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Chapter 7 Deep Learning-based Prediction of Intra-

Cardiac Blood Flow in Long-axis Cine Magnetic 

Resonance Imaging 
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Abstract 

Purpose: We aimed to design and evaluate a deep learning-based method to 

automatically predict the time-varying in-plane blood flow velocity within the 

cardiac cavities in long-axis cine MRI, validated against 4D flow. 

Methods: A convolutional neural network (CNN) was implemented, taking cine 

MRI as the input and the in-plane velocity derived from the 4D flow acquisition as 

the ground truth. The method was evaluated using velocity vector end-point error 

(EPE), angle error and accuracy. Additionally, the E/A ratio and diastolic function 

classification derived from the predicted velocities were compared to those derived 

from the 4D flow.  

Results: For intra-cardiac pixels with a velocity >5 cm/s, our method achieved an 

EPE of 8.65 cm/s, angle error of 41.27°. For pixels with a velocity >25 cm/s, the 

angle error significantly degraded to 19.26°. Although the averaged blood flow 

velocity prediction was under-estimated by 26.69%, the high correlation (PCC=0.95) 

of global time-varying velocity and the visual evaluation demonstrate a good 

agreement between our prediction and 4D flow data. The E/A ratio was derived with 

minimal bias, but with considerable mean absolute error of 0.39 and wide limits of 

agreement. The diastolic function classification showed a high accuracy of 86.9%. 

Conclusions: Using a deep learning-based algorithm, intra-cardiac blood flow 

velocities can be predicted from long-axis cine MRI with high correlation with 4D 

flow derived velocities. Visualization of the derived velocities provides adjunct 

functional information and may potentially be used to derive the E/A ratio from 

conventional CMR exams. 
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7.1 Introduction 

Assessment of cardiac function using cardiac magnetic resonance imaging (CMR) is 

typically based on cine MR imaging. Four-dimensional (4D) flow MRI enables time-

resolved three-dimensional visualization of intra-cardiac blood flow to gain a better 

understanding of the patient’s cardiac condition [1, 2]. Cardiac dysfunction is 

strongly associated with abnormal patterns of blood flow within the cardiac 

chambers. Therefore, visualization and quantification of intra-cardiac blood flow 

may provide relevant diagnostic information. However, 4D flow MRI is usually not 

performed in routine clinical protocols as it requires additional scan time and post-

processing. During post-processing typically registration is required of the 4D flow 

acquisition with the acquired long-axis and short-axis cine views, which may be 

hampered by variations in respiratory condition and heart rate [3, 4]. Interestingly, 

in standard long-axis cine MR views, the intensity fluctuations within the cardiac 

cavities provide a visual clue about the global blood flow pattern. While the signal 

intensity variations are dependent on various factors such as saturation effects and 

spin dephasing due to magnetic field inhomogeneity or complex flow [5, 6], we 

speculate that time-varying flow velocity information can be derived from those 

intensity variations. 

    There have been many attempts in using balanced steady-state free precession 

(SSFP) MR imaging for measuring blood velocity by modifying the SSFP sequence. 

Markl et al. measured through-plane flow using a SSFP sequence by inverting the 

slice encode gradient between two consecutive acquisitions [7]. The through-plane 

velocity was then calculated by subtracting the resulting phase images. Neilson et al. 

augmented the slice encode gradient in the SSFP sequence for measuring blood 

velocity in a readout direction [8]. They used the resultant phase information without 

a reference for measuring the blood velocity in the readout direction. In recent years, 

convolutional neural networks (CNN) have been introduced to extract cardiac 

motion information, which could be interpreted as an ensemble of relatively small, 

periodical variations of the shape and position of heart structures during a cardiac 

cycle [9, 10, 11]. However, the potential applications for velocity field prediction 

has not been explored yet.  

    Accordingly, in this work we proposed a deep learning-based method to track the 

blood flow displacement within consecutive cardiac frames from long-axis cine MR 

images. As ground truth, we used the velocity field derived from registered 4D flow 

MRI. Once the blood flow is tracked and the displacement vectors in X and Y 

directions are measured, pixel wise blood velocity in each direction can be derived 

by dividing its displacements to the temporal resolution of each frame. To the best 

of our knowledge, we are the first to employ deep learning and 4D flow MRI for 

automated cardiac blood flow prediction. Additionally, in clinical routine, diastolic 
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function is usually evaluated using Doppler echocardiography. Although, several 

studies demonstrated the usefulness of CMR in deriving conventional diastolic 

parameters, those methods rely on additional scan time and extra post-processing, 

such as the manual localization of regions of interest (ROI), which is time-

consuming [12, 13, 14]. In our work the E/A ratio is automatically derived from the 

predicted blood flow and was used to classify the diastolic function as a potential 

clinical application.  

