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ABSTRACT: Protein kinases are a protein family that plays an important
role in several complex diseases such as cancer and cardiovascular and
immunological diseases. Protein kinases have conserved ATP binding sites,
which when targeted can lead to similar activities of inhibitors against
different kinases. This can be exploited to create multitarget drugs. On the
other hand, selectivity (lack of similar activities) is desirable in order to avoid
toxicity issues. There is a vast amount of protein kinase activity data in the
public domain, which can be used in many different ways. Multitask machine
learning models are expected to excel for these kinds of data sets because
they can learn from implicit correlations between tasks (in this case activities
against a variety of kinases). However, multitask modeling of sparse data
poses two major challenges: (i) creating a balanced train−test split without
data leakage and (ii) handling missing data. In this work, we construct a protein kinase benchmark set composed of two balanced
splits without data leakage, using random and dissimilarity-driven cluster-based mechanisms, respectively. This data set can be used
for benchmarking and developing protein kinase activity prediction models. Overall, the performance on the dissimilarity-driven
cluster-based split is lower than on random split-based sets for all models, indicating poor generalizability of models. Nevertheless,
we show that multitask deep learning models, on this very sparse data set, outperform single-task deep learning and tree-based
models. Finally, we demonstrate that data imputation does not improve the performance of (multitask) models on this benchmark
set.

1. INTRODUCTION
Protein kinases are a family of over 500 different enzymes
responsible for protein phosphorylation. Most signaling path-
ways contain kinases, making them pivotal players in all aspects
of protein regulation.1,2 They are found in animals, plants,
bacteria, and archaea, indicating their importance to sustaining
life, and their deregulation often leads to undesirable effects and
pathologies.3,4 These include multiple forms of cancer and
inflammatory, cardiovascular, immunological and infectious
diseases.5,6 Thus, if the functioning of specific kinases in the
body can selectively be altered, a wide range of diseases could
potentially be treated, making protein kinases very interesting
targets for drug discovery.

In the two decades since the FDA-approved imatinib more
than 70 protein kinase inhibitors, mostly for applications in
oncology, have been approved, and many more inhibitors are in
(pre)clinical pipelines.6,7 Despite the success, there is still a need
for better inhibitors that can selectively target either a single
protein kinase, a subset of targets (so-called polypharmaco-
logical compounds, which can modulate multiple targets), or
mutant protein kinases to address resistance. However, the
development of a new drug from early stage drug discovery to
clinical development is a challenging and expensive process that
takes on average more than ten years and costs more than two
billion dollars.8

Computer-aided drug design (CADD) can reduce these costs
by decreasing the number of compounds to be synthesized and
the number of experiments needed, especially when applied in
early stage drug discovery. Moreover, CADD can enable early
discontinuation of compounds predicted to fail. Machine
learning-based quantitative structure−activity relationship
(QSAR) models trained on experimental data are often used
to predict activities from a compound’s 2D or 3D structure.9

Historically, QSAR models were single-task (ST), i.e., a single
model was developed for activity against a single target.
However, activities against targets with a conserved ATP
binding site, such as protein kinases, are often correlated.10−12

Single-task models cannot take advantage of such correlations,
but multitask (MT) models should be able to utilize these
implicit correlations making the training process more efficient
and the model predictions for each kinase more robust in that
they suffer less from individual experimental errors and are
applicable to a larger region of chemical space.13−16
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A hurdle to developing good multitask models for activity
predictions is the sparsity of the experimental data. Compounds
with experimental data against multiple or ideally all targets are
rare, making the data density of the molecules−targets matrix
very low. Data imputation has been proposed as a solution.17−19

Imputation is the process of using predicted values for missing
data points in the data set used to train the machine learning
models. The complexity of the imputation strategy to obtain the
predictions ranges from the simple computation of the mean
value of the known data points per task to the use of deep
learning models.20 Subsequently, the imputed values are used
together with the experimental activity data to train the models.

