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Ecology is usually very good in making descriptive explanations of what is observed,

but is often unable to make predictions of the response of ecosystems to change.

This has implications in a human-dominated world where a suite of anthropogenic

stresses are threatening the resilience and functioning of ecosystems that sustain

mankind through a range of critical regulating and supporting services. In ecosystems,

cause-and-e�ect relationships are di�cult to elucidate because of complex networks

of negative and positive feedbacks. Therefore, being able to e�ectively predict when

and where ecosystems could pass into di�erent (and potentially unstable) new states

is vitally important under rapid global change. Here, we argue that such better

predictions may be reached if we focus on organisms instead of species, because

organisms are the principal biotic agents in ecosystems that react directly on changes

in their environment. Several studies show that changes in ecosystems may be

accurately described as the result of changes in organisms and their interactions.

Organism-based theories are available that are simple and derived fromfirst principles,

but allow many predictions. Of these we discuss Trait-based Ecology, Agent Based

Models, and Maximum Entropy Theory of Ecology and show that together they form

a logical sequence of approaches that allow organism-based studies of ecological

communities. Combining and extending them makes it possible to predict the

spatiotemporal distribution of groups of organisms in terms of howmetabolic energy

is distributed over areas, time, and resources. We expect that this “Organism-based

Ecology” (OE) ultimately will improve our ability to predict ecosystem dynamics.

KEYWORDS

community ecology, organism-based, Operational Ecological Unit, Trait-based Ecology,

Agent-based Models, Maximum Entropy Theory of Ecology

1. Introduction

Natural ecosystems across the biosphere are increasingly being damaged or destroyed by a
suite of anthropogenic processes, including deforestation, over-harvesting of plants and animals,
agricultural intensification, pollution, invasive plants and animals, and climate change [1–6]. As
a result, significant declines of biodiversity are being reported [7, 8]. The implications of global
environmental changes and the loss of biodiversity for the structure of communities and the
functioning of ecosystems are being widely discussed and debated [9, 10]. However, given that
ecological responses are highly contingent, i.e., depending on location and time, ecology is often
unable to accurately predict the response of ecosystems to change [11–21]. This is essential if we
are to take remedial measures before critical tipping points are passed [22]. So, we not only need
to know what will change, but also the mechanisms through which communities and ecosystems
will change.
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In the past, the amount of data that could be collected and
analyzed has limited our ability to study ecosystems. After all, during
one season, the properties of only a restricted number of organisms
could be assessed in the field by one person, as could the population
size of only a small number of species, or the state values of only
a few abiotic factors. This is changing thanks to automatic data
collection techniques and enlarged computer capacity ([15, 23, 24];
Appendix 1 in Supplementary material). We are now in the position
that we can re-evaluate our need for data and develop new avenues
of research. The ability of collecting more data and interpreting
them with new technology will be helpful in many ways, but the
question remains how to produce better predictions in ecology. We
regard as “better predictions,” predictions of the empirical changes in
ecosystems that are more accurate over larger spatial and longer time
scales. We agree with Marquet et al. [25] that, although more and
better data are important, they can only result in better predictions of
ecosystems changes when they are analyzed based on well-established
concepts and theories. In this paper, we focus on predictions of
the biotic part of ecosystems, that is the community (see Table 1
for our definitions of concepts), and suggest that better predictions
of community behavior may be reached when we take organisms
as fundamental units rather than species. For organisms “efficient
theories,” i.e., theories that are simple, parsimonious, derived from
first principles, quantitative, and mathematical, with few inputs and
many predictions, are available, which is not true for species [25]. We
will (1) argue that a shift in main emphasis from species to organisms
is theoretically justified, and (2) show that such a shift has great
theoretical and practical prospects for producing better predictions
of the changes in communities.

2. The organism is the agent of ecology

In ecological literature, a population is usually defined as the set
of organisms that belong to the same species, a community as the
set of species, and a meta-community as the set of communities [26].
So, the organism is the entity that defines a population, the species
that of a community, and the community that of a meta-community.
This step-wise approach, which we could call “Organism-Species-
Community-based Ecology” (OSCE; Table 1), has long proven to
be successful as a conceptual approach. OSCE has led to our
present body of knowledge on populations, communities, and meta-
communities and our ability to explain many ecological phenomena
and patterns. But OSCE has not succeeded in reaching the better
predictions of community and ecosystem dynamics we need.

