
Deep learning for automated analysis of cardiac imaging:
applications in Cine and 4D flow MRI
Sun, X.

Citation
Sun, X. (2023, July 5). Deep learning for automated analysis of cardiac imaging:
applications in Cine and 4D flow MRI. Retrieved from
https://hdl.handle.net/1887/3629578
 
Version: Publisher's Version

License: Licence agreement concerning inclusion of doctoral thesis
in the Institutional Repository of the University of Leiden

Downloaded from: https://hdl.handle.net/1887/3629578
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3629578


 

63 
 

C
h

a
p

ter 5
 

Chapter 5 Deep learning based automated left ventricle 

segmentation and flow quantification in 4D flow cardiac 

MRI 
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Abstract 

Background: 4D flow MRI enables assessment of cardiac function and intra-

cardiac blood flow dynamics from a single acquisition. However, due to the poor 

contrast between the chambers and surrounding tissue, quantitative analysis relies 

on the segmentation derived from a registered cine MRI acquisition. This requires 

an additional acquisition and is prone to imperfect spatial and temporal inter-scan 

alignment. Therefore, in this work we developed and evaluated deep learning-based 

methods to segment the left ventricle from 4D flow MRI directly. 

Methods: We compared five deep learning-based approaches with different network 

structures, data pre-processing and feature fusion methods. For the data pre-

processing, the 4D flow MRI was reformatted into a stack of short-axis view slices. 

Two feature fusion approaches were proposed to integrate the features from 

magnitude and velocity images. The networks were trained and evaluated on an in-

house dataset of 103 subjects with 69,619 2D images and 3090 3D volumes. The 

performance was evaluated using various metrics including Dice, average surface 

distance (ASD), end-diastolic volume (EDV), end-systolic volume (ESV), left 

ventricular ejection fraction (LVEF), kinetic energy (KE) and flow components. The 

Monte Carlo dropout method was used to assess the confidence and to describe the 

uncertainty area in the segmentation results. 

Results: Among the five models, the model combining 2D U-Net with late fusion 

method operating on short-axis reformatted 4D flow volumes achieved the best 

results with Dice of 84.51% and ASD of 3.13 mm. The averaged absolute error 

between manual and automated segmentation for EDV, ESV, LVEF and normalized 

KE was 20.27 ml, 17.21 ml, 7.41% and 0.54 µJ/ml, respectively. Flow component 

results derived from automated segmentation showed high correlation and small 

average error compared to results derived from manual segmentation.  

Conclusions: Deep learning-based methods can achieve accurate automated LV 

segmentation and subsequent quantification of volumetric and hemodynamic LV 

parameters from 4D flow MRI without requiring an additional cine MRI acquisition. 
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5.1  Background 

Four-dimensional flow magnetic resonance imaging (4D flow MRI) provides time-

resolved three-dimensional imaging of cardiac geometry and multi-directional intra-

cardiac blood flow velocity from a single acquisition [1]. Several quantitative left 

ventricular (LV) hemodynamic parameters can be derived from the acquired data, 

including intra-cardiac kinetic energy (KE), vorticity and functional flow 

components [2, 3]. Quantitative assessment of these parameters relies on accurate 

segmentation of the LV cavity. However, the contrast between the blood pool and 

the surrounding tissue is typically extremely poor in the acquired magnitude images 

of a 4D flow acquisition. For this reason, the segmentation is usually performed 

using the images of an additionally acquired balanced Steady State Free Precession 

(b-SSFP) cine MR acquisition [4, 5]. Based on the known spatial relation between 

the two acquisitions, the obtained segmentation can be transferred to the domain of 

the 4D flow acquisition. Unfortunately, due to breath-hold inconsistency and 

differences in heart rate, the cine MR images are prone to a spatial and temporal 

misalignment resulting in sub-optimal segmentation of the 4D flow acquisition. 

Therefore, it would be advantageous when the segmentation could be performed 

directly from the 4D flow acquisition, not requiring any additional acquisition.  