In drug design, we aim for generalizable models, i.e., as much
as possible they should predict the properties of novel
compounds well. Therefore, model performance should be
evaluated with a “realistic” split (i.e., to the maximum extent
possible corresponding to real-life situations), where the
chemical similarity between the training and test sets is
minimized. For single-task modeling, this is often straightfor-
ward, but for multitask modeling, the construction of realistic
balanced training−validation−test splits without data leakage
between tasks is not as straightforward.21

If the splits are done per target, this will lead to data leakage,
i.e., the same compound can be in the training set for one task
and in the validation or test set for another one. As a
consequence, training, validation, and test sets are overlapping.
This in turn leads to an overestimation of the performance of the
models. On the other hand, when a “general” random, cluster, or
temporal split is applied to the overall data set, the data sets will
be unbalanced (different ratios of compounds in training,
validation, and test sets for the various tasks). Moreover, a
random split does not result in chemical dissimilarity between
the training and test sets, and as a consequence, a model’s
generalizability and performance will be overestimated.22 A
basic cluster split, where the clusters are combined to create the
training−validation−test set without enforcing molecular
dissimilarity, is a variant of the random split and works
approximately equally well as a random split, whereas the
temporal split on public data can often lead to extremely
unbalanced splits, where some tasks have little to no data in a
given set. Two out of the three challenges (balance and no data
leakage) to create a good training−validation−test split for
multitask modeling can be addressed with a random global
equilibrated selection (RGES) which is introduced in this paper.
All three of them (no data-leakage, balance, and dissimilarity)
can be addressed with a dissimilarity-driven global balanced
clustering (DGBC) split recently proposed by Tricarico et al.21

It simultaneously maximizes dissimilarity and balances the
individual sets globally. Furthermore, an ensemble of best-
performing models had a predictive accuracy exceeding that of
single-dose kinase activity assays.23 Beyond classic single-task
and multitask modeling, the cross-kinome correlations have
been utilized in proteochemometric modeling,24−26 and multi-
task imputation models profile QSAR27 and Alchemite20 have
shown promising results.

In this paper, we introduce two large, curated data sets of
kinase activity values from the public domain:

• Kinase200 contains kinases 197 with at least 200 activity
data points per kinase

• Kinase1000 contains kinases 74 with at least 1,000 activity
data points per kinase

Selected kinases are highlighted on the human protein kinase
tree in Figure 1.28 We also propose two well-balanced 80−10−
10 multitask splits for activity prediction models: one based on
random allocation and the other one on clustering.21 Finally, we
benchmarked the capacity of different approaches to utilize
large-scale protein kinase activity data to build prediction
models. This was done by comparing the performance of a set of
single-task models and multitask models with and without data
imputation. All data and code are shared publicly so that they
can be used as a benchmark set for building predictive protein
kinase activity models.

2. METHODS
2.1. Data. 2.1.1. Data Set Creation. The data sets were

created based on the Papyrus data set (version 05.6).31 The
Papyrus data set is a curated data set containing multiple large
publicly available data sets, such as ChEMBL, and several
smaller data sets. The data in the database have been
standardized and normalized. Initially, all protein kinase activity
data points (Ki, KD, IC50, EC50) of kinases labeled as “high”
quality were retrieved. Compounds with a molecular weight
larger than 1000 Da, and activity points composed of multiple
measurements with a standard deviation larger than 1.0 log units
were filtered from the data set.

Furthermore, allosteric data points were removed based on
text mining of ChEMBL assay descriptions and abstracts from
PubChem, PubMed, CrossRef, and Google Patents for key-
words. Additionally, we removed all compounds that had a
Tanimoto similarity, calculated from Morgan fingerprints (3,
2048), above 0.8 to at least one of the molecules annotated as
allosteric in the previous step.

The final data sets were constructed by selecting kinases with
200 or more data points (Kinase200) and with 1000 or more
data points (Kinase1000), respectively. Unless mentioned

Figure 1. Human protein kinase tree where selected kinases are
highlighted. Kinases in kinase1000 are in blue, and the extra kinases in
kinase200 are in orange. The node size illustrates the number of
compounds per selected kinase.
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otherwise, all following analyses and figures are done for the
Kinase200 data set and corresponding figures for the
Kinase1000 can be found in the Supporting Information. An
overview of the data sets is summarized in Table 1.

2.1.2. Data Splitting. The data sets were split into training,
test, and validation sets using either random global equilibrated
selection (RGES) split or dissimilarity-driven balanced cluster
(DGBC) split with 80% of data going into the training set, 10%
into the test set, and 10% into the validation set.

2.1.2.1. Random Global Equilibrated Selection. The RGES
split was done by sorting targets from the target with the most
data points to those with the least. Then, for each target, a
random split was made. If a compound belonged to a different
(training, validation, test) set for a different target, its final label
was set to the label of that compound for the target lowest on the
sorted list. This mechanism was chosen because reassigning
labels for targets with larger numbers of compounds has smaller
relative effects on the balance.

