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6 Artificial coherent states of light by
multi-photon interference in a
single-photon stream
Coherent optical states consist of a quantum superposition of different pho-
ton number (Fock) states, but because they do not form an orthogonal basis,
no photon number states can be obtained from it by linear optics. Here we
demonstrate the reverse, by manipulating a random continuous single-photon
stream using quantum interference in an optical Sagnac loop, we create engi-
neered quantum states of light with tunable photon statistics, including ap-
proximate weak coherent states. We demonstrate this experimentally using a
true single-photon stream produced by a semiconductor quantum dot in an
optical microcavity, and show that we can obtain light with g(2)(0) → 1 in
agreement with our theory, which can only be explained by quantum interfer-
ence of at least 3 photons. The produced artificial light states are, however,
much more complex than coherent states, containing quantum entanglement
of photons, making them a resource for multi-photon entanglement.

This chapter has been published: P. Steindl, H. Snijders, G. Westra, E. Hissink, K.
Iakovlev, S. Polla, J.A. Frey, J. Norman, A.C. Gossard, J.E. Bowers, D. Bouwmeester,
W. Löffler, Artificial coherent states of light by multi-photon interference in a single-photon
stream, Phys. Rev. Lett. 126, 143601 (2021) [85].
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6.1 Introduction
Coherent states of light are considered to be the most classical form of light, but expressed
in photon number (Fock) space, they consist of a complex superposition of a number
of photon number (Fock) states. Because coherent states are non-orthogonal, it is not
possible with linear-optical manipulation and superposition of coherent states to obtain
pure photon number (Fock) states. The opposite is possible in principle, for instance by
attenuating high-N photon number states one could synthesize coherent states. However,
high-N Fock states are not readily available, but recently high-quality sources of single-
photon (N = 1) states became accessible based on optical nonlinearities on the single-
photon level. In particular, by using semiconductor quantum dots in optical microcavities
[28], single-photon sources with high brightness, purity, and photon indistinguishability
were realized [13, 18, 102, 103]. Under loss, in contrast to higher-N Fock states, single-
photon streams never loose their quantum character since single photons cannot be split,
loss reduces only the brightness. Single photons are an important resource for quantum
information applications [5].

In order to synthesize more complex quantum states of light, multiple identical single-
photon streams can be combined using beam splitters, where unavoidably quantum in-
terference appears, the well-known Hong-Ou-Mandel (HOM) effect [27]. This effect leads
to photon bunching if the incident photons are indistinguishable, therefore enables the
production of higher photon number states but only probabilistically. HOM interfer-
ence is also used for characterization of the photon indistinguishability of single-photon
sources [28], which is done mostly in the pulsed regime where detector time resolution is
not an issue. The regime of a continuous but random stream of single photons has been
explored much less in this aspect, HOM interference with continuous random stream of
true single photons has been observed in Refs. [243] and [244]. The HOM effect can also be
used to entangle photons; in combination with single-photon detection and post-selection,
it also can act as a probabilistic CNOT gate [5, 213,245].

Here we make use of HOM interference in a Sagnac-type delay loop with a polariz-
ing beam splitter (Fig. 6.1), where HOM interference happens at a half-wave plate in
polarization space1. Similar setups are proposed for boson sampling [41, 246] and used
for producing linear photonic cluster states [40, 42, 247], an emerging resource for uni-
versal quantum computation [5, 8, 10]. Since we operate with a random but continuous
single-photon stream, the repeated quantum interference and enlargement of the spatio-
temporal superposition leads to an infinitely long quantum superposition. By tuning the
photon indistinguishability we observe, in agreement with our theoretical model, photon
correlations approaching that of coherent light (g(2)(0) → 1), and from our theoretical
model, we deduce that the photon number distribution indeed corresponds to coherent
light, more precisely weak coherent light with a mean photon number n̄ ≈ 0.2.

6.2 Single-photon source
Experimentally, as an efficient single-photon source, we use a self-assembled InGaAs/GaAs
quantum dot (QD) embedded in polarization-split micropillar cavity grown by molecular
beam epitaxy [18, 90]. The QD layer is embedded in a p-i-n junction, separated by a

1A half-wave plate with its optical axis at 22.5◦ acting on the two polarization modes is equivalent to
the action of a beam splitter on the two spatial input modes.
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Figure 6.1: Experimental setup - (a) Photons from the single-photon source (SPS) are
diagonally polarized by WP1 before sent to the loop setup consisting of a
polarizing beam splitter and half-wave plate WP2 at 22.5◦. Light from the
loop setup is analyzed with the polarization-resolved HBT setup. Panel (b)
shows the interferometric loop length stabilization.

