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2.1. Ferromagnetism

The concepts needed for this thesis in the area of ferromagnetism are a general de-

scription, the concept of domains and domain walls, of magnetization dynamics, a

note on micromagnetic simulations, and a description of the halfmetallic ferromagnet

La0.7Sr0.3MnO3.

2.1.1. General description

A ferromagnet consists of an ordered ensemble of microscopic magnetic moments of

electrons. An electron has an intrinsic spin, with a spin angular momentum (S⃗) at-

tached to it. When the electrons are localized, the orbital angular momentum (⃗L) also

carries a magnetic moment. For such an electron, the magnetic moments are given by:

µs = gsµB S⃗

ħ (2.1)

µℓ =
gℓµB L⃗

ħ (2.2)

respectively, where gs is roughly 2 in quantum field theory, gℓ = 1, and µB = eħ/2me .∣∣S⃗∣∣ = ħ/2, and
∣∣⃗L∣∣ is quantized in multiples of ħ.1 Due to the orbital motion of a spin-

ning electron, a magnetic field (B) is produced and acts on the magnetic moment of

the electron, resulting in angular transfer between S⃗ and L⃗, the so-called spin-orbital

interaction (SOI), which is described as:

Hs−o ∝ S⃗ · L⃗ (2.3)

Without dipole or exchange interactions, the system can acquire a net magnetic mo-

ment by applying a magnetic field that aligns the moments along the field direction

through the Zeeman interaction.

For a system with itinerant electrons, the only source of magnetism comes from the

spins. Again, in a non-interacting system of spins, a net magnetic moment occurs in

an applied field. The Zeeman interaction populates one spin direction (’spin-up’) at

the expense of the other (’spin-down’), resulting in a magnetic moment that is propor-

tional to the difference the number of spin-up and spin-down electrons: M ∝ (n↑−n↓).

Also for itinerant electrons, their motion in the electric field of the nuclei gives rise to

spin-orbit coupling. SOI yields a variety of intriguing magnetic phenomena, i.e. mag-

netocrystalline anisotropy, spin Hall effect, anisotropic magnetoresistance, etc., and

has therefore drawn much attention over time [15–21].

1The spin quantum number s is 1/2. The orbital quantum number ℓ can be 0, 1, 2, 3, corresponding to s, p,
d , and f wave functions.
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Figure 2.1: Schematic illustration of characteristics of a ferromagnet. (a) A plot of magnetic hysteresis. Start-
ing from a domain state with zero net magnetization M , a saturated magnetization is reached at a high field,
as represented by the dotted line. Removing the applied field, the magnet still has a remanent magnetization
Mr when zero applied field is reached. Zero magnetization appears at the coercive field (±Hc ). (b) Spin dy-
namics with the applied field and electric current. He f f points to the direction of z axis. M rotates about the
z axis in a spiral trajectory and eventually align with He f f , as a consequence of damping and STT. Images
adapted from Ref. [22].

Magnetic moments, either localized or itinerant, can order spontaneously through

dipole and exchange interactions. The simplest type is ferromagnetic order, where all

moments point in the same direction. When systems contain moments with different

magnitudes, the order is called ferrimagnetic. When the order is more complicated

and moments point in different, even opposite, directions, it is called antiferromag-

netic. The dipole interaction is a good example of an interaction that is antiferromag-

netic in nature. For ferromagnets, long-range order sets in below the Curie tempera-

ture Tc , roughly speaking the temperature at which the exchange interaction between

either localized or itinerant electrons −2 j S⃗i · S⃗ j , with j the strength of the interaction

and thermal energy (kB T ) are of comparable magnitude. The exchange interaction is

a consequence of the Coulomb repulsion and the Pauli exclusion principle and can

have a strength of the order of Tesla’s or more. Above Tc , thermal fluctuations break

the ordered arrangement of magnetic moments, leading to the breaking up of the fer-

romagnetic state.

2.1.2. Magnetic domains and domain walls

In a bulk material with a certain shape, the magnetic state is often not uniform.

Energetically, the system strives to minimize stray fields leaking into the vacuum, by

forming domains with different directions of their magnetization. A simple example
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is given in Fig. 2.1a, showing domains as they can be expected in a square-shaped

ferromagnetic thin film. Note that the net macroscopic magnetic moment of this

object is zero. There is energy cost involved in domain formation, residing in the

domain walls (DW) that separate the domains. Domain formation is a quite com-

plicated phenomenon since the domain structure comes from an often delicate

balance between exchange interactions, magnetocrystalline anisotropy, and shape

anisotropy. Fortunately, present-day computing power for performing micromagnetic

simulations of magnetic structures goes a long way to understand domain structure in

actual experimental devices, as will be discussed below. A consequence of the domain

structure is that the process of magnetization and demagnetization of a ferromagnet

with a magnetic field Ha is hysteretic. Fig. 2.1b schematically depicts the behavior

of M(Ha). Increasing Ha from the virgin (M = 0) state removes aligns domains, and

M increases until the saturated magnetization (Ms ) is reached. When decreasing the

field, domains start to form again, depending on the detailed energy balance. Usually,

the zero-field magnetization is non-zero and called the remanent magnetization Mr .

Zero moment is reached at the coercive field Hc , and saturation magnetization again

at large negative Ha . Increasing the field traces out the loop shown in Fig. 2.1.

Magnetic domain walls (DWs) have been extensively studied during the last

decades: magnetization reversal, used in all sorts of magnetic memory devices from

magnetic tapes onwards, depends on domain wall motion. Also in the next genera-

tion of spintronic devices, the key challenge lies in the creation and manipulation of

DWs [23, 24]. Randomly-arranged DWs in bulk material offer no practical application

in spintronics, but on the nanoscale, shape anisotropy appears to be quite powerful

to tailor DWs. For instance, constricting nanostructured ferromagnets can introduce

a local barrier that acts as a pinning site for a DW and constitute a logical zero (ab-

sence) or 1 (presence). Also, prototype devices have been developed in which injection

and moving DWs in nanowires are the carriers of information, the so-called racetrack

memory [25], which can greatly increase the data storage density and operation speed.

