Lee, E. Lee, and J. C. Ye, “Boosting CNN beyond label
in inverse problems,” CoRR, 2019.

[26] D. Ulyanov, A. Vedaldi, and V. S. Lempitsky, “Deep image prior,” Int. J.
Comput. Vision, vol. 128, no. 7, pp. 1867–1888, 2020.

[27] Z. Cheng, M. Gadelha, S. Maji, and D. Sheldon, “A Bayesian perspective
on the deep image prior,” in Proc. IEEE Conf. Comput. Vision Pattern
Recognit., 2019.

[28] G. Mataev, P. Milanfar, and M. Elad, “DeepRED: Deep image prior
powered by RED,” in Proc. IEEE Int. Conf. Comput. Vision Workshops,
2019.

[29] K. H. Jin, H. Gupta, J. Yerly, M. Stuber, and M. Unser, “Time-dependent
deep image prior for dynamic MRI,” CoRR, 2019.

[30] S. Dittmer, T. Kluth, P. Maass, and D. Otero Baguer, “Regularization by
architecture: A deep prior approach for inverse problems,” J. Math. Imag.
Vis., vol. 62, no. 3, pp. 456–470, 2019.

[31] B. Yaman, S. A. H. Hosseini, S. Moeller, J. Ellermann, K. Uğurbil, and
M. Akçakaya, “Self-supervised learning of Physics-guided reconstruction
neural networks without fully sampled reference data,” Mag. Reson. Med.,
2020.

[32] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a Gaussian
denoiser: Residual learning of deep CNN for image denoising,” IEEE
Trans. Image Process., vol. 26, no. 7, pp. 3142–3155, 2017.

[33] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by
sparse 3-D transform-domain collaborative filtering,” IEEE Trans. Image
Process., vol. 16, no. 8, pp. 2080–2095, 2007.

[34] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg, “Plug-and-play
priors for model based reconstruction,” in Proc. IEEE Global Conf. Signal
Inf. Process., 2013.

[35] T. Hastie, R. Tibshirani, and J. Friedman, “The elements of statistical
learning,” Springer Series in Statistics, 2009.

[36] J. Adler and O. Öktem, “Deep bayesian inversion,” CoRR, 2018.
[37] P. Midgley and M. Weyland, “3D electron microscopy in the physical

sciences: the development of Z-contrast and EFTEM tomography,” Ultra-
microscopy, vol. 96, no. 3–4, pp. 413–431, 2003.

[38] W. van Aarle et al., “The ASTRA toolbox: A platform for advanced algo-
rithm development in electron tomography,” Ultramicroscopy, vol. 157,
pp. 35–47, 2015.

[39] D. M. Pelt and J. A. Sethian, “A mixed-scale dense convolutional neural
network for image analysis,” Proc. National Acad. Sci., vol. 115, no. 2,
pp. 254–259, 2017.

[40] A. A. Hendriksen, “ahendriksenh/msd_pytorch: v0.7.2,” 2019.
[41] D. P. Kingma and J. Ba, “ADAM: A method for stochastic optimization,”

in Proc. 3rd Int. Conf. Learn. Representations, 2014.
[42] J. Gregor and T. Benson, “Computational analysis and improvement of

SIRT,” IEEE Trans. Med. Imag., vol. 27, no. 7, pp. 918–924, 2008.
[43] A. Beck and M. Teboulle, “Fast gradient-based algorithms for constrained

total variation image denoising and deblurring problems,” IEEE Trans.
Image Process., vol. 18, no. 11, pp. 2419–2434, 2009.

[44] P. Virtanen et al., “SciPy 1.0: Fundamental algorithms for scientific com-
puting in Python,” Nature Methods, vol 17, no. 3, pp. 261–272, 2020.

[45] Y. Makinen, L. Azzari, and A. Foi, “Exact transform-domain noise vari-
ance for collaborative filtering of stationary correlated noise,” Proc. IEEE
Int. Conf. Imag. Process., 2019.

[46] A.-K. Seghouane and Y. Saad, “Prewhitening high-dimensional fMRI
data sets without eigendecomposition,” Neural Comput., vol. 26, no. 5,
pp. 907–919, 2014.

[47] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess-
ment: From error visibility to structural similarity,” IEEE Trans. Imag.
Process., vol. 13, no. 4, pp. 600–612, 2004.

