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5 Single-photon addition and photon
correlations
Non-Gaussian multi-photon states of light including displaced Fock states and
single-photon-added coherent states are key for continuous-variable quantum
information processing. Traditionally, these states are produced using her-
alded single-photon sources based on nonlinear optics, which relatively easily
allows matching of the temporal-spectral properties of the single photon and
the coherent state; but this method is intrinsically non-deterministic. Here
we theoretically study single-photon addition using different sources of single
photons including near-deterministic sources based on quantum dots, and in-
vestigate the influence of single-photon purity, brightness, and indistinguisha-
bility. We derive analytical results and find that the two-photon correlation
function of the generated quantum light can be used to robustly characterize
and optimize the fidelity of the generated states.

This chapter contributes to: P. Steindl, V. Tubío, W. Löffler, Single-photon addition and
photon correlations (in preparation).
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5.1 Introduction
In order to implement classically hard-to-simulate continuous variable (CV) photonic
quantum circuits [175], Wigner negative [176, 177] resources such as non-Gaussian input
states are necessary. These states are also interesting in other fields, for instance they
promise improved security in quantum key distribution [178–181], and might find use
in quantum metrology [62]. Despite several classes of non-Gaussian states have been
identified over the past two decades [182–184], they remain notoriously challenging to
produce [185]. The manipulation of light fields on the single-photon level using photon
subtraction [186] or addition [187–189] allows for flexible engineering of the photon number
statistics [85,190–192], these operations are the experimental analogues of the application
of the annihilation and creation operators a and a† on a well-defined optical mode [193].

Single-photon addition can be realized by emission of one photon of a photon pair
into the classical input light field in a nonlinear crystal [187–189], using a three-level
quantum system in an optical cavity [194, 195] or by interference of the input light (e.g.
coherent light) with a single photon on an (unbalanced) beam splitter [196–199]. In
all cases, the addition of the single photon alters the photon statistics of the input light
dramatically [200] resulting in genuinely non-classical states of light [201] for both coherent
light [202] or thermal light [203] used as the input.

In contrast to single-photon addition, the related process of single-photon subtraction
produces non-classical non-Gaussian states only if performed on a non-classical input
state [184, 204]. Single-photon subtraction can be realized in the simplest case using
post-selection on single-photon detection at a beam splitter [186,205].

To date, photon addition was realized mostly using heralded single-photon sources
[206, 207] based on spontaneous parametric down-conversion (SPDC). Because the num-
ber of photon pairs produced by SPDC follows a thermal distribution [208,209], heralded
production of single photons suffers from a trade-off between single-photon brightness and
purity, only recently extensive efforts have improved this to some extend [209,210]. At the
same time, there is fast progress with true single-photon sources (SPSs) [211] based on
III-V semiconductor quantum dots in optical microcavities that would in-principle enable
fully deterministic and pure single-photon production [13, 15, 17, 18, 28, 57, 102, 103], and
with this also deterministic single-photon addition. Here, we investigate and compare
single-photon addition for different photon sources including the effect of brightness, pu-
rity and indistinguishability. We calculate the second-order correlation function of the
resulting quantum light, and find that photon correlation measurement of displaced Fock
states is a robust method to optimize wave-function overlap such as mode-matching on
the beam splitter.

5.2 Displaced Fock states from quantum interference
A non-polarizing beam splitter (BS) enables quantum interference of two incident optical
fields. Based on the beam splitter input-output relations [208,212], more complex photonic
states can be synthesized, the prime example is the Hong-Ou-Mandel (HOM) effect, where
two identical single photons “bunch” at the beam splitter [27]. This effect is used for
the characterization of the photon indistinguishability of single-photon sources [28], to
entangle photons [5, 213], prepare photon-number superposition [85, 214], and in boson
sampling [215]. A beam splitter also enables implementing the displacement operator by
mixing the input state with a strong coherent state [216]. This effect lies at the heart of
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homodyne detection and also allows for state Wigner function tomography [185]. All these
effects originate from quantum-state manipulation by interference at the beam splitter.

|𝜓⟩

|𝛼⟩

Output 
ො𝜌3

Figure 5.1: General scheme: In a possibly unbalanced beam splitter, the input state |ψ⟩,
e.g. a single-photon state, and a classical state of light, for instance the
coherent state |α⟩, undergo quantum interference, resulting in possibly non-
Gaussian output light.