A stronger emphasis on organisms may help alleviating this
lack of predictability. Organisms are fundamentally different from
populations and communities, because an organism is a living
entity that has an organized structure, maintains homeostasis, and
can act opportunistically. To do that, it collects information of its
surroundings and its past successes and failures. Organisms react
directly to each other and to their environment in order to increase
the chance that they will survive or participate in the reproduction.
In this teleonomic sense they are goal-oriented, which cannot be said
for populations and communities [26]. Organisms are therefore the
principal agents in both populations and communities [34–36, 38–
41]. Or, as DeAngelis and Grimm [36] paraphrased Dobzhansky
“Nothingmakes sense in ecology except in the light of the individual.”
This can also be recognized in the definitions of ecology that one

can find in handbooks: they essentially all start by stating that
ecology is the study of the interactions among organisms and their
environment. Importantly, the definitions are never about species
or communities, such as [42–45]. In light of these definitions, it
is remarkable that so much of ecology is about species, and not
organisms [46]. Even more so when one realizes that a species is a
taxonomic unit, not an ecological one.

Organisms can react on changes in their direct biotic and
abiotic environment by changes in their metabolism, physiology,
appearance, and behavior. These changes can be measured by
assessing the distribution of organisms in space and time, and/or by
assessing their properties, i.e., their internal or external trait values.
Importantly, these changes are individual and fast as compared to
changes in populations or communities. For example, measurements
of stable isotope ratios of water in tree xylem allowed detecting
the impacts of salinization on diminishing the resilience of salinity-
intolerant trees up to 25 years before the glycophytic trees were
actually threatened with a regime shift to halophytic ones [47, 48].
This kind of early detection provides critical lead time and valuable
information for planningmitigation against the adverse impacts of, in
this case, sea level rise and climate change. Furthermore, the example
shows that the time scale of an organism-based study may be quite
different from that of a species-based study of the same system.

Therefore, we postulate that studying the reactions of organisms
to environmental changes may be a fruitful strategy when aiming to
predict the functioning of communities and meta-communities. We
follow Gouveia et al. [30] in calling this “Organism-based Ecology”
(OE). The above quote of DeAngelis and Grimm [36] points out
that in much ecological literature “individual” seems to be equivalent
to “organism.” The individual is usually regarded as the smallest
indivisible entity, irrespective of it being a goal-oriented entity or
not. We prefer to use “organism” because we like to stress that
the organism is the largest biotic entity that shows goal-orientation
[39, 40].

3. Exploring the prospects of
Organism-based Ecology (OE)

Because population biology is traditionally built on individual
organisms as the basic research unit, most of traditional population
ecology is OE, or rather it should be [38, 49]. But are community
and meta-community studies also possible with organisms as basic
units? In other words, can spatiotemporal patterns, which are now
being explained with species and communities, also be explained
at the organismal level? And, more importantly, can changes in
communities and meta-communities also be predicted based on
organisms? We think that the references we cited in the previous
section have convincingly shown that better predictions can be
expected, but that does not mean that we think that OE will always
succeed. Much would already be gained if we could learn which
community changes can be predicted and which not, and what
would be the best way to do so. For that it is important that a
consistent organism-based approach is chosen in all steps of a study,
from the data collection and exploration, to the identification of
potential mechanisms, and the statistical analysis of the data that
results in predictions. A tentative procedure for that can be found
in Figure 1, which combines three existing approaches that are all
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TABLE 1 Glossary of the key concepts.

Organism A living entity that, limited by its genotype and experience, strives to survive and reproduce. Organisms are goal-oriented in the
teleonomic sense of the word [26–28].

Population The set of organisms in a community that belong to the same taxon, usually a species.

Community The complete set of organisms that live within a specific area during a specific time period [26]. A community is always part of an
ecosystem. For practical reason, the “complete set of organisms” is usually limited to a high-level taxonomic unit, such as all higher
plants or all birds.

Ecosystem A predefined spatiotemporal unit, that is a specific area during a specific time period, that contains organisms and the energy,
materials, fluxes, and processes that enable organisms to survive and reproduce in it [29].