7.2 Methods 

7.2.1 Dataset 

The study cohort included 78 post-myocardial infarction (MI) patients and 34 

healthy subjects who underwent cardiac MRI on a 1.5T MR system (Philips 

Healthcare). The study was approved by the local medical ethical committee and all 

participant in the study provided written information consent. The MR imaging 

protocol included conventional SSFP cine in 4-chamber (4CH) view and short-axis 

cine stack. In addition, whole-heart 4D flow MRI was performed for 3D blood flow 

velocity assessment in the four cardiac chambers. Both cine MRI and 4D flow MRI 

were reconstructed into 30 phases covering a complete cardiac cycle. MR imaging 

parameters of the acquisitions are listed in Table.7.1. More details about the MR 

acquisition protocol have been reported in earlier work [15, 16]. 

Table.7.1 4D flow and SSFP data acquisition parameters. VENC: velocity encoding; FOV: 

field of view; TE: echo time; TR: repetition time; bpm: beats per minute. 

 

    Mass software (Version V2017-EXP; Leiden University Medical Center, Leiden, 

the Netherlands) was used to derive LV volumetric parameters from the short-axis 

cine stack by semi-automated segmentation of the endocardial and epicardial borders. 

 4D Flow Data SSFP 

Spatial resolution (mm3) 3×3×3 0.95-1.25× 0.95-1.25×8 

Reconstructed temporal resolution (ms) 20.83-46.73 20.21-48.21 

Electrocardiogram gating retrospective retrospective 

VENC (cm/s) 150 — 

FOV (mm2) 300-440 × 300-440 300-440 × 300-440 

TE/TR (ms) 3.10-3.75/7.46-13.95 1.5-1.72/3.0-3.44 

Flip angle (°) 10 60 

Reconstructed heart phases 30 30 

Scan time 7-10 min 6-8 s 

Heart rate (bpm) 41-94 42-99 

Motion correction            None (free breathing) Breath hold 
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The semi-automatically defined ventricular and atrial contours in the 4CH view were 

used as a mask and for each pixel within the mask the in-plane component of velocity 

as derived from the aligned 4D flow acquisition was used as the ground truth. To 

avoid temporal inconsistency, cine acquisitions were excluded if the heart rate 

deviated from that of the 4D flow acquisition by more than six beats per minute. 

Based on this exclusion criterion, 92 cases (2760 2D images) remained for training 

and testing. Table.7.2 summarized the detailed demographics derived from the short-

axis cine and 4D flow data.  

Table.7.2. Demographics of the study cohort derived from the short-axis cine and 4D flow 

data. Data is presented as mean ± standard deviation or count.  EDV: End-diastolic volume, 

ESV: End-systolic volume, SV: Stroke volume,  EF: Ejection fraction. 

Characteristic Subjects(n=92) 

Gender (Male, n) 56 

EDV (ml) 179.71±63.93 

ESV (ml) 90.14±58.27 

SV (ml) 89.58±19.38 

EF (%) 53.11±12.27 

E/A ratio 1.41±0.54 

    In-plane spatial alignment was performed between the SSFP cine and reformatted 

4D flow images since 4D flow images were acquired during free-breathing while 

SSFP cine images were acquired during breath-hold. In addition, significant patient 

motion can occur in between the acquisition of the long-axis cine view and the 4D 

flow acquisition. Based on the image position information, the in-plane velocity 

derived from 4D flow was projected on the cine long-axis views. In case a 

misalignment was observed between the visualized anatomy and the velocity vectors, 

the cine view images were manually translated in order to optimize the alignment. 

We further assumed that both 4D flow and SSFP cine images are registered in time 

since both have the same number of cardiac phases and nearly similar heart rates. 

Therefore, each cardiac phase of 4D flow is assumed to correspondent to same 

cardiac phase of SSFP cine. Tri-linear interpolation was used to generate the in-plane 

velocity components for the 4CH long-axis views. 

7.2.2 Data preprocessing 

In this work, we aim to predict the blood flow velocity within the cardiac chambers. 

