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Chapter 2 Combination special data augmentation and 

sampling inspection network for cardiac magnetic 

resonance imaging quality classification 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter was adapted from:  

Xiaowu Sun, Li-Hsin Cheng, Rob J. van der Geest. Combination Special Data 

Augmentation and Sampling Inspection Network for Cardiac Magnetic 

Resonance Imaging Quality Classification. International Workshop on Statistical 

Atlases and Computational Models of the Heart (STACOM). Springer, Cham, 2022. 
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Abstract 

Cardiac magnetic resonance imaging (MRI) may suffer from motion-related artifacts 

resulting in non-diagnostic quality images. Therefore, image quality assessment 

(IQA) is essential for the cardiac MRI analysis. The CMRxMotion challenge aims 

to develop automatic methods for IQA. In this paper, given the limited amount of 

training data, we designed three special data augmentation techniques to enlarge the 

dataset and to balance the class ratio. The generated dataset was used to pre-train the 

model. We then randomly selected two multi-channel 2D images from one 3D 

volume to mimic sample inspection and introduced ResNet as the backbone to 

extract features from those two 2D images. Meanwhile, a channel-based attention 

module was used to fuse the features for the classification. Our method achieved a 

mean accuracy of 0.75 and 0.725 in 4-fold cross validation and the held-out 

validation dataset, respectively. The code can be found here 

(https://github.com/xsunn/CMRxMotion).  
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2.1. Introduction  

Cardiac magnetic resonance imaging (MRI) is considered as the standard reference 

for the evaluation of cardiac function due to its excellent image resolution and soft-

tissue contrast. However, the MR scanner’s hardware itself or the interaction of 

patient with hardware can result in artifacts in MRI, yielding a low quality imaging, 

which is often detrimental to the analysis of cardiac function especially in the large-

scale imaging studies [1]. Although the artifacts can be minimized by carefully 

designed image protocols, they still cannot be fully eliminated [2]. Visual inspection 

of imaging quality is time-consuming and high-cost labor, and also relies on 

experienced radiologists. Therefore, an automatic method is needed to classify the 

MR image quality.  

    In the field of natural images, the approaches to image quality assessment (IQA) 

can be divided into two categories: full-reference and no-reference, depending on 

the availability of the original reference image. Meanwhile, recent Convolutional 

Neural Network (CNN) based methods, such as ResNet [3] and VGG [4], 

demonstrate promising performance in the automatic image classification task. 

Bosse et al. [5] employed a Siamese network to extract the features from the distorted 

and reference patch respectively and fused the difference of those features for IQA. 

Su et al. [6] proposed a self-adaptive hyper network to blindly assess image quality 

in the wild without any reference.  

    However, unlike IQA in natural images, in medical imaging it is particularly 

challenging for several reasons. There is no large-scale publicly available medical 

image dataset for IQA. In addition, the distinction between the diagnostic and non-

diagnostic imaging is not always evident. Therefore, the labels annotated by 

radiologists are often subjective [7]. Previously, Fu tried to integrate the information 

from different color-spaces at feature-level and prediction-level to assess retinal 

image quality [8]. Oksuz et al. proposed a CNN model to automatically detect and 

correct motion-related artifacts in cardiac MRI using the K-space lines [9]. Lyu et al. 

used a recurrent generative adversarial network to reduce motion artifacts in cardiac 

MRI [10].  

    The CMRxMotion challenge aims to encourage the participants to develop an IQA 

model and a segmentation method for the extreme cardiac MRI dataset. In this paper 

we focuse only on the task of image quality assessment. Our contributions are as 

follows: (1) We designed specific data augmentation methods to enlarge the given 

limited data. (2) We proposed a two-branch network and combined a channel-based 

attention mechanism to fuse features from two random samples of the 3D volume, 

improving the IQA performance. 
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2.2.  Dataset 

The challenge provides short-axis cardiac MR images of 45 healthy volunteers (20 

for training, 5 for validation and 20 for testing), obtained through the same 3T MR 

system (Siemens MAGNETOM Vida) under four different levels of respiratory 

motion, including full breath-hold, half breath-hold, free breath and intensive breath. 

Only the images of the end-diastolic (ED) and end-systolic (ES) phase are available. 

Therefore, there are 160 (20 volunteers × 4 scans × 2 phases), 40 and 160 3D 

volumes for training, validation and testing. The number of slices in one phase ranges 

from 9 to 13. The image resolution varies from 0.66×0.66×9.6 mm3 to 0.76×0.76×10 

mm3, and the range of field of view (FOV) varies from 400×512 mm2 to 512×512 

mm2. Independent from motion levels, all images were reviewed and scored by 

multiple radiologists using a standard 5-point Likert scale which can be found in 

https://www.synapse.org/#!Synapse:syn32407769/wiki/618241. For better 

reproducibility, the organizer divided those images into three classes based on the 5-

point scores: mild motion, intermediate motion, and severe motion. 