    Bustamante proposed a multi-atlas registration method to automatically generate 

a segmentation of the entire thoracic cardiovascular system using eight 3D phase-

contrast MR angiogram volumes as atlases [6]. A disadvantage of this approach is 

the high computational cost of the required image registration. In recent years, deep 

learning-based segmentation methods have been proposed and achieved immense 

success in medical image segmentation tasks. U-Net, consisting of a contracting and 

expanding path, has demonstrated excellent performance in segmentation of MR 

imaging data of the heart, brain and various other organs [7]. Benefiting from these 

convolutional neural networks (CNNs), a few studies reported the use of deep 

learning for the segmentation of 4D flow MRI. Berhane et al. developed a 3D U-Net 

with DenseNet-based dense blocks to segment the aortic arch from 4D flow MRI [8]. 

Based on U-Net and attention gate mechanism, Wu demonstrated that incorporating 

the information from the combination of magnitude and velocity images results in 

improved performance in LV myocardium segmentation in 4D myocardial velocity 

mapping MRI [9]. Corrado et al. applied a fine-tuned CNN model trained on cine b-

SSFP MRI data and used registration to derive segmentation of the 4D flow MRI 

[10]. However, this approach relies on the availability of a cine MRI acquisition. 

Bustamante et al. recently reported a 3D U-Net based method for segmentation of 

the cardiac chambers and great thoracic vessels directly from 4D flow MRI 

magnitude images, ignoring the velocity images [11]. An excellent geometric 

agreement with manual segmentation results was reported (DICE ≥ 0.9) and also 

good agreement of the derived quantitative results, such as end-diastolic (ED) and 
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and-systolic (ES) volumes and blood flow kinetic energy. However, since the 

employed 4D flow acquisition was acquired directly after gadolinium contrast 

administration it remains unknown whether the presented method performs equally 

well on non-contrast-enhanced imaging data. A CNN-based segmentation method 

that takes both magnitude and velocity images as input may yield better 

segmentation performance than one only using magnitude images.  

    Our main contributions are summarized as follows: (1) We evaluated multiple 

strategies to take advantage of the magnitude and velocity images of the 4D flow 

MRI acquisition. (2) We compared the performance of five different U-Net-based 

networks. (3) We used a Monte Carlo dropout method to evaluate the segmentation 

uncertainty of the implemented CNN models. 

5.2 Methods 

5.2.1 Study cohort and imaging protocol 

The dataset used in the study included 103 subjects, including 75 post-myocardial 

infarction (MI) patients (15 females, 60 males; mean age 69±12 years, range 40-94) 

and 28 healthy volunteers (11 females, 17 males; mean age 48±17, range 23-80). 

The study was approved by the local medical ethical committee of the University of 

Leeds, UK, and all participants provided written informed consent. All subjects 

underwent a comprehensive cardiac MR imaging protocol on a 1.5T MR system 

(Philips Healthcare), including cine MR imaging in standard cardiac views and 4D 

flow MR with whole-heart coverage.  

    A short-axis cine stack was acquired with a slice thickness of 8-10 mm and an 

inter-slice gap of 2 mm using 10-17 slices to cover the LV from the apex to the base. 

Imaging was performed during breath-holding in end-expiration. Other imaging 

parameters were a field of view (FOV) 300×300 mm2 to 470×470 mm2, pixel spacing 

0.83-1.19 mm, echo time (TE) 1.27-1.62 ms, repetition time (TR) 2.55-3.25 ms. 

Using retrospective gating 30 phases were reconstructed to cover a full cardiac cycle. 

4D flow MRI was acquired using an echo-planar imaging (EPI) accelerated sequence 

with retrospective electrocardiogram gating during free-breathing without using 

respiratory motion compensation. The 3D volume of the acquisition was planned in 

an oblique orientation with a voxel size of 3×3×3 mm3 , a field of view of 370-400 

× 370-400 mm2 and 33-52 reconstructed slices to cover the whole heart. The 

orientation of the acquired 3D volume varied from subject to subject and was 

adjusted such as to encompass the complete heart and proximal aorta using a minimal 

number of slices. The number of reconstructed cardiac phases was 30. Other scan 

parameters of the 4D flow MRI acquisition were TE 1.9-3.8 ms, TR 4.8-13.9 ms, 

flip angle 10˚ and velocity encoding (VENC) 150 cm/s. A more detailed description 

of the scan parameters can be found in previous work [12]. In patients, the 4D flow 
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acquisition was added to a regular clinical scan protocol, including late-gadolinium 

enhancement (LGE) imaging. Typically, the 4D flow acquisition was obtained post-

contrast (Magnevist, 0.2 mmol/kg) in the waiting period between contrast 

administration and LGE imaging. 