27 nm-thick tunnel barrier from the electron reservoir, to enable tuning of the QD reso-
nance around 935 nm by the quantum-confined Stark effect. The QD transition with a
cavity-enhanced lifetime of τr = 130 ± 15 ps is resonantly excited with a continuous-wave
laser, which is separated by a cross-polarization scheme [90] from the single photons that
are collected in a single-mode fiber. This linearly (H) polarized single-photon stream
Ψin is then brought by WP1 (22.5◦) in a superposition of two polarization modes; H-
polarized photons enter the 1 m long free-space delay-loop wherein WP2 (22.5◦) brings
them again in a superposition, only H-polarized photons are transmitted from the loop
towards the detection part. Detection is done with a standard Hanbury Brown and Twiss
(HBT) setup with a non-polarizing beam splitter, after which the photons are coupled into
multi-mode fibers (coupling efficiency ∼ 90%) and detected with silicon avalanche pho-
ton detectors (APDs, 25% efficiency) and analyzed with a time-correlated single-photon
counting computer card. With motorized half-wave plates followed by a fixed linear po-
larizer before each multi-mode fiber coupler, the setup allows to distinguish correlations
between photons from the loop (g(2)

HH(τ)), only directly from the source (g(2)
V V (τ)), and

to analyze cross-correlations between photons from the loop and source g(2)
V H(τ). Note

that measurement in V V polarization is equivalent to a standard g(2)(τ) measurement
of the single-photon source and can be used to obtain a reference without changing the
experimental setup. We have chosen a beam waist of 0.50 mm inside the loop in order
to reduce diffraction loss; the total round-trip transmission ηL is ∼ 90%. Further, we
use active phase-stabilization of the loop length by using a mirror on a piezoelectric ac-
tuator (Fig. 6.1(b)) and a frequency-stabilized He-Ne laser entering the loop through a
doubly polished mirror, this is needed because weak pure single-photon states interfere
phase-sensitively [214].
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Figure 6.2: Characterization of the single-photon source (a) and loop setup (b), experi-
mental data has been accumulated over 3 hours; solid lines show the model
calculations. In (a) the three-level model is fitted to the experimental g(2)

V V (τ)
data to obtain the single-photon source and detector parameters used through-
out the paper. Panel (b) shows V H correlations between photons directly from
the source and from the loop, confirming the validity of our model.

We operate the QD single-photon source with relatively high excitation power (∼
50 nW) to obtain a bright single-photon stream (detected single-photon detection rate
of 200 kHz), with the consequence that unwanted effects produce a broad correlation
peak superimposed to g(2)(τ). In order to correctly take this into account in our model,
we first measure in V V detector configuration the source correlations (Fig. 6.2(a)) and
model it using a three-level system [248, 249], where τB is the lifetime of the additional
dark state:

g
(2)
3L (τ) = 1 − (1 + a) exp(−|τ |/τr) + a exp(−|τ |/τB). (6.1)

Further, for comparison to experimental results with expected g(2)(0) below 0.1 [18], the
theoretical data are convolved with a Gaussian instrument response function (IRF) of our
single-photon detectors with FWHM = 0.523 ns [195], limiting the smallest detectable
g(2)(0) ≈ 0.63. From fitting the model to the experimental data, we obtain a bunching
strength a = 0.24 ± 0.03 and τB = 5.2 ± 0.3 ns, similar time scales were observed before
[250].
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6.3 Photon correlations between source and delay loop
To start building up a theoretical model and to characterize the delay loop, we now
measure in V H detection configuration the cross-correlation function between photons
directly from source and photons from the delay loop g

(2)
V H(τ), shown in Fig. 6.2(b). The

V detector is connected to the start trigger input of a correlation card and the H detector
to the stop channel, therefore the measured correlation g(2)

V H(τ) is as expected asymmetric
around τ = 0. Considering an H-polarized photon entering the loop, WP2 transforms
it into an 1√

2 (|H⟩ + |V ⟩) diagonally polarized state. The H-polarized part of the state
leaves the loop via the polarizing beam splitter, while the V part remains in the loop and
is transformed by WP2 into 1√

2 (|H⟩ − |V ⟩), this process is repeating itself infinitely. In
the case of a limited amount of photons in well-defined time bins, the output can easily
be described, the chance that a photon leaves the loop after r round trips is (ηL/2)r [251].
In our case of a random single-photon stream, the case is more complex as we describe
the light stream by correlation functions which we also measure experimentally.

In order to predict g(2)
V H(τ) theoretically, we use as an approximation that maximally

two photons are in the system, which we prove later to be appropriate here. We obtain
for the detected state for two incident photons with delay ∆t ̸= 0 (it is a single-photon
source) a weighted superposition of single-photon streams shifted by time r · R, where r
is the round-trip number and R the round-trip delay (see Appendix, Sec. 6.6.1 ):

|ΨV H⟩ =
∑

∆t̸=0
V †

√ηL

2 H
†
R+∆t +

∑
r≥2

(
−
√
ηL

2

)r
H†
r·R+∆t

 |0⟩. (6.2)

The state is written in terms of photon creation operators V †
t and H†

t , where the polariza-
tion mode is represented by the capital letter, the detection time is given in the subscript.
Assuming a source continuously emitting perfect single photons, we can derive from the
two-photon state an analytical expression for g(2)

V H(τ):

g
(2)
V H(τ) = 1 −

∑
m>0

(
ηL

2

)m (
1 − g

(2)
3L (τ −m ·R)

)
. (6.3)

Here, photons with ∆t = z · R, z ∈ Z are correlated by the loop and create dips in
g

(2)
V H(τ) for τ = m ·R where m ∈ N iterates over round-trips. We observe good agreement

between theory and experimental data in Fig. 6.2(b). Note that also the shifted broad
peak originating from strong driving is correctly reproduced.