2.1.2.2. Dissimilarity-Driven Balanced Cluster. The DGBC
split was made by using a method developed by Tricarico et al.21

First the compounds in the data set were clustered using sphere
exclusion clustering on ECFP6 fingerprints with a Tanimoto
distance of 0.736 between cluster centroids.32 Fingerprint
generation and sphere exclusion clustering were done using
RDKit (version 2020.09.05).33 The clusters were distributed
over the training, validation, and test sets using linear
programming to simultaneously achieve maximum dissimilarity
between the sets and the desired training−validation−test ratio
for each target.

2.1.2.3. Evaluation of the Splits. Evaluation was done in
three different ways:

• Data balance−data percentage per set and target
• Data distribution−distribution of pChEMBL values in

each set
• Chemical dissimilarity−distribution of minimum Tani-

moto distance of compound in each set compared to all
compounds in the other sets

2.2. Models.Themain aim of this work is twofold: (i) Assess
to what extent accurate QSAR models can be developed on the
basis of a large but sparse kinase-compound activity matrix. (ii)
Assess to what extent imputation can improve the models. For
this, we first developed four QSAR models and subsequently
investigated whether data imputation can improve performance.

To develop baseline models, we used two well-known and
widely used tree-based single-task methods: random forest and
gradient boosting. The third model was a multitask version of
gradient boosting. The fourth and fifth models were developed
with directed message-passing neural networks (D-MPNN), as
implemented in chemprop (CP).34 The D-MPNN approach

was applied both to single-task and multitask models, referred to
as CPST and CPMT, respectively. The sixth and seventh models
applied the multitask D-MPNN approach where the missing
values were imputed either by mean imputation or a single-task
RF prediction, referred to as CPMT

Mean andCPMT
RF , respectively. The

eighth, and last, model was a reimplementation of the profile
QSAR model (pQSAR) by Martin et al.27 The models were
developed on a server containing 24 Intel(R) Xeon(R) CPU E5-
2650 v4 @ 2.20 GHz CPUs, 7 NVIDIA GeForce GTX 1080
GPUs, and 1 NVIDIA GeForce RTX 2080 Ti GPU.

2.2.1. Random Forest, XGBoost, and PyBoost. Sets of single-
task RFST and XGBST models were developed for each kinase
with the sklearn35 and xgboost36 packages, respectively, the
multitask PBMT model masking missing data in the loss function
was developed with the pyboost37 packages. All three models
used Morgan fingerprints as features (radius 3, 2048 bits).
Initially, all models were developedwith default parameters (RF:
n_estimators=100, max_depth=None, min_
sample_split=2, min_sample_leaf=1, max_
features=1.0, XGB: ntrees=100, learning_
rate=0.3, n_estimators=100, min_child_
weight=1, colsample_bytree=1, scale_pos_
weight=1, max_depth=6, subsample=1, PB: lr=
0.05, min_gain_to_split=0, lambda_l2=1,
gd_steps=1, max_depth=6, colsample=1, sub-
sample=1, quantization=’Quantile’), and sub-
sequently, hyperparameters of both sets of models were
optimized on the validation set using a random grid search
and selecting the best model based on the R2-score.

2.2.2. Chemprop. Both a set of single-task (CPST) models
and a single multitask (CPMT) model were developed masking
missing data in the loss function.34 The chemprop models were
run both with default hyperparameters (hidden_size=
300, depth=3, dropout=0.0, ffn_num_layers=
300, activation=ReLU, bias=False, max_lr=
1e-3, epochs=30) and with hyperparameters that were
optimized on the validation set using Optuna.38 The optimized
parameters were obtained from 150 trials of the data on five
randomly chosen targets from the Kinase1000 data set split with
BC split: P00533, P04626, P06239, Q5S007 and O75116.

2.2.3. Chemprop with Data Imputation. Two chemprop
multitask models with data imputation were also developed: one
with mean imputation (CPMT

Mean) and the other one with RF
imputation (CPMT

RF ). In the former case, missing values are filled
in by the arithmetic mean of the mean of available activities per
compound and the mean of available activities per kinase, in the
latter case, by making a single-task RF prediction. These new
data sets with imputed values are then used to train a chemprop
multitask model. Both models were run with default and
optimized parameters.