Conventionally, DW motion is driven by a magnetic field or a (spin-polarized) elec-

tric current. The dynamics of DW motion are governed by the Landau-Lifshitz-Gilbert

(LLG) equation [26]:

d M

d t
=−γM ×He f f +

α

MS

(
M × d M

d t

)
(2.4)

where M is the local magnetization, He f f is the sum of the external field and local

anisotropy and demagnetization field, MS = |M |, γ=−e/me is the gyromagnetic ratio,

and α is the Gilbert damping constant. The first and second terms on the righthand

side of Eq. 2.4 describe the spin dynamics with He f f , i.e. spin precession and damp-

ing. As demonstrated in Fig. 2.1c, the He f f points along the z axis. Spin hence pre-

cesses about z axis in a spiral path at the Larmor frequency (ωL = γB). In the process,
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analyzing the components of M gives:

d Mz

d t
= γ (M ×B)z

M −Mz

T1
(2.5)

d Mx

d t
= γ (M ×B)x

Mx

T2
(2.6)

d My

d t
= γ (M ×B)y

My

T2
(2.7)

where T1 is the longitudinal relaxation time (relaxation back to the z−axis), and T2 is

the transverse relaxation time, taking place in the x y−plane. Mx and My eventually

become zero at the equilibrium state of M , as a consequence of the damping. Spin

damping makes M and He f f parallel and leads to the DW motion. Note that, if α = 0,

moments in the DW will only rotate without moving. In addition toα, an intrinsic iner-

tial relaxation of spin angular momentum is observed experimentally at a frequency of

∼0.5 THz and yields an extra time derivative term τd 2M/d t 2 [27]. Such ultrafast spin

dynamics may pave an avenue toward next-generation high-speed magnetic sensors

and spintronics.

The effects of electric current on the spin dynamics are captured as additional terms

in the LLG Eq. 2.4, the so-called adiabatic and non-adiabatic spin torque transfer terms

(STT). For a spin-polarized charge current je along the x direction of a ferromagnetic

nanowire, that leads to

d M

d t
=−γM ×He f f +

α

MS

(
M × d M

d t

)
− b J

M 2
s

M ×
(

M × d M

d x

)
− c J

Ms
M × d M

d x
(2.8)

where b J = P jeµB /eMs (1+ξ2), c J = P jeµBξ/eMs (1+ξ2). Both c J and b J have the units

of velocity. c J /b J = ξ ≈ 10−2 [26]. In essence, ξ is the ratio of characteristic time for

exchange interaction and spin-flip rate and represents the degree of non-adiabaticity

of the STT. P is the spin polarization of the applied current. The equation describes

how the spin angular momentum is transferred to the local spins of the DW, giving rise

to DW motion. In reality, the situation is more complicated. The adiabatic STT gen-

erally assists DW motion. If the adiabatic STT is aligned with the damping torque, M

tends to reach the equilibrium rapidly, i.e. DW motion is accelerated. If, however, the

adiabatic STT is opposite to the damping torque, the DW begins to revolve away from

He f f with a steady increase of precession angle. Besides, once the external stimuli stop,

i.e. He f f , and spin-polarized currents, the DW may be driven back to the initial posi-

tion by the non-adiabatic STT. The non-adiabatic STT arises from the anisotropy and

demagnetization fields and exerts torque on the spins of the DW, affecting the DW mo-

tion independently. To maximize the STT, the applied currents should be high-density

(∼ 1012 A/m2). Unfortunately, such high-density currents inevitably generate Joule

heating and hinder the performance of relevant spintronics. According to the third

and fourth terms in Eq. 2.8, increasing P is an alternative way, meaning highly-spin-

polarized soft ferromagnets are appropriate candidates.
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2.1.3. Micromagnetic simulation

As already mentioned, understanding the magnetization dynamics of a ferromagnet

is of importance in the field of spintronics research. For this work, it is important to

understand and control domains, and in general the spin texture of the ferromagnetic

layers in the devices we want to research. For this we use simulation software to cal-

culate magnetization configurations and dynamics. In particular, we employ the GPU-

accelerated mumax3 program to model the magnetization dynamics microscopically

[28]. In the microscopic simulation, several materials parameters should be consid-

ered: the exchange stiffness Aex , the anisotropy constants Ku for uniaxial anisotropy

and Kc for biaxial anisotropy, and the saturation magnetization Ms . Then, the ex-

change length of a ferromagnet can be determined as ℓex =
√

2Aex /µ0M 2
s . Subdividing

the ferromagnetic object into equal-sized grids with uniform magnetization, the time-

evolving dynamics of magnetization is simulated by solving the differential Eq. 2.4 nu-

merically. To achieve a real-life situation, the cell size must be smaller than ℓex . In each

cell, the magnetization consists of three components mx ,my , and mz along the x, y,

and z axes. Calculating the norm of the three components yields the averaged value

of the magnetization. To speed up the convergence of the microscopic simulation, the

damping constantα can be set to an artificial value without affecting the outcome [29].

2.1.4. Half-metallic La0.7Sr0.3MnO3

The STT terms in Eq. 2.8 make clear that currents with a high spin polarization are

of interest. A P of (close to) 100% is found in halfmetallic ferromagnets such as

La0.7Sr0.3MnO3 (LSMO). This doped manganite has been considerably studied dur-

ing the last decades, exhibiting various intriguing phenomena such as halfmetallicity,

colossal magnetoresistance, tunable magnetocrystalline anisotropy, etc., thanks to the

spin-orbital-lattice coupling [30, 32, 33]. Fig. 2.2a shows the pseudocubic crystal struc-

ture of LSMO unit cell, where a Mn ion sits at the center (B site) and is surrounded by

oxygen octahedron, with La/Sr at the corners (A sites). The properties of LSMO are de-

terministically related to the lattice structure, which is characterized by the tolerance

factor t = (r A+rO)/
p

2(rB +rO) [34]. r represents the radius of the various elements. For

LSMO, due to the radius difference between La/Sr and Mn (rLa/Sr > rMn), the oxygen

octahedra are tilted, and the bond angle of the Mn-O-Mn chain is ∼166.3o . There-

fore, the crystal structure of LSMO is rhombohedral. In the pseudocubic coordinate

system, the edge length (a) of the LSMO unit cell is 0.388 nm. To minimize the mag-

netic and electrical inhomogeneities of LSMO when growing thin films, the substrate