6.4 Building artificial coherent states
Finally, we investigate the correlations of photons emerging from the loop by measuring
g

(2)
HH(τ), shown in Fig. 6.3. We find that g(2)

HH(τ = 0) is now highly sensitive to the
indistinguishability or wave function overlap M of consecutive photons produced by the
quantum dot, which we can tune experimentally simply by changing the spatial alignment
of the delay loop. Assuming a perfect single-photon source, the wave function overlap M
is equal to the interferometric visibility V , see Appendix 6.6.3 for details. The model for
the case of distinguishable photons, shown in Fig. 6.3(a), can be calculated again in the
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Figure 6.3: Photon correlations g(2)
HH(τ) (symbols) for misaligned loop (a, V ≈ 0.03, distin-

guishable photons) and aligned loop (b, V ≈ 0.9, indistinguishable photons)
compared to the model predictions (blue curves). Raw coincidence counts
corresponding to g

(2)
HH(τ) = 1 were 880 (a) and 9700 (b). The green curves

show the model results for the case without spectral diffusion.

two-photon picture, and we obtain

g
(2)
HH(τ) =1 − 2ηL

4 − η2
L

∑
m∈Z\{0}

(
ηL

2

)|m| (
1 − g

(2)
3L (τ −m ·R)

)
−
(
1 − g

(2)
HH(0)

) (
1 − g

(2)
3L (τ)

)
,

(6.4)

where the value of g(2)
HH(0) has to be calculated using full quantum state propagation

which we describe now.
The delay loop leads to quantum interference of photons at different times in the inci-

dent single-photon stream, and HOM photon bunching occurring at WP2 produces higher
photon number states in a complex quantum superposition. We have developed a com-
puter algorithm that can simulate g(2)

HH(0), see Appendix 6.6.2 for details. For the results
shown here, we take up to 20 photons or loop iterations into account to approximate the
experiment with a continuous photon stream. For completely distinguishable photons we
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obtain g
(2)
HH(0) = 0.49 (corrected for dark state dynamics), which agrees well with the

experimentally observed correlations in Fig. 6.3(a).
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Figure 6.4: Comparison of the photon number distribution of a weak coherent state (bars)
and thermal state (through blue line) with same mean photon number n ≈ 0.2,
to the results from our theoretical model (squares for the case of indistin-
guishable photons, M = 1, and circles for the case of distinguishable photons,
M = 0). A fixed round-trip loss of 0.1 is included in both cases. The artificial
state matches best to the weak coherent light state.

For the case of indistinguishable photons with maximal wave-function overlap M ≈ 0.9,
we observe in Fig. 6.3(b) that the dip at τ = 0 almost disappears. This is because the
(multi-)photon bunching increases the weight of higher photon number states, and, as we
show now, produces quasi-coherent states of light with g(2)(0) ≈ 1. Based on our computer
simulation, we investigate the photon number distribution P (n), which is shown in Fig.
6.4. We see very good agreement of the artificial coherent state (indistinguishable photons,
M = 1, experimentally we achieve M = 0.9) to an exact weak coherent light state with
the same mean photon number (n̄ = 0.2). In Appendix 6.6.5, we show that the artificial
coherent state is also very close to being an eigenstate of the annihilation operator, as
expected. Now, using the full simulated quantum state, we calculate the quantum fidelity
F to the exact coherent state and obtain 1 −F ≈ 10−3 for both M = 1 and M = 0.9. We
also calculate the l1-norm of coherence [252] Cl1 , also here the deviation from the exact
coherent state is very small, smaller than 10−3 relatively. From comparison of the density
matrices, we see that deviations occur mainly in the higher photon number components,
those are weak and do not contribute much to the aforementioned measures. These small
deviations are also visible in the Wigner function of the artificial coherent state.

In the model, we can ignore a round-trip dependent decrease of M due to beam diffrac-
tion since the effect is only ∼ 2%, see Section 6.6.2.2, and from Fig. 6.4 we also see why
it was justified above to ignore N > 2 states for prediction of g(2)

V H(τ) and g
(2)
HH(τ ̸= 0),

their contribution is negligible (Appendix 6.6.4). In our experiment, we can also observe
the transition to an artificial coherent state by tuning the photon indistinguishability
M to intermediate values, which is shown in Fig. 6.5, again in good agreement with our
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tion of the photon indistinguishability or wave-function overlap, expressed by
the visibility V . Light with coherent photon statistics is obtained for V → 1.
The green line shows the expected results for detectors with perfect timing
resolution. Results include a fixed round-trip loss of 0.1.

model. Compared to a weak thermal state of light which can be produced by spontaneous
emission of many single-photon emitters coupled to the same cavity mode [253], although
having similar P (n) for low n̄, as shown in Fig. 6.4, g(2)(0) would show a peak which is not
the case here. The simple characterization method based only on two-photon correlations
measurement presented here could also be useful for characterization of photonic cluster
states demonstrated recently [42,247]. In order to determine how many photons are con-
tributing to the quasi-coherent states here, by comparing our experimental results to a
photon-truncated theoretical model, we see that at least 3 photons are needed to explain
our results. We estimate that these three-photon states occur with a rate of about 5 kHz
in our experiment.