To filter out irrelevant velocity information, we applied a binary blood pool mask in 

the long-axis view to exclude the region outside of the cardiac chambers. The signal 

intensities of the input cine sequence were normalized based on the histogram of the 

signal intensities within the masked region. The histogram was constructed by 

aggregating the blood pool pixels of all cardiac phases, which implies that signal loss 
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information is still preserved and flow-induced artifacts can still be tracked from 

frame to frame. The normalization can be described as in formula 1, where 𝑃norm−i , 

the normalized value of the pixel-i is derived from 𝑃𝐼 the signal intensity of pixel-i,  

𝑃5𝑡ℎ and 𝑃95𝑡ℎ represent the 5th and 95th percentile value of the intensity histogram.  

𝑷𝒏𝒐𝒓𝒎−𝒊 =
𝑷𝑰−𝑷𝟓𝒕𝒉

𝑷𝟗𝟓𝒕𝒉−𝑷𝟓𝒕𝒉
                                      (7.1) 

    The intensity fluctuations in the cine MR sequence are used to predict the 

displacement of a pixel, i.e. a blood sample, from frame to frame. However, the 4D 

flow acquisition provides each pixel’s velocity instead of displacement. Therefore, 

the pixel velocities derived from the 4D flow acquisition are converted into the pixel 

displacements using formula 7.2, 

                         𝐃 = (
∆𝑡𝑣𝑥

𝑝𝑠𝑥
,

∆𝑡𝑣𝑦

𝑝𝑠𝑦
)                                             (7.2) 

in which 𝐕 = (𝑣𝑥, 𝑣𝑦) stands for velocity of each pixel in frame t, 𝑣𝑥 , 𝑣𝑦 are the 

velocities projected on the long-axis image, ∆t is the time interval between image 

frame t and t+1, 𝐏𝐒 = (𝑝𝑠𝑥, 𝑝𝑠𝑦) is the pixel spacing. After this preprocessing, the 

displacement D (in pixel units) from frame t to frame t+1 is regarded as the ground 

truth for model training. 

7.2.3 Network structure 

The displacement information and moving direction of a pixel, or group of pixels, 

can only be extracted using the current and its neighboring frames. To predict the in-

plane components of blood flow velocity, we consider a sequence of cine MR images 

containing a central image and its 8 temporal neighboring phases as the input and 

the displacements in X and Y direction derived from the 4D flow sequence as the 

ground truth to train an end-to-end network. The proposed CNN architecture is 

illustrated in Figure.7.1. 

    The implemented network is a variant of U-Net [17] and ResNet [18] containing 

a contracting path and an expanding path. In the contracting path, to provide dense 

per-pixel predictions, one pooling operation and three strided convolutions with a 

1×1 kernel size are applied for the down-sampling. The conventional convolution 

layers in the contracting path of U-Net are replaced with residual convolution 

modules [18] to extend and deepen the network. In the expanding path, we reserved 

the concatenation-based skip connections to integrate the local features and the 

global information. 
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    Deep supervision [19] is employed to overcome the problem of vanishing 

gradients in a deep CNN architecture. As shown in Figure.7.1, three auxiliary 

prediction layers are inserted before the up-sampling operation, each prediction is 

resampled into the original image size using nearest neighbor interpolation. The end 

point error (EPE), being the Euclidean distance between two displacement vectors 

averaged over all pixels within the cardiac cavities, is used as loss function. Given 

𝐷𝑥,𝑔, 𝐷𝑦,𝑔, 𝐷𝑥,𝑝, 𝐷𝑦,𝑝  representing the displacement values of ground truth and 

prediction in X and Y directions, 𝐃𝑖,𝑔 = (𝐷𝑥,𝑔, 𝐷𝑦,𝑔)  and 𝐃𝑖,𝑝 = (𝐷𝑥,𝑝, 𝐷𝑦,𝑝) 

 denoting the displacement vectors for ground truth and prediction of ith pixel within 

the blood pool, then the EPE is defined according to formula 7.3 where M indicates 

the number of pixels within the blood pool. 

EPE =
1

𝑀
∑ ‖𝐃𝑖,𝑝 − 𝐃𝑖,𝑔‖ =

1

𝑀
∑ √(𝐷𝑥,𝑝 − 𝐷𝑥,𝑔)2 + (𝐷𝑦,𝑝 − 𝐷𝑦,𝑔)2𝑀

𝑖=0
𝑀
𝑖=0      (7.3) 

    The EPE loss is the sum of length of the displacement vector difference to compute 

the magnitude and angle error between prediction and ground truth for all pixels 

within the blood pool. The total loss is defined as: 

Loss = EPE (G, O) + ∑ 𝑤𝑐𝐸𝑃𝐸𝑐(𝐺, 𝑃𝑐)𝑐                   (7.4) 

where G is the displacement generated from the 4D flow data, O is the final output 

from the network, 𝑃𝑐 is the prediction of the cth auxiliary prediction layer and 𝑤𝑐 is 

the loss weight of each auxiliary prediction. 