we use is (LaAlO3)0.3(Sr2TaAlO6)0.7(LSAT) with a = 0.387 nm. The lattice mismatch is

about -0.2% in this case, offering negligible clamping strain and correspondingly yield-

ing epitaxial and homogeneous LSMO thin films.
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Figure 2.2: Overview of structural, magnetic, and transport properties of LSMO. (a) Sketch of the pseudocu-
bic crystal structure of LSMO unit cell, in which A site is occupied by La/Sr, Mn sits at B site in the oxygen
octahedron, leading to the strong orbital hybridization (represented by yellow cloud schematically). (b) In
the presence of epitaxial strain, five-fold degenerate 3d levels are lifted by crystal field and further by Jahn-
Teller distortion. (c) The density of states of LSMO indicates the nature of half-metallic transport, i.e. one
spin band is conducting while the other is insulating. (d) Illustration of double exchange among Mn3+, O2−,
and Mn4+, under the condition of alignment of neighboring spins. (e) Temperature-dependent resistance
characteristics of LSMO upon zero field (blue curve) and out-of-plane 8 T (red curve) display the famous
colossal magnetoresistance effect. The inset dR/dT vs T demonstrates Tc is shifted to a higher temperature
with 8 T. Images adapted from Ref. [30–33].

In the field of spintronics, LSMO is widely used in multiferroic heterostructures,

magnetic tunneling junctions, spin-polarized currents generator, etc. [35], mainly be-

cause of its high spin polarization (P ∼ 96%) [22, 36]. Here, we briefly discuss the origin

of the ferromagnetism of LSMO and the concurrent halfmetallicity.

As depicted in Fig. 2.2b, the five-fold degenerate 3d orbitals are split into eg and t2g

orbitals as a consequence of the ligand crystal field, with ∆ ∼ 1.5 eV the energy differ-

ence between the lowest t2g level and the highest eg level. The exchange energy Eex

is 2.5 eV (see Fig. 2.2c). Growing LSMO on single-crystal substrates introduces either

compressive or tensile strain, i.e. axial elongation of oxygen octahedra in z or x y plane

(Jahn-Teller distortion), resulting in the further splitting of both eg and t2g orbitals. In



2

14 2. Fundamental Concepts

the case of Mn3+, with 4 electrons, Hund’s rules dictate that electrons with equal spin

first populate the t2g levels, and a single electron fills the eg orbital, still with the same

spin. For Mn4+ with 3 electrons, the eg level remains empty. The magnetic moment is

only due to the spin and is, therefore, 4 µB for Mn3+ and 3 µB for Mn4+. Doping the

parent compound LaMnO3, where La is trivalent (La3+), with Sr2+, a mixture of Mn3+

and Mn4+ is created. Given the chemical stoichiometry we use, of 70% La and 30% Sr,

the total magnetic moment of a LSMO unit cell is 0.7(4µB ) + 0.3(3µB ) = 3.7µB in theory

[37]. The measured saturated magnetic moment of our LSMO thin film grown on LSAT

substrates is calculated to be 3.8 µB / f .u.. The small discrepancy is probably due to the

contribution of orbital angular momenta (µℓ) [38].

The spin-subband structure of LSMO brings out the property of half-metallic trans-

port, which can be understood in the framework of the double-exchange mechanism.

As seen in Fig. 2.2d, for T ≪ Tc , electron hopping between Mn3+ and Mn4+ is mediated

by the middle O2− through the overlap of the d orbital of Mn and the p orbital of O. The

prerequisite of electron hopping is the alignment of neighboring spins.2 As a result,

electrons flowing in LSMO are polarized, i.e. one spin state yields conducting trans-

port while the other gives insulating behavior. Therefore, electron hopping governs

both the ferromagnetic and conducting properties of LSMO, meaning ideally a metal-

to-insulator transition occurs coincidentally with a transition of ferromagnetism to

paramagnetism (TM I = Tc ). More interestingly, for T close to Tc , the double exchange

interaction is significantly suppressed due to the divergence of the magnetic suscep-

tibility. By applying an external field of the order of Tesla’s, neighboring spins can be

realigned, enabling electron hopping even at T ≥ Tc , and leading to the so-called colos-

sal magnetoresistance. Fig. 2.2e demonstrates the temperature-dependent resistance

measurements of LSMO with 8 T (blue curve) and without field (red curve). Clearly,

the resistance becomes smaller as the field is large enough to recover double exchange

interaction and therefore makes LSMO less resistive. Accordingly, Tc increases, as ver-

ified in the inset dR/dT versus T curves.

The micromagnetic structure of LSMO in thin films is simulated with the GPU-

accelerated mumax3 software package by solving the LLG equation [28], in order to

get insight into magnetic field control of the spin texture in the LSMO devices. The di-

mension of such nanostructured LSMO is measured by scanning electron microscopy

and split into grids (pixels) in the simulation design of mumax3. The number of grid

points should be a power of 2 for the purpose of accelerating the simulation. Notably,

the grid size must be comparable to the exchange length (ℓex ) of LSMO to achieve re-

alistic results. The numbers used are Ms = 5.75×105 A/m and Aex = 1.7×10−12 J/m,

ℓex =
√

2Aex /µ0M 2
s = 2.86 nm. Therefore, the grid size is set to 2.5 nm in all the sim-

ulations. Moreover, although the magnetocrystalline anisotropy of LSMO is weak, it

2The probability of electron hopping is t0 cos(θ/2). θ is the angle between spins and determines the magnetic
ground states of La1−x Srx MnO3.



2.2. Superconductivity

2

15

changes with epitaxial strain and thickness. According to Ref. [39], the anisotropy is

uniaxial in a 10 nm LSMO and becomes biaxial in thicker LSMO (20 nm or 40 nm)

on LSAT substrate with a miscut angle of ∼ 0.2o . Correspondingly, the anisotropy con-

stants Ku and Kc are altered in simulating DWs in notched LSMO nanostructure (Chap-

ter 3) and an LSMO disk (Chapter 5), respectively. In addition, the damping constant α

is intentionally set to 0.5 to speed up the convergence of magnetization in the simula-

tion, rather than using experimental values of the order of 10−4 [12].