Operational Ecological Unit (OEU) A set of organisms that are ecologically alike, that is a set of organisms that all have properties that lie in the same predefined trait
value range for a predefined, limited set of traits.

Organism-Species-Community-based
Ecology (OSCE)

The ecology that defines a population as a set of organisms, a community as a set of species, and a meta-community as a set of
communities.

Organism-based Ecology (OE) The ecology that defines not only populations, but also communities and sets of communities as sets of organisms [30].

Trait-based Ecology (TE) Ecology that focuses on the effect of differences in trait values among organisms [31]. In plant ecology it is also known as focusing
on functional diversity [32].

Agent-based Model (ABM) A model designed to simulate the development of a population or community, based on the properties of individual organisms,
locations and time [33], previously also called individual-based model [34–36].

Maximum Entropy Theory of Ecology
(METE)

An ecological theory for generating unbiased null-models for communities with a limited number of constrains based on the first
principle that in a system that is in equilibrium, particles will be distributed such that maximum information entropy will be
reached. In ecology, the individual organisms are regarded as the particles and the theory describes for a community, among others,
the distribution of organisms over species, metabolic requirement, and space [37].

FIGURE 1

Tentative procedure of Organism-based Ecology (OE).

essential organism-based: Trait-based Ecology (TE), Agent-based
Models (ABMs), andMaximum Entropy Theory of Ecology (METE).

When a community or meta-community is described as a set of
organisms, our prediction task becomes essentially the estimation of
the distribution in space and time of the future set of organism Ct+1

from the present set of organisms Ct and the expected changes in the
state of the ecosystem. While Ct changes axiomatically into Ct+1 as
result of birth, death, immigration, and emigration, the distribution
of trait values over the organisms of Ct changes into that of Ct+1

because of selection (sensuVellend [50]) andmigration, including the
stochastic effects of these processes. In essence, selection means that

the organisms within a spatiotemporal set differ among themselves
in their ability to survive and reproduce, and that the distribution of
this ability changes from set Ct to future set Ct+1 as a consequence of
changing biotic and abiotic factors [51].

For clarity, we constrain the discussion on the causes of changes
in selection and migration, to two types: (1) as being the result of
changing abiotic factors, and (2) as being the result of changing
interactions between organisms. We describe how the exploration of
data, the study of mechanisms, the development of statistical models,
and the applications of these models may be different between OSCE
and OE.
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FIGURE 2

Results of the analysis of the change in wing length of North American

migration birds ignoring taxonomic information; the lines are the

predicted changes in Wing length. Green lines are hatchlings, blue

lines older birds. Predictions were made with linear models, lm() in R

version 4.0.3 [56], with age, year, period and all their interactions as

independent variables. A description of this analysis is given in

Appendix 2. To draw the graphs, the variable Sex and random e�ect

variable year were ignored, in comparison with the model in Table

A2.2 in Appendix 2.

3.1. Exploring data

It is common knowledge that the composition of a community
in terms of properties of organism may change due to the change of
abiotic factors. A well-known example of an organismic change in
a community as a result of human activity is the decrease of body
size of fish due to fishery [52]. Another example is the change in the
relative size of body appendages of endotherms, such as bills, ears,
and tails, due to climate change. The change is thought to be related to
body cooling and has been observed both among and within species
[53]. Both these examples could be regarded as examples of Trait-
based Ecology (TE), ecology that focuses on the effect of differences
in trait values among organisms [31]. TE has already a rich history,
both in plant and animal ecology (Appendix 1). The exploration
of trait distribution in communities, independent of species, could
improve our ability to predict the community’s biomass yield and
resource use, as Fontana et al. [54] did in their organism-based
phytoplankton study.