    To improve the performance and the generalization of the model, five-fold cross-

validation was applied. The output of CNN was divided by the temporal resolution 

to convert to velocity to compute the evaluation metrics.  

7.3 Evaluation metrics 

7.3.1 Visual evaluation 

To visually assess the intra-cardiac blood flow patterns derived from either the CNN 

prediction and 4D flow, the in-plane velocity was displayed in movie mode as vector 

overlay projected on the cine MR images. The length and color of the displayed 

vectors were scaled according to the velocity magnitude. 

7.3.2 Quantitative evaluation metrics 

The performance of the proposed method was evaluated using EPE and angle error. 

    To quantitatively assess the performance of predicted blood flow, both the 

magnitude and angle error are required to be measured. Therefore, EPE described in 

formula 7.3 and trigonometric function are employed to compute the magnitude error 
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and angle error, respectively. Here, the EPE was computed using the velocity vectors 

instead of the displacement vectors. The angle error 𝜃, between the ground truth 𝐕𝑖,𝑔 

and prediction 𝐕𝑖,𝑝 of the ith pixel within the blood pool, is defined as, 

θ =
1

𝑀
∑ arccos (

𝐕𝑖,𝑝∙𝐕𝑖,𝑔

‖𝐕𝑖,𝑝‖ ‖𝐕𝑖,𝑔‖
)𝑀

𝑖=0                               (7.5) 

where i represents the ith pixel and M indicates the total number of pixels within in 

the blood pool,  ‖∙‖  is the length of a vector and arccos means the inverse 

trigonometric function of cosine. The angle error ranges between 0° and 180°, with 

0° denoting two vectors in the same direction and 180° denoting two vectors in the 

opposite direction. 

7.3.3 Clinical parameters 

A commonly clinically used flow-related parameter is the E/A ratio. The E/A ratio 

can be used to classify diastolic function as either normal or abnormal using the 

cutoff values for E/A ratio as commonly used in cardiac ultrasound. In our work, a 

region of interest was first defined by three points, being two end points of the 

defined endocardial contour, which correspond to the valve hinge points, and a third 

point in the center of LV cavity. A b-spline curve was fitted through the three points, 

resulting in a region just below the mitral valve plane. The E and A velocities were 

found by searching for the pixel with maximum (in-plane) velocity within the region 

to derive the E/A ratio. 

7.3.4 Statistical analysis 

Results are expressed as mean ± standard deviation (SD). Pearson correlation 

coefficient (PCC) was used to evaluate the correlation between our prediction and 

the 4D flow data for the velocity values during a complete cardiac cycle. In addition, 

Bland-Altman analysis was used to analyze the mean differences (Bias) and limits 

of agreement (LOA, 1.96×SD) of the E/A ratio derived from either the deep learning 

method or 4D flow data. Paired t-test was performed to test the statistical 

significance of the differences between paired E/A ratio measurements, P<0.05 

indicates a significant difference. PCC was also used to measure the correlation of 

E/A ratio derived from 4D flow data and our approach. 

7.4 Results 

We first introduced 9 neighboring cine MR phases in the input (more results using 

different number of inputs can be found in the Supplementary file), then we reported 

the predicted results using the defined metrics. At last, the E/A ratio results were 

reported. 
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7.4.1 Visual comparison 

The predicted and 4D flow derived in-plane blood flow velocity were dynamically 

visualized as overlay on the original long-axis cine images. The length and colouring 

of the vectors were used to encode the local blood velocity magnitude. To avoid 

cluttering of the vectors and to suppress velocity noise the velocity vectors were only 

generated for image pixels with a velocity >4 cm/s. Figure.7.2 shows an example of 

selected frames of predicted blood flow velocities compared to 4D flow derived 

velocities in one of the study subjects. Overall a good agreement is seen in the blood 

velocity pattern within the cardiac cavities both in systole and diastole. In general it 

was observed that the visual agreement in flow pattern was better in the ventricles 

than in the atria. Video examples can be found here 

(https://github.com/xsunn/BloodFlowPrediction). 
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7.4.2 Quantitative Results 

