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Chapter 1 General Introduction 

Cardiovascular disease (CVD) is the leading cause of death globally, taking an 

estimation of 17.9 million lives each year, representing 32% of all deaths worldwide 

[1]. Echocardiography, computer tomography (CT) and magnetic resonance imaging 

(MRI) are the prevailing non-invasive imaging techniques for CVD diagnosis in 

clinical practice. Compared to the other two modalities, due to its excellent image 

quality and good soft tissue contrast, cardiac magnetic resonance (CMR) established 

itself as the reference standard for quantification of cardiac dimensions and function, 

including assessment of left ventricular volume, ejection fraction (EF) and 

myocardial mass. These clinical parameters can be derived with high precision from 

cine MRI. Other hemodynamic parameters, including trans-valvular blood flow, 

peak velocities, kinetic energy and wall shear stress, which also greatly aid in the 

diagnosis and prognostication of CVD, can be derived from the four-dimensional 

(4D) flow MRI.  

    In recent years, deep learning (DL), especially convolution neural network (CNN), 

has been successfully applied to automatically analyze medical images and derive 

clinical measures. Therefore, this thesis investigated deep learning techniques and 

its applications in both cardiac cine and 4D flow MRI. 

1.1.  Cine cardiac MRI 

Cine cardiac MRI is typically obtained by repeatedly imaging the heart at a single 

slice location at multiple time points throughout one cardiac cycle. To fully image 

the whole heart, multiple slices at various locations must be obtained. Therefore, 

cine cardiac MRI provides a complete 3D visualization of the heart supporting 

detailed analysis of cardiac function. The short-axis (SAX) view and long-axis (LAX) 

four-chamber (4-CH) and two-chamber (2-CH) views, as shown in Figure.1.1, are 

routinely obtained anatomical views in cine cardiac MRI [2]. The images in the long-

axis view are extracted as imaging planes parallel to a line extending from the cardiac 

apex to the center of the mitral valve. The SAX sequences are acquired as a stack of 

multiple 2D slices from the apex to the base of the heart perpendicular to the LAX 

view. The SAX view provides an excellent cross-sectional view of left ventricle (LV) 

and right ventricle (RV). Therefore, the images in SAX view are routinely 

considered as the standard approach to derive volumetric measurements for LV 

function assessment [3]. The end-diastolic (ED) and end-systolic (ES) phases, i.e. 

the phases with the largest and smallest LV blood volume, are two crucial phases in 

the cardiac cycle. ED volume (EDV) and ES volume (ESV) can be used to measure 

the stroke volume (SV) and ejection fraction (EF) which are important parameters 

quantifying global cardiac function [4]. 
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Figure.1.1 Major cardiac imaging planes and their corresponding views in cine cardiac 

MRI. 

There are still some significant barriers to widespread use of cardiac MRI [5,6]. Poor 

breath-holding related respiratory motion, which is common in patients with heart 

failure, may introduce artifacts, resulting in low quality images. Additionally, 

numerous applications of cardiac MRI have been relying on segmentation of the 

cardiac structures. Manual image segmentation is tedious and time-consuming work 

and also prone to inter-observer variability. Therefore, in this thesis we address two 

aspects including the image quality and data analysis in cine MRI. 

1.2.  4D flow cardiac MRI 

2D cine cardiac MRI allows quantification of volumetric clinical parameters, but it 

cannot be used to identify hemodynamic markers in the heart or great vessels. 4D 

flow MRI is a state-of-the-art MR imaging technique encoding time-resolved three-

directional velocities, allowing to visualize and quantity the flow direction, peak 

velocity and flow volume. 4D flow MRI provides sets of 3D volumes over time. 

Each 4D flow volume contains one magnitude volume and three velocity volumes. 

4D flow MRI is particularly used to derive relevant flow parameters, such as flow 

components, kinetic energy, pulse wave velocity and pressure gradient, to evaluate 

various cardiovascular conditions and help guide diagnosis treatment and follow-up 

care for patients.  

    4D flow MRI shows promising applications in clinical practice, however, it has 

not been widely used yet. One of the main limitations is that the post-processing 

takes time and labor. Quantitative analysis relies on segmentation of anatomical 

regions in the images. But the extremely poor contrast between the heart chamber 

and surrounding tissues aggravates the difficulty of manual segmentation. As shown 
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in Figure.1.2, the prevailing segmentation approach in 4D flow MRI depends on the 

registration between cine MRI and 4D flow data. However, the registration is 

computationally expensive, resulting in long runtimes. Additionally, differences in 

heart rate and spatial resolution between those two MRI acquisitions will introduce 

some misalignment during the registration. Therefore, fully automatic segmentation 

methods for 4D flow MRI segmentation are needed. The relatively long scan time, 

ranging from 5 to 20 minutes and limited spatial resolution, are other barriers of 4D 

flow MRI, which also restrict its analysis. 