5.2.2 Ground truth generation  

 
Figure.5.1. The procedure of ground truth generation. A: The mask of left ventricle was 

first annotated in the short-axis cine MRI. B,C: it was propagated to original 4D flow MRI 

using rigid registration method. D: Given the orientation of short-axis cine MRI, the raw 

4D flow MRI was resliced into short-axis view.  

One experienced observer semi-automatically defined the LV endocardial contours 

in all slices and phases of the short-axis cine stack using in-house developed Mass 

research software (Version V2017-EXP; Leiden University Medical Center, Leiden, 

the Netherlands). Following SCMR recommendations, papillary muscles and 

trabeculations were included within the defined contours in order to derive a 

consistent and time-continuous segmentation of the LV geometry. Correction for 

spatial misalignment, resulting from patient movement between the cine MR and 4D 

flow acquisition, was performed using rigid registration using Elastix software as 

previously described [13, 14]. Subsequently, we generated two types of LV blood 

pool masks for the 4D flow MRI acquisition. The first type of mask, further labelled 

as RAW, was generated by labelling the pixels of the original slices of the 4D flow 

acquisition as either blood pool or background according to the nearest labelled pixel 

in the short-axis cine acquisition. Due to the relatively low through-plane resolution 

of the short-axis stack and the varying orientation of the acquired 4D flow volumes, 

the resulting RAW masks frequently suffer from jagged boundaries and are less 

smooth compared to the original contours as defined in the short-axis stack. 

Therefore a second type of mask, further labelled as SAX, was generated by 

reformatting the volume of the 4D flow acquisition into a stack of short-axis slices. 
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Given the known short-axis orientation, the original 4D flow acquisition was resliced 

into a short-axis view using a slice spacing of 3 mm and a fixed number of 41 slices. 

The in-plane resolution was chosen to be equal to that of the cine short-axis stack 

and ranged from 0.83×0.83 mm2 to 1.19×1.19 mm2. Subsequently, the SAX mask 

was generated by labelling the pixels in the reformatted 4D flow images as either 

blood pool or background, following the same approach as for the RAW mask. The 

resulting blood pool regions are more smooth compared to the RAW mask regions 

and vary less in shape since all masks are defined in short-axis orientation. 

Accordingly, two ground truths are available for training and testing: GT-RAW for 

the original 4D flow data and GT-SAX for the resliced 4D flow data. Figure.5.1 

describes the procedure of the ground truth generation, illustrating the more irregular 

GT-RAW masks compared to the GT-SAX masks. After excluding the images 

without LV, the dataset contained 90,313 SAX 2D image pairs, 69,619 RAW 2D 

image pairs and 3,090 (103×30) 3D volumes. 

5.2.3 Networks 

    Table.5.1. Different methods with different networks and inputs. SAX indicates that the 

resliced data in the short-axis view was used as input to the network. RAW indicates that 

the raw 4D flow data was used as input. 

Method 
Input 

orientation 

Ground 

truth 
Network Input Size Output Size 

SAX2D SAX GT-SAX 2D U-Net (256,256,4) (256,256,1) 

RAW2D RAW GT-RAW 2D U-Net (256,256,4) (256,256,1) 

SAX3D SAX GT-SAX 3D U-Net (256,256,40,4) (256,256,40,1) 

RAW3D RAW GT-RAW 3D U-Net (256,256,32,4) (256,256, 32,1) 

SAX2DF SAX GT-SAX 
   2D Fusion 

Network 

(256,256,1), 

(256,256,3) 
(256,256,1) 

 

We compare five deep learning models to investigate the effect of data preprocessing, 

information fusion strategies and network structures on the segmentation 

performance. The five proposed methods are summarized in Table.5.1. RAW and 

SAX represent the two different input orientations. RAW used the original 4D flow 

data to train the network, either as a 3D volume, or as individual 2D slices and SAX 

used 4D flow data resliced into the short-axis orientation. Each 2D slice was center-

cropped to a fixed size of 256×256. The number of slices in the 3D volume of the 

original 4D flow data varies from 33 to 52 The middle 32 slices in the original 4D 

flow data are stacked as the input of RAW3D. In the resliced dataset with fixed 

number of 41 slices, the last 40 slices are stacked as the input of SAX3D after 

excluding the first slice, resulting in an even number of spatial input dimension, 

which is convenient for the repeated down-sampling operations with a factor of 2. 
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    SAX2D and RAW2D models are adapted from 2D U-Net, an encoder-decoder 