6.5 Conclusions
We have shown approximate synthesis of continuous-wave coherent states of light from a
quantum dot-based single-photon source, using a simple optical setup with a free-space
delay loop. The underlying mechanism is repetitive single-photon addition [191,202,204]
to an ever-growing number-state superposition, and can be tuned by changing photon
distinguishability. A difference of the artificial coherent states here to conventional co-
herent light is that the photons of the artificial coherent state are correlated with others
separated by multiples of the loop delay, this is typical for systems with time-delayed
feedback [254] including lasers [255,256]. This quantum entanglement becomes accessible
if an ordered (pulsed) stream of single photons is used, and enables production of linear
cluster states which has been realized recently [42,247], and feed-forward or fast modula-
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tors [246,257–259] can be used to produce even more complex quantum states. We want to
add that also lasers produce only approximately coherent states with entanglement of the
stimulated photons via the gain medium [260–263] which is in practice inaccessible due to
the impossibility of monitoring every quantum interaction in the system [264]. From this
quantum entanglement arises complexity, therefore we had to use algorithmic modelling
in order to produce a theoretical prediction of the output state; this is not surprising
because it is known to be computationally hard to calculate quantum interference with
many beam splitters (including loop setups such as the one investigated here) and many
photons in Fock states, possibly lying beyond the P complexity class [36,41]. It would be
an interesting goal to develop rigorous entanglement (length) witnesses that can also be
applied to continuous and random photon streams such as here, explore possibilities for
time-bin encoded tensor networks [265, 266] or quantum metrology [267], or to entangle
the photons in a d > 1-dimensional topology [268, 269]. A natural question is if other
quantum states of light, in particular quadrature squeezed light, can be produced in a
similar way, unfortunately, those light states are not resilient against loss compared to
coherent states, rendering this far more challenging.
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6.6 Appendix
6.6.1 The two-photon picture
In this section, we derive expressions for g(2)

V H(τ) and g
(2)
HH(τ) presented in the main text.

Limiting the description to two distinguishable photons (see main text), we first describe
the full two-photon state created from the single-photon stream by the delay loop. Later,
we derive the polarization-postselected correlation functions. Finally, we describe how
we include the finite lifetime of the single-photon source, as well as imperfections such
as quantum dot blinking and photon loss in the delay loop. Later, in section 6.6.2 we
will discuss indistinguishable photons and the effect of photon bunching by the Hong-Ou-
Mandel effect.

A single photon entering the loop setup (with the round-trip delay R) shown in Fig. 6.1
at time t is brought into a quantum superposition which becomes increasingly complex
with the number of round-trips r. The single-photon state |Ψ1⟩ can be written in terms of
photon creation operators Q† acting on the vacuum as |Ψ1⟩ = Q†(r, t)|0⟩, where Q†(r, t)
depends on the number of round-trips:

Q†(r, t) =



1√
2V

†
D,t + 1√

2H
†
B,t, r = 0,

1√
2V

†
D,t + 1

2

(
H†
D,t+R + V †

B,t+R

)
, r = 1,

1√
2
V †
D,t + 1

2H
†
D,t+R

+ 1√
2

 r∑
s≥2

(
−1√

2

)s
H†
D,t+s·R −

(
−1√

2

)r
V †
B,t+r·R

 , r ≥ 2.
(6.5)

Here, for instance, V †
D,t is the photon creation operator for a V -polarized photon in

mode D at time t. In each round trip, a photon at position B is brought into quantum
superposition by WP2, and the H-polarized component is transmitted from the loop by
the polarizing beam splitter (PBS) to the HBT detection setup, this results in an infinite
tree-like structure indicated in Fig. 6.6 below.

We assume that the input light is a perfect but random single-photon stream, where
the delay between two photons is ∆t ̸= 0, and the HBT setup post-selects two-photon
detection events from this stream. In general, this (detected) two-photon state can be
written as

|Ψ2⟩ =
∑

∆t̸=0
Q†(r1, t) ⊗Q†(r2, t+ ∆t)|0⟩. (6.6)

Since only photons in spatial mode D are detected, we ignore other photons and leave out
the spatial label from now on. In this section, we assume a perfect single-photon source
and no loss in the delay loop.