 
Figure.1.2. Existing workflow of quantitative analysis of 4D flow data. It requires two MRI 

sequences, firstly generates the mask on cine MRI, then registration is introduced to 

propagate the segmentation mask from cine MRI to 4D flow MRI.  

1.3.  Deep learning in cardiac MRI analysis 

Based on the availability of the labels in the given data, DL can be divided into 

unsupervised learning and supervised learning. Unsupervised learning, where the 

labels are not available, tries to reveal the structure within the data on its own. In 

supervised learning, the model aims to mimic human performance by learning a 

mapping from the input data to the annotated labels. Supervised learning is the most 

commonly used approach in the field of CMR.  

    CMR has been a crucial technique in the evaluation of cardiac function and disease 

diagnosis. However, the analysis of CMR is complicated and time-consuming, 

requiring expert knowledge. Recently with the advance of DL, a variety of DL-based 

methods have been proposed enabling automated analysis of medical images, 

including cardiac MRI. For instance, given the manual segmentation, many DL-

based frameworks were proposed for automated cardiac MR image segmentation [7-

11] enabling quantification of volumetric parameters. As summarized in Figure1.3, 

the developments of DL relevant to cardiac MRI provide an efficient and effective 

way in the areas of image acquisition, reconstruction, image quality assessment, 
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segmentation and diagnosis evaluation. The review [12] provides more details about 

the applications of DL in cardiac MRI analysis. 

 
Figure.1.3. Deep learning applications for cardiac function diagnosis including image 

reconstruction, image quality assessment, segmentation and segmentation quality control 

[6]. 

    Although deep learning has achieved immense success in the field of medical 

images, there is still a long way ahead to deploy them to real-world applications. 

Compared to natural images, medical images are less widely available, especially 

for cases with rare diseases and expert annotations are expensive. Additionally, 

model’s generalization is another limitation for the deployment in real world, due to 

the data distribution heterogeneity across multiple modalities, scanners and centers. 

1.4.  Thesis outline 

The work described in this thesis aims to develop deep learning based techniques to 

achieve fully automatic analysis of cine and 4D flow cardiac MRI. The research 

topics and connections between each chapter are summarized in the Figure.1.4. 

 
Figure.1.4 Overview of the research topics in the this thesis. 

    Chapter 2-4 present our work on cine MRI. Motion-related artifacts may result in 

non-diagnostic image quality. We first propose a method to automatically classify 
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the image quality. Then, we investigate methods for left ventricular segmentation in 

short-axis cine images to derive LV volumetric parameters, which can be used for 

disease classification. A common issue with deep learning based models is that a 

model trained on one dataset does not generalize well to other unseen datasets due 

to the distribution heterogeneity between the data sets from various centers or 

vendors. Therefore, chapter 4 focuses on domain generalization.  

    Chapter 2 presents a method for cardiac MR image quality assessment combining 

data augmentation and deep learning network. Given the limited dataset, three 

specially designed data augmentation techniques are proposed. We also introduce a 

CNN model to mimic the sample inspection. The method has been evaluated on a 

public data set and achieved a promising results, ranking the 4th in an international 

challenge.  

    Chapter 3 proposes two stack modules to integrate the temporal or spatial 

information from neighboring slices for left ventricle segmentation in short-axis 

view. A stack attention module is presented to weigh the features in the channel 

dimension. The stack attention module can be inserted into the U-Net to improve the 

segmentation performance. The approach was evaluated on two data sets, one in-

house data set and one public data set. 

    Chapter 4 studies domain generalization in cardiac MR segmentation. Chapter 

3 solves the segmentation task given a specific single-center, single-vendor data set. 

Instead the use of fine-tuning or adaption to train a new model for a new data set, 

Chapter 4 introduces a registration-based method to generate more pseudo data to 

enlarge the dataset. Additionally, the stack model, introduced in Chapter 3, is also 

applied to explore more features for the segmentation. The trained model is directly 

validated on an unseen data set.  

    Chapters 5 and 6 describe methods for LV segmentation in cardiac 4D flow MRI. 

Due to the poor contrast in 4D flow MRI, conventional segmentation in 4D flow 

MRI relies on the registration between cine and 4D flow MRI. Chapter 5 

investigates the feasibility of LV segmentation directly from 4D flow data without 

the use of any additional cine MRI. In contrast to previous studies, this is the first 

work to fuse the features from two modalities in 4D flow MRI to automate LV 

segmentation via deep learning. In this chapter we also compared the impact of 

different network structures and data pre-processing methods on the performance of 

LV segmentation from 4D flow MRI. 