CNN model with long-skip connections. The architecture includes five-scaled 

resolutions. Each level contains two convolutional blocks composed of a 

convolution layer with kernel size of 3×3 followed by a instance normalization (IN) 

layer, a rectified linear unit (ReLU) and one dropout layer. In the encoder feature 

maps are down-sampled by a max-pooling layer with kernel size of 2×2, while in the 

decoder transposed convolution layers are used to increase the resolution to its 

original scale. The long-skip connections are used to concatenate the features from 

fine to coarse scales at each level. Finally, a convolution layer with kernel size of 

1×1, followed by a Sigmoid function, is used to generate the probability map. The 

final segmentation results are determined by choosing the class with the highest 

probability at each pixel. 

    RAW3D and SAX3D models employ a 3D U-Net architecture, which is used to 

investigate the performance of varying volumetric inputs. The 3D volume generated 

from each phase is considered as an independent input of 3D U-Net. Compared to 

2D U-Net, the kernel size of all convolution layers in 3D U-Net is set to 3×3×3. The 

3D U-Net introduced four max-pooling layers for the down-sampling operations. 

The kernel size of all pooling layers in RAW3D are set to 2×2×2. Whereas in 

SAX3D the first three pooling layers are set to 2×2×2 and last pooling layer is set to 

2×2×1 because the spatial dimension will be reduced to 5 after three down-sampling 

operations.  

    Magnitude and velocity images can be considered as different modalities 

providing different information for the segmentation. To fuse the information from 

these two modalities, we introduce two approaches named early fusion and late 

fusion, respectively. SAX2D, SAX3D, RAW2D and RAW3D use the early fusion 

method where the magnitude and velocity images are concatenated along the channel 

dimension as the input. Whereas SAX2DF uses the late fusion method. As illustrated 

in Figure.5.2, separate encoders are used to extract the features from these two 

modalities. Thereafter, features in the same level from two encoders are added 

together. The aggregated features in the bottleneck are up-sampled to the original 

resolution. The other multi-scale aggregated feature maps are then concatenated with 

the features up-sampled from the lower level. The structure of decoder used in 

SAX2DF is the same as that in 2D U-Net. 

    Dice loss and cross-entropy were jointly used as the loss function to train the 

models. All the experiments were implemented using Pytorch with the following 

parameters: batch size=50; learning rate=0.0001; optimizer=Adam. Five-fold cross-

validation was applied to assess the performance and the averaged values are 

reported. All the experiments were implemented on a machine equipped with an 

NVIDIA Quadro RTX 6000 GPU with 24 GB internal memory.  
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Figure.5.2. The network architecture of SAX2DF. SAX2DF separates magnitude and the 

three velocity images as two inputs and uses two encoders to extract the features from each 

input. The late fusion method us used to integrate those features. 

5.2.4 Evaluation metrics 

The performance of the automated methods was evaluated using segmentation 

accuracy, uncertainty score and volumetric and flow related clinical metrics. 

Segmentation Accuracy. Dice and average surface distance (ASD) were used to 

assess the segmentation accuracy. Dice measures the overlap between the prediction 

and the ground truth. ASD is the average of all the distances from all surface points 

on the boundary of the predicted region to the boundary of the ground truth, which 

can be described as formula (5.1) 

'

1 ' 1'

1
( ( , ') ( ', ))

S Sn n

p pS S

ASD d p S d p S
n n  

 


                            (5.1) 

where 2
' '

min( , ') || ' ||
p S

d p S p p


   is the minimum of the Euclidean distance between 

a point 𝑝 on surface S and the surface S′. Dice and ASD reported in this work are 

computed based on each 3D volume and averaged over all phases. 

Clinical metrics. End-diastolic volume (EDV), end-systolic volume (ESV), LV 

ejection fraction (LVEF) and kinetic energy (KE) were derived as clinical metrics. 

The KE was computed as formula 5.2 with 
blood  being the density of the blood 

(1.06g/cm3), 
voxelV  the voxel volume and v  the velocity magnitude of one voxel. The 



 

72 
 

total KE is the summation of the KE of each voxel within the LV region. The total 

KE values were indexed for LV EDV and averaged over the complete cardiac cycle. 