Figure.7.3 shows probability distributions of blood flow velocity in different heart 

chambers generated from 4D flow data and our prediction. Compared with the 

ground truth, the predicted velocities were generally lower.  
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    To quantify the prediction error, those pixels with velocities greater than 5cm/s 

were involved in computing the EPE and angle error. The accuracy was computed 

with 30th percentile as a threshold. All pixels were used to compute the relative error 

(RE) of velocity between the 4D flow and automated velocity prediction. PCC was 

used to measure the correlation of the time-varying averaged velocity between the 

4D flow data and prediction. The results in different heart chambers are reported in 

Table.7.3. The relative error shows that the velocities were under-estimated by 

26.69%. The small standard deviation in the relative velocity difference suggests that 

potentially a constant correction factor may be applied to the predicted velocity to 

improve the performance. The PCC of velocity within all four chambers were 0.95, 

which illustrates a good correlation in the blood flow pattern between the 4D flow 

and our prediction.Fig.S7.1 in Supplementary shows more details about the 

performance of our method for different chambers with varying velocity thresholds. 

Table.7.3. Prediction results of different chambers. 4CH indicates the results were 

computed within all 4 chambers; LV, LA, RV and RA mean the results were based on each 

single chamber separately. RE: relative error. PCC: Pearson correlation coefficient. The 

mean ± standard deviation are reported. 

  EPE (cm/s) Angle Error (°) Velocity-RE(%) Velocity-PCC 

4CH 8.65±2.69 41.27±11.39 -26.69± 4.43 0.95 

LV 9.10±2.96 37.98±10.94 -24.53±4.29 0.98 

LA 8.45±2.20 41.19±12.78 -27.84±6.62 0.94 

RV 7.06±1.54 40.99±11.28 -26.18±8.05 0.93 

RA 8.64±2.44 47.52±16.90 -29.83±4.53 0.93 

 

7.4.3 E/A ratio results 

The average absolute error in E/A ratio estimation were 0.39±0.32. The Bland-

Altman analysis as shown in Figure.7.4 reveals a minimal bias with wide limits of 

agreement (LOA) between our prediction and 4D flow derived E/A ratio and more 

than 95% of cases are distributed between upper and lower agreement limits.  

    To investigate the potential clinical applicability of the automated E/A ratio 

prediction we tested whether the wide LOA effects the classification of diastolic 

function. Echocardiography is the main imaging modality for assessment of LV 

diastolic function. It defined 0.75< E/A ratio <1.5 as normal diastolic function and 

E/A ratio varying in the other ranges as abnormal diastolic function [20]. The 

confusion matrix of the diastolic function classification experiment are summarized 

in Figure.7.5. The diastolic function binary classification accuracy was 

(60+20)/92=86.9%. The other three classification metrics including precision, recall 

and F1-Score, PCC and P values are reported in Table.7.4. Our method was able to 

classify 93.75% (60/64) of cases qualified by the 4D flow data as the normal diastolic 



 

120 
 

function, and 71.43% (20/28) of the abnormal cases were also correctly identified. 

Due to the wide LOA, the overall PCC of the E/A ratio is 66.71%. The PCC of E/A 

ratio in the groups with normal and abnormal diastolic function are 39.41% and 

75.1%, respectively. But all p values of E/A ratio in both two classes are larger than 

0.05, meanwhile, the p value of 0.795 derived from all 92 subjects also confirmed 

that the E/A ratio generated from our prediction was not significantly different from 

the 4D flow data. 

 
Figure.7.4. Bland-Altman plots of E/A ratio. 

 

 

 
Figure.7.5. Confusion matrix of diastolic function classification derived from the predicted 

velocities. Label 0 means normal diastolic function, 1 represents abnormal function. 
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Table.7.4. The results of  diastolic function classification, PCC and p value of E/A ratio in 

each class with normal and abnormal diastolic functions. 

7.5 Discussion 

We designed and evaluated a deep learning-based method for the prediction of intra-

cardiac blood flow velocity from long-axis cine MRI using 4D flow derived 

velocities as ground truth. The predicted velocities highly correlated with the 4D 

flow derived velocities with an overall good visual agreement in time-varying flow 

pattern. Our work shows a potential clinical application to visualize the blood flow 

pattern without an additional 4D flow data. As the E/A ratio is a well-established 

clinical parameter used to classify diastolic function, the results demonstrated that 

the proposed method can be applicable to estimate the E/A ratio without significant 

bias and to classify the diastolic function with a high accuracy. Although the 

observed underestimation of the predicted velocities and the variability in the derived 

measurements indicate that further refinement of the deep learning model using a 

larger patient cohort is warranted. we believe our results demonstrate the potential 

of the proposed method. 