To illustrate how an organism-based approach may improve
predictions, we explore the changes in migratory birds in North
America (Appendix 2 in Supplementary material). We chose this
example because Weeks et al. [55] provided an easily accessible,
consistently measured, and extensive dataset of trait values of
individual organisms belonging to many different species and
measured over many years. Such datasets are extremely rare. Using
an organism-based approach, i.e., when taxonomic association of the
birds was ignored, resulted in models that were reliable, while models
with species information included were overfitted. We found that
since 2000 the changes in body size differed from those before 2000,
especially in hatchlings, and that wing length changed before 2000
only in the birds that are older than hatchlings (Figure 2), a pattern
that could not be discovered with species information included in the
analysis. Moreover, this illustrates that when organisms are grouped
as done by Weeks et al., that is according to age, viz hatchlings vs.
older birds, meaningful ecological information is gained.We propose
to call these kinds of trait groups, such as hatchlings and older birds,

“Operational Ecological Units” (OEU) and thus revitalize the term
of Hendrickson and Ehrlich [57] under a slightly new definition: an
OEU is here regarded as a set of organisms that are ecologically alike,
i.e., they all have properties that lie in the same predefined trait value
range for a predefined, limited set of traits (Table 1). An OEU differs
from a population in that its members do not need to belong to the
same taxon, nor is it necessary to include all individuals of a taxon.
OEUs enable the study of the differences and interactions between
functional, but taxon independent, groups of organisms.

Organism- and species-based approaches differ in how they
treat biotic interactions. Interactions among organisms are local,
that is organisms interact only with other organisms in their direct
surroundings [58]. They perceive information about other organisms
which enables them to adapt their reaction [59, 60]. For example,
individual leopards may change their activities in the presence of
tigers, depending on their location within a nature conservation area
[61]. As an example of autotrophs, Clark [62] observed that the
coexistence of the large number of tree species in the southeastern
United States could not be explained at the species level, because there
were no mean differences in the characteristics of species relevant to
competition. He asserted that it is necessary to look at competition
as being local and between organisms. Calculation of competition
coefficients at the level of species tends to wash out organism-level
effects [63]. This was confirmed by Paine et al. [64] who concluded
that accounting for within-species trait variation, enabled them to
more properly consider the ecological interactions among individual
trees and between individual trees and their environment. And Liu
et al. [65] found that individual-level trait information of trees
greatly refined their understanding of how traits link to community
structure, dynamics, and assembly when considering the context in
which the individual is found. In summary, Trait-based Ecology for
exploring datasets of organisms while ignoring species provides a
simple and attractive first step toward OE by including trait variation
among organisms [66].

3.2. Exploring mechanisms

This is not the place to go into the discussion on mechanisms
vs. statistical models (see [67, 68]). We can agree that mechanisms
belong to the realm of explaining, while at least some statistics
belong to that of predicting. Although we propose OE in the hope
of making better predictions, we think that predictions become
more convincing when linked to sound knowledge of mechanisms.
However, there is no shortage of potential mechanisms in ecology.
On the contrary, Gaston and Blackburn [69] counted, for example,
eight hypotheses for explaining the positive interspecific abundance-
range size correlation, six for the interspecific abundance-body size
relationship, and five for Rapoport’s rule that states that species ranges
are generally smaller at lower latitudes than at higher latitudes. What
is needed is meticulous testing of alternative mechanisms [69]. For
OE, an emphasis on mechanisms that concern individual organisms
is needed. For that, “Agent-based Models” (ABMs; Appendix 1) are
especially fit.

ABMs are tailored at simulating organism-based processes [33,
34, 36]. They make it possible to predict the effect of environmental
changes on communities, and even ecosystems, by modeling
organismal adaptations to local biotic and abiotic changes [34, 48, 70].
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They are used for studying the effects of abiotic factors, the effects
of changing biotic interactions, as well as for the effects of their
combinations on the spatiotemporal distribution of organisms [34,
48]. But there seem to be different developments within the modeling
within plant ecology and animal ecology.

In plant ecology, ABMs for population and community-
level modeling have been developed largely independently from
functional–structural plant models (FSPMs: models that describe
the individual plant as build up out of modules, or metamers;
Appendix 1). FSPMs and ABMs occupy a continuum of spatial and
mechanistic detail. For example, plant growth rates are described by
allometric equations that are individual-based in the LANDIS model
[71]. In ABMs they may be described as whole-plant process, for
example [72, 73], and in some FSPMs as multi-organ process models,
for example [74]. Finally, at the mechanistically detailed end of the
continuum in FSPMs, they are described as 3-D plant architecture.