21

2
blood voxelKE V v                                             (5.2) 

    Additionally, three phasic KE parameters were derived: peak systolic, peak E-

wave and peak A-wave KE. The result of LV segmentation was also used for LV 

flow component analysis. Based on previously described methods by Eriksson et al 

the segmented LV blood pool at the ED moment was used to define seeding particles 

of size 3×3×3 mm3 and particle pathlines were derived using particle tracing in 

forward (until the next ES moment) and backward (until the previous ES moment) 

direction [4]. The particle position at the two ES moments was then used to classify 

the defined pathlines as either direct flow (DIR), delayed ejection flow (DEL), 

retained inflow (RET) or residual volume (RES). The relative size of each flow 

component was expressed as a percentage of the ED volume. The clinical parameters 

derived from automated LV segmentation were compared to the results derived of 

manual segmentation. 

Uncertainty Score. Segmentation of anatomical structures is inherently ambiguous 

especially near an object border which is not clearly defined due to the poor contrast 

or restriction imposed by the image acquisition. The uncertainty score can give some 

insights into the confidence of a model in its predicted segmentation results [15]. In 

case of a high uncertainty score, it is more likely that the segmentation result is 

inaccurate. Usually, a CNN model only produces a single segmentation map without 

any information to explain its confidence in its prediction. A high probability value 

in a segmentation map doesn’t imply a high confidence score. A model also can be 

uncertain in pixels with high probability. In order to investigate the segmentation 

uncertainty of the different models we applied the Monte Carlo (MC) dropout 

method [16] to quantify the model’s confidence in the segmentation result.  

    Generally during the testing phase, the dropout layers in the network are removed. 

The uncertainty score can be derived by preserving the dropout layers during testing 

while executing multiple inference runs. In our experiments the drop rate in the 

middle-level dropout layers was set to 0.5 and the testing was repeated 20 times 

resulting in 20 predictions denoted as ( 1,2, 20)iP i  . The uncertainty score can be 

derived using equation 5.3 where
20

1

1

20
i

i

P P


  .  

2 2log (1 ) log (1 )UQ P P P P                                            (5.3) 
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Figure.5.3. An example of segmentation probability and its corresponding uncertainty 

map. Left: Probability map derived from the last layer of RAW2D. Right: Corresponding 

uncertainty map derived from MC method. 

Figure.5.3 shows an example of a segmentation probability map and its 

corresponding uncertainty map. The uncertainty score for the pixels within the LV 

chamber is low, implying a high confidence of the models’ prediction, but due to the 

poor contrast between the heart chamber and myocardium the uncertainty near the 

ambiguous LV border with a corresponding probability varying from 0.4 to 0.6 is 

substantially higher. To compute the mean of uncertainty and to quantify the 

segmentation quality, we first computed the uncertainty score for the whole LV 

chamber where each pixel’s prediction probability is larger than 0.5. Then to 

highlight the higher uncertainty in the boundary region, we further computed the 

score for this area with a prediction probability ranging from 0.4 to 0.6. 

Statistical analysis. The correlation of the clinical metrics derived from the manual 

and predicted segmentation results were assessed using the Pearson correlation 

coefficient (PCC). Additionally, bias and limits of agreement (LOA, 1.96×standard 

deviation) were used to describe the agreement of prediction and ground truth.  

5.3 Results 

First, we compared the results derived by the five models on various evaluation 

metrics. Second, we explored the impact of the fusion methods on the uncertainty 

score. Lastly, we investigated the performance of the best model on the KE and flow 

components. 

5.3.1 Segmentation results 

Table.5.2 summarizes the segmentation performance derived from different models. 

SAX2DF achieved the best results with Dice of 84.51%, ASD of 3.13 mm and 

absolute error of ESV and LVEF of 17.21 ml, 7.41%, respectively. The best results 

in an absolute error of EDV and KE were obtained using the model of SAX2D, 

yielding an error of 19.96 ml and 0.41 µJ/ml, respectively.  
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    Due to the different ground truth masks used, a direct comparison of the 

performance using Dice and ASD derived from RAW and SAX data is not easily 

possible. Therefore, also clinical parameters were used to compare the performance 

of the models. Table.5.2 shows that SAX2D outperformed RAW2D and SAX3D 

performed better than RAW3D in all clinical metrics including EDV, ESV, LVEF 

and KE, demonstrating the models using images in short-axis view orientation can 

generate a better prediction.  