2.2.4. pQSAR. We reimplemented the pQSAR 2.0 method
from Martin et al.27 in Python. In the first step missing data is
imputed with single-task RFmodels. In the second step, for each
kinase, a partial least-squares (PLS) regression model was
developed with the experimental and imputed activity values of
the other kinases as input data. As described in the pQSAR 2.0
paper, the number of components for PLS is selected based on
an adjusted score by penalizing the R2 by 0.002 × number of
components. Both the RF and PLSmodels were built with scikit-
learn. The implementation was validated by training it on the
data set accompanying the pQSAR paper by Martin et al. and
comparing the results of our implementation to the results
published in the paper. These results are shown in section S5.

Table 1. Properties of Our Two Protein Kinase Data Sets and
Four Recently Published Kinase Data Sets

data set no. kinases no. molecules no. data points density

Kinase200 198 82,982 216,858 1.3%
Kinase1000 66 70,574 137,962 3.0%
PKIS29 224a 367 82,208 100%
Sharma et al.30 8 76,000 258,000 42%
pQSAR27 159a 13,190 114,317 5%
Born et al.26 349 113,475 206,989 0.5%

aData points are labeled by assay instead of target.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c00132
J. Chem. Inf. Model. 2023, 63, 3688−3696

3690

https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00132/suppl_file/ci3c00132_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jcim.3c00132/suppl_file/ci3c00132_si_001.pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c00132?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


In the original pQSAR paper, the train−test set split was done
per assay instead of per kinase, so for some kinases, multiple
different assays were included. In their implementation, the data
split was done per task instead of on the complete data set. That
led to data leakage between assays (Type-1 leakage), in that
several compounds were in the training set for one assay and in
the test set for another. Furthermore, during the PLS training
process, the input data included both training and test
compounds, leading to further data leakage (Type-2 leakage).
As a consequence of this double leakage, the training and test
sets overlapped, which in turn led to an overestimation of the
performance of themodels. In all work described here, we do not
allow Type-1 data leakage. In order to assess the effect of Type-2
data leakage, we used our pQSAR implementation with the
RGES and DGBC splits, respectively, both with and without
including the test set during PLS training and comparing the
performance of both approaches.

2.2.5. Metrics. Predicted activity values were compared to
experimental activity values by calculating the coefficient of
determination (R2) and root-mean-squared error (RMSE) per
kinase. Medians, means, and standard deviations of these
distributions are reported.

3. RESULTS AND DISCUSSION
3.1. Data Splits.We constructed two sets consisting of 80%

(training)/10% (validation)/10% (test) sets for multitask
modeling of protein kinases. These sets are well-balanced for
all targets, and there is no data leakage between targets. The first

set was created with the RGES split and the second with
Tricarico’s DGBC split.

3.1.1. Balanced Sets without Data Leakage.As illustrated in
Figure 2A and summarized in Table S1, both data sets are well-
balanced. For both splits, the mean of the ratio of the molecules
per target is close to 80%/10%/10% and the standard deviations
are small. The RGES split has a slightly more balanced ratio of
molecules than the DGBC split. In Figure 2B, we show the
pActivity (−log(activity)) value distribution per set. The
distributions are very similar to each other indicating that
activity values are also well-distributed between all sets.

3.1.2. Sets for Interpolation and Extrapolation. For both
splits, the chemical similarity of the sets is illustrated in Figure
2C, showing the distribution of the minimum Tanimoto
distance of molecules (min(dT)) in a set to all the molecules
in the other sets. The mean values per set are summarized in
Table S1. As expected by design, the DGBC split yields more
chemically dissimilar sets than the RGES split. This makes
DGBC a more challenging split and therefore better suited for
testing the generalizability of a model.
3.2. Modeling Kinase Activity. We benchmarked the

performance of a variety of well-known single-task and multitask
ML models to model large-scale protein kinase activity data. All
models have been evaluated with both the RGES and the DGBC
splits. The overall results are summarized in Table 2 and Figure
3.

3.2.1. Importance of Data Splitting. For all models, the
performance is significantly better on the random-based split
than on the structure-base splits. Most models reach median R2

Figure 2. Set characteristics for RGES and DGBC splits. Distribution of (A) difference of data fraction to goal value per kinase, (B) pActivity values,
and (C) minimum Tanimoto distance of molecules in a given set to molecules in the other two sets.