Investigating spin transport in normal-state and superconducting LSMO is our in-

terest in this thesis. As introduced above, LSMO is half-metallic and has a high Tc . In

contrast to the conventional ferromagnets, LSMO holds promise to manipulate DW

with a lower density of critical current (∼108 A/m2) and inject the spin-polarized cur-

rents efficiently into a normal metal [13, 40]. Moreover, superconducting LSMO carries

equal-spin triplet correlations and exhibits intriguing quantum phenomena [14].

2.2. Superconductivity

In the area of superconductivity, also a general description is given, then Josephson

effects are generally discussed, including normal metal (N) weak links, then ferromag-

nets as the weak link, and finally the halfmetal.

2.2.1. Origin of Superconductivity

Superconductivity was discovered in 1911 by Heike Kamerlingh Onnes in Leiden [41].

It is a macroscopic quantum phenomenon. The resistance of a superconductor ap-

proaches zero below the critical temperature (Tc ), accompanied by the Meissner ef-

fect (flux expulsion) in the presence of a magnetic field [42]. The formation of Cooper

pairs with opposite spins ( i.e. singlets)3 accounts for the onset of superconductivity

in conventional low-Tc superconductors, which is described by the BCS theory [43].

In general, electrons experience scattering events above Tc , leading to the electrical

resistance and energy dissipation. This process can be simply explained in the two-

dimensional k space. The applied voltage moves the Fermi sphere by δkx along the x

direction. Soon, electrons relax to the low energy states, as a consequence of plenty of

scattering processes. As a result, current dissipates energy in some way or other. How-

ever, below Tc , the scattering processes give rise to no change in the center of mass

momentum of paired electrons. Therefore, we see no decay of stationary supercur-

rent, leading to a zero-resistance state. A theoretical description of superconductivity

3Singlets are bosonic-like quasiparticles and obey the Pauli exclusion principle. The possible pairing sym-
metry will be discussed later.
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is given below.

Owing to the phonon-mediated Cooper pairing with a typical strength of 0.01 eV,

the size of singlets (ξ0) usually varies from the order of several nanometers to microm-

eters, as a result of minimizing the Coulomb repulsion (> 1 eV) at the atomic scale.

This means singlets overlap in space and therefore become a collective phenomenon.

Consequently, the quantum coherence of singlets can be stated as a macroscopic wave

function given by:

Ψ(r, t ) =Ψ0(r, t )e iθ(r,t ) (2.9)

where r and t represent space and time, respectively, and θ is the gauge-covariant

phase. In a simplified picture, the local density of singlet Cooper pairs ns is equal to
|Ψ(r, t )|2, and ns = ne /2, where ne is the normal electron density of the material. The

most practical way to introduce the basic parameters that describe the properties of the

superconducting state is through the well-known Ginzburg-Landau (GL) approach,4 in

which Ψ is a complex order parameter [45]. Two length scales are naturally defined in

GL theory. One is the GL coherence length ξGL which sets the length over which the

order parameter can change significantly. The other is the magnetic field penetration

depth λL (the London penetration depth) that sets the length over which a magnetic

field can penetrate into a superconductor. Of practical importance is their temperature

dependence, which, not too far from Tc , follows from GL theory as:

ξGL(T ) = ξGL(0)√
1− T

Tc

(2.10)

λL(T ) ≈ λL(0)√
1− ( T

Tc
)4

(2.11)

where ξGL(0) = (π/2
p

3)ξ0, and λL(0) =
√

m/4µ0ns e2. ξ0 = ħv f /π∆ is defined in the

BCS theory, m is mass of elementary charge (e), and µ0 is the vacuum permeability.

Combining ξGL and λL , the ratio κ=λL/ξGL . The value of κ classifies superconductors

into type I (κ< 1/
p

2) and type II (κ> 1/
p

2).

In an electromagnetic field, the supercurrent density J⃗s of a superconductor varies

in both space and time as:

J⃗s =− Φ0

2πµ0λ
2
L

(⃗∇θ+ 2π

Φ0
A⃗) (2.12)

whereΦ0 is the flux quantum,Φ0 = h/2e, ∇⃗ is the gradient operator, and A⃗ is the vector

potential. However, both θ and A are not physically measurable. Therefore, realizing a

4Gingzburg-Laudan theory well describes the electromagnetic properties of superconductors and predicts a
distinction between type-I and type-II superconductors. Note that GL theory can also be derived from the
microscopic BCS theory [44].
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fixed relation between phase and vector potential, a gauge-invariant phase gradient γ

is introduced:

γ⃗= ∇⃗θ+ 2π

Φ0
A⃗ (2.13)

As a result, the expression of J⃗s is rewritten as:

J⃗s =− Φ0

2πµ0λ
2
L

γ⃗ (2.14)

indicating J⃗s scales with γ⃗ proportionally. By taking the curl of Eq. 2.12, with the

Maxwell equation, we obtain:

∇2B⃗ = B⃗

λ2
L

(2.15)

Solving Eq. 2.15 in one dimension gives B = B0e−L/λL , which describes the external

magnetic field to fall off exponentially inside a superconductor over λL , that is, the

Meissner effect. Given that ∇×B =µ0 Js , Js also decays exponentially, as demonstrated

in Fig. 2.3.

Figure 2.3: Illustrative representation of exponential decay of the applied magnetic field (B) and screening
supercurrent density (Js ) from the surface over λL in a superconductor. B decays inside a superconductor
and is ultimately screened, except for the thickness of the superconductor on the order of λL .

In addition, from the second London equation ∇×(µ0 J⃗s ) =−B⃗/λ2
L and Lorentz’s law,

we obtain the linearized form of the first London equation:

∂ J⃗s

∂t
= E⃗

µ0λ
2
L

(2.16)
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In a stationary state, J⃗s is constant in the superconductor (Eq. 2.16), so E⃗ is 0 and the

supercurrent remains dissipationless.