    We further compared the results derived from only using magnitude images 

(SAX2D-M and SAX3D-M) and combining magnitude and velocity images. The 

comparison was restricted to the models using the short-axis view data, since these 

models provided the best performance. Table.5.2 reveals that the Dice derived from 

models using the combination of magnitude and velocity data is 3% higher compared 

to the models using the magnitude images only. Adding velocity images as input to 

the model is clearly shown to be beneficial. The variation in Dice and ASD over the 

cardiac phase for each model is illustrated in Figure.5.4. All models achieved the 

best Dice and ASD in phases 1, 2 and 30 which is around the ED phase. The lowest 

performance is observed in the phases varying between phase 11-13, which is around 

the ES phase. These results demonstrate that LV segmentation from 4D flow data is 

more accurate in the ED phase than in the ES phase. 

    The PCC, bias and LOA of clinical evaluation metrics comparing manual with 

automatic segmentation results are reported in Table 5 3. Figure.5.5 and Figure.5.6 

show the scatter plots, including PCC and Bland-Altman plots of four clinical 

metrics. SAX2DF achieved the highest correlation of 90.34%, 92.09% and 75.83% 

for EDV, ESV and LVEF, respectively. The best PCC for KE was achieved using 

SAX2D method. Although the PCC in LVEF derived from all five methods are lower 

than 80%, the results in the other three metrics demonstrate a good linear correlation 

with the results derived from manual segmentation. Notably, all five models 

achieved a PCC for KE higher than 90%. Although there is a significant variation in 

the performance of EDV and ESV estimation derived from the different methods, 

the biases for those two metrics derived from SAX2D, RAW3D and SAX2DF are 

smaller than 10 ml. The smallest biases in EDV and ESV are 2.03 ml and 3.35 ml 

derived from SAX3D and SAX2DF, respectively. RAW2D achieved the worst 

performance, with a bias of 19.19 ml and 20.52 ml in EDV and ESV, respectively. 

RAW3D and SAX2DF achieved the smallest bias in LVEF and normalized KE with 

3.09% and 0.02 µJ/ml, respectively. 
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Figure.5.4. Average Dice and ASD results plotted over time (averaged over all subjects). 

The x-axis is the phase number, y-axis is the averaged Dice (upper) and ASD (bottom) 

derived from different models.  

 
Table 5-3. PCC and Bias of clinical metrics from the prediction against the reference. The 

best results are shown in bold. 

  SAX2D RAW2D SAX3D RAW3D SAX2DF 

PCC 

EDV(%) 89.44 86.51 88.69 87.97 90.34 

ESV(%) 91.47 80.61 85.51 79.48 92.09 

LVEF(%) 70.29 50.08 50.12 47.77 75.83 

KE(%) 98.63 92.58 92.82 93.51 94.32 

Bias ± LOA 

EDV (ml) 7.24±56.71 19.19±62.64 -2.03±57.94 -7.24±59.56 7.96±54.15 

ESV (ml) 8.31±46.62 -20.52±68.58 -11.39±58.88 -7.24±69.46 -3.35±45.75 

LVEF (%) 7.73±17.86 6.55±23.92 6.89±23.92 3.09±25.37 5.11±15.92 

KE(µJ/ml) 0.23±1.02 0.75±2.50 0.44±2.44 0.28±2.37 0.02±1.47 
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Figure.5.5. Correlation of clinical metrics derived from manual and automated segmentation. 

Each column represents one CNN model. The four rows denote four clinical metrics 

including EDV, ESV, LVEF and KE. For each plot, the x-axis is the measure derived from 

the manual segmentation and y-axis represents the results derived from automated prediction. 
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    Examples of 2D and 3D segmentation masks derived from the five models are 

shown in Figure.5.7.  

 
Figure.5.7. Examples of automated LV segmentation results in 2D and 3D. The first two 

rows are the results of 2D and 3D segmentation results. Green color represents the ground 

truth, blue color is the prediction, and red parts are the overlap between the prediction and 

ground truth. 