    The variation in blood signal intensity in the cine MR images provides information 

on the direction and magnitude of the blood flow in the cardiac cavities. The 

observed displacement of the apparent visible structures in the blood pool in 

subsequent frames reflects the velocity. Therefore, we performed experiments with 

different number of neighboring phases as input of the network. Using only three 

phases as input was shown to result in the worst performance. This may be explained 

by the fact that the small total displacement like just one pixel in three neighboring 

temporal phases makes the velocity prediction sensitive to the spatial resolution of 

the cine images. When using more frames as the input the structures can be followed 

over a larger time window making it less sensitive to the spatial resolution. It was 

concluded that more than three neighboring phases are required to predict the blood 

flow pattern and for the final model 9 neighboring phases was used as input.  

    The high correlation of the time varying velocity averaged all subjects between 

our prediction and the 4D flow data, as well as the visual evaluation results, 

demonstrated a good agreement in the global velocity patterns. However, the 

velocity values predicted by the proposed model are close to 30% lower than those 

derived from 4D flow data. In the training data, the low velocities (0-20 cm/s) 

account for a large proportion which may lead the model to underestimate the 

 Recall Precison F1-Score PCC P value 

Normal 93.75% 88.24% 90.91% 39.41% 0.052 

Abnormal 71.43% 83.33% 76.92% 75.10% 0.088 

Overall - - - 66.71% 0.795 
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velocities in regions of high velocity. In addition, the evaluation results are sensitive 

to the selected velocity thresholds, because different levels’ velocities are relatively 

concentrated at certain areas. For example, in the left ventricle, the distribution of 

the lower velocities are more dispersed and complicated in the apical region, 

therefore, it is much harder to predict the irregular movement which leads to a 

relatively large EPE and angle error. The pixels with higher velocities, such as the 

blood flow from LA to LV in diastole and from the LV towards the aorta in systole, 

have a relatively fixed direction of motion. Therefore, the angle error decreased 

when the velocity thresholds increased. However, since the high velocities only 

account for a small proportion the model is prone to underestimation of high 

velocities, resulting in a larger EPE for the pixels with higher velocities.  

   The E/A ratio derived from the velocities could be assessed without bias since both 

E- and A-velocity were underestimated similarly. Additionally, the statistical test 

confirmed that there was no significant difference between 4D flow and CNN 

derived E/A ratio. However, the Bland-Altman analysis revealed a wide limit of 

agreement. Despite this, the results of diastolic function classification demonstrated 

that the variability in E/A ratio had  minimal effect on the accuracy of diastolic 

function classification in our study cohort. Echocardiography allows reliable 

visualization of blood flow pattern. Vector flow mapping (VFM) in 

echocardiography uses the mass-conservation principle to estimate the azimuthal 

component of the flow [21]. VFM has been used in many clinical applications 

including cardiac function evaluation, valvular diseases diagnosis and congenital 

heart disease. However, VFM is sensitive to out-of-plane flow and boundary 

conditions [22]. Additionally, the conventional VFM method is applied only to the 

left ventricle [23]. Our proposed method can be applied to predict the blood flow in 

the whole heart from any cine long axis view and does not rely on accurate cardiac 

boundary segmentation. Since cine MRI acquisitions are routinely acquired in 

standard CMR exams, given the cine MRI, our method can directly predict the in-

plane velocities without requiring additional scan time. The combined visualization 

of blood flow and myocardial motion provides detailed information about cardiac 

function and hemodynamics. The clinical value of the developed technique should 

be evaluated in future clinical studies.  

    There are several limitations in our study. Velocity underestimation is the main 

limitation since it is patient dependent and varies across the subjects. The use of 

appropriate data augmentation techniques to artificially enlarge the available set of 

training data or introducing a weighted loss function by setting larger weights to 

higher velocities may result in improved performance of the deep learning model. 

The ground truth generated by projecting the 4D flow data derived in-plane 

velocities on the long-axis cine MRI is not a perfect reference, due to heart rate 

difference and patient movement. The heart rate difference cannot be eliminated 
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completely, even though some cases were excluded to keep the temporal consistency. 