2.3. Josephson Effects

2.3.1. Proximity effect

The Josephson effect is a manifestation of macroscopic quantum coherence in S/(weak

link)/S hybrids. It was predicted theoretically by Brian D. Josephson and soon verified

experimentally [46, 47]. In principle, the weak link can be an insulator (I) (as in the orig-

inal work), a normal metal (N), a ferromagnet (F), but also for instance a constriction

with a size smaller than ξ. When the weak link is an N layer between S layers and the

interfaces are transparent, singlets can leak into the neighboring layer and exist over a

characteristic coherence length. This is called the proximity effect. It means that the

weak link with a thickness of the order of the characteristic coherence length becomes

superconducting. As introduced before, singlets | ↑↓〉 consist of opposite spins and can

be accommodated in N metals. The characteristic coherence length in N is defined as:

ξN =
√

ħDN

kB T
(2.17)

where DN is the N diffusion constant, on the condition of a diffusive regime (ξN < l ,

l the mean free path). ξN can be of the order of hundreds of nanometers in general

(Fig. 2.4), depending on the amount of disorder and on temperature.

Figure 2.4: Depiction of the proximity effect in an S/N system. Singlets (green) can stay coherent up to
hundreds of nanometers in N.

Knowing that singlet correlations can exist over substantial distances in N, an S/N/S

hybrid can be a Josephson junction (JJ) device, as sketched in Fig. 2.5a. The supercon-
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Figure 2.5: Sketch of an S/N/S Josephson junction. (a) Right and left S are weakly linked via the middle
N layer, i.e. superconducting wave functions ΨL and ΨR overlap in N and stay coherent spatially (green
curves). (b) I -V characteristic of the JJ clearly displays the zero-voltage state. Note the rounding feature of
the IV curve (orange), which is due to phase slippage near Tc [48].

ducting wave functions (described by Eq. 2.9) overlap with each other in the N weak

link and maintain coherence spatially, giving rise to Josephson coupling. We discuss

the basic concepts of JJs below. Assuming the amplitude of Ψ is not changing in both

right and left S electrodes, and representing γ (Eq. 2.14) by the gauge-invariant phase

difference ϕ simple algebra gives:

Js (ϕ) = Jc sin
(
ϕ

)
(2.18)

whereϕ= θL −θR . Eq. 2.18 describes the sinusoidal current-phase relation of a JJ. With

an applied constant voltage, we obtain:

∂ϕ

∂t
= 2π

Φ0
V (2.19)

whereΦ0 is the flux quantum. This is the voltage-phase relation of a JJ. Solving Eq 2.19

yields linear a dependence of time on phase:

ϕ(t ) =ϕ0 + 2π

Φ0
V t (2.20)

From this, we can define the Josephson frequency as f =V /Φ0. Moreover, the Joseph-

son coupling energy is:

E j =
∫ t0

0
IV d t = Φ0Ic

2π
(1−cosϕ) = E j 0 cosϕ (2.21)

where Ic is the critical current and temperature-dependent. Biasing a JJ by flowing a

Ibi as results in a modulated E j , that is described by a tilted washboard potential, as will

be discussed later. Usually, Ic of a JJ is the order of µA. In this case, thermal fluctuation

kB T is not negligible, leading to the rounding feature in IV curves and raising ambiguity

in determining Ic (orange curve in Fig. 2.5b). According to the model proposed by
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Vinay Ambegaokar and B. I. Halperin [49]:

V = 2Ic Rn

γ0

eπγ0i −1

eπγ0i

{∫ 2π

0
e−πγ0ϕ/2I0

(
γ0 sin

ϕ

2

)
dϕ

}−1

(2.22)

where γ0 = Φ0Ic /πkB T = 2E j 0/kB T , i = I /Ic , Rn represents the normal resistance, I0

is a modified Bessel function. We analyze the energy competition between Josephson

coupling and thermal fluctuation numerically, as shown in Fig. 2.6. With decreasing

Figure 2.6: Numerical calculations of temperature-dependent Josephson coupling. As γ0 increases, i.e.
Josephson coupling becomes stronger at low temperatures, the rounding feature in the IV curve is signifi-
cantly suppressed.

temperatures, Ic becomes larger, and correspondingly the rounding feature in the IV

characteristic is significantly suppressed.

2.3.2. Macroscopic quantum coherence

The macroscopic quantum coherence of sustained by a JJ, i.e. Josephson coupling,

manifests itself in a few interference effects. In the presence of a magnetic field, the

Josephson coupling yields a superconducting quantum interference (SQI) pattern, in

analogy to diffraction in optics, as displayed in Fig. 2.7. A magnetic field is applied

along the z axis and decays in both right and left S electrodes over λ. In the case of the

thickness of superconductor ts >λ, the effective length of the N layer equals d+λL+λR .

The total flux threading the JJ is hence defined as:

Φ=
∮

Adℓ= B(d +λL +λR )W (2.23)
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The variation of ϕ along the x axis is:

∂ϕ

∂x
= 2π

Φ0
B(d +λL +λR ) (2.24)

Using Eq. 2.18 and solving Eq. 2.24, we obtain:

Is =
∫ W /2

−W /2

∫ L/2

−L/2
Jc sin

{
2π

Φ0
(d +λL +λR )B +ϕ0

}
d zd x (2.25)

The magnitude of Is is field-dependent:

Is (Φ) = Ic

∣∣∣∣∣sin πΦ
Φ0

πΦ
Φ0

∣∣∣∣∣ (2.26)

As demonstrated in Fig. 2.7b, the SQI pattern is Fraunhofer-like, with a central peak

that has twice the width of the side lobes, and an amplitude of the side lobes following

1/B . The Fraunhofer SQI pattern comes about when the current distribution over the

weak link cross-section is homogeneous. Dynes and Fulton proposed a method to es-

tablish the spatial distribution of Jc from the SQI pattern [50]. This method has been

adopted to scrutinize the superconducting junctions extensively and will be used for

the analyses of the data in Chapter 5 [51–53]. It should also be noted that the period

(∆B) of the SQI pattern is dimension-dependent. The above discussion is based on the

condition of ts > λ. Once ts < λ, the S electrode is in a 2D limit. As a consequence,

the non-local electrodynamic effect has to be considered, instead of the Meissner ef-

fect [54–57]. In particular, in the limits of L ≫ W and L ≪ W , R. Fermi, et al. found

∆B = 1.842Φ0/W 2 and ∆B = 2Φ0/(LW ). respectively [52]. This conclusion sheds light

on understanding the SQI patterns obtained on long JJs, as discussed in Chapter 5 and

Chapter 6.

