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Chapter 6 Transformer based feature fusion for left 

ventricle segmentation in 4D flow MRI 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter was adapted from:  

Xiaowu Sun, Li-Hsin Cheng, Sven Plein, Pankaj Garg, Rob J. van der Geest. 

Transformer based feature fusion for left ventricle segmentation in 4D flow 

MRI. International Conference on Medical Image Computing and Computer-

Assisted Intervention (MICCAI). Springer, Cham, 2022. 
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Abstract 

Four-dimensional flow magnetic resonance imaging (4D Flow MRI) enables 

visualization of intra-cardiac blood flow and quantification of cardiac function using 

time-resolved three directional velocity data. Segmentation of cardiac 4D flow data 

is a big challenge due to the extremely poor contrast between the blood pool and 

myocardium. The magnitude and velocity images from a 4D flow acquisition 

provide complementary information, but how to extract and fuse these features 

efficiently is unknown. Automated cardiac segmentation methods from 4D flow 

MRI have not been fully investigated yet. In this paper, we take the velocity and 

magnitude image as the inputs of two branches separately, then pro-pose a 

Transformer based cross- and self-fusion layer to explore the inter-relationship from 

two modalities and model the intra-relationship in the same modality. A large in-

house dataset of 104 subjects (91,182 2D images) was used to train and evaluate our 

model using several metrics including the Dice, Average Surface Distance (ASD), 

end-diastolic volume (EDV), end-systolic volume (ESV), Left Ventricle Ejection 

Fraction (LVEF) and Kinetic Energy (KE). Our method achieved a mean Dice of 

86.52%, and ASD of 2.51 mm. Evaluation on the clinical parameters demonstrated 

competitive results, yielding a Pearson correlation coefficient of 83.26%, 97.4%, 

96.97% and 98.92% for LVEF, EDV, ESV and KE respectively. Code is available 

at github.com/xsunn/4DFlowLVSeg.  
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6.1 Introduction 

Quantitative assessment of left ventricular (LV) function from magnetic resonance 

imaging (MRI) is typically based on the use of short-axis multi-slice cine MRI due 

to its excellent image quality [1,2]. Recently, four-dimensional (4D) Flow MRI has 

been introduced, encoding blood flow velocity in all three spatial directions and time 

dimension. 4D Flow MRI can be used for detailed analysis of intra-cardiac blood 

flow hemodynamics, providing additional information over conventional cine MRI. 

The segmentation of the cardiac cavities is an important step to derive quantitative 

blood flow results, such as the total LV kinetic energy (KE) [3]. 4D Flow MRI 

generates four image volumes including a magnitude image and three velocity 

images, one for each spatial dimension. Figure.6.1 shows an example of magnitude 

and velocity images from one slice out of a 4D Flow MRI data set. The example 

highlights the extremely poor contrast between the heart chambers and the 

myocardium in the 4D Flow data. Therefore, most authors have used segmentations 

derived from co-registered short-axis cine MR in order to quantify ventricular blood 

flow parameters from the 4D Flow data. However, this relies on accurate spatial and 

temporal registration of the two MR sequences. Inconsistent breath-hold positioning 

may introduce spatial misalignment while heart rate differences will result in 

temporal mismatch between the acquisitions. The aim of the current work was 

therefore to develop an automated method for LV segmentation from 4D Flow MRI 

data, not requiring additional cine MRI data.  

       
Figure.6.1. A sample of cardiac 4D Flow data in short-axis view. The first image is the 

magnitude image, and the last three images are the velocities in x, y and z dimensions 

respectively. 

    Since U-Net [4] was proposed, convolutional neural networks (CNNs) have been 

predominant in the task of medical image segmentation. Many variants of U-Net 

have been proposed further improving the performance. For instance, nnU-Net [5] 

introducing automated self-configuring outperformed most existing approaches on 

23 diverse public datasets. Although those CNN based networks have achieved an 

excellent performance, restricted by the locality of convolutional kernels, they 

cannot capture long-distance relations [6,7].  

    Transformer is considered as an alternative model using its self-attention 

mechanism to overcome the limitation of CNN. Transformer was designed firstly for 
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natural language processing (NLP) tasks such as machine translation and document 

classification. More recently, Transformer-based approaches were introduced in 

medical image processing. TransUnet [8] applied a CNN-Transformer hybrid 

encoder and pure CNN decoder for segmentation. However, TransUnet still uses 

convolutional layers as the main building blocks. Inspired by the Swin Transformer 

[9], Cao proposed a U-Net-like pure Transformer based segmentation model which 

uses hierarchical Swin Transformer as the encoder and a symmetric Swin 

Transformer with patch expanding layer as the decoder [10]. Other Transformer-

based networks [11,12,13] also mark the success of Transformer in medical image 

segmentation and reconstruction.  