    During data preprocessing, we excluded slices outside of the heart region and 

selected the 9 slices in the center to make each processed case having the same 

number of slices.  Afterwards, all the cases were cropped or zero-padded into a 

uniform matrix size of 192×192×9 and the image intensity was normalized to [0,1] 

using the min-max method. 

2.3. Methods 

2.3.1. Data augmentation 

In this section, we describe the specially designed data augmentation method for 

IAQ in detail. The first two strategies are based on weighted interpolation of images 

from the same subject, while the third strategy employs histogram matching plus 

interpolation to generate new images. All of the data augmentation methods are 

based on the 3D volume.  

Generating transition phases between ED and ES. The ED and ES phases capture 

the two extreme scenarios in a cardiac cycle. The transition phases between ED and 

ES in the same cardiac cycle have almost identical intensity distribution [12]. 

Therefore, given the available ED and ES phases, we first generate new transition 

phases between ED and ES using weighted interpolation defined as following: 

1 2(1 )wp wI w I    , 
1 2_ (1 )n label wL w L                          (2.1) 

where wp is the generated volume and n_label is its corresponding label, 𝐼1, 𝐼2, and 

𝐿1, 𝐿2 are the 3D volume and labels of ED and ES phases, and w is the weight. In 
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this work, we used three values for w, namely 0.2, 0.5 and 0.8, to generate transition 

phases. Figure.2.1 shows an example of the generated images using this approach. 

 
Figure.2.1. An example of generated new phases by weighting ED and ES phases from the 

same case. The first row implies the 3D volume selected from ED and ES phase. The 

second row presents 3D volume selected from the generated phases using the weights of 

0.2, 0.5 and 0.8, respectively. 

Generating intermediate images from different levels of respiratory motion. 

Interestingly, each volunteer was scanned four times under different levels of 

respiratory motion. Those paired cases from the same volunteer have the same 

anatomy structures but with different image qualities. Therefore, we used the paired 

images at the same phase but from different respiratory motion to generate new 

images. As illustrated in Figure.2.2, two paired images (P004-1-ED, P004-4-ED for 

example) both from the ED phase of the same volunteer, but possibly with different 

image qualities, are selected randomly as the source images. After an intensity-based 

registration, the method described in formula (2.1) is used to generate the new image 

and its corresponding label. Similar as the previous augmentation strategy, the new 

images are generated using weights of 0.2, 0.5 and 0.8. 

Generating degraded images with histogram matching and linear interpolation. 

Within the 160 training cases, the numbers of cases with mild, intermediate, and 

severe motion artifacts are 70, 69, 21, respectively. To enlarge the subset with severe 

motion artifacts, the cases with intermediate artifacts were degraded into a lower-

quality ones using the linear interpolation approach. As shown in Figure.2.3 a 3D 

volume with severe artifacts is randomly selected as the reference and another one 

with intermediate artifacts is considered as the source image. The pixel intensity 
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distribution of the source image is matched to that of the reference image. We then 

randomly choose 5% of the pixels from the matched image, and apply the linear 

interpolation approach on those selected pixels to expand into a new image. The label 

of the generated image is assigned as severe. 

 
Figure.2.2. An illustration of using two ED phases under different respiratory motion levels 

of the same volunteer to generate a new image. 

 
Figure.2.3. The procedure of image degradation includes histogram matching and linear 

interpolation. The generated result is considered as a new image with lower quality. 

2.3.2. Sampling Inspection Network Architecture 

To mimic the sampling inspection, the quality of a 3D volume is determined by 

estimating the quality of random samples drawn from the volume. The advantage of 

the random selection strategy is that it can generate more data from a single volume 

to train a model. However, because the selected sample occasionally missed certain 

critical slices, we introduced another sample with different combinations of 2D 

slices, mimicking ensembling two times of sampling inspection. The model 

architecture is shown in Figure.2.4. 

    The two samples were regarded as 2D multi-channel images, and were each 

processed by a convolution layer. In addition, according to our intuition, the slices 

from the apical, middle and basal regions contribute differently for IQA. The slices 
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in the middle section, with a relatively larger size of the left ventricle than those in 

apex and base, have a significant impact on the quality assessment. Therefore, the 

channel attention module (CAM) proposed in [11] was introduced to explore the 

intra-channel relationship of the input. After that, ResNet was introduced as a 

backbone to extract the features for each input. The features from those two branches 

were concatenated along the channel dimension, and a Feature Fusion Module 

(FFM) was introduced to fuse those features. The FFM block contains one channel 

attention module to explore the inter-channel relationship and one averaged pooling 

layer to extract the global information. Lastly, a fully connected layer was used to 

predict the result.  

 
Figure.2.4. Sampling inspection network architecture. The input of each branch is a multi-

channel 2D image. 

    Inspired by the idea of deep supervision [13], besides the final prediction 𝑃, each 

branch also has one prediction denoted as 𝑃1  and 𝑃2 . Therefore, the total loss 

function can be expressed as: 

             
2

1

( , ) ( , )i

i

Loss CE P L CE P L


                                     (2.2) 

where 𝐶𝐸 is cross-entropy loss. Only the prediction 𝑃 was used for the validation 

and testing. During the validation and testing, the sampling inspection was repeated 

50 times for one 3D volume, the averaged result was regarded as the final prediction. 