6.6.1.1 Detection of V H correlations

Working out Eq. (6.6) explicitly and post-selecting on terms containing one V and one
H photon, we obtain

|ΨV H⟩ =1
2
∑

∆t̸=0

 1√
2
V †
t H

†
t+∆t+R + V †

t

∑
r2≥2

(
−1√

2

)r2

H†
t+∆t+r2·R

+ 1√
2
V †
t+∆tH

†
t+R + V †

t+∆t
∑
r1≥2

(
−1√

2

)r1

H†
t+r1·R

 |0⟩.
(6.7)
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Now, we consider that V photons start the time-correlated single-photon counting appa-
ratus at time t = 0, therefore we require that in the first two terms t = 0 and in the
last two terms t + ∆t = 0. Obviously, only photons with ∆t = z · R, z ∈ Z are corre-
lated by the loop, the rest is uncorrelated and contributes to the correlation function as
g

(2)
V H(τ ̸= z · R) = 1. Due to symmetry between r1 and r2, we see that the final state is

just a weighted superposition of single-photon streams shifted with respect to each other
by a time r2 ·R, r2 ∈ N:

|ΨV H⟩ =
∑

∆t̸=0
V †

 1√
2
H†
R+∆t +

∑
r2≥2

(
−1√

2

)r2

H†
r2·R+∆t

 |0⟩. (6.8)

Evaluating the state for individual data points of g(2)
V H(τ) for fixed τ = µ · R, we obtain

for each µ an analytical expression (normalized by g(2)
V H(±∞) = 1), depending on whether

the photons are correlated by the loop:

g
(2)
V H(τ = µ ·R) =


∑
z=1 2−z − 2−µ = 1 − 2−µ for µ = m ∈ N,∑
z=1 2−z = 1 else.

(6.9)

By summation over time we obtain the full form for g(2)
V H(τ)

g
(2)
V H(τ) =

∑
µ

g
(2)
V H(τ = µ ·R)δ(τ − µ ·R) = 1 −

∑
m∈N

2−mδ(τ −m ·R). (6.10)

6.6.1.2 Detection of HH correlations

If both detectors detect H-polarized photons, all detected photons must have come from
the loop. We can post-selectH-polarized photons from Eq. (6.6) and write the two-photon
(not normalized) state using t′ = t+R as

|ΨHH⟩ = 1
2
∑

∆t̸=0

∑
r1≥1

∑
r2≥1

(
−1√

2

)r1+r2

H†
t′+(r1−1)·RH

†
t′+∆t+R(r2−1)|0⟩. (6.11)

We again consider that photons from the single-photon stream separated by ∆t = z ·R are
correlated by the loop, and coincidence clicks are recorded with time delay τ = m ·R,m ∈
Z. This leads to the condition z = r1 + r2 ± m. For normalization of the second-order
correlation function, we require the coincidence probability for photon delays different
than the loop delay. We define 0 < ϵ < 1 and z′ = z + ϵ and m′ = m + ϵ and assume
the conditions as before. We start the calculation of g(2)(τ) by considering correlations
at τ = µ ·R for loop-correlated photons (µ = m), which results in

g(2)
cor(τ = µ ·R) =

∑
z ̸=0

∑
r1≥1

∑
r2≥1

⟨ΨHH(r1, r2,∆t)|ΨHH⟩
⟨ΨHH |ΨHH⟩

· δ (z − r1 + r2 ± µ) . (6.12)

The state |ΨHH(r1, r2,∆t)⟩ is a superposition of two photons with fixed roundtrips r1 and
r2 and fixed ∆t (summand in Eq. (6.11)). Similarly, uncorrelated photons contribute to
the correlations only if µ = m′ ̸= m (i.e. ϵ ̸= 0):

g(2)
uncor (τ = µ ·R) =

∑
z∈Z

∑
r1≥1

∑
r2≥1

⟨ΨHH (r1, r2,∆t) |ΨHH⟩
⟨ΨHH |ΨHH⟩

· δ (z − r1 + r2 ± µ) . (6.13)
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The only difference between the equations above is in the summation over z. Since we
deal with a single-photon source which implies ∆t ̸= 0, the sum in Eq. (6.12) must not
include z = 0, while this is naturally satisfied in Eq. (6.13) where we can sum over all
integer numbers Z.

Polarization post-selection is a non-unitary operation, therefore the state and also the
resulting correlations are not normalized. Hence, we follow the usual normalization proce-
dure, i.e., we normalize by the uncorrelated correlations g(2)

uncor (τ = µ ·R) = 1. Moreover,
this choice also helps to simplify the infinite series, where the double summation over r1
and r2 can be evaluated and we obtain for fixed µ

g
(2)
HH(τ = µ ·R) =



g(2)
cor(τ = µ ·R)

g
(2)
uncor (τ = µ ·R)

=1 − 2
(1

2

)|m| ∑
r1≥1

2−2r1

=1 − 2
3

(1
2

)|m|
,

for µ = m

g
(2)
uncor(τ=µ·R)
g

(2)
uncor(τ=µ·R)

= 1, for µ ̸= m,

(6.14)

where the sum gives a factor of 1/3. We then obtain the full, loop-loss free ideal correlation
function

g
(2)
HH(τ) =

∑
µ

g
(2)
HH(τ = µ ·R)δ(τ − µ ·R) = 1 − 2

3
∑
m∈Z

(1
2

)|m|
δ(τ −m ·R). (6.15)

6.6.1.3 Relation to source correlations

As written in the main text, we take the finite quantum dot lifetime and blinking into
account by the single-photon source correlation function g

(2)
3L (τ) [249] in Eq. (6.1). In

order to include this in the model, we replace the δ-function in Eqs. (6.10) and (6.15) by
the source correlation function like

δ(τ −m ·R) → exp
(

−|τ −m ·R|
τr

)
→
(
1 − g

(2)
3L (τ −m ·R)

)
.