We assume a loss-less low-reflectivity beam splitter (R ≪ 1) sketched in Fig. 5.1 and
study quantum interference of a coherent state |α⟩ and a state of the form |ψ⟩ = √

p0|0⟩+√
p1|1⟩ + √

p2|2⟩ by observing output mode 3, ignoring output mode 2. This situation
is closely related but different from the conditional generation of single-photon added
coherent states using heralding on zero [196, 197] or single-photon detection [217, 218] in
mode 2. Our protocol does not rely on heralding and our form of |ψ⟩ allows investigation
of the relevant single-photon source properties, the single-photon brightness p1 and purity
1 − p2. The structure of |ψ⟩ has been chosen with the ambition to be able to compare
SPDC-based sources (where p1 ≪ 1, p0 ≈ 1 − p1, and p2 = p2

1 in the low-gain limit) and
true single-photon sources with p1 ≈ 1 and p0, p2 ≈ 0 [219].

Assuming for now that |α⟩ and |ψ⟩ are perfectly indistinguishable in all degrees of
freedom, we can calculate the quantum state emerging from the beam splitter in the
low-reflection approximation and obtain [199,216,220]

|ψout⟩ ≈√
p0|γ⟩2|β⟩3 + √

p1
(
irD̂2(γ)|1⟩2|β⟩3 + tD̂3(β)|γ⟩2|1⟩3

)
+ √

p2
(√

2irtD̂2(γ)D̂3(β)|1⟩2|1⟩3 + t2D̂3(β)|γ⟩2|2⟩3 − r2D̂2(γ)|2⟩2|β⟩3
)
.

Here, D̂x(γ) = eγx
†−γ∗x is the displacement operator operating on mode x, and α = γ/t =

−iβ/r.
We are only interested in the output mode 3, therefore we trace out mode 2 leading to

(from now on, the subscript 3 is dropped)

ρ̂3 = D̂(β) [A0|0⟩⟨0| + A1|1⟩⟨1| + A2|2⟩⟨2|] D̂(β) . (5.1)

The result is a mixture of displaced vacuum, single- and two-photon states, with the
mixing probabilities A0 = p0 + p1R + p2R

2, A1 = Tp1 + 2RTp2, and A2 = T 2p2. The
mixing probabilities and displacement depend on the beam splitter reflectivity R and
transmissivity T , which can be used to control the final state, next to changing the input
state |ψ⟩. Eq. (5.1) reduces to results of Windhager et al. [221] in the weak single-photon
limit, p2 = 0.
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5.2.1 Influence of loss
To give a fair comparison between heralded and true single-photon sources, we implement
photon loss in the optical channels. Because coherent states |α⟩, eigenstates of the anni-
hilation operator, do not change their character under loss [222,223], we model loss only
in the |ψ⟩ channel by an additional beam splitter of transmission η. Similar to above, we
calculate the final state in mode 3 including photon loss. As expected, the structure of
the state in Eq. (5.1) is not altered, only the mixing probabilities Ai are changed and
now scale with p̃i instead of pi: p̃0 = ∑2

j=0 [(1 − η)j−1pj], p̃1 = η(p1 + 2p2 − 2ηp2), and
p̃2 = η2p2.