In animal ecology, it has become possible to include pursuit
and aversion behavior of organisms in ABMs by combining existing
theories of foraging and avoidance of competition and danger, such
as predation or traps [75–78]. Coexistence theory has improved
with a more complete inclusion of behavioral plasticity, local
heterogeneities, biotic interactions, and feedbacks [60]. Metabolic
constraints of organisms may be added using the results of the
Metabolic Theory of Ecology (MTE), as well as energy costs
of growth, reproduction, movement, and landscape resistance
[75, 79–82].

Giacomini et al. [83] describe the only study we know showing
that an approach based on OEUs (called “super-individuals” in the
study) instead of species could teach us much on the origin of
phenotypical different groups of organisms within a community.

ABMs may contain large numbers of parameters, and the
question has been raised concerning whether the uncertainty in
these parameters may propagate, resulting in model outcomes with
great uncertainty [84]. However, several studies have shown that
this is hardly the case in applications [84–87]. A related problem is
that ABMs tend to describe particular systems and produce detailed
models [34]. The development of ABMs that are based on general
theories and first principles—so that they can be applied for different
kind of OEUs, under different sets of biotic and abiotic circumstances,
and at different spatiotemporal scales—has been a real challenge. For
that, protocols, such as Pattern Oriented Modeling [88], Overview,
Design concepts, and Details [89], and Approximate Bayesian
Computation [90], have been proposed, evaluated [34, 41, 89, 91–
93], and at least for one population successfully tested [94]. All this,
as well as recent developments in trait-based approaches, molecular
technologies, and big data approaches in general (Appendix 1), will
help to further minimize the uncertainty and increase the general
applicability of ABMs.

When successful, simulations with ABMs meet the standards of
pattern-oriented modeling. That is, they will agree reasonably well
with at least a few empirical patterns in the system being modeled, so
that it can be assumed that the underlying mechanisms are correctly
represented in the model [34]. The parametrized mechanisms with
which the ABMs were built can then be hypothesized to also be
important for structuring real communities in space and time in
general. So, successful applications of ABMs result in quantitative
hypotheses of parameters of organism-based models that can be
tested empirically.

3.3. Exploring statistical models

A welcome advantage of OE is that it transforms communities
and meta-communities from relatively “middle-number systems,”
with a limited number of units (species or communities), into
relatively “large-number systems,” with a large number of units
(organisms), without the need to change the level of spatiotemporal
scale [20, 95]. This will improve the applications of statistical models
and their testing [20, 30].

The Maximum Entropy Theory of Ecology (METE) is a
statistical tool to describe large-number communities as probability
distribution models [37]. According to Marquet et al. [25] it is
one of the examples of an efficient theory. As it is applied now,
species numbers and species abundancies are an important part of
METE, but models without species have already been described,
viz the distribution of metabolic rates and biomasses across all
individuals of a community. In theory, models that ignore species
can be further developed [37]. OE could focus on a version of METE
with OEUs instead of species. The core distribution of METE, the
structure function Rs(n, ε | A0, S0, N0, E0), is the probability that,
if a species is picked at random from the species list, then it has
abundance n and if an individual organism is picked at random
from the pool of individuals belonging to species of abundance
n, its metabolic requirement is ε. This probability is constrained
by the state variables of total area A0, total number of species S0,
total number of organisms N0, and total metabolic energy rate E0
[37, 96, 97]. METE predicts universality regardless the taxonomic
choices that define the assemblage of species [98], which means that
one could replace the S0 by a set of OEUs, as long as organisms can
unambiguously be assigned to anOEU. For OE the structure function
can therefore be changed intoRo(n, ε |A0, O0, N0, E0), whereO0 is the
total number of OEUs, which would be the probability that if an OEU,
such as body size class, is picked at random from the OEU list, such
as the list of all body size classes, then it has abundance n, and if an
individual organism is picked at random from the pool of organisms
belonging to OEUs of abundance n, its metabolic requirement is
ε. METE gives the prospect for predicting the structure of set Ct,
i.e., the spatial distribution of a set of organisms, in terms of how
metabolic energy is distributed over individuals, and how individuals
are distributed over area, resources, and OEUs [99]. It could, for
example, be used to describe the probability distribution of biomass
over organisms of different feeding strategies, such as autotrophs,
herbivores, predators, parasites, omnivores, and decomposers, within
a given area under the assumption of a specific relationship between
metabolic rate and biomass, so that B0 replaces E0 [37, 78]. The study
of the effect of a factor on this distribution could then be described in
terms of changes on the total number of OEUs O0, the total number
of organisms N0, and the total biomass B0 within equal subareas A
of A0. In Appendix 2 we give an example of that by applying METE
on the dataset of North American migration birds of Weeks et al.
[55]. Including the size of the individual birds, that is small (<5 g)
vs. large birds, as an independent variable in the analyses resulted
in a better fitting model and thus in a better prediction and showed
that only the hatchlings of large birds did not change in deviations of
METE predictions in the period till 2000, and that only the small,
older birds decreased after 2000 (Figure 3). Recently, Harte et al.
[100] have proposed DynaMETE, an extension of METE that makes
the structure function time dependent. Prior information, such as
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quantitative information on model parameters, may be included via