5.3.2 Uncertainty results 

Table.5.4 reports the averaged uncertainty scores both in the LV blood pool and the 

defined boundary area over 3090 phases (30 phases per subject, 103 subjects in total) 

derived from the five proposed models. SAX2DF achieved the lowest uncertainty 

scores with 0.12 and 0.75 in the whole LV and boundary area. SAX3D has lower 

uncertainty than SAX2D (0.13 vs. 0.15, 0.76 vs. 0.83). Similarly, RAW3D has a 

lower uncertainty than RAW2D (0.13 vs. 0.20, 0.77 vs. 0.82). The 3D models are 

shown to be more confident in its predictions than the 2D models. When comparing 

SAX2D and SAX2DF, it can be concluded that the late fusion method resulted in a 

lower uncertainty score. 

Table.5.4. The averaged uncertainty value derived from different defined areas. The LV 

chamber refers to the area with a probability larger than 0.5. Boundary area refers to the 

area with probability ranging from 0.4 to 0.6. 

5.3.3 Flow quantitative analysis 

SAX2DF is the best segmentation model among the proposed five models, 

according to the performance on segmentation accuracy, clinical metrics and 

uncertainty score. Therefore, we further investigated the performance of SAX2DF 

in quantifying KE and flow components. The low averaged error of indexed KE 

ranging from -0.03 mJ to 0.04 mJ and flow components varying from -4.58% to 3%, 

as reported in Table.5.5, shows a good agreement between the prediction and ground 

Area SAX2D SAX3D RAW2D RAW3D SAX2DF 

LV chamber  0.15±0.32 0.13±0.36 0.20±0.88 0.13±0.41 0.12±0.44 

Boundary area  0.83±0.29 0.76±0.54 0.82±0.66 0.77±0.28 0.75±0.17 
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truth. A detailed summary of the PCC of KE and flow components derived from the 

automatic and manual methods is illustrated in Figure.5.8.  
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    Figure.5.9 visualizes the result of LV flow component analysis derived from 

manual and CNN based segmentation in five subjects. The results demonstrate a 

good agreement between those two segmentation methods. More flow components 

visualization videos and segmentation result videos can be found in 

https://github.com/xsunn/4DflowLVSegmentation.  
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5.4 Discussion 

In this work, we developed and evaluated CNN-based methods for automatic 

segmentation and LV flow assessment from 4D flow cardiac MRI. The main 

findings of our study were (1) CNN models showed good performance in LV 

segmentation with an average Dice of 84.5% across 103 subjects with 90,313 

resliced 2D image pairs; (2) Data preprocessing has an impact on the segmentation 

results; (3) Combining the features from magnitude and velocity images together 

can benefit the segmentation performance in 4D flow MRI; (4) High correlation and 

low bias of EDV, ESV, KE and flow components analysis demonstrate CNN-based 

segmentation can provide reliable quantification of LV flow in 4D flow data. 

    Segmentation in 4D flow cardiac MRI is challenging due to the poor contrast 

between the heart chamber and its surrounding tissue. Few approaches have been 

proposed to overcome this challenge. Atlas-based methods [4] and registration-

based methods [10] are two prevailing traditional approaches. The atlas-based 

method relies on image registration to generate accurate transformation between a 

labelled atlas and the images. Registration-based segmentation methods rely on the 

registration between labelled cine MRI data and 4D flow data. Both of these 

methods require additional data and high computational costs due to the registration. 

Bustamente et al. [11] employed a 3D U-Net architecture for LV segmentation, but 

in their proposed method, only the magnitude images were used as input and 

information from velocity images were ignored. In this work, we compared five 

models named SAX2D, SAX3D, RAW2D, RAW3D and SAX2DF to segment the 

LV from 4D flow MRI without any additional cine MRI and we also investigated 

the impact of different data pre-processing approaches, feature fusion methods and 

model structure on the segmentation results.  