5.3 Photon correlations
In experiments, the 2nd-order intensity or photon correlation function g(2)(τ) is easily
accessible because the required Hanbury-Brown & Twiss (HBT) setup [224] is simple,
and since it is insensitive to detection efficiencies and loss; further it can be extended
to higher-order photon correlations [225]. We can calculate the zero-delay correlation

4/3

Coherent state

𝜓 source

Ideal |1⟩
Heralded SPDC, [A]
Multiplexed SPDC, [B]
QD in cavity, [C]

𝑇 = 0.9

Single-photon-added 
coherent states, [D]

𝐷(𝛽)|1⟩, [E]

Figure 5.2: Comparison of g(2)(0) as a function of the reflected coherent state |β|2 for
photon addition at a beam splitter with transmission T = 0.9 by quantum
interference of |α⟩ with |ψ⟩ for different sources for |ψ⟩: Heralded SPDC single-
photon source (orange, A [207]), multiplexed SPDC source (green, B [209]),
QD-based true single-photon source (red, C [15]) and an ideal single-photon
Fock state (black). We also show g(2)(0) for the single-photon added coherent
state (blue, D [187]) and for a displaced single photon state (purple, E [226]).
Symbols represent experimentally reported g(2)(0).

function g(2)(0) from the state ρ̂3 using commutation relations between displacement and
ladder operators [208,227], after some steps shown in Appendix 5.7.1 we obtain

g(2)(0) = |β|4 + 4|β|2Tη(p1 + 2p2) + 2T 2η2p2

[|β|2 + Tη(p1 + 2p2)]2
. (5.2)
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This expression is directly dependent on the photon statistics of |ψ⟩ and allows easy
comparison of g(2)(0) for various photon emitters as shown in Fig. 5.2, as a function
of the strength of the reflected coherent state |β|2 = R|α|2. In general, we observe a
gradual transition from the correlation function of the input state |ψ⟩ [g(2)

|ψ⟩(0)] to that of
the coherent state [g(2)

|α⟩(0) = 1] with increasing coherent state strength.
First, we assume a negligible multi-photon contribution in |ψ⟩, which is a good approx-

imation of current QD-based and weak heralded SPSs with purity exceeding 0.98. Under
this condition, g(2)(0) reduces to the expression reported and experimentally confirmed
by Shen et al. [228] with the (detected) single-photon brightness p̃1 = ηp1:

g(2)(0) = |β|4 + 4|β|2T p̃1

[|β|2 + T p̃1]2
. (5.3)

Interestingly, this function has a global maximum of 4/3 in the parameter space of
{T, p̃1, |α|2} connecting all experimental parameters defining the problem, i.e., the split-
ting ratio of the BS, the strength of the coherent state given by its mean photon number
|α|2, and the single-photon source brightness p̃1 by R|α|2 = 2p̃1T .

Now, we focus on the evolution of the quantum state ρ̂3 prepared with an ideal single-
photon state (|ψ⟩ = |1⟩) while the coherent state strength gradually increases from zero.
On top of the naturally expected quantum-to-classical state transition from the initially
purely quantum state (the single-photon Fock state with g

(2)
|1⟩ (0) = 0) into a classical

coherent state (with g
(2)
|α⟩(0) = 1), the theory also predicts a regime of photon bunching

with g(2)(0) > 1 with a maximal g(2)(0) of 4/3. As expected, the photon correlation
function converges to g

(2)
D̂(β)|1⟩(0) for T → 1 and p̃1 = 1 as theoretically predicted for a

pure displaced Fock state g(2)
D̂(β)|1⟩(0) = |β|2(4+|β|2)

(1+|β|2)2 [226].
In Fig. 5.2, we compare g(2)(0) achieved with several experimentally available single-

photon sources, and in Table 5.1, we show the relevant characteristics of these sources. For
example, heralded SPDC sources with a high single-photon purity g(2)

|ψ⟩(0) ≈ 2p̃2/p̃
2
1 ≈ 0.01

are typically operated in low photon number regime (mean photon number ∼ 0.05) to
minimize multi-photon contributions; which also results in the limited brightness p̃1 ≈ 0.05
[207]. As expected from Eq. (5.3), we observe the reduction in p̃1 as a shift towards weaker
coherent state strength for which g(2)(0) becomes maximal. The brightness p̃1 of a heralded
SPDC source can be artificially increased beyond the thermal statistics limit by time or
spatial-bin multiplexing [229]. For example, Kaneda et al. [209] achieved p̃1 = 0.667 by
multiplexing 40 time bins at the cost of worsen single-photon purity to g(2)