a more general Bayesian framework as equation of states, that is as
fixed ratios between the state variables [67, 101, 102].

In the current METE, probability distributions of commonality
are available [37], that can be transformed to local interactions of
organisms of different OEUs the same way as we transformed the
structure function. Deviations from such probability distributions
may be used to study pursuit and aversion behavior of organisms
of different OEUs. Also, link functions for networks of species
[37, 103] could be transformed to link functions for OEUs. In
general, a maximum entropy approach offers exciting perspectives to
developing null-models for real-world networks [104, 105].

It may seem that the strictly statistical approach of METE is at
odds with our previous statement that the organism is the agent of
ecology. For METE, organisms behave like neutral particles, i.e., like
particles that are all equivalent and have no differences in trait values,
which is certainly not the case, as explained above. But application
of METE can be defended because neutral behavior can be regarded
as being an adequate proxy of the emergent behavior of a large set
of organisms with different properties, that each react differently
on many different local factors and on each other to achieve the
common goal of sufficient fitness [37, 67, 101, 102]. METE gives
unbiased probability distributions under a very limited number of
constraints and unbiased collector’s curves can be derived from
these [37]. This makes METE also a sampling theory. When the
organisms of an area are in considerable numbers affected the same
way by a factor or when an interaction between organisms results in
a distinct non-random pattern, the empirical collector’s curve will
show a deviation from the one predicted by METE’s null-models.
We could then start to explore mechanisms again, that is try to
identify the property, factor, or biotic interaction that causes the
deviation, of which we now know that it is crucial for understanding
and predicting the community we are studying. Traditional statistical
analyses may be used for that, although we also might need new
statistical analyzing techniques to do so (Appendix 2). The search
for crucial properties, factors, and interactions is facilitated by trait-
based ABMs, which are well fit for organism-based identification of
mechanistic factors. We think that this combination of search for
organism-basedmechanisms and predictions based on first principles
forms the strength of OE.

3.4. Exploring applications

Above we have described what we think it could mean to
apply OE. We think that OE could start with combining existing
ecological fields, such as TE, ABM, and METE (Figure 1). Because
these existing fields are well-established in ecology, the development
of each of them has resulted in a tradition in focus communities,
sets of concepts, mathematical description, and research schools, for
example [106]. One can expect that it will be a real challenge to
bring them together in a consistent approach from collecting data to
predicting ecosystem changes. But we think that the urgent need for
improved nature conservation justifies great efforts to bring all our
expertise together in the quest for predictability.

An important question still to be answered is whether OE can
provide predictions that are needed for nature conservation in a
changing world. After all, good examples of organism-based field

studies of eukaryote communities are still rare (Table 2). Some of
the theories for organisms discussed above provide such predictions.
For example, the MTE allows for the correction of body sizes and
metabolic rates for temperature changes. And the adaptive foraging
theory of Beckerman et al. [110] enables the prediction of changes
in food web complexity after the extinction of specific groups of
organisms. But current theories usually assume steady-states and the
results of simulations are to be described after some implementation
time. Newman et al. [111] found that the METE is more robust
in slowly changing or steady-state communities. Moreover, and in
general, parameters of statistical models are often estimated from
datasets collected in “natural” communities, that is communities that
are in a relatively stable state, so that they may not be applicable
for predicting short- and long-term effects of human impacts [59].
The adoption of OE could be used to shift the emphasis of METE
to models for dynamic systems using DynaMETE that enables
simulating what will happen to a community under stress [100].