Figure 2.7: (a) Sketch of a JJ. d is the length of the JJ. W is the width of S, and L is the length. ts is the thickness
of S. The external field is applied along the z axis and current flows along the y axis. The field penetrates
into the S layers and decays exponentially over the London penetration depth. (b) The Fraunhofer-like SQI
pattern of a JJ. The central peak is two times wider, and the side lobes decay as 1/B .
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Additionally, according to Eq. 2.18 and Eq. 2.20, JJ has different responses to dc and

ac voltage sources. If JJ is driven by a dc voltage, the time-averaged Js is zero since the

phase difference ϕ has a linear dependence on time. However, when an ac voltage is

applied to the JJ, the situation changes completely. We define an ac voltage as:

V (t ) =Vdc +V1 cos(ω1t ) (2.27)

With the voltage-phase relation (Eq. 2.20) , we obtain:

ϕ(t ) = 2πV1

Φ0ω1
sinω1t + 2π

Φ0
Vdc t +ϕ0 (2.28)

Interestingly, inserting Eq. 2.28 in Eq. 2.18 and rewriting as Fourier series with the fact

that F−n(t ) = (−1)nFn(t ) gives:

Is (t ) = Ic

∞∑
n=−∞

(−1)nFn(
2πV1

Φ0ω1
)sin[(ωdc −nω1)t +ϕ0] (2.29)

From Eq. 2.29, we see quantized dc voltages appear in the JJ driven by an ac voltage.

When the sine argument becomes zero periodically at Vdc = nΦ0ω1/2π, which corre-

sponds to phase-locking states, quantized steps arise in the IV characteristics of the JJ,

so-called Shapiro steps [58]. Qualitatively, in the framework of the tilted washboard

potential (E j = E j 0[cosϕ− Isϕ/Ic ]), the motion of the phase ball can account for the

appearance of Shapiro steps. Sweeping Idc gives two states for the phase ball: (1)

Idc + I1 < Ic , the phase ball is trapped in the well of the tilted washboard potential,

and as soon as (2) Idc + I1 > Ic , the phase ball escapes from the local minimum and

moves to the adjacent one in the tilted washboard potential. Consequently, at the val-

ues of Vdc = nΦ0ω1/2π, the phase ball moves synchronously with the ac source and

crosses a certain number of minima in the tilted washboard potential for each cycle,

concomitant with a phase change ∆ϕ = nω1. The appearance of Shapiro steps is the

other indication of Josephson coupling in JJ, in addition to the SQI pattern.

Knowing the performance of a single JJ, the next relevant device is a superconduct-

ing quantum interference device (SQUID) consisting of two JJs, in which their wave

functions interfere with each other (Fig. 2.8a). Therefore, in case of equal Ic in both JJ1

and JJ2, the total supercurrent is:

Is = Ic sin
(
ϕ1

)+ Ic sin
(
ϕ2

)
(2.30)

With ϕ1 −ϕ2 = 2πΦ/Φ0, under the action of a magnetic field, the maximum of Eq. 2.30

is calculated as:

Is (Φ) = 2Ic cos

(
πΦ

Φ0

)
(2.31)

As shown in Fig. 2.8b, the theoretical SQI pattern of a SQUID has equal-period lobes.

Note the side lobes decay far more gradually than 1/B in experiment, even though field

destroys superconductivity. We would like to point out a SQUID pattern can also be ob-

served in a single JJ, where supercurrents flow in two channels, i.e. rim supercurrents,

as seen in Chapter 5.



2.3. Josephson Effects

2

23

Figure 2.8: (a) Sketch of a SQUID, consisting of two JJs. A field is applied along the out-of-plane direction. (b)
The theoretical SQI pattern of a SQUID. The wave functions of JJ1 and JJ2 interfere with each other, giving
rise to a standard SQUID pattern with equal-period lobes. Note the side lobes do decay subject to field
experimentally, but far more gradually than 1/B .

2.3.3. Ferromagnetic Josephson junctions

Figure 2.9: Depiction of the proximity effect in an S/F system. (a) The spin bands are shifted up (k↓) and
down (k↑) by the exchange field, giving rise to Cooper pairs with non-zero center-of-mass momentum. (b)
Top: Singlets (green) can stay coherent up to hundreds of nanometers in N. Bottom: Both singlets (S = 0 and
triplets (Sz = 0) annihilate within several nanometers in F, exhibiting the SRP effect. Images adapted from
Ref. [59].

A ferromagnet has a spin-split band structure with unequal spin subbands

(Fig. 2.9a). The exchange field Eex shifts the momenta of electrons at the Fermi level

by ±Q/2 with Q = 2Eex /(ħv f ) in the diffusive limit, where v f is the Fermi velocity. As a

result, a finite momentum for | ↑↓〉 is k f ↑−k f ↓ = Q, and for | ↓↑〉 is k f ↓−k f ↑ = -Q. Singlets

populating the Fermi level of F gain non-zero center-of-mass momentum, giving rise
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to a spin-mixing state:

( | ↑↓〉− | ↓↑〉 )cos(R,Q)+ i ( | ↑↓〉+ | ↓↑〉 )sin(R,Q) (2.32)

The first term in Eq. 2.32 represents the spin-zero singlets, and the second term de-

scribes the exotic triplet correlations. Notably, the triplet correlations | ↑↓ + ↓↑〉 have

zero spin projection (Sz = 0) along the quantization axis of F and are thus subject to a

short-range proximity (SRP) effect. This type of triplet correlation is the main source of

equal-spin triplet (Sz ̸= 0), which will be discussed later. The decoherence length ξF of

the singlet-triplet mixture equals:

ξF =
√

ħDF

Eex
(2.33)

within the diffusive limit. Eex is the order of eV, three orders of magnitude larger than

kB T . Therefore, the correlations of singlet and zero-spin triplet can only stay coherent

within a length of 5 nm in conventional F like Co, Ni, etc. [11, 60], as shown in Fig. 2.9b.

With increasing Eex , ξF is even smaller than 1∼2 nm. Note that the oscillating depen-

dence of the singlet and triplet correlations on the junction length is due to a phase

shift (±θ) for | ↑↓〉 and | ↓↑〉, respectively. Different spins that are scattered by the ex-

change field at the spin-active interface get phase delays, as expressed by:

| ↑↓〉e iθ−| ↓↑〉e−iθ = (| ↑↓〉− | ↓↑〉)cos(θ)+ i (| ↑↓〉+ | ↓↑〉)sin(θ) (2.34)

As a result, the interesting phenomenon of a 0−π transition can be realized by either

varying the thickness of the F layer or changing the temperature of the junction, which

has been extensively studied [60, 61].