|ψ⟩(0) ≈ 0.269.
For the parameters reported in Ref. [209] we find (i) a shift of the bunching regime towards
higher |β|2 due to higher p̃1, and (ii) g(2)(0) exceeding slightly 4/3 (by ≈ 0.03) due to
non-negligible multi-photon contributions in |ψ⟩.

In contrast to SPDC sources, the single-photon purity of QD-based single-photon
sources is, in principle, independent of the brightness. However, the purity can be compro-
mised by QD re-excitation [230, 231] and/or non-ideal excitation-laser filtering [54, 101],
contaminating the single photons with multi-photon components. Nevertheless, the pu-
rity often exceeds 0.98. Therefore, it is not surprising to expect with the best available
QD-based sources [15] similar behavior of g(2)(0) as obtained for an ideal single-photon
Fock state, again with its maximal value of 4/3, at |β|2 = 2T p̃1 = 1.026.

Finally, we compare the photon correlations of ρ̂3 with correlations expected for the-
oretical single-photon-added coherent states Ca†|β⟩ with C = 1/

√
1 + |β|2 [187], which
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Heralded SPDC [207] Multiplexed SPDC [209] Quantum dot [15]

Purity g(2)
|ψ⟩(0) 0.01 0.269 0.021

Brightness p̃1 0.045 0.667 0.566

p̃0 0.953 0.231 0.43

p̃2 0.002 0.102 0.003

Table 5.1: Single-photon purity, brightness (and p̃0 and p̃2) of several single photon sources
used for the evaluation of g(2)(0) in Fig. 5.2.

can be easily calculated: g(2)
Ca†|β⟩(0) = 4|β|2+5|β|4+|β|6

|1+3|β|2+|β|4|2 (1 + |β|2). Notably, g(2)
Ca†|β⟩(0) shows a

monotonous transition from single-photon to coherent-state correlations without a region
of photon bunching. This absence can be used for discriminating single-photon added
coherent states from displaced Fock states, which are hard to distinguish otherwise [232].

5.4 Effect of photon indistinguishability
Up to now, we have assumed perfect indistinguishability, or wave-function overlap, of the
interfering light fields, now we discuss fields with reduced overlap. First, we introduce an
extra degree of freedom enabling us to define indistinguishability - we choose polarization
for simplicity, where for linearly polarized input fields, the indistinguishability can easily
be modified by polarization rotation with a half-waveplate (HWP). We introduce a HWP
in the beam splitter input channel 0 and vary its polarization by adjusting the HWP
angle θ/2, as sketched in the inset of Fig. 5.3. For example, an incident H-polarized
coherent state |α, 0⟩ is transformed by the HWP to |α cos θ, α sin θ⟩; we use the two-entry
ket notation representing H and V polarization, which allows full control over the mutual
indistinguishability M between the input fields. The beam splitter transformation and
final states are shown in Appendix 5.7.1, we obtain

g
(2)
θ (0) = |β|4 + 2|β|2Tη(1 +M)(p1 + 2p2) + 2T 2η2p2

[|β|2 + Tη(p1 + 2p2)]2
.

In Fig. 5.3, these photon correlations are shown for varied indistinguishability. If the
photons are maximally indistinguishable (M = cos2 θ = 1), the model reduces to Eq. (5.2)
and a prominent bunching region appears, which is absent for the fully distinguishable
case with M = 0.