    Although numerous deep learning-based segmentation methods have been 

proposed in various modalities, the automatic segmentation of the LV directly from 

4D Flow data has not been explored yet. A specific challenge is that the magnitude 

and velocity images of a 4D Flow acquisition have different information content and 

should be considered as different modalities. Moreover due to velocity noise, a 

careful fusion method is needed to avoid redundancy or insufficient feature 

integration [14,15].  

    In this paper, we present, to the best of our knowledge, the first study to segment 

the LV directly from 4D Flow MRI data. Our main contributions are: (1) we propose 

two self- and cross-attention-based methods to fuse the information from different 

modalities in 4D Flow data; (2) we evaluate our method in a large 4D Flow dataset 

using multiple segmentation and clinical evaluation metrics. 

6.2 Method 

6.2.1 Attention mechanism 

Attention mechanism, mapping the queries and a set of keys-value pairs to an output, 

is the fundamental component in Transformer. In this section, we first introduce how 

the self-attention module models the intra-relationship of features from the same 

image modality. Then we explain how cross-attention explores the inter-relationship 

of features from two different modalities. The two attention modules are illustrated 

in Figure.6.2. 

Self-Attention module. In self-attention module [6], the Q (queries), K (keys) and 

V (values) are generated from the same modality. Q and K determine a weight matrix 

after the scaled dot product which is used to compute the weighted sum of V as the 

output. The computing process can be described as in equation (6.1): 

( , , ) ( )
T

a a
a a a a

Q K
Atten Q K V softmax V

d
                                           (6.1) 
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where d is the key dimensionality, and a denotes modality a. 

 
 

 
Figure.6.2. The structure of self-attention (upper) and cross-attention (bottom) 

modules. 

Cross-Attention module. Although self-attention explores the intra-modality 

relationship, the inter-modality relationship, such as the relationship between pixels 

in the magnitude image and velocity image is not explored. The cross-attention 

module takes two patches as the input to generate the Q, K, and V. V and K are 

generated from the same modality, while Q is derived from another modality. The 
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other operations are kept the same as in self-attention. It can be expressed as equation 

(6.2). Hence, cross-attention can be adopted to fuse the information from different 

modalities. 

( , , ) ( )
T

b a
b a a a

Q K
Atten Q K V softmax V

d
                                   (6.2) 

Multi-head self(cross)-attention module. To consider various attention 

distributions and multiple aspects of features, the multi-head attention mechanism 

[6] is introduced. The multi-head attention is the concatenation of h single attentions 

along the channel dimension followed by a linear projection. Thus, the multi-head 

attention can be formulated as equation (6.3, 6.4) 

0

1 2( , , ) ( , , , )hMultiHead Q K V Concat H H H W                      (6.3) 

,( , )i i i iH Atten Q K V                                                (6.4) 

where Atten is self-attention or cross-attention, 
iQ ,

iK ,
iV  are the i-th vector of Q ,

K ,V . In each single attention head, the channel dimension 
'd d h . 

6.2.2 Feature Fusion Layer 

To fuse the features generated from the magnitude and velocity images, we proposed 

a feature fusion layer (FFL). The structure of FFL shown in Figure.6.3 contains two 

branches, each branch has one cross-fusion layer and one self-fusion layer. 

Cross-Fusion Layer (CFL). CFL is proposed to fuse the features from different 

modalities. The structure of CFL is illustrated in the upper dash box in Figure.6.3. 

Given Q, K and V generated from two modalities, the Multi-head Cross-Attention 

(MCA) module followed by a linear projection firstly integrate those information. 

Then the fused features are added to the original input. Subsequently, another two 

linear projections and one residual connection followed by a normalization layer are 

used to enhance the fused information.  

Self-Fusion Layer (SFL). The lower dash box in Figure.6.3 shows the structure of 

SFL. SFL is a simple stack of Multi-head Self-Attention (MSA), linear projection, 

residual and normalization layer. Different from CFL, the SFL only uses one input 

to generate the values for the MSA. CFL aims to fuse the features from different 

image modalities, SFL further enhances the fused features using self-attention. 

    Having two feature maps from the magnitude and velocity images respectively, 

we first transform the feature maps into sequence data using the patch embedding. 

Specifically, the feature f RH W C  is divided into
2N HW P patches, where the 



 

96 
 

patch size P is set to 16. The patches are flattened and embedded into a latent D-

dimension, obtaining a embedding sequence RN De  . However, dividing feature 

maps into patches leads to loss of spatial information. Therefore, a learnable 

positional encoding sequence is added to the embedding sequence to address this 

issue. Then the sequence data is passed into the FFL. In this work, we used a stack 

of 4 FFLs as the feature fusion network (FFN). 