The first replacement would include only the finite lifetime, while the second includes also
blinking. We obtain (note that we here and in the following re-define g(2)

V H(τ) and g(2)
HH(τ)

as we develop the model):

g
(2)
V H(τ) = 1 − 1

2
∑
m>0

(1
2

)m (
1 − g

(2)
3L (τ −m ·R)

)
(6.16)

and
g

(2)
HH(τ) = 1 − 2

3
∑
m∈Z

(1
2

)|m| (
1 − g

(2)
3L (τ −m ·R)

)
. (6.17)

6.6.1.4 Loss in the delay loop

Understanding the effects of optical loss in the delay loop is essential for correct modelling
of the produced quantum state of light. In order to achieve this, we define the loop
transmission as ηL and incorporate it in the two-photon state of Eq. (6.8) for each round
trip simply by replacing

√
1/2 by

√
ηL/2:

|ΨV H⟩ =
∑

∆t̸=0
V †

√ηL/2H†
R+∆t +

∑
r2≥2

(
−
√
ηL/2

)r2

H†
r2·R+∆t

 |0⟩. (6.18)
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After this, the correlation function g
(2)
V H(τ = µ · R) in Eq. (6.9) has to be re-normalized

for each µ

g
(2)
V H(τ = µ ·R) =

1 −
(
ηL
2

)µ
= 1 −

(
ηL
2

)µ
for µ = m ∈ N,

1 else.
(6.19)

Similar as before, we obtain the full g(2)
V H(τ) by adding it up for all µ, and, after inserting

g
(2)
3L (τ) we obtain

g
(2)
V H(τ) = 1 −

∑
m>0

(
ηL

2

)m (
1 − g

(2)
3L (τ −m ·R)

)
. (6.20)

Analogously, in order to include loop loss in g
(2)
HH(τ), we first replace in |ΨHH⟩ (Eq.

(6.11))
√

1/2 by
√
ηL/2. This change equally affects g(2)

cor (τ = µ ·R) and g(2)
uncor (τ = µ ·R),

allowing us to again normalize by g(2)
uncor (τ = µ ·R). In analogy to Eq. (6.14) we obtain

g
(2)
HH(τ = µ ·R) =



g(2)
cor(τ = µ ·R)

g
(2)
uncor (τ = µ ·R)

=1 − 2
(
ηL

2

)|m| ∑
r1≥1

(
ηL

2

)2r1

=1 − 2ηL

4 − η2
L

(
ηL

2

)|m|
,

for µ = m

g
(2)
uncor(τ=µ·R)
g

(2)
uncor(τ=µ·R)

= 1, for µ ̸= m,

(6.21)

and finally complete expression for g(2)
HH(τ) including loop loss:

g
(2)
HH(τ) = 1 − 2ηL

4 − η2
L

∑
m∈Z

(
ηL
2

)|m| (
1 − g

(2)
3L (τ −m ·R)

)
. (6.22)

Finally, based on the experimental observation that g(2)
HH(τ) is only for τ = 0 sensitive to

multi-photon quantum interference, we explicitly include g(2)
HH(0) and arrive at Eq. (6.4)

of the main text. We explain the numeric calculation of g(2)
HH(0) in the next section.

6.6.2 Simulation details
Calculation of g(2)

HH(0) for indistinguishable photons is complex due to multi-photon quan-
tum interference, we accomplish this by a computer simulation that iteratively calculates
the evolution of H-polarized photons in the experiment in Fig. 6.1. Because we aim to
simulate and tune quantum interference at WP2 by misaligning the delay loop, we intro-
duce two spatial bases for the description of spatially separated photons on WP2. The
first basis {H, V }S describes the incident photons and, because H-polarized photons are
only detected after at least one round-trip, also after the first round trip; while {H, V }L
is the basis used to represent the state after the second round trip. Below, the spatial
mode of polarized photons is stressed by its subscript.