The strong dependency of the correlation function caused by the high sensitivity of
multi-photon interference on the indistinguishability [233] is a remarkable quality en-
abling fidelity optimization of the prepared state. Moreover, the correlation measurement
performed in the HBT interferometer is loss and imperfect-detection tolerant, in contrast
to homodyne Wigner tomography requiring above 50% detection efficiency to successfully
reconstruct Wigner negativity [234] and another phase-stabilized coherent state acting
as the local oscillator. The combination of these facts makes the correlation-function
method experimentally feasible for optimizing indistinguishability and mode-matching at
the beam splitter.
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Figure 5.3: The effect of photon indistinguishability on displaced Fock states. The plot
shows g(2)

θ (0) as a function of the coherent-state brightness for different indis-
tinguishability M between the coherent state and single photons produced by
a quantum dot - cavity single photon source [15]. M is changed by rotating
the polarization of one of the beam splitter inputs with a half-wave plate.

Despite the simplicity of the technique, achieving true indistinguishability and thus
observation of a 4/3 photon bunching requires fine optimization. To date, the maximal
experimentally reported value is ∼ 1.26 of Shen et al. [228], where the indistinguishability
is limited to 0.86 by a non-ideal spectral-temporal overlap of the coherent state from
attenuated laser pulses and heralded single photons.

5.5 Single-photon addition with quantum dot sources
Figure 5.4 shows an experimental setup for single-photon addition on a beam splitter:
the coherent states are made by an attenuated laser, and a QD integrated into an optical
microcavity operated at cryogenic temperatures is used as a single-photon source (SPS).
For the generation of displaced Fock states, a single-mode fiber splitter is used instead of
a free-space beam splitter. The fiber optic splitter (ration R:T=10:90) enables (i) long-
term stable spatial mode overlap between the input fields and (ii) flexible connectivity to
fiber-based optical networks for possible applications.

First, we concentrate on the generation of single photons. The QD on-resonance with
the optical cavity is excited with a few-10 picosecond long laser pulse. The pulse duration
needs to be optimized to minimize QD re-excitation [230,231] either by fast electro-optic
modulation (EOM) of narrow-bandwidth continuous-wave laser (cw laser 1) [235] or us-
ing ultra-short duration pulsed laser together with grating-based pulse shaping [236]. The
excitation polarization and laser power are chosen to reach the maximal QD population
inversion, leading to maximal single-photon brightness p1 [237]. Then, the emitted single
photons are separated from the excitation laser and collected in a single-mode fiber at-
tached to the fiber splitter. Depending on the excitation scheme, the reflected resonant
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(non-resonant) laser light is filtered out using cross-polarization [54,101], or spectral [17]
filtering.

QD

SPS

Pulse shaper

SP addition

Photon correlation

Laser pulse

𝜃/2𝛼 2Control:

cw laser 2

cw laser 1

0

1

3

10:90

4 K

50:50
𝑔 2 (0)

EOM

EOM

Single photon

SPD

SPD

Figure 5.4: Experimental setup for single-photon addition with a QD-based single-photon
source. A few-picosecond long laser pulse excites the QD-cavity device, spon-
taneously emitting a single photon upon relaxation. The single photon is
separated from reflected laser light, collected in a polarization-maintaining
fiber, and interfered with a coherent state from another laser source with con-
trol over all degrees of freedom on a polarization-maintaining fiber splitter.

Now, we discuss the preparation of coherent states |α⟩. Laser 2 is tuned to be resonant
with the QD emission and the strength |α|2 of the coherent state can be tuned with by a
half-wave plate (HWP) in combination with a linear polarizer before being coupled into
a single-mode fiber connected to the fiber splitter (input port 0). To achieve maximal
state overlap on the fiber splitter, we prepare the coherent states in the form of optical
pulses. This, in contrast to the continuous-wave regime, enables us to control all degrees
of freedom of the coherent state and engineer them for maximal interference with the
single photons: (i) the spatial degrees are matched using a single-mode fiber splitter,
(ii) the polarization of the coherent state is controlled by adjusting the angle θ/2 of an
extra half-wave plate placed in front of the fiber coupler, and finally (iii), the arrival time
synchronization and spectral-temporal overlap can be optimized by pulse shaping of the
coherent laser pulses. For example, perfect matching to the lifetime-limited trion emission
with mono-exponential decay described by the trion lifetime T1 [238] requires exponential
coherent state pulses with duration T1.