    Chapter 6 extends the work of Chapter 5 into an efficient feature fusion module 

to aggregate the information from magnitude and velocity images. The proposed 

module contains a Transformer based cross- and self-fusion layer to explore the 

inter-relationship between two modalities and the intra-relationship within the same 
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modality. The clinical parameters derived from the proposed segmentation method 

are in good agreement with the ground truth.  

    Chapter 7 aims to build a bridge between cine and 4D flow MRI. 4D flow MRI 

provides quantitative information on intra-cardiac blood flow, but quantification 

requires complicated post-processing. A novel deep learning-based approach is 

presented to predict intra-cardiac blood flow directly from long-axis cine MRI. The 

intensity fluctuations within the cardiac cavities provide a visual clue about the 

global blood flow pattern. The model takes temporal neighboring frames as the input 

and the velocity field derived from 4D flow MRI as the ground truth. The prediction 

is validated against 4D flow data. 

    Chapter 8 summarizes the achievements of this thesis and provides a future 

outlook. 
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Abstract 

Cardiac magnetic resonance imaging (MRI) may suffer from motion-related artifacts 

resulting in non-diagnostic quality images. Therefore, image quality assessment 

(IQA) is essential for the cardiac MRI analysis. The CMRxMotion challenge aims 

to develop automatic methods for IQA. In this paper, given the limited amount of 

training data, we designed three special data augmentation techniques to enlarge the 

dataset and to balance the class ratio. The generated dataset was used to pre-train the 

model. We then randomly selected two multi-channel 2D images from one 3D 

volume to mimic sample inspection and introduced ResNet as the backbone to 

extract features from those two 2D images. Meanwhile, a channel-based attention 

module was used to fuse the features for the classification. Our method achieved a 

mean accuracy of 0.75 and 0.725 in 4-fold cross validation and the held-out 

validation dataset, respectively. The code can be found here 

(https://github.com/xsunn/CMRxMotion).  
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2.1. Introduction  

Cardiac magnetic resonance imaging (MRI) is considered as the standard reference 

for the evaluation of cardiac function due to its excellent image resolution and soft-

tissue contrast. However, the MR scanner’s hardware itself or the interaction of 

patient with hardware can result in artifacts in MRI, yielding a low quality imaging, 

which is often detrimental to the analysis of cardiac function especially in the large-

scale imaging studies [1]. Although the artifacts can be minimized by carefully 

designed image protocols, they still cannot be fully eliminated [2]. Visual inspection 

of imaging quality is time-consuming and high-cost labor, and also relies on 

experienced radiologists. Therefore, an automatic method is needed to classify the 

MR image quality.  

    In the field of natural images, the approaches to image quality assessment (IQA) 

can be divided into two categories: full-reference and no-reference, depending on 

the availability of the original reference image. Meanwhile, recent Convolutional 

Neural Network (CNN) based methods, such as ResNet [3] and VGG [4], 

demonstrate promising performance in the automatic image classification task. 

Bosse et al. [5] employed a Siamese network to extract the features from the distorted 

and reference patch respectively and fused the difference of those features for IQA. 

Su et al. [6] proposed a self-adaptive hyper network to blindly assess image quality 

in the wild without any reference.  

    However, unlike IQA in natural images, in medical imaging it is particularly 

challenging for several reasons. There is no large-scale publicly available medical 

image dataset for IQA. In addition, the distinction between the diagnostic and non-

diagnostic imaging is not always evident. Therefore, the labels annotated by 

radiologists are often subjective [7]. Previously, Fu tried to integrate the information 

from different color-spaces at feature-level and prediction-level to assess retinal 

image quality [8]. Oksuz et al. proposed a CNN model to automatically detect and 

correct motion-related artifacts in cardiac MRI using the K-space lines [9]. Lyu et al. 

used a recurrent generative adversarial network to reduce motion artifacts in cardiac 

MRI [10].  

    The CMRxMotion challenge aims to encourage the participants to develop an IQA 

model and a segmentation method for the extreme cardiac MRI dataset. In this paper 

we focuse only on the task of image quality assessment. Our contributions are as 

follows: (1) We designed specific data augmentation methods to enlarge the given 

limited data. (2) We proposed a two-branch network and combined a channel-based 

attention mechanism to fuse features from two random samples of the 3D volume, 

improving the IQA performance. 
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2.2.  Dataset 

The challenge provides short-axis cardiac MR images of 45 healthy volunteers (20 

for training, 5 for validation and 20 for testing), obtained through the same 3T MR 

system (Siemens MAGNETOM Vida) under four different levels of respiratory 

motion, including full breath-hold, half breath-hold, free breath and intensive breath. 