 
Figure.6.3. Structure of feature fusion layer (FFL). The input of the feature fusion layer is 

two features derived from magnitude and velocity images respectively. The upper box is 

the structure of cross-fusion layer (CFL) and the lower one is the structure of self-fusion 

layer (SFL).  

6.2.3 Network Structure  

Figure.6.4 illustrates the proposed segmentation network, which takes the U-Net as 

the backbone. The encoder uses two parallel branches to extract features from 

magnitude and velocity image separately. The features at the same level are 

integrated using the feature fusion network. By doing so, the size of integrated 

features reduces due to the patch embedding. Hence, the fused features are up-

sampled first, then added to the original features as the final aggregated features.  

    The four-level paired aggregated features derived from the encoder are taken as 

the inputs to the decoder part. The fused features at the same level generated from 

the magnitude and velocity branch in the encoder are concatenated followed by a 

convolutional layer to reduce the number of feature maps. The remaining decoder 

parts including the up-sampling, convolutional and softmax layers are the same as in 

U-Net. 
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Figure.6.4. The architecture of our proposed segmentation network structure. The feature 

fusion network is a stack of 4 FFLs. 

6.3 Materials 

6.3.1 Dataset 

4D flow MRI was performed in 28 healthy volunteers and 76 post-myocardial 

infarction patients on a 1.5T MR system (Philips Healthcare). The 4D flow 

acquisition covered the complete LV and was acquired in axial orientation with a 

voxel size of 3×3×3 mm3 and reconstructed into 30 cardiac phases. The other 

imaging parameters are as follows: flip angle=10°, velocity encoding (VENC) of 150 

cm/s, FOV= 370-400×370-400 mm2, echo time (TE)=1.88-3.75 ms, repetition time 

(TR)= 4.78-13.95 ms. In addition, standard cine-MRI was performed in multiple 

short-axis slices covering the LV from base to apex. More details about the MR 

acquisition protocol can be found here [16].The short-axis cine acquisition was used 

to segment the LV endocardial boundaries in all slices and phases. After rigid 

registration with the 4D flow acquisition, the defined segmentation served as ground 

truth segmentation of the 4D flow acquisition. Based on the known short-axis 

orientation, the 4D flow data was resliced into the short-axis orientation using a slice 

spacing of 3 mm and a fixed number of 41 slices. The spatial in-plane resolution was 

defined equal to the available short-axis cine acquisition and varied from 0.83×0.83 

mm2 to 1.19×1.19 mm2.  

    Excluding the images without any objects this resulted in 91 182 annotated pairs 

of 2D images, each pair has one 2D magnitude image and three-directional velocity 

images. The subjects were randomly split into three parts with 64, 20, 20 (total 

number of images: 55 825, 17 335 and 18 022) for training, validation and testing 

respectively. We normalized the magnitude image into [0,1] using min-max method. 

The images were cropped into 256×256.  
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6.3.2 Evaluation metrics 

Segmentation metrics. To quantitatively evaluate the segmentation performance, 

Dice and Average Surface Distance (ASD) were measured.  

Clinical metrics. The clinical metrics, including the end-diastolic volume (EDV), 

end-systolic volume (ESV), left ventricle ejection fraction (LVEF) and kinetic 

energy (KE) [3] were measured. The formula of LVEF and KE are defined as: 

  2

1

1
100%

2

N

blood i i

i

EDV ESV
LVEF KE V v

EDV





              (6.5) 

where N means the number of voxels in the LV, 
blood  represents the density of 

blood (1.06g/cm3), V is the voxel volume and v is the velocity magnitude. For each 

phase, the total KE is the summation of the KE of every voxel within LV. KE was 

normalized to EDV as recommended by other researchers [3]. 

Statistical Analysis. The results are expressed as mean ± standard deviation. 

Pearson correlation coefficient (PCC) was introduced to measure the correlation of 

the clinical metrics between the manual and automatic segmentation approaches. 

Paired evaluation metrics were compared using Wilcoxon-signed-rank test with P < 

0.05 indicating a significant difference. 

    The Dice, ASD and KE reported in this work are the mean values as computed 

over 30 phases per subject.  

6.4 Experiment and results 

All the models were implemented in Pytorch and trained with a NVIDIA Quadro 

RTX 6000 GPU with 24 GB memory from scratch. We employed Adam as the 

optimizer with 0.0001 as the learning rate. All of the models were trained for 1000 

epochs with a batch size of 15. The sum of Dice loss and cross-entropy loss was used 

as the loss function. Additionally, due to the complexity of the velocity images, we 

did not employ any data augmentation methods to enlarge the dataset. 

    We first evaluated our model against the U-Net, TransUnet [8], and U-NetCon. 