Registration errors can be corrected for visually by applying in-plane translation of 

the cine MRI images series. Through-plane misalignment and rotational errors are 

more difficult to correct for. Additionally, as our method relies on converting 

predicted pixel displacement to velocity, the limited spatial and temporal resolution 

of the cine MRI data will have an impact on the velocity magnitude and direction 

prediction. The 4D flow MRI was acquired during free-breathing while SSFP cine 

images were acquired during breath-hold, implying a difference in physiological 

condition of the subject. For regions of low blood flow velocity the noise in the 4D 

flow data may be non-negligible. Additionally, training and testing the model on a 

wider range of data from multiple scanner types, centers is also required to gain a 

further understanding in the potential of the proposed blood flow velocity prediction 

method. Furthermore it would be valuable to investigate the applicability of our 

method in patients with valvular regurgitation or stenosis and other patient cohorts 

with cardiac pathologies associated with abnormal flow patterns, such as patients 

with dyssynchronous myocardial contraction. Since a full detailed 

electrocardiographic QRS duration evaluation was not available for the patients in 

our study, we were unable to perform a patient sub-group analysis. 

    In conclusion, we proposed a deep learning-based method for automated intra-

cardiac blood flow velocity prediction from standard long-axis cine MRI. It was 

demonstrated that, although the predicted velocity magnitude is underestimated, the 

global velocity patterns show good correlation with the blood flow patterns derived 

from 4D flow MRI. The method enables estimation of E/A ratio without significant 

bias, but with wide limits of agreement. After further improvement of the velocity 

prediction model the method could potentially be valuable for clinical application. 
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Supplementary  

1. Evaluation metrics 

As the third error metric we quantified the “accuracy of the positions” of the pixels 

with velocities higher than a given threshold. For this, we used the accuracy metric 

as defined in formula S.1. 

Accuracy =  
‖𝐺∩𝑃‖

‖𝐺‖
                                          (S7.1) 

where set G = {(𝑖, 𝑗)|‖𝑉𝑔(𝑖, 𝑗)‖ ≥ 𝑔𝑝}  and set P = {(𝑖, 𝑗)|‖𝑉𝑝(𝑖, 𝑗)‖ ≥ 𝑝𝑝}  contain 

the pixels whose resultant velocities 𝑉  are greater than a certain threshold. The 

threshold 𝑔𝑝 and 𝑝𝑝 are the pth percentile of the resultant velocity of ground truth 

and prediction, respectively.  

2. Results of input dimension  

Table S7.1. Prediction results generated using different input dimensions and different velocity 

thresholds in 4CH and 2CH view. For EPE and angle error, >5 indicates that only the pixels in the 

ground truth with a velocity magnitude greater than 5cm/s are included to compute the metrics. 

ACC >30th indicates that only the pixels with a velocity magnitude greater than 30th percentile of all 

four chambers (LV,RV,LA, RA) in 4CH view and all two chambers (LV, LA) in 2CH view are 

included to compute the accuracy. N is the dimension of the network input. ACC means the 

evaluation metric accuracy. The best results within four different dimensions are shown in bold. 

3. Results in four-chamber view 

Intra-cardiac flow velocity varies greatly within the cardiac cycle, across regions, 

cardiac phases and also across patients. Hence, to further analyze the prediction 

results, various velocity thresholds were used to compute the evaluation metrics for 

those pixels exceeding a chosen threshold (as shown in Fig.S7.1 and Fig.S7.4). By 

View 
 EPE(cm/s) Angle Error(°) ACC(%) 

 >0 >5 >10 >0 >5 >10 >30th >50th >70th 

4CH 

N=3 7.0±1.5 8.7±2.7 10.9±2.3 51.9±9.9 41.9±11.2 33.2±11.0 79.0±4.0 68.0±7.5 55.9±12.1 

N=5 7.0±1.5 8.7±2.6 10.8±2.3 51.7±10.0 41.6±11.3 32.9±11.2 79.2±3.9 68.4±7.5 56.4±11.9 

N=7 6.9±1.5 8.6±2.1 10.9±2.4 51.7±9.9 41.6±11.1 33.0±10.7 78.9±4.1 68.1±7.6 56.3±12.2 

N=9 6.9±1.5 8.6±2.7 10.8±2.4 51.4±10.1 41.3±11.4 32.7±11.0 79.1±4.0 68.2±7.7 56.3±12.1 

2CH 

N=3 7.2±1.8 9.1±2.0 11.8±2.6 56.9±10.9 47.2±11.9 36.5±12.4 78.8±4.9 66.7±9.5 53.5±16.0 

N=5 7.1±1.80 9.0±2.0 11.7±2.6 56.5±11.1 46.7±12.0 36.4±12.0 78.9±5.0 66.85±9.6 53.7±16.1 

N=7 7.1±1.8 9.0±2.0 11.6±2.5 56.4±11.1 46.6±12.0 36.4±12.4 78.8±5.0 66.9±9.6 53.8±16.2 

N=9 7.1±1.8 8.9±2.0 11.7±2.6 56.5±11.6 46.4±12.3 35.9±12.6 79.0±4.9 67.0±9.4 54.1±15.8 
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excluding the low-velocity pixels, the performance of the model can be more clearly 

revealed. 

