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Chapter 4 Right Ventricle Segmentation via 

Registration and Multi-input Modalities in Cardiac 

Magnetic Resonance Imaging from Multi-disease, Multi-

view and Multi-center 
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Abstract 

Quantitative assessment of cardiac function requires accurate segmentation of 

cardiac structures. Convolutional Neural Networks (CNNs) have achieved immense 

success in automatic segmentation in cardiac magnetic resonance imaging (cMRI) 

given sufficient training data. However, the performance of CNN models greatly 

degrade when the testing data is from different vendors or different centers. In this 

paper, we introduce the use of image registration to propagate annotation masks from 

labeled images to unlabeled images as to enlarge the training dataset. Furthermore, 

we investigated various input modalities including 3D volume, single-channel 2D 

image, multi-channel 2D image constructed from spatial and temporal stack to 

extract more features to improve do-main generalization in cMRI segmentation. We 

evaluated our method in M&Ms-2 challenge testing data 

(https://www.ub.edu/mnms-2/), achieving averaged Dice scores of 0.925, 0.919 and 

Hausdorff Distance of 10.587 mm, 6.045 mm in right ventricular segmentation in 

short-axis view and long-axis view respectively.  
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4.1 Introduction 

In clinical routine, cardiac magnetic resonance imaging (cMRI) is considered a 

standard reference for the diagnosis of cardiac disease. Accurate segmentation of 

cardiac structures such as left ventricle (LV), myocardium and right ventricle (RV) 

is essential to quantitatively assess the cardiac function. Traditional manual 

segmentation method not only is time-consuming but also prone to inter-rater 

experience.  

    In recent years, deep learning based automatic segmentation approaches have been 

achieved immense success in cardiac segmentation. Tran et al. was the first to 

employ the fully convolutional neural (FCN) network  for LV and RV segmentation 

in short-axis MRI [1]. Poudel proposed a recurrent FCN network ensembling the 

spatial information for LV segmentation [2]. However, the performance of most of 

those deep learning based models degrade dramatically when the trained model is 

applied directly on other unseen datasets from different centers or vendors. 

Differences in image protocols, disease characteristics, scanner-specific bias and the 

other factors remain even after careful pre-processing [3]. In addition, the RV has a 

more complex shape and border characteristics compared to the LV. Hence, the 

M&Ms-2 challenge is motivated to build a method to segment the RV using multi-

center, multi-disease and multi-view cMRI data. 

    The most straight forward approach to tackle this problem is to collect and 

annotate data from multiple centers, vendors and patient pathologies. Tao used a 

large heterogeneous data with 41,593 images from different centers and different 

vendors to train a CNN model and achieved a good generalization [4]. Chen 

demonstrated that applying data augmentation strategies on a single-site single-

scanner dataset could improve the performance on an unseen dataset across different 

sites or scanners [5]. Based on those studies, we hypothesize that a large-scaled 

pooling data from different domains could improve a model’s performance on an 

unseen dataset. Additionally, in the conventional CNN models, the information 

derived from the neighboring images is usually ignored. Hence, we introduced two 

stack model to extract the spatiotemporal features to improve the performance.   

    In this paper, given limited data, we investigated several methods to generate more 

training data and extract more features including 1): The use of image registration to 

propagate annotation masks to unlabeled phases 2): Introducing the spatial and 

temporal neighboring images to construct a multi-channel 2D image to integrate 

more spatiotemporal information for the RV segmentation task.  
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4.2 Data  

Table.4.1. Description of training, validation and testing dataset 

The M&Ms-2 challenge provides 360 cases (160 for training, 40 for validation and 

160 for testing) in both short-axis (SA) and long-axis (LA) views from four different 

centers, acquired with three vendors (General Electric, Philips and Siemens). As 

shown in Table.4.1, except the normal subjects, there are five pathologies in the 

training dataset, two pathologies are not present in the training dataset but only in 

the validation and testing dataset. In addition, only end-diastolic (ED) and end-

systolic (ES) phases in the training data are annotated by experienced experts, 

including LV, RV and left ventricular myocardium (MYO). Although this challenge 

focused on the RV segmentation, in our experiments, LV and MYO annotations were 

also used to constrain the RV segmentation. 