Table 2. Performance of Kinase Activity Prediction Modelsa

R2 RMSE

median mean (std) median mean (std)

RGES DGBC RGES DGBC RGES DGBC RGES DGBC

RFST 0.59 0.17 0.54 (0.22) 0.15 (0.32) 0.56 0.75 0.55 (0.13) 0.77 (0.30)
XGBST 0.58 0.19 0.51 (0.27) 0.12 (0.64) 0.55 0.73 0.56 (0.13) 0.76 (0.30)
PBMT 0.61 0.23 0.57 (0.21) 0.20 (0.28) 0.53 0.72 0.53 (0.13) 0.75 (0.29)
CPST 0.48 0.05 0.42 (0.30) 0.03 (0.40) 0.61 0.80 0.61 (0.16) 0.82 (0.25)
CPMT 0.58 0.15 0.52 (0.24) 0.08 (0.40) 0.57 0.76 0.56 (0.14) 0.78 (0.25)
CPMT

Mean 0.23 −0.07 0.02 (0.68) −0.37 (0.99) 0.77 0.86 0.77 (0.13) 0.89 (0.23)
CPMT

RF 0.57 0.18 0.54 (0.22) 0.14 (0.33) 0.56 0.76 0.56 (0.13) 0.78 (0.1)
pQSAR 0.39 −0.03 0.26 (0.49) −0.46 (2.14) 0.67 0.85 0.69 (0.21) 0.94 (0.50)

aMedian, mean and standard deviations of R2 and RMSE metrics per kinase for single-task random forest (RFST), xgboost (XGBST), and chemprop
single-task (CPST) models, multitask pyboost model (PBMT), chemprop multitask models without data imputation (CPMT) and with mean
(CPMT

Mean) and RF imputation (CPMT
RF ), and the profile QSAR model without data leakage (pQSAR).
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> 0.6 and RMSE< 0.6, often used thresholds to consider amodel
to be predictive, based on an RGES split. However, on average
the median R2 is 0.3 lower and the median RMSE is 0.2 higher
for the DGBC split than the random split showing that the
models do not perform as well on this data split. These results
are in line with expectations and previously published results21,39

and show the importance to assess model performance with a
realistic split.

3.2.2. Hyperparameter Optimization Improves Perform-
ance. We optimized the hyperparameters of the tree- and
chemprop-based models. The hyperparameters of the tree-
based models were optimized separately for each model. To
limit computation time, we only optimized the CPMT model’s
hyperparameters on the DGBC split and then applied the
optimized parameters to all chemprop models. We show the
performance of the optimized models in Figure 3 and Table 2,
and the performances of the default models are summarized in
Table S2.

On the RGES split, the hyperparameter optimization
significantly increases the performance of all models, except
the RFST models for which the performance does not change.
The median R2 and RMSE were improved by 0.12 and 0.07 on
average, respectively, and the largest improvements are seen for
the PBMT) model (ΔR2 = 0.30 and ΔRMSE = 0.19). In the case
of the DGBC split, the effect of the hyperparameter optimization
is much smaller with the median R2 and RMSE only improving
by 0.07 and 0.03 on average, respectively. The largest
improvements are seen for PBMT model (ΔR2 = 0.16 and
ΔRMSE = 0.07) and the second largest for the XGBST models,
indicating that hyperparameter optimization is necessary for

gradient boosting models. It is surprising that the effect is
consistently larger in the RGES than the DGBC split for the
DMPNN-based models as the hyperparameter optimization was
done with a small subset with the balanced cluster split.
Nevertheless, all models were improved by hyperparameter
optimization, and future studies could also use algorithms, like
FABOLAS,40 that can handle hyperparameter optimization on
very large data sets to yield even greater gain in performance for
the multitask DMPNN models. The subsequent analyses in this
paper were done with the optimized models.

3.2.3. Multitask Models Outperform a Collection of Single-
Task Models. To evaluate the effect utilizing correlations
between kinases in sparse data, we compared pairwise the
performance of single-task and multitask (i) gradient boosting
models (XGBST vs PBMT) and (ii) chemprop models (CPST vs
CPMT). For both cases and both splits, the multitask models are
superior to the set of single-task models with increased average
R2-scores and decreased RMSEs (Table 3).