Only the images of the end-diastolic (ED) and end-systolic (ES) phase are available. 

Therefore, there are 160 (20 volunteers × 4 scans × 2 phases), 40 and 160 3D 

volumes for training, validation and testing. The number of slices in one phase ranges 

from 9 to 13. The image resolution varies from 0.66×0.66×9.6 mm3 to 0.76×0.76×10 

mm3, and the range of field of view (FOV) varies from 400×512 mm2 to 512×512 

mm2. Independent from motion levels, all images were reviewed and scored by 

multiple radiologists using a standard 5-point Likert scale which can be found in 

https://www.synapse.org/#!Synapse:syn32407769/wiki/618241. For better 

reproducibility, the organizer divided those images into three classes based on the 5-

point scores: mild motion, intermediate motion, and severe motion. 

    During data preprocessing, we excluded slices outside of the heart region and 

selected the 9 slices in the center to make each processed case having the same 

number of slices.  Afterwards, all the cases were cropped or zero-padded into a 

uniform matrix size of 192×192×9 and the image intensity was normalized to [0,1] 

using the min-max method. 

2.3. Methods 

2.3.1. Data augmentation 

In this section, we describe the specially designed data augmentation method for 

IAQ in detail. The first two strategies are based on weighted interpolation of images 

from the same subject, while the third strategy employs histogram matching plus 

interpolation to generate new images. All of the data augmentation methods are 

based on the 3D volume.  

Generating transition phases between ED and ES. The ED and ES phases capture 

the two extreme scenarios in a cardiac cycle. The transition phases between ED and 

ES in the same cardiac cycle have almost identical intensity distribution [12]. 

Therefore, given the available ED and ES phases, we first generate new transition 

phases between ED and ES using weighted interpolation defined as following: 

1 2(1 )wp wI w I    , 
1 2_ (1 )n label wL w L                          (2.1) 

where wp is the generated volume and n_label is its corresponding label, 𝐼1, 𝐼2, and 

𝐿1, 𝐿2 are the 3D volume and labels of ED and ES phases, and w is the weight. In 
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this work, we used three values for w, namely 0.2, 0.5 and 0.8, to generate transition 

phases. Figure.2.1 shows an example of the generated images using this approach. 

 
Figure.2.1. An example of generated new phases by weighting ED and ES phases from the 

same case. The first row implies the 3D volume selected from ED and ES phase. The 

second row presents 3D volume selected from the generated phases using the weights of 

0.2, 0.5 and 0.8, respectively. 

Generating intermediate images from different levels of respiratory motion. 

Interestingly, each volunteer was scanned four times under different levels of 

respiratory motion. Those paired cases from the same volunteer have the same 

anatomy structures but with different image qualities. Therefore, we used the paired 

images at the same phase but from different respiratory motion to generate new 

images. As illustrated in Figure.2.2, two paired images (P004-1-ED, P004-4-ED for 

example) both from the ED phase of the same volunteer, but possibly with different 

image qualities, are selected randomly as the source images. After an intensity-based 

registration, the method described in formula (2.1) is used to generate the new image 

and its corresponding label. Similar as the previous augmentation strategy, the new 

images are generated using weights of 0.2, 0.5 and 0.8. 

Generating degraded images with histogram matching and linear interpolation. 

Within the 160 training cases, the numbers of cases with mild, intermediate, and 

severe motion artifacts are 70, 69, 21, respectively. To enlarge the subset with severe 

motion artifacts, the cases with intermediate artifacts were degraded into a lower-

quality ones using the linear interpolation approach. As shown in Figure.2.3 a 3D 

volume with severe artifacts is randomly selected as the reference and another one 

with intermediate artifacts is considered as the source image. The pixel intensity 
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distribution of the source image is matched to that of the reference image. We then 

randomly choose 5% of the pixels from the matched image, and apply the linear 

interpolation approach on those selected pixels to expand into a new image. The label 

of the generated image is assigned as severe. 

 
Figure.2.2. An illustration of using two ED phases under different respiratory motion levels 

of the same volunteer to generate a new image. 

 
Figure.2.3. The procedure of image degradation includes histogram matching and linear 

interpolation. The generated result is considered as a new image with lower quality. 