So far, we have seen that superconductivity can be induced in spin-polarized F with

a thickness of several nanometers. Such a length scale limits the practical application

in the S/F systems. However, by rotating the quantization axis of the correlations with

zero spin projection (Eq. 2.34), it should be possible to create other (equal spin) types

of triplet correlations. Such equal spin triplets are not broken up by the ferromagnet.

Rotating the quantization axis can be done by having stacked S/F’/F hybrids where

the magnetization in F and F’ are non-collinear, as shown in Fig. 2.10. Note that the

thickness of the F’ layer should be smaller than ξF ′ . For simplicity, we consider the

case of M′
F ⊥ MF , i.e. M′

F points to the x direction, and MF is aligned with the z axis.

This is equivalent to a rotating magnetization from F’ to F. What happens is that the

spin mixing correlations in S still have a zero projection along the x axis. However,

along the quantization axis of the F layer (z axis), triplets have non-zero components

| ↑↑〉z (Sz = 1) and | ↓↓〉z (Sz = −1). These triplets (Sz = ±1) can stay coherent in the F

layer over:

ξF =
√

ħDF

kB T
(2.35)



2.3. Josephson Effects

2

25

Figure 2.10: Schematic illustration of the LRP effect in stacked S/F’/F hybrids. The singlet to triplet conver-
sion is optimized by setting MF ′ ⊥ MF . The generated triplets (Sz =±1) can maintain coherent up to tens of
nanometers in F.

This is the long-range proximity (LRP) effect. ξF is usually about tens of nanometers in

conventional ferromagnets, depending on the spin diffusion length. Experimentally,

the LRP effect has been observed in stacked multilayers of F with different orientations

of spontaneous magnetization [62, 63]. Moreover, external magnetic fields enable set-

ting up the magnetization either non-collinear or collinear, resulting in the creation

and annihilation of the long-range triplet correlations [64].

Figure 2.11: Representative abnormal SQI patterns of ferromagnetic JJ. The Blue and red curves are a result
of the distribution of Js in magnetized and demagnetized regions. The yellow curve is Gaussian-like, arising
from the diffusive transport in the presence of disorder in JJ.
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The macroscopic phase coherence of a ferromagnetic JJ can be distinguished from

a normal JJ. Due to the additional parameter of an intrinsic magnetic flux, from the

experimental point of view, Jc may be not spatially homogeneous in the ferromag-

netic JJ. The magnetic flux, local barriers, and disorder can all affect the SQI pattern

significantly [65–67]. Fig. 2.11 gives some examples of patterns that can occur due to

magnetic non-uniformity, i.e. magnetic susceptibility depends on position and field.

Taking into consideration the magnetic non-uniformity, the SQI patterns of a ferro-

magnetic JJ are abnormal, i.e. minima are non-zero, and the period of the side lobes

varies, arising from an interference effect between magnetized and demagnetized ar-

eas. When JJ is in the diffusive regime, quasiparticles transport in random paths.

Therefore, the SQI pattern is a result of interference of varying shapes, leading to a

Gaussian-like pattern [68].

2.3.4. Half-metallic Josephson junctions

The LRP effect holds promise for practical applications in superconducting spintron-

ics, in which magnetic orders and superconductivity can be operated interdependently

[10, 11, 59]. Especially, in half-metallic ferromagnets (HMF; one spin band is conduct-

ing while the other is empty and far above the Fermi level), only one of the triplet cor-

relations is allowed, i.e. | ↑↑〉 (Sz = 1) or | ↓↓〉 (Sz =−1). Consequently, the expectation is

that spin-flip events are virtually absent so that the characteristic coherence length of

HMF (ξH MF ) can be hundreds of nanometers to even the micrometer scale [14, 69–71].

Note that, although triplet correlations are immune to exchange field in the HMF, they

are not free of spin-orbit coupling [21].

Figure 2.12: The four possible pairing symmetries subject to the Pauli exclusion principle. In a HMF, singlets
cannot exist. The different components of triplet correlations, i.e. s, d , p, f waves stay in HMF, depending
on the ballistic or diffusive regimes. Image adapted from Ref. [72].
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The pending question is how to efficiently generate equal-spin triplet correlations in

a HMF. LRP effects have been studied in CrO2-based junctions [69, 70]. The triplet gen-

erator in such systems was believed to be intrinsic magnetic inhomogeneity of CrO2

arising from either strain or boundary disorder. Also, triplets were found in mangan-

ite oxides La0.7Ca0.3MnO3 (LCMO) and La0.7Sr0.3MnO3 (LSMO) in combination with

the high-Tc superconductor (HTS) YBa2Cu3O7 [14, 73]. Visani, et al. demonstrated the

transport of supercurrent in LCMO over a distance up to 30 nm and discussed the inter-

facial spin interference, verifying the occurrence of equal-spin Andreev reflectivity and

triplets generation [73]. Very recently, a breakthrough on LRP effects was made in lat-

eral YBCO/LSMO/YBCO junctions. Sanchez-Manzano, et al. reported a micrometer-

scale transport of triplets in such a system at quite high temperatures [14]. However,

the mechanism of triplets generation in manganite oxides is still not clear, in particular

because no source of magnetic inhomogeneity was identified to act as triplet generator.

This motivates the study of triplets in LSMO-based junctions in this thesis.

Intriguingly, in addition to the increasing Ic as temperature decreases, Eschrig, et al.

predicted that Ic versus T of a HMF JJ should show a peak followed by the decrease of

Ic at low T [72]. The origin was specified as follows: in moderately disordered HMF,

triplets correlations of odd-frequency (time) even-momentum (space) s wave and d

wave, multiplied by even-frequency odd-momentum p and f waves, mainly carry the

supercurrent (Fig. 2.12). In the diffusive regime, s and p waves dominatd. It is well

known s-wave triplet correlations are robust against disorders and impurities, i.e. scat-

tering. Other components however are sensitive to scattering as they are anisotropic.