4.3 Method 

4.3.1. Registration 

In the available dataset, only the ED and ES phases are labeled, while the other 

phases are continuous in time consistent with the ED and ES phases. All the phases 

from the same case have an almost identical intensity distribution, which will 

alleviate the errors caused by inter-subject variability [6]. Hence, we used intensity-

based registration method to propagate the labels, regarding the ED and ES as the 

template. The progress is described in Figure.4.1. Given three phases (ED, ES and 

unlabeled), the ED and ES are firstly registered to the unlabeled phase, generating 

two geometric transformation matrixes named ES-Tf and ED-Tf, then the 

transformation matrix with smaller norm was used to propagate the mask. Matlab 

inbuilt functions imregtform and imwarp were used to implement the registration 

Pathology 
Num. of 

training 

Num. of 

validation 

Num. of testing 

Normal subjects 40 5 30 

Dilated Left Ventricle 30 5 25 

Hypertrophic 

Cardiomyopathy 
30 5 25 

Congenital 

Arrhythmogenesis 
20 5 10 

Tetralogy of Fallot 20 5 10 

Interatrial Communication 20 5 10 

Dilated Right Ventricle 0 5 25 

Tricuspid Valve 

Regurgitation 
0 5 25 

Total 160 40 160 
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[11]. Mean square error (MSE) and Affine were set as the similarity metric and 

transformation type. 

 
Figure.4.1. Registration method to generate a mask for a unlabeled phase in SA view. 

4.3.2. Input modality of network 

A illustrated in Figure.4.2 a short-axis cine MRI scan contains multiple slices and 

multiple phases. Images from the same slice level describe a cardiac cycle, while 

images from the same phase describe the complete heart structure. In conventional 

methods [4,5], each single-channel 2D image or a 3D volume with the whole images 

from the same phase is usually considered as the input of a network. Although using 

a single-channel 2D image as the input could enlarge the training dataset, a 3D 

volume can provide more spatial information for the segmentation than using a 2D 

image. As a compromise, a spatial stack or temporal stack model, as proposed in our 

previous work [7], can be used to build a multi-channel 2D image which can provide 

accompanying spatial or temporal information respectively. 

Spatial Multi-channel 2D image (SMI). The slices from the same phase are used 

to construct a SMI. As illustrated in Figure.4.2, three 2D images from Phase 9 Slice 

5,6,7 are used to build a 3-channels SMI for the image of Slice 6 Phase 9. 

Temporal Multi-channel 2D image (TMI). In a similar way, a TMI consists of 

several neighboring phases of a particular slice. As shown in Figure.4.2, images from 

Slice 6 Phase 8,9,10 are used to construct a 3-channels TMI for the image of Slice 6 

Phase 9. 
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Figure.4.2. An example of constructing a spatial multi-channel 2D image and temporal 

multi-channel 2D image. The image in the red box is the target image which will be 

segmented. The three spatial neighboring images in the blue box is called an SMI with 

three channels, where the top one is the first channel, the middle one is the second channel 

and so on. The TMI consists of three temporal neighboring images in the dash-line box, the 

left one is the first channel and the right is the last channel. 

    Table.4.2 shows a brief summary of the training data size in SA view after 

combining the registration, SCI (single-channel 2D image), SMI and TMI. The 

original MnMS-2 dataset contains 320 3D volumes and 2,704 2D images with 

labeled annotation for training, when applying the registration approach to propagate 

the annotation masks, the data size of 3D volume and single-channel 2D image 

increased to 4,152 and 32,330 respectively. The LA-view images were acquired as 

single slice, resulting in the LA images being multi-phase single-slice. The 3D 

volumes and SMI cannot be constructed in LA view. Hence, the model achieving the 

best performance in SA view was used as the pre-trained model for the LA view 

instead of using different input modalities. 

Table.4.2. Training dataset description in SA MRI. SCI: single-channel 2D image. The 

number of channel in SMI and TMI is set to 5. 

Data modality Used registration Training Data Size 

SCI No 2,704  

SCI Yes 32,330 

3D volume No 320 

3D volume Yes 4,152 

SMI No 2,704  

SMI Yes 32,330 

TMI No 2,704  

TMI Yes 32,330 
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4.3.3. Network Architecture 

nnUNet [8] based on the U-Net architecture is a fully automatic and out-of-the-box 

medical image segmentation framework. To improve the robustness of domain shift 

in cardiac MRI, nnUNet_MMS [9] was specially designed by investigating various 

data augmentation techniques and ranked first at the first edition of M&Ms [10]. 

Hence, we introduced nnUNet as the baseline, and built our method upon 

nnUNet_MMS. All the models in this study are based on a 2D network. The data 

augmentation methods are the same in nnUNet_MMS model. 

    Since the propagated masks are not as accurate as the manual masks, those pseudo 

data was used to pre-train the model and the manually labeled data was applied to 

fine-tune the pre-trained network. The results are reported using Dice and Hausdorff 

Distance (HD). All experiments were executed on an NVIDIA Quadro RTX 6000 

GPU with 24 GB internal memory.  