In the simulation, we assume a perfect single-photon source continuously emitting H-
polarized photons with mutual delay of ∆t = R, each photon corresponds to |Ψ⟩in in the
flow chart of the algorithm in Fig. 6.6. WP1 set to 22.5◦ transforms each H-polarized
photon to 1√

2(|HS⟩+ |VS⟩), the VS mode is then erased, while the HS mode is transformed
by the PBS from input A to output B and enters the (initially empty) optical loop. The
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H mode in the loop is then transformed on WP2 (22.5◦) into 1√
2(|HS⟩ + |VS⟩), arrives at

time R at port C of the PBS and is transformed from the {H, V }S to the {H,V }L basis.
At the same time, the next photon from input A arrives at the PBS and its H-polarized
part is sent to the loop, while outgoing photons in port D are sent to the HBT detection
setup (Fig. 6.1 in the main text), where different ports D in Fig. 6.6 correspond to
different time bins.

A

B

CD

A

B

CD

loss

loss

H pol. photon, towards 
HBT detection setup

A

B

CD

loss

H pol. modes:

V pol. modes:

from source: from loop:

PBS  λ/2 (22.5°)

WP2

WP2

WP2

Time modes:

I II III ...

WP1

WP1

WP1

.
.
.

.
.
.

Figure 6.6: Flow chart of the computer algorithm to calculate g(2)
HH(0). It is an unfolded

version of the real experiment where photons in mode D are sent to the HBT
detection setup, each of these ports corresponds to a different time mode.

In order to model the continuous time-averaged measurements, we have to create a
stable photonic field in the initially empty delay loop. In Fig. 6.7 we show how the
average photon number n and g(2)

HH(0) evolve with the number of round trips. We observe
initial fluctuations in both parameters and very good convergence from 20 round trips on,
which we use for all calculations in this paper.

6.6.2.1 Quantum interference at waveplate WP2 in the delay loop

As explained in the main text, this waveplate leads to quantum interference and Hong-
Ou-Mandel photon bunching, not only of two photons but also of higher photon number
states. In particular to also model partially distinguishable photons, the effects of WP2
has to be modelled carefully in the computer simulation. We define an h-photon Fock
state of H-polarized photons in spatial mode S by |0, h⟩S and an v-photon Fock state of V -
polarized photons in the L-mode by |v, 0⟩L. If the photons are completely distinguishable
(wave-function overlap M = 0), the general WP2 transformation is

|0, h⟩S ⊗ |v, 0⟩L
WP2(22.5◦)−−−−−−→

M=0

1√
v!

√
h!

(
1√
2

)v+h h∑
j=0

(
h

j

)
(V †

S )j(H†
S)h−j|0⟩

⊗
v∑
k=0

(
v

k

)
(−V †

L)k(H†
L)v−k|0⟩.

(6.23)

The photons are individually transformed in 2-dimensional subspaces of Hilbert space
and do not interfere.
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Figure 6.7: Correlation g(2)
HH(0) (black) and average photon number n (blue) as a function

of the number of round trips for perfectly indistinguishable photons (M = 1)
and experimental round-trip loss ηL = 0.9. The vertical line shows our choice
of 20 round trips where the field is sufficiently converged.

On the other hand, quantum interference of completely indistinguishable photons (M =
1 and {H,V }S = {H,V }L) will lead to photon bunching:

|v, h⟩L
WP2(22.5◦)−−−−−−→

M=1

1√
v!

√
h!

(
1√
2

)v+h v∑
k=0

h∑
j=0

(
v

k

)(
h

j

)
(−1)k (V †

L)k+j|0⟩

⊗ (H†
L)h+v−k−j|0⟩

(6.24)

In general, WP2 transforms a partially indistinguishable state like
√
M · |v, h⟩L +

√
1 −M · |0, h⟩S ⊗ |v, 0⟩L. (6.25)

6.6.2.2 Delay loop: Round-trip loss and diffraction

As usual in quantum optics, we model loss in the delay loop by a beam splitter, before
WP2, with transmission t and reflection r. Ignoring the empty input port and the dumped
output port, this transforms an n-photon input state (single polarization) as

|n⟩ −→ 1√
n!

n∑
k=0

(ir)n−ktk(a†)k|0⟩. (6.26)

Figure 6.8(a) shows simulation results of g(2)
HH(0) for distinguishable and indistinguishable

photons, as a function of round-trip loss. Both curves approach single-photon correlations
for high loss, which is understandable because in this case the delay loop can be neglected.
For low loss, g(2)

HH(0) depends strongly on distinguishability, this is why we can use this
as a measure of quantum interference.

We do not use relay lenses in the free-space delay loop setup, here we investigate
diffraction between round trips. In order to estimate the decrease of mode overlap with
the number of round trips, we calculate the propagation-dependent M to be M(z) =
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Figure 6.8: Effects of round-trip loss and diffraction. (a) Dependence of g(2)
HH(0) on round-

trip loss, for the case of fully distinguishable (M = 0), indistinguishable
(M = 1) photons, as well as round-trip dependent indistinguishability due
to diffraction. The vertical dashed line points to our experimental round trip
loss of ∼ 0.1. (b) Effect of gaussian mode diffraction on the distinguishability
or wave function overlap M .

| kw2
0
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0+iz |

2, where k is the wave number, z the propagation length, and the beam waist
w0 = 0.50 ± 0.02 mm. This leads to considerably reduced distinguishability already after
3 round trips as shown in 6.8(b), however, in combination with the experimental round-
trip loss, its effect on g

(2)
HH(0) is negligible as shown in Fig. 6.8(a).