TransUnet added the self-attention module to the last layer of the encoder. The 

structure of U-NetCon (shown in the Supplementary) is similar to our proposed 

network. After removing the feature fusion network, the U-NetCon introduces two 

U-Net encoders which extract the features from two modalities separately and 

subsequently, the features from the same level in the encoder are concatenated as the 

input of the decoder. The input of U-Net and TransUnet is a four-channel stack of 

one magnitude and three velocity images. Whereas, in our method and U-NetCon, 

the magnitude and velocity images are taken as two separate input branches.  
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Table.6.1. Segmentation performance of different methods. Err means the absolute error 

between the manual and automatic segmentation methods. 

    Table.6.1 reports the evaluation results of various metrics. It shows our method 

achieved the best performance for all of the six metrics. In Table.6.2 the PCC of the 

clinical metrics derived from different models are presented. Our method performs 

the best on all clinical metrics demonstrating a high correlation. Comparing the 

results of U-Net and TransUnet, the Dice and ASD only showed marginal 

improvement, but the performance decreased in LVEF with a low PCC of 48.7%. In 

order to evaluate the effectiveness of feature fusion network, we further compared 

our method to U-NetCon. As compared to U-NetCon, our method improves the Dice 

by 2% and the PPC by 3%, 9%, 7% and 16%  for LVEF, EDV, ESV and KE, 

respectively, confirming that the proposed feature fusion network efficiently 

aggregates the features from magnitude and velocity images. More results about the 

boxplot and correlation comparing the Dice and four clinical parameters derived 

from our method and U-NetCon can be found in the supplementary. 

Table.6.2. PCC of the clinical metrics derived from manual and automatic segmentation 

results. 

Model LVEF EDV ESV KE 

U-Net 70.65% 84.09% 91.50% 83.76% 

U-NetCon 80.61% 88.46% 89.49% 82.46% 

TransUnet 48.70% 91.36% 90.33% 97.86% 

Ours 83.26% 97.40% 96.97% 98.92% 

    The P-value of Wilcoxon test results between the ground truth and our method in 

LVEF, EDV, ESV, KE are 0.13, 0.43, 0.35 and 0.43, as shown in Figure.6.5. All of 

those P-values are larger than 0.05, which confirmed that there is no significant 

different between the clinical parameters derived from the manual and our automatic 

segmentation.  

6.5 Conclusion 

In this paper, we proposed a Transformer based feature fusion network to aggregate 

the features from different modalities for LV segmentation in 4D flow MRI data. In 

Model 
Dice 

(%) 

ASD 

(mm) 

EDV-Err 

(ml) 

ESV-Err 

(ml) 

LVEF-Err 

(%) 

KE-Err 

(µJ/ml) 

U-Net 84.62±5.91 2.99±1.66 20.35±31.53 16.01±19.76 7.60±7.10 1.50±1.64 

U-NetCon 84.57±6.15 3.19±1.74 22.57±29.46 17.08±24.46 6.11±5.43 0.95±1.94 

TransUnet 84.27±5.35 3.09±1.33 18.09±22.91 23.92±16.06 11.79±7.64 0.51±0.48 

Ours 86.52±5.54 2.51±1.14 9.02±10.03 11.86±10.55 5.10±4.55 0.36±0.34 
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the feature fusion network, we introduced a self- and a cross-fusion layer to 

investigate the inter- and intra- relationship for the features from two different 

modalities. The proposed method was trained and evaluated in a large in-house 

dataset and the results of the segmentation accuracy and clinical parameters 

demonstrate superiority of our method against state-of-arts. We expect that the use 

of carefully designed data augmentation methods for the velocity images may result 

in further improvement of the performance of the proposed method. 

 
Figure.6.5. Box plots comparing four clinical evaluation metrics including EDV, ESV, 

LVEF and KE derived from the manual segmentation and our prediction. GT represents the 

ground truth. P-value was computed using Wilcoxon-signed-rank test. P<0.05 indicate a 

significant difference between two variables.  
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Supplementary 

 
Figure. S6.1. The structure of U-NetCon. 

 
Figure. S6.2. Box plot comparing the Dice derived from our method and U-NetCon on 20 

testing cases. The Dice was computed based on each phase, and each box contains 30 

phases.  
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Figure. S6.3. Correlation comparing EDV, ESV, LVEF and KE derived from our method 

and U-NetCon. GT in the X-axis represents the parameters derived from the ground truth, 

the Y-axis represents the parameters derived from the prediction of different models. 

 

 

 
Figure. S6.4. Correlation of EDV, ESV and LVEF derived from TransUnet and ground 

truth. 
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                       Ours                      U-Net             TransUnet            U-NetCon 

Example#1     

Example#2     

Example#3     

Figure. S6.5. Examples of segmentation results from our method, U-Net, TransUnet and U-

NetCon. The blue represents the ground truth, the yellow is the prediction, and the red is the 

overlap between the prediction and ground truth 
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