4. Species diversity

The human fascination with and commitment to understanding
species richness is so deep, that it often seems the reason why we
are studying ecology in the first place [67]. Consequently, ecology
is often motivated by and contributing to conservation biology that
aims at finding solutions for the decrease of populations and the loss
of species diversity. This made Vellend [50] regard species diversity
as the first order property of a community that needs to be explained.
But it may contribute to the reasons that our understanding of
communities is limited, because the focus on species tends to
distract from the actual ecological agents. We think that OE is well-
equipped to reveal general ecological patterns, and such organism-
based patterns have already been shown (Table 2). Being general, they
will also be applicable to conservation of taxa [46]. So, OE will not
hinder taxonomic-based applications. In fact, studies on the failures
of OE to predict empirical patterns may increase our understanding
of the role of taxonomic units in ecological processes, for example
when Rs(n, ε) turns out to better predict communities than Ro(n, ε).
OE will, therefore, enrich our fundamental understanding of ecology,
including the processes that affect biodiversity [59, 63, 112, 113].

5. Conclusions

With the growing evidence that human activities are reducing
biodiversity at an accelerating rate, it becomes vital to predict their
impacts on the functioning of communities and ecosystems. Accurate
ecological predictions are a vital tool for alerting policy-makers and
land managers about future scenarios with profoundly important
societal consequences [114]. Here, we have argued that better
predictions of community dynamicsmaymore effectively be achieved
by focusing on organisms, rather than species, because organisms
are the principal biological agents in ecosystems. Organism-based
Ecology (OE) is a direct operationalization of the definition of
ecology. We provided reasons to expect that it may result in urgently
needed better predictions in ecology. Particularly, the properties and
behavior of organisms in reaction to their environment and each
other are key in the way forward to achieve a deeper understanding
of ecological processes. Developments in combining the essential

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2023.1046185
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Musters et al. 10.3389/fams.2023.1046185

FIGURE 3

Results of the METE-analysis of the metabolic rate of North American migration birds. Lines are the predicted changes in (A) residuals of the METE

predicted metabolic rate ignoring body size and (B) including the di�erence between small and large birds. Green lines are hatchlings, blue lines older

birds, solid lines are large (≥5g), and dashed lines small birds. Predictions were made with linear models, lm() in R version 4.0.3 [56], with age, year, period,

and size [only in (B)], and all their interactions as independent variables. A description of this analysis is given in Appendix 2. To draw these graphs, the

variable sex and random e�ect variable year were ignored, in comparison with the models in Table A2.4 in Appendix 2.

TABLE 2 Examples of empirical organism-based studies of communities.

Community Results References

Microbes Soil microbes Microbe activity diversity depends on spatial and temporal environment heterogeneity [107]

Plants Phytoplankton Trait evenness is the most important predictor of community productivity [54]

Trees Tree species diversity is explained by competition between organisms, not between species [62]

Trait values relate to organismal growth rates, and these relationships depend on the environment of the organism [65]

Individual adaptation to sea level change affects interaction between vegetation types, which feedbacks to ground
water salinity changes

[48]

Animals Arthropods Abundance of arthropods may or may not depend on interactions between ecological type, body size, and local
factors, but depends always on landscape complexity around sampling sites

[108, 109]

Fish Body size decreases with increased fishery [52]

Migratory birds Temporal changes in metabolic rate depend on the age, sex, and body size of the organisms Appendix 2

Endotherms Sizes of body appendages change in response to climate change [53]

organism-based approaches of Trait-based Ecology (TE), Agent
Based Models (ABMs), and Maximum Entropy Theory of Ecology
(METE) open up new opportunities for studying communities. TE
studies trait variation among organisms and can show correlations
between the distribution of organismal trait values and biotic and
abiotic environmental factors, ABMs can result in quantitative
hypotheses of spatiotemporal patterns of Operational Ecological
Units (OEUs) that can be tested empirically, and unbiased predictions
of the distribution of OEUs in ecosystems can be done with
the help of the statistical models of METE (Figure 1). We think
ecology is ready to take up this challenge now and establishing
OE in search for general patterns can be accomplished. We
expect that this ultimately will improve our ability to predict
ecosystem dynamics.
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