This wave-function overlap optimization, requiring iterative fine-tuning of all modes of
the light fields, becomes very challenging experimentally in the presence of photon loss and
limited detection efficiencies. However, as also discussed above, the wave-function overlap
can be maximized based on the photon-correlation g(2)(0) signal, which is insensitive to
experimental imperfections.

Finally, we comment on the displaced Fock state generation rates achievable with cur-
rent QD-based single-photon source technology. The rate is, in principle, limited only by
the emission properties of the QD, i.e., its in-fiber brightness defining single-photon gain
per pulse and T1 limiting the excitation rate. In-fiber single-photon rates up to 1 GHz
with an in-fiber brightness of p̃1 = 0.57 at a lifetime of T1 ∼ 50 ps has been obtained [15].
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In comparison, all currently available SPDC-based sources have more than one order of
magnitude smaller single-photon rates due to heralding and necessary low p̃1, or limited
multiplexing rates, a comparison is given in Ref. [209].

5.6 Conclusions
In conclusion, we have theoretically studied the second-order photon correlation func-
tion g(2)(0) of displaced Fock states generated by quantum interference of coherent and
single-photon states. We have modelled the single photons to account for experimentally
unavoidable imperfections, limited brightness and reduced purity, and have derived for-
mulas directly connecting the resulting photon correlations to the single-photon source
properties. We have shown that for the case of true single-photon sources, the correla-
tions show universal photon bunching with g(2)(0) reaching 4/3. This bunching is very
sensitive to the indistinguishability of the single photons and the coherent state at the
beam splitter, which can therefore be used for optimization of indistinguishability at the
beam splitter including mode-matching and single-photon properties, and allows discrim-
ination of single-photon added coherent states and displaced Fock states. Finally, we have
evaluated an experiment with a realistic quantum-dot based true single-photon source,
which will allows production of GHz-rate displaced Fock states that might be useful for
quantum key distribution [178–181] and photon boson sampling [232,239].
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5.7 Appendix

5.7.1 Derivation of g(2)
θ (0)

Here we discuss essential steps in the derivation of g(2)
θ (0) presented in the main text. As

shows in Fig. 5.3, the HWP enables continuous variation of the polarization by adjusting
its angle θ/2. We use two-component ket notation to represent the HWP transformation;
the initially H-polarized coherent state is transformed as |α, 0⟩ HWP(θ/2)−−−−−−→ |α cos θ, α sin θ⟩.
Under this transformation in the low-reflection approximation, the state emerging from
the BS in mode 3 after a partial trace over mode 2 is

ρ̂3 = D̂V (βV )D̂H(βH) [A0|0, 0⟩⟨0, 0| + A1|1, 0⟩⟨0, 1| + A2|2, 0⟩⟨0, 2|] D̂†
H(βH)D̂†

V (βV ) .

This state is a two-mode mixture of displaced Fock states with displacement βV = β sin θ,
βH = β cos θ. The second-order photon correlation function can be calculated from
g

(2)
θ (0) = Tr(ρ̂3a†a†aa)

|Tr(ρ̂3a†a)|2 . In the following derivation, we have used: (i) the cyclic proper-
ties of the trace, (ii) the commutation relations between ladder and displacement opera-
tors [227], (iii) unitarity of the displacement operator, and (iv) the relation n̂ = n̂H + n̂V
connecting the polarization modes to non-polarized detection. For simplification, we de-
fine ρ̂3,H = A0|0⟩⟨0| + A1|1⟩⟨1| + A2|2⟩⟨2|, and evaluate the numerator and denominator
separately.