The effects of multitaskmodels are larger for the deep learning
model compared to the gradient-boosting one. The CP models
are based on learned representations; therefore on small, single-
task data sets, the model is most likely not able to extract
generalizable embeddings. The multitask model uses a much
larger data set from which it is able to extract more generalizable
embeddings, leading to a significant improvement. On the R2-
score, on which we see the larger gains, the improvements are
larger for RGES and DGBC splits in the case of deep learning
and gradient boosting models, respectively. This indicates that
the exploitation of intertarget correlation can be useful when
predicting the activities of compounds dissimilar to the ones in
the training set. Furthermore, in the case of the deep learning
models, there is a speed-up of a factor ∼30 in computation time
between running a single 198 multitask model and running 198
separate single-task models.

Similarly, in a recent study,Moriwaki et al.41 using an in-house
data set with random splits for binary kinase activity predictions
showed promising results for multitask graph neural networks
that outperform single-task models. Another option to exploit
the intertarget correlation is proteochemometric modeling.42

However, both our single-task and multitask models seem to
outperform proteochemometric models used by Born et al.
(RMSEs above 0.75 in a random split-based evaluation)26 in
their large-scale kinase modeling.

3.2.4. Tree-Based Machine Learning Outperforms Deep
Learning. In the case of both single-task models (RFST, XGBST
vs CPST) and multitask models (PBST vs CPMT), we see that the
classical tree-based machine learning methods outperform the
deep learning model. Even though in general deep learning
models have been shown to outperform classic machine learning
approaches in activity prediction,43 these results are in line with
in-house results and other publications23,44,45 that show that in

Figure 3. Comparison of the performance of the different models
evaluated both with the random and structure-based splits. Distribu-
tions of R2 and RMSE values between predictions and experimental
values of the data in the test set for each target kinase in the kinase200
data set split using either random global equilibrated selection (RGES,
blue) and the dissimilarity-driven global balanced cluster (DGBC,
orange) splits. Predictions were made using single-task random forest
models (RFST), xgboost (XGBST) and chemprop (CPST) models,
multitask pyboost (PB), and chemprop multitask model without
imputation (CPMT), with mean imputation (CPMT

Mean), and with random
forest imputation (CPMT

RF ), and profile QSAR (pQSAR).

Table 3. Effect of Multitask Modelinga

XGBST/PBMT CPST/CPMT

RGES DGBC RGES DGBC

Δ⟨R2⟩ 0.06 0.08 0.11 0.05
Δ⟨RMSE⟩ −0.03 −0.01 −0.05 −0.04

aDifference between the mean R2 and RMSE per kinase of single-task
and multitask models.
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some cases classic ML methods perform as well as deep learning
models.

The superior performance of tree-based methods over deep
learning models has been well described on small- to medium-
sized tabular data sets; several reasons for this are that NNs are
biased toward overly smooth solutions, uninformative features
are more problematic for NNs, and NNs are typically not
rotationally invariant, as discussed in ref 46. Moreover, the deep
learning approach is based on learned representations, therefore
on small, single-task data sets, the model is most likely not able
to extract generalizable embeddings. This would explain why the
difference between the single-task models is larger than that
between the multitask ones. Furthermore, the hyperparameters
of each tree-based model were optimized separately, whereas,
due to computation time, deep learning models use parameters
optimized once on a subset of the multitask model so they might
not be optimal for each separate model.

3.2.5. Performance Is Not Correlated with Data Density.
We have evaluated whether there is a correlation between
density andmodel performance andwhether there is a difference
in performance when using data sets at different density levels. In
Figure 4, we illustrate that the performance of the CPMT model
for each kinase is poorly correlated with the data density points
for that kinase, assessed by the R2 and the RMSE.

To evaluate how the multitask model performance is affected
by adding activity data on targets that have lower data density,
the CPMT was run on two data sets, kinase1000 and kinase200,
which have different densities. The performance difference for
targets that are present in both the kinase200 and kinase1000
data sets is shown by the distributions of ΔR2 = Rkinase1000

2 −
Rkinase200

2 and ΔRMSE = RMSEkinase1000 − RMSEkinase200 in Figure
5. For the RGES split, it is clear that there is no difference in
performance between the two data sets, so adding activity data
from targets that have fewer data points does not improve the

performance of the models on the other targets. For the DGBC
split, there are larger differences in performance between sets,
but there is no systematic improvement with the addition of the
sparser kinases to the data set. Overall, adding more kinases with
fewer data points leads to a sparser data matrix, and it does not
improve model performance.