2.4. Experiments and results 

The training data was divided into 4-fold for cross validation. The metrics, including 

accuracy, precision, recall, F1-Score and Cohen’s Kappa were used to evaluate the 

performance. All the results were reported as the mean value of four folds. All the 

experiments were implemented with Pytorch trained on a machine with a NVIDIA 

Quadro RTX 6000 GPU with 24 GB memory. Adam was employed as the optimizer 

with 0.00001 as the learning rate. 
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    The ResNet was employed as the baseline, and it took a multi-channel 2D image 

with a size of 192×192×9 as the input. We first compared our method with the 

baseline. Due to the small and imbalanced dataset, the baseline failed to predict the 

severe class, yielding a relatively poor result with accuracy being 0.41, as reported 

in Table.2.1. The performance indicated that a larger and balanced dataset is needed.  

Table.2.1. The 4-fold cross validation performance. Over-Acc: the overall accuracy based 

on all classes. DA: data augmentation. P: Precision. R: Recall. F: F1-Score. 

    We also evaluated the performance of the proposed network and data 

augmentation (DA) techniques. The new data generated from the offline data 

augmentation approach was used to pre-train the model and the pre-trained model 

was fine-tuned using the original training data. Table.2.1 also reports the 

classification results derived from the proposed methods. It shows that the overall 

accuracy increased from 0.68 to 0.75 after using DA. Although on the class of mild, 

the accuracy using DA is a little lower than that without DA, the accuracy for the 

other two classes is better. The method using DA achieved the best performance on 

the metric of F1-Score in all classes. The confusion matrix in Figure.2.5 further 

reveals that the number of false negatives for the severe class reduced after 

introducing DA. Therefore, the performance confirmed that the carefully designed 

DA works well for the IQA task. 

    For the validation part, the labels were hidden by the organizer, we submitted our 

predicted results and evaluated the performance online. Our method achieved a 

competitive results, yielding accuracy of 0.725 and Cohen’s Kappa 0.645. The best 

model in the validation data was chosen as the final model, and we submitted it to 

the organizer and evaluated the performance in the testing dataset with 120 image 

volumes [14], achieving accuracy of 0.6417 and Cohen’s Kappa 0.456. 

 

Model DA Over-Acc 
Cohen’s 

Kappa 

Severity 

Level 
Acc P R F 

ResNet 

 

0.41 -0.04 

Mild 0.76 0.42 0.76 0.54 

No Intermediate 0.19 0.38 0.19 0.25 

 Severe 0.00 0.00 0.00 0.00 

Ours 

Yes 0.75 0.58 

Mild 0.77 0.83 0.77 0.80 

Intermediate 0.81 0.69 0.81 0.75 

Severe 0.48 0.71 0.48 0.57 

No 0.68 

 Mild 0.86 0.74 0.86 0.79 

0.45 Intermediate 0.68 0.64 0.68 0.66 

 Severe 0.10 0.40 0.10 0.15 
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Figure.2.5. Confusion matrix derived from the proposed network. 0, 1, 2 represent the 

classes of mild, intermediate and severe. The upper one is the result using data 

augmentation and the bottom one is the result without data augmentation. 

Ablation. In the proposed classification network, a module named FFM was used to 

fuse the features from two branches. To reveal the effectiveness of FFM, we 

evaluated the accuracy and confusion matrix derived from the three predictions 𝑃, 

𝑃1, 𝑃2 as reported in Table.2.2, Figure.2.5 and Figure.2.6. 𝑃1, 𝑃2 were derived from 

two individual braches, while 𝑃 was generated using the FFM. Compared with the 

other two predictions, 𝑃 achieved the best performance on all those classes and the 

overall. 
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Table.2.2. Comparison of the accuracy for each class derived from different branches. 

 
Figure.2.6. Confusion Matrix of two predictions 𝑃1, 𝑃2. The upper one is from the result 

𝑃1, the bottom one is derived from 𝑃2. 

2.5. Conclusion 

In this paper, we designed three data augmentation methods to enlarge the dataset 

and balance the classes for the cardiac MR image quality assessment task. Inspired 

by the idea of sample inspection, to enlarge the training data and to extract sufficient 

features, we randomly selected different combinations of 2D slices as the input of 

 P P1 P2 

Mild 0.77 0.71 0.73 

Intermediate 0.81 0.79 0.80 

Severe 0.48 0.29 0.29 

Overall 0.75 0.69 0.71 
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each branch of the network. The proposed method was trained and evaluated using 

four-fold cross validation. The results of the classification accuracy, precision, recall 

and F1-Score demonstrate that our method performed better than the baseline, and 

the results on the validation dataset shows a competitive performance against the 

other participants’ methods. 

Declaration. The authors of this paper declare that they did not use any additional 

medical image datasets other than those provided by the organizers. They also would 

like to acknowledge the organizer of the CMRxMotion challenge for collecting and 

sharing the dataset. 
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