Table S7.2. Prediction results of Accuracy in different chambers in 4CH view. Accuracy was 

computed using the 30th percentile as the threshold. 4CH indicates the results were computed within 

all 4 chambers; LV, LA, RV and RA mean the results were based on each single chamber separately. 

The mean ± standard deviation are reported. 

 

 
Figure.S7.1. Relative EPE, angle error and accuracy under different threshold values in 

different chambers in 4CH view. 4CH means all four chambers are included to compute 

the evaluation metrics. LV, LA, RV and RA means only one chamber was used to compute 

the metrics. (A): The relation between relative EPE, and the velocity threshold. (B): The 

relation between angle error and velocity threshold. (C): The relation between the 

accuracy and the velocity percentile threshold in different chambers. 

 

    It defined E/A ratio<0.5 as impaired relaxation pattern, 0.75< E/A ratio <1.5 as 

normal diastolic function and E/A ratio >2 as restrictive filling. The confusion 

matrix of the diastolic function classification experiment are summarized in Figure 

S7.2. The diastolic function classification accuracy was 88.1%. 

 4CH LV LA RV RA 

Accuracy (%) 79.09±4.02 79.40±5.17 78.72±6.38 77.77±5.75 75.62±5.91 
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Figure.S7.2. Confusion matrix derived from the predicted velocities in the 4CH views. 

Label 0 means normal diastolic function, 1 is restrictive filling and 2 is impaired relaxation 

pattern. 

We also test the performance of our model in two-chamber view. 86 cine 2CH views 

(2580 2D images) were used for training and testing. 

4. Results in two-chamber view 

Table.S7.3. Prediction results of different chambers in 2CH view. EPE and angle error were 

computed using a velocity threshold of 5 cm/s. Accuracy was computed using the 30th percentile as 

the threshold. 2CH indicates the results were computed within all 2 chambers; LV, LA mean the 

results were based on each single chamber separately. PCC: Pearson correlation coefficient. The 

mean ± standard deviation are reported. 

 

 2CH LV LA 

EPE (cm/s) 8.99±2.02 9.18±2.15 8.78±2.40 

Angle Error (°) 46.45±12.26 45.19±13.60 48.91±16.12 

Accuracy (%) 79.03±4.93 79.90±5.72 76.21±6.76 

Velocity-RE (%) -32.29±4.08 -31.46±4.68 -33.12±8.25 

Velocity-PCC 0.971 0.984 0.869 



 

130 
 

 
Figure.S7.3. Probability distribution of velocity generated from 4D flow data and 

prediction in 2CH view. The blue color represents the distribution generated from the 4D 

flow data, and the light green means the distribution generated from the prediction. The 

light blue represents the overlap between the prediction and 4D flow data. 

 

 
Figure.S7.4. Relative EPE, angle error and accuracy under various thresholds in different 

chambers in 2CH view. 2CH means LV and LA are included to compute the evaluation 

metrics. LV, LA means only one chamber was used to calculate the metrics. (A): The 

relation between relative EPE and velocity threshold. (B): The relation between angle error 

and velocity thresholds. (C): The relation between the accuracy and the velocity percentile 

threshold in different chambers. 

The average absolute error in E/A ratio estimation in 2CH view was 0.46±0.42. In 

the 2CH view, there are 47 subjects with normal diastolic function, of those 47 

subjects, seven were classified as having restrictive filling and six as having impaired 

relaxation. Two out of eleven subjects with restrictive filling were classified as 

normal diastolic function. The confusion matrix of the diastolic function 

classification experiment are summarized in Figure S7.6. The classification accuracy 

in 2CH view was 73.3%. The Wilcoxon signed-rank test with P=.67 in 2CH view, 
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confirmed that the E/A ratio generated from our prediction was not significantly 

different from the 4D flow data. 

 
Figure.S7.5. Confusion matrix derived from the predicted velocities in the 2CH (right) 

views. Label 0 means normal diastolic function, 1 is restrictive filling and 2 is impaired 

relaxation pattern. 

 

Figure.S7.6. Confusion matrix derived from the predicted velocities in the 2CH views. 

Label 0 means normal diastolic function, 1 is restrictive filling and 2 is impaired relaxation 

pattern. 
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