The numerator:

TrV,H[ρ̂3a
†
HaH ] = TrH[(a†

H + β∗
H)(aH + βH)ρ̂3,H ] = A1 + 2A2 + |βH |2

TrV,H[ρ̂3a
†
V aV ] = TrH,V[(a†

V + β∗
V )(aV + βV )ρ̂3,H ] = |βV |2

TrV,H(ρ̂3a
†a) = TrV,H[ρ̂3(a†

HaH + a†
V aV )] = A1 + 2A2 + |β|2

The denominator:

TrV,H[ρ̂3n̂
2
H ] = TrH{[(a†

H + β∗
H)(aH + βH)]2ρ̂3,H} = TrH{[(a†

H + β∗
H)(aH + βH)]2ρ̂3,H}

= TrH[(n̂2
H + 4|βH |2n̂H + |βH |2 + |βH |4)ρ̂3,H ]

= A1 + 4A2 + 4|βH |2(A1 + 2A2) + |βH |2 + |βH |4

TrV,H[ρ̂3n̂
2
V ] = TrH{[(a†

V + β∗
V )(aV + βV )]2ρ̂3,H} = |βV |2 + |βV |4

TrV,H[ρ̂3n̂H n̂V ] = |βV |2TrH{(a†
H + β∗

H)(aH + βH)ρ̂3,H} = |βV |2(A1 + 2A2 + |βH |2)
TrV,H(ρ̂3a

†a†aa) = TrV,H[ρ̂3(n̂2
H + 2n̂H n̂V + n̂2

V − n̂H − n̂V )]
= |β|4 + 2|β|2[1 + cos2 θ](A1 + 2A2) + 2A2

With this, the photon correlations can be expressed as

g
(2)
θ (0) = |β|4 + 2|β|2[1 + cos2 θ](A1 + 2A2) + 2A2

[|β|2 + A1 + 2A2]2

= |β|4 + 2|β|2Tη(1 + cos2 θ)(p1 + 2p2) + 2T 2η2p2

[|β|2 + Tη(p1 + 2p2)]2
(5.4)

where the correlations in the last step are represented directly in terms of the photon
number probabilities of the single-photon source. For the case of fully indistinguishable
photonic fields, this reduces to

g(2)(0) = |β|4 + |β|2Tη(p1 + 2p2) + 2T 2η2p2

[|β|2 + Tη(p1 + 2p2)]2
. (5.5)
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This function is maximized for |β|2 = 2Tη[p1 + 2p2 − p2/(p1 + 2p2)]. Assuming negligible
multi-photon contributions (simply by setting p2 = 0) which is a good approximation of
state of the art single-photon sources, the expression in Eq. (5.5) can be further simplified
to

g(2)(0) = |β|4 + 4|β|2T p̃1

[|β|2 + T p̃1]2

where we used the definition of detected single-photon brightness p̃1 = ηp1. Interestingly,
this function has a global maximum of 4/3.

5.7.2 Photon correlations: single-photon-added coherent states vs
displaced Fock states

Shen et al. [228] studied photon correlations before, in a notation consistent with our
work they have obtained

g(2)(0) = |β|4 + 4|β|2T p̃1 + 4p̃1T |β|4 + p̃1T |β|6

[p̃1T + |β|2 + 2p̃1T |β|2 + p̃1T |β|4]2 (1 + p̃1T |β|2).

This formula, appearing also in other works [240], is based on a somewhat unconventional
ordering of non-commuting operators after the beam splitter transformation, which is
inconsistent with literature (e.g. [199,217,241,242]). Nevertheless, for a weak attenuated
laser with |β|2 ≪ 1 and a weak heralded single-photon source (p̃1 ≪ 1) results in the
approximate expression

g(2)(0) = |β|4 + 4|β|2T p̃1

[p̃1T + |β|2]2 ,

which described well experimental data. Our formalism results in the same result for
p2 = 0 and the same approximations. This agreement is not surprising, since the difference
arises only from the commutation relation [â, D̂(β)] = βD̂(β) [227] which vanishes for
weak coherent states.
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