6.6.3 Visibility measurement
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Figure 6.9: Background-noise corrected interference measurements for misaligned (black)
and aligned (blue) delay loop, the obtained visibility V is indicated in the
legend.

We determine the wave-function overlap M on WP2 by measuring the classical interfer-
ence visibility V = Imax−Imin

Imax+Imin
of laser light sent to the delay loop [97], where Imax and Imin
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are maximal and minimal intensity. The relative phase is changed simply by scanning the
laser frequency in this unbalanced interferometer. The change in V corresponds directly
to the wave-function overlap M at WP2. We repeat this measurement before and after
the long correlation measurements in order to determine errors caused by thermal drift
of the delay loop during collecting data, which determines the error bars in Fig. 6.5 in
the main text. Fig. 6.9 shows examples for visibility measurements with misaligned and
aligned delay loop.

6.6.4 How many photons do interfere?

(a)

full
truncated

(b)

Figure 6.10: Influence of higher photon number states based on truncated computer sim-
ulations. (a) Dependence of g(2)

HH(0) on the maximum photon number, the
inset shows the full (gray) and truncated (black) simulated photon number
distribution (M = 0.9, ηL = 0.9). (b) Comparison of differently truncated
simulations to the experimental g(2)

HH(τ) data. At least 3 photons are needed
to explain the experimental data.

A coherent state contains contributions from a large number of different photon number
states, a natural question about our artificial coherent states is therefore: What is the
highest photon number state that is required to explain our experimental data? Here we
explore this by truncating out computer simulation and comparing to experimental data.
Figure 6.10(a) shows simulated g(2)

HH(0) for loop transmission ηL = 0.9 and ideal alignment
with M = 0.9. This state is now truncated to nmax photons and g

(2)
HH(0) is calculated,

see Fig. 6.10(a). In Fig. 6.10(b) we show the predicted g
(2)
HH(τ) based on Eq. (6.4).

We clearly see that at least 3 photons are needed to explain our experimental data, but
also that discriminating detection of higher number states is impossible with this method
because of the differences in g

(2)
HH(0) become negligible.

This claim is supported by counting simply the number of dips in g
(2)
HH(τ) in Fig.

6.3(b), where clearly dips can be observed at τ/R = ±1 (corresponding to two photons),
τ/R = ±2 (three photons), and less clear for four photons.

Finally, we estimate the rate Rn with which n-photon states are produced in our setup.
We detect single photons with approximately R = 150 kHz, which corresponds to a single-
photon rate entering the HBT setup of approximately R · 2/ηd, where ηd is the single-
photon detection efficiency. From our simulation, we derive the n-photon probability
P (n), with which we obtain a three-photon rate of ≈ 4.8 kHz, a four-photon rate of
≈ 140 Hz and a 5-photon rate of ≈ 1 Hz.
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6.6.5 Properties of the artificial coherent state
In the main text, we showed that the artificial coherent state for M ≈ 1 approaches the
photon number distribution of a weak coherent state and reaches g(2)(0) ≈ 1. In Fig.
6.11(a), we compare the same states by means of their Wigner function W (q, p), where
q and p are dimensionless conjugate variables corresponding to electric field quadratures.
Both, the position and the value of the maximum of W (q, p) show that the artificial states
are very close to a coherent state. The presence of negative regions in the Wigner function
evidences nonclassicality, connected to the ability to create multi-photon entangled states
with a delay-loop setup [42].

Coherent states have the unique property of being eigenstates of the annihilation op-
erator â. We test this and show the result in Fig. 6.11(b), this shows that the artificial
coherent states are very close to being an eigenstate of the annihilation operator, it is
almost unchanged by several applications of â. On the other hand, performing the same
procedure with a thermal state leads to pronounced changes, where the vacuum-state
probability decreases strongly and higher number probabilities are increased.

In Fig. 6.11(c) and (d), we compare the density matrices of the exact weak coherent and
artificial coherent states. The similarity in the density matrix magnitude, Fig. 6.11(c),
supports again the closeness of the states; the difference between both states appears
mostly in the phase and only for the higher photon number states with low magnitude,
see Fig. 6.11(d).
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Figure 6.11: Comparison of our artificial coherent state to a weak coherent state with
identical mean photon number (n̄ ≈ 0.2). (a) False-color plots of the Wigner
function W (q, p) of the artificial coherent state (left panel; M = 1, round-
trip loss 0.1) and of the weak coherent state (right panel). Both W (q, p)
share the position of their maximum (intersection of white lines) as expected.
(b) Probability distribution after repeated application of the annihilation
operator â on the artificial coherent state (Ψ, squares) and a weak thermal
state (Ψth, dashed lines). Bars show the exact coherent state which is an
eigenstate of â. (c) Magnitude and (d) phase of density matrix elements
of the coherent (wireframe boxes) and the artificial coherent states (colored
bars).
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