3.2.6. Data Imputation Does Not Improve chemprop
Performance. As the data set is very sparse, making it difficult to
exploit interkinase correlation, we investigated if data
imputation could improve the performance of the multitask
models. Using chemprop, multitasking methods with imputa-
tion, CPMT

Mean and CPMT
RF , does not show any improvement over

multitasking without imputation CPMT (Figure 3 and Table 2).
CPMT

RF has very similar performance to CPMT, and CPMT
Mean

underperforms significantly compared any other model, single-
task or multitask.

3.2.7. pQSAR without Data Leakage Underperforms. In
Martin et al.,27 the test set is included when training the PLS
model which leads to data leakage between kinases. To
investigate the impact of this, we trained the PLS both with
and without the test set. In Figure 6 and Table S3, we show that
when the test set is not included in the training of the PLS, the
performance measures turn out worse than when the test set is
included. The pQSAR without the test set performs worse than
the single-task RFST sets, and when the test set is included in
training it outperforms the RFs. The test set should be
independent so we exclude the test set from the training of
the PLS models. In this scenario, the pQSAR model underper-
forms compared to every other model except CPMT

Mean. Alchemite,
a commercial deep learning-based method using imputation
adopts an expectation-maximization algorithm and has shown
promising results on the cluster-based pQSAR data set as well,
but as mentioned before the splits from pQSAR suffer from data
leakage.20

4. CONCLUSION
In this study, we have investigated the large-scale modeling of
protein kinase activity with various machine-learning ap-
proaches. For this, we created two large protein kinase data
sets from the curated Papyrus database,31 comprising 198
kinases and 83K molecules (kinase200) and 66 kinases and 71K
molecules (kinase1000), respectively. Other recently applied

Figure 4. CPMT’s performance per kinase as a function of kinase’s data
density. The coefficient of determination (R2) and root-mean-squared
error (RMSE) between predictions and experimental values for the test
set of each target kinase as a function of the data density of that target
kinase. Results for random global equilibrated selection (RGES) split in
blue and the dissimilarity-driven global balanced cluster (DGBC) split
in orange.

Figure 5. Difference of CPMT’s performance per kinase between the
smaller and larger data set. Distributions of R2 = Rkinase1000

2 − Rkinase200
2

(top) and for RMSE = RMSEkinase1000 − RMSEkinase200 (bottom) for
kinase present in both data sets. In green and purple, kinases for which
model performance increases or decreases with the addition of sparse
kinases to the data set.
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kinase data sets contain a more limited number of either
targets30 or molecules,27,29 except for the data set based on all
human kinases used by Born et al.26 For each of our data sets,
two balanced multitask splits without data leakage between
targets were created, a random (RGES) and a dissimilarity-
driven cluster-based (DGBC) split, to evaluate rigorously the
performance of the models within exploitation and exploration
schemes. Other publications of large-scale kinase modeling
either have been using only random-based splits26 or have had
data leakage between targets.27

We then compared the performance of seven models to
predict protein kinase activity. These included sets of single-task
random forest, xgboost, and chemprop models, a multitask
pyboost model, chemprop models without and with data
imputation, and our implementation of pQSAR 2.0. In the cases
of both single-task and multitask models, we see that the deep
learning-based models are outperformed by classic machine
learning methods on both splits. The performance of gradient
boosting and D-MPNN models on both splits can be improved
by creating multitask models, indicating that exploitation of
intertarget correlation can be useful when predicting activities of
compounds both similar and dissimilar to the ones in the
training set. The multitask model’s performance could not be
improved by data imputation. Moreover, using pQSAR without
data leakage between targets also does not lead to higher
predictive power.

As expected, we see that every model performs significantly
worse with the dissimilarity-driven split than with the random
split. Most of the models show some predictive power with the
random split but struggle with the cluster-based split. The
dissimilarity-driven cluster-based split is a more conservative
estimation of performance, and thus it is a more realistic
assessment of the performance of machine learning models in
real drug discovery projects. As the poor performance on the

cluster-based split of the different models shows (for the PBMT,
the overall best-performing model, only 19% of kinase have an
R2 above 0.4), further developments are needed to efficiently
model activity with large-scale sparse data sets. The inclusion of
additional data in the form of protein information may improve
this performance.
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■ GLOSSARY
density percentage of a data matrix filled with non-null

elements (also referred to as data density)
CP chemprop
DGBC dissimilarity-driven global balance clustering
DMPNN directed message passing neural network
MT multitask
PB pyboost
R2 coefficient of determination
RF random forest
RGES random global equilibrated selection
RMSE root-mean-squared error
ST single-task
XGB xgboost
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