4.4 Experiments and Results 

4.4.1. Validation Set Results 

We first evaluated the performance of different networks with different input 

modalities in the SA view from the validation dataset. Then we compared the results 

in the LA view with or without pre-training from SA view. 

Table.4.3. Segmentation results generated from different networks with different input 

modalities in the validation dataset in SA view. 

    Table.4.3 shows that using 3D volume without registration processing as the input, 

nnUNet_MMS achieved a slightly better dice than nnUNet, but yielded worse HD. 

However, when the registration method is applied to generate more 3D volume data 

to pre-train nnUNet_MMS, it achieved the best performance with a Dice of 0.922 

and HD of 9.472 mm. It also can be observed that the segmentation results derived 

from the two stack models (SMI and TMI) are better than that from SCI, which 

Network Input 
Used registration data 

to pre-train network   
Dice HD (mm) 

nnUNet(Baseline) 3D volume No 0.912 10.318 

nnUNet_MMS 

 

3D volume No 0.915 10.475 

3D volume Yes 0.922 9.472 

SMI No 0.919 9.577 

SMI Yes 0.920 9.539 

TMI No 0.917 10.343 

TMI Yes 0.914 12.221 

SCI No 0.915 11.354 

SCI Yes 0.914 10.515 
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confirmed that SMI and TMI could provide more spatial and temporal information 

for the segmentation task.  

    The results in LA views presented in Table.4.4 illustrates that the performance 

increased by 0.01 and 0.7 in terms of Dice and HD as a result of transferring the pre-

trained model from SA view to LA view. Figure.4.3 and Figure.4.4 show some 

segmentation examples derived from the best model. 

Table.4.4. Segmentation results in the validation dataset in LA view. 

 

 
Figure.4.3. A visual example from the apex, middle and base levels at ED (left) and ES 

(right) phases in SA view. 

 
Figure.4.4. A visual example  at ED and ES phase in LA view. 

Network Transfer from SA Dice HD 

nnUnet(Baseline) No 0.910 6.004 

nnUNet_MMS 
No 0.908 6.081 

Yes 0.920 5.343 
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4.4.2. Testing Set Results 

We chose the model which performs best in the validation data as the final model. 

As the testing dataset is hidden by the organizer, we submitted our final model to the 

organizer and evaluated the performance online. Table.4.5 shows the details of our 

method on the hidden test data. In the SA view our method performed best in 

congenital arrhythmogenesis yielding 0.949, 8.45 mm for Dice and HD. The best 

results in LA view are generated from the normal subjects with 0.935 and 5.006 mm 

for Dice and HD. In addition, two pathologies (dilated right ventricle and tricuspid 

valve regurgitation) are not present in the training data but only in the testing data. 

The results on those two pathologies reveal that our approach obtains promising 

performance on an unseen pathology. 

Table.4.5. Segmentation results on 8 pathologies of the hidden test set. The mean and 

standard deviation are reported. 

4.5 Conclusion 

In this paper, we investigated label propagation and multiple input modalities to 

increase the robustness in right ventricle segmentation from multi-disease, multi-

view and multi-center cMRI data. To enlarge the training dataset, we explored the 

use of image registration to propagate annotation masks to unlabeled phases. We 

further systematically investigated the effect of using different input modalities 

including 3D volumes, single-channel 2D image, spatial stack and temporal stack. 

The results illustrate that spatial stack and temporal stack provide more information 

for the segmentation task, and using 3D volume with label propagation could further 

improve the generalization ability in a unseen dataset. 

Declaration. The authors of this paper declare that the segmentation methods 

implemented in this challenge has not used any pre-trained models nor additional 

MRI datasets other than those provided by the organizers. 

 Dice HD (mm) 

Pathology SA LA SA LA 

Normal subjects 0.922±0.050 0.935± 0.035 8.999±4.540 5.006±2.657 

Dilated Left Ventricle 0.922±0.084 0.915± 0.052 13.257±13.134 5.944±3.547 

Hypertrophic Cardiomyopathy 0.934±0.057 0.932± 0.033 10.214±5.842 5.343±2.916 

Congenital Arrhythmogenesis 0.949±0.028 0.934± 0.031 8.450±4.838 5.125±1.738 

Tetralogy of Fallot 0.920±0.034 0.914± 0.037 14.157±8.232 7.404±3.673 

Interatrial Communication 0.910±0.048 0.906±0.066 12.045±4.189 8.021±6.089 

Dilated Right Ventricle 0.924±0.045 0.897± 0.121 10.397±5.223 7.064±5.091 

Tricuspidal Regurgitation 0.923±0.040 0.914± 0.039 9.236±3.675 6.112±3.349 

Overall 0.925±0.055 0.919±0.063 10.587±7.241 6.045±3.824 
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