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 05,2023 at 07:32:14 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1007/b102215
https://doi.org/10.1007/978-0-387-92920-0_19
https://doi.org/10.1088/1361-6560/ab2017
https://doi.org/10.1063/1.1960797
https://doi.org/10.1007/s00216-010-3649-0
https://doi.org/10.1186/s42492-019-0035-4

HENDRIKSEN et al.: Noise2Inverse: SELF-SUPERVISED DEEP CONVOLUTIONAL DENOISING FOR TOMOGRAPHY 1335

[48] J. Adler and O. Öktem, “Learned primal-dual reconstruction,” IEEE Trans.
Med. Imag., pp. 1–1, 2018.

[49] F. De Carlo et al., “TomoBank: A tomographic data repository for com-
putational X-ray science,” Measurement Sci. Technol., vol. 29, no. 3,
p. 034004, 2018.

[50] D. Gürsoy, F. De Carlo, X. Xiao, and C. Jacobsen, “Tomopy: A framework
for the analysis of synchrotron tomographic data,” J. Synchrotron Radiat.,
vol. 21, no. 5, pp. 1188–1193, 2014.

[51] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” Med. Image Comput. Comput.-
Assisted Intervention - MICCAI 2015, pp. 234–241, 2015.

[52] A. Paszke et al., “Automatic differentiation in PyTorch,” in NIPS-W, 2017.
[53] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger,

“3D U-Net: Learning dense volumetric segmentation from sparse annota-
tion,” Lecture Notes Comput. Sci., pp. 424–432, 2016.

[54] A. A. Hendriksen, D. M. Pelt, W. J. Palenstijn, S. B. Coban, and
K. J. Batenburg, “On-the-fly machine learning for improving image reso-
lution in tomography,” Appl. Sci., vol. 9, no. 12, 2019.

[55] F. Knoll et al., “fastMRI: A publicly available raw K-space and DICOM
dataset of knee images for accelerated MR image reconstruction using
machine learning,” Radiol.: Artif. Intell., vol. 2, no. 1, 2020.

[56] B. P. Rynne and M. A. Youngson, “Linear functional analysis,” Springer
Undergraduate Mathematics Series, 2008.

[57] M. L. Eaton, Chapter 2, Random Vectors, ser. Lecture Notes–Monograph
Series. Institute of Mathematical Statistics, 2007, vol. 53, pp. 70–102.

[58] J. Koster and S. Rahmann, “Snakemake–A scalable bioinformatics work-
flow engine,” Bioinformatics, vol. 28, no. 19, pp. 2520–2522, 2012.

[59] K. Greff, A. Klein, M. Chovanec, F. Hutter, and J. Schmidhuber, “The
sacred infrastructure for computational research,” Proc. 16th Python in
Sci. Conf., 2017.

[60] W. McKinney, “Pandas: A foundational Python library for data analysis
and statistics,” Python for High Performance and Scientific Computing,
vol. 14, 2011.

[61] J. D. Hunter, “Matplotlib: a 2D graphics environment,” Comput. Sci. Eng.,
vol. 9, no. 3, pp. 90–95, 2007.

[62] S. van der Walt et al., “Scikit-image: Image processing in Python,” PeerJ,
vol. 2, p. e453, 2014.

Allard A. Hendriksen received the M.Sc. degree in
mathematics from the University of Leiden, Leiden,
The Netherlands, in 2017. He is currently pursuing a
Ph.D. degree with the Computational Imaging group
at CWI, the national research institute for mathe-
matics and computer science in Amsterdam, The
Netherlands, focusing on combining deep learning
and tomographic reconstruction algorithms.

Daniël M. Pelt received the M.Sc. degree in mathe-
matics from the University of Utrecht, Utrecht, The
Netherlands, in 2010, and the Ph.D. degree at Leiden
University, Leiden, The Netherlands, in 2016. As
a Postdoctoral Researcher, he was at the Lawrence
Berkeley National Laboratory (2016–2017), focus-
ing on developing machine learning algorithms for
imaging problems. He is currently a Postdoctoral Re-
searcher with the CWI. His main research interest is
developing machine learning algorithms for imaging
problems, including tomographic imaging.

K. Joost Batenburg (Member, IEEE) received the
M.Sc. degree in mathematics and the M.Sc. degree
in computer science from the University of Leiden,
Leiden, The Netherlands, in 2002 and 2003, respec-
tively, and the Ph.D. degree in mathematics in 2006.
He currently leads the Computational Imaging group
at Centrum Wiskunde & Informatica, Amsterdam,
The Netherlands. He is also Professor of Imaging and
Visualization at the University of Leiden.

Authorized licensed use limited to: Universiteit Leiden. Downloaded on July 05,2023 at 07:32:14 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