    The performance derived from our proposed method is not as good as that of 

Bustamente’s. The data cohort used in their work is much larger than ours; in our 

work, 2472 3D volumes are employed for training, which is significantly smaller 

than Bustamente's 5760 3D volumes. Meanwhile, our results are averaged over 3090 

3D volumes using five-fold cross-validation, whereas their results were directly 

derived from 1640 3D volumes. Furthermore, simply using the magnitude images 

as input allows them to introduce various data augmentation techniques to enlarge 

the training data. However, the conventional data augmentation methods such as 

rotation, Gaussian noise and transformation cannot directly work on our proposed 

approach because the velocity images are more complicated than the magnitude 

images. Therefore, compared to their work, we trained the model with fewer data 

but evaluated the performance on a larger data set. Since in Bustamente’s work all 

4D flow acquisitions were obtained post contrast injection in both patients and 

volunteers and navigator gating breathing motion was applied, it is expected that the 

image quality of the obtained magnitude images was higher in that study. 
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    For data preparation, given the known orientation, the original 4D flow MRI 

acquisition volume was resliced into short-axis slices. The raw data and resliced 

short-axis data served as two independent training data sets to train the networks. 

Improved segmentation results were derived when using the resliced short-axis data 

as the training data, demonstrating resliced short-axis data provided more accurate 

information for the segmentation, which could be explained by the more various 

shapes and ambiguous borders in the raw data when compared to the more 

consistent convex left ventricular shape in the short-axis view. 

    Considering magnitude and velocity images as two different modalities in 4D 

flow MRI, we proposed two approaches named early fusion and late fusion to fuse 

the information from these modalities. SAX2D, SAX3D, RAW2D and RAW3D 

employed early fusion by concatenating two modalities along the channel 

dimension as the input. While for the late fusion, SAX2DF employed two encoders 

to extract features from two modalities and then concatenated the features along the 

spatial dimension. A modestly improved performance was observed in SAX2DF 

when compared to the other methods, revealing that late fusion works better. We 

also compared the segmentation performance between 2D and 3D U-Net based 

methods. The results show that compared to SAX3D, SAX2D achieved better 

performance in all evaluation metrics. Constrained to the input spatial dimension, 

in SAX3D the kernel size of the final pooling layer was set to 2×2×1, resulting in 

the spatial features not being extracted completely. Moreover, a total of 3420 

resliced 3D samples (104 subjects, 30 phases in each subject) were used to train and 

test the 3D U-Net, which is much less than 91,182 2D samples. As a result, the 

smaller training data size may be the primary reason why SAX3D did not 

outperform the SAX2D model.  

    CNN models produce a pixel-level prediction without any knowledge about the 

confidence of the model in its predictions. In this work, we introduced the Monte 

Carlo dropout method to estimate the uncertainty of the model in its segmentation 

results. The uncertainty score assesses segmentation reliability and offers the 

quantification of error to increase trust into CNN models. The results showed that 

the most uncertain area in the prediction is near the LV endocardial boundary, which 

can be explained by the poor contrast in the magnitude images and also because of 

the low blood flow velocity near the LV wall. Segmenting the myocardium in 

addition to the LV blood pool may reduce the uncertainty but cannot eliminate the 

uncertainty. When analyzing the uncertainty scores derived from different models, 

it reveals that the 3D models (SAX3D and RAW3D) performed better than the 2D 

models (SAX2D and RAW2D). Because 3D models are able to extract more spatial 

information from the input than the 2D models. It can be observed that although 

SAX2DF is a 2D model, benefiting from the late fusion method, SAX2DF achieved 

the lowest uncertainty score among all five models. A further evaluation of the 
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results derived from the best model, SAX2DF, was performed by comparing the KE 

and flow components. The results shows a good agreement between the ground truth 

and prediction.  

    There are several limitations in our work. The major limitation is the lack of 

generalization of the proposed models. The data used in this study was acquired 

from one vendor and one center. Meanwhile, there is no publicly available 4D flow 

MRI dataset currently. Therefore the model might not generalize well to the other 

datasets from different vendors or centers. As Bai [17] pointed out, a CNN model 

can perform well in other datasets using fine-tuning or transfer learning. 

Additionally, exploiting advanced data augmentation methods utilizing domain 

knowledge is also crucial for model generalization and robustness [18]. However, 

due to the complicated structure of velocity images, commonly used data 

augmentation methods are not suitable for 4D flow data. A novel efficient late fusion 

based feature fusion method also needs to be investigated.  

5.5 Conclusions 

In conclusion, we developed multiple deep learning-based 4D flow MRI LV 

segmentation models that do not require additional cine MRI. The proposed CNN 

models were evaluated on a large in-house dataset, achieving good performance on 

several metrics. The results demonstrate that a model employing late fusion and 

trained on resliced short-axis view data generates the best performance for left 

ventricular segmentation in 4D flow MRI.  
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