Therefore, s-wave triplet correlations are believed to be the main source of supercur-

rent in HMF generally. However, as the temperature goes down, the p-wave compo-

nent becomes pronounced, for example, in the diffusive regime. Experimentally, Ic

was found to be quite high (up to mA) in HMF JJs based on CrO2 [74]. In this thesis,

we study LSMO-based JJs and will encounter scenarios both for the clean and for the

diffusive regimes.5 More discussions can be found in Chapter 5.

2.4. Experimental Methods

2.4.1. Sample fabrication

La0.7Sr0.3MnO3 (LSMO) thin films are grown on (001)-oriented

(LaAlO3)0.3(Sr2TaAlO6)0.7 (LSAT) crystal substrates with a miscut angle of 0.15∼0.2o

in an off-axis sputtering system. The deposition temperature is 700 oC , and the

5Ic (T ) peaks at low T both in the diffusive and clean limits, as predicted in Ref. [72, 75], but experimentally
this has never yet been observed.
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deposition pressure is kept at 0.7 mbar by using a dynamic butterfly valve and flowing

a mixture gas of argon and oxygen (3:2). The sputtering power is 50 W. Subsequent

to obtaining the required thickness of LSMO thin films (varying from 10 nm to 40 nm

depending on the purposes of our projects), the system is cooled down to 25 oC at

a rate of 10 oC /min. Thanks to the small lattice mismatch (-0.2%), LSMO thin films

exhibit quite homogeneous electrical and ferromagnetic properties, which will be

discussed in the section below. For the growth of bilayer NbTi/LSMO and trilayer

NbTi/Ag/LSMO, NbTi and Ag layers are deposited i n si tu at room temperature in

a pure argon atmosphere, in order to get transparent interface. We would like to

point out transparent interfaces are crucial for triplets generation, as demonstrated in

Chapter 5 and Chapter 6.

To investigate both domain wall and non-local spin transport in the LSMO-based

junctions (Chapter 3 and Chapter 4), LSMO thin films are patterned first with the help

of electron beam lithography and ion beam etching. Then, electrical contacts (Pt or

Ag) are made on the LSMO nanostructures with an electron beam resist mask, in a

radio-frequency sputtering system. For the study of the LRP effect in the NbTi/LSMO

hybrids, we structure the bilayer using an accurately designed Pt mask. The Pt mask is

quite robust against ion beam etching. Moreover, the ion contamination coming from

either ion beam etching or focused ion beam lithography can be prevented to a large

degree by the capping Pt mask.

2.4.2. Characterization of the LSMO films

The epitaxy of LSMO thin films is examined using various characterization methods. As

shown in Fig. 2.13a, atomic force microscopy (AFM) is utilized to map the morphology

of a 20 nm LSMO thin film. We see clearly terraced surface without distinct inhomo-

geneity. The high-quality epitaxy of the LSMO thin film on the LSAT substrate is con-

firmed by x-ray diffraction (XRD) characterization, in which many side fringes are ob-

served as a sign of the ideal epitaxy (Fig. 2.13b). Moreover, the temperature-dependent

resistivity of the LSMO thin film was measured using a Van der Pauw method in a four-

probe configuration. We use Al wires to connect the LSMO thin film to the circuit board

electrically. To avoid the oxidation of the Al wires in contact with the LSMO thin film,

Au pads are used as a buffer layer. The resistivity versus temperature measurement

is performed in a Physical Property Measurement System (PPMS) from 400 K to 10 K.

The resistivity is calculated based on ρ = Rl t/l = Rt , where l is the side length, t is the

thickness of the LSMO thin film, and R is the measured sheet resistance. The Curie

temperature (Tc ) is determined to be 364 K from the inset dρ/dT curve (Fig. 2.13c). In

addition, the saturation magnetization of the LSMO thin film is measured at 50 K using

a magnetometer based on superconducting quantum interferometry and calculated to

be 3.8 µB / f .u., in good agreement with the theoretical value. Therefore, we conclude
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the LSMO thin film has no magnetically dead layer at the interface with the substrate

[37].

Figure 2.13: Characterization of the growth of a 20 nm LSMO thin film. (a) AFM image showing the terraced
structure of the film, presumably following the substrate terraces. Inset is the line scan, demonstrating the
step height is about 0.39 nm. (b) XRD measurement (intensity versus 2θ; θ is the beam angle of incidence),
used to verify the epitaxial growth of the LSMO film on an LSAT substrate; side fringes are seen, but no
undesired peaks of impurity phases. (c) A plot of the temperature-dependent resistivity ρ(T ). Inset: dρ/dT
curve versus T . The Curie temperature of the LSMO thin film is determined to be 364 K. (d) Magnetization M
versus applied magnetic field measured at 50 K. The saturated magnetization is calculated to be 3.8 µB / f .u.,
in agreement with the theoretical value.

Knowing the epitaxial LSMO thin film is of high quality, we study the spin transport

in the normal-state LSMO nanostructures, i.e. DW and non-local spin transport. These

two projects are carried out in the PPMS, which can change the temperature from 400 K

to 10 K and offers fields up to 9 T both in plane and out of plane. Prior to performing the

magnetoresistance measurements, a 1 T (-1 T) field is always applied to magnetize the

LSMO nanostructures. Then, the magnetoresistance is recorded by flowing a dc cur-

rent and sweeping the field from positive (negative) to negative (positive). More details

can be found in Chapter 3 and Chapter 4. For investigating the spin transport in the

superconducting LSMO nanostructures, i.e. generation and behavior of triplet corre-

lations, a cryostat equipped with a vector magnet (Oxford Instrument) is used. A wide

temperature range (from 300 K to 1.5 K) can be achieved, and a field up to 6 T can be

obtained along a certain direction in this cryostat. Besides, a multi-channel lock-in de-
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vice (Synktet MCL1-540) is programmed to take the data. The transport measurements

in Chapter 5 and Chapter 6 are performed by applying an ac background current (∼ 1

µA) and sweeping a superimposed dc current, and/or temperature to measure R(T ),

V (I ) orIc (T ) or Ic (B) (SQI patterns) by sweeping the field. Also, a Heliox 3He insert was

employed to provide a base temperature of 300 mK for the study of the LRP effect in

the long LSMO bars.

All the setups are programmed based on the SCPI language with Python through ei-

ther GPIB or optical transmission. All the data in this thesis are processed and analyzed

using standard Python packages.