2.3.2. Sampling Inspection Network Architecture 

To mimic the sampling inspection, the quality of a 3D volume is determined by 

estimating the quality of random samples drawn from the volume. The advantage of 

the random selection strategy is that it can generate more data from a single volume 

to train a model. However, because the selected sample occasionally missed certain 

critical slices, we introduced another sample with different combinations of 2D 

slices, mimicking ensembling two times of sampling inspection. The model 

architecture is shown in Figure.2.4. 

    The two samples were regarded as 2D multi-channel images, and were each 

processed by a convolution layer. In addition, according to our intuition, the slices 

from the apical, middle and basal regions contribute differently for IQA. The slices 
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in the middle section, with a relatively larger size of the left ventricle than those in 

apex and base, have a significant impact on the quality assessment. Therefore, the 

channel attention module (CAM) proposed in [11] was introduced to explore the 

intra-channel relationship of the input. After that, ResNet was introduced as a 

backbone to extract the features for each input. The features from those two branches 

were concatenated along the channel dimension, and a Feature Fusion Module 

(FFM) was introduced to fuse those features. The FFM block contains one channel 

attention module to explore the inter-channel relationship and one averaged pooling 

layer to extract the global information. Lastly, a fully connected layer was used to 

predict the result.  

 
Figure.2.4. Sampling inspection network architecture. The input of each branch is a multi-

channel 2D image. 

    Inspired by the idea of deep supervision [13], besides the final prediction 𝑃, each 

branch also has one prediction denoted as 𝑃1  and 𝑃2 . Therefore, the total loss 

function can be expressed as: 

             
2

1

( , ) ( , )i

i

Loss CE P L CE P L


                                     (2.2) 

where 𝐶𝐸 is cross-entropy loss. Only the prediction 𝑃 was used for the validation 

and testing. During the validation and testing, the sampling inspection was repeated 

50 times for one 3D volume, the averaged result was regarded as the final prediction. 

2.4. Experiments and results 

The training data was divided into 4-fold for cross validation. The metrics, including 

accuracy, precision, recall, F1-Score and Cohen’s Kappa were used to evaluate the 

performance. All the results were reported as the mean value of four folds. All the 

experiments were implemented with Pytorch trained on a machine with a NVIDIA 

Quadro RTX 6000 GPU with 24 GB memory. Adam was employed as the optimizer 

with 0.00001 as the learning rate. 
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    The ResNet was employed as the baseline, and it took a multi-channel 2D image 

with a size of 192×192×9 as the input. We first compared our method with the 

baseline. Due to the small and imbalanced dataset, the baseline failed to predict the 

severe class, yielding a relatively poor result with accuracy being 0.41, as reported 

in Table.2.1. The performance indicated that a larger and balanced dataset is needed.  

Table.2.1. The 4-fold cross validation performance. Over-Acc: the overall accuracy based 

on all classes. DA: data augmentation. P: Precision. R: Recall. F: F1-Score. 

    We also evaluated the performance of the proposed network and data 

augmentation (DA) techniques. The new data generated from the offline data 

augmentation approach was used to pre-train the model and the pre-trained model 

was fine-tuned using the original training data. Table.2.1 also reports the 

classification results derived from the proposed methods. It shows that the overall 

accuracy increased from 0.68 to 0.75 after using DA. Although on the class of mild, 

the accuracy using DA is a little lower than that without DA, the accuracy for the 

other two classes is better. The method using DA achieved the best performance on 

the metric of F1-Score in all classes. The confusion matrix in Figure.2.5 further 

reveals that the number of false negatives for the severe class reduced after 

introducing DA. Therefore, the performance confirmed that the carefully designed 

DA works well for the IQA task. 

    For the validation part, the labels were hidden by the organizer, we submitted our 

predicted results and evaluated the performance online. Our method achieved a 

competitive results, yielding accuracy of 0.725 and Cohen’s Kappa 0.645. The best 

model in the validation data was chosen as the final model, and we submitted it to 

the organizer and evaluated the performance in the testing dataset with 120 image 

volumes [14], achieving accuracy of 0.6417 and Cohen’s Kappa 0.456. 

 

Model DA Over-Acc 
Cohen’s 

Kappa 

Severity 

Level 
Acc P R F 

ResNet 

 

0.41 -0.04 

Mild 0.76 0.42 0.76 0.54 

No Intermediate 0.19 0.38 0.19 0.25 

 Severe 0.00 0.00 0.00 0.00 

Ours 

Yes 0.75 0.58 

Mild 0.77 0.83 0.77 0.80 

Intermediate 0.81 0.69 0.81 0.75 

Severe 0.48 0.71 0.48 0.57 

No 0.68 

 Mild 0.86 0.74 0.86 0.79 

0.45 Intermediate 0.68 0.64 0.68 0.66 

 Severe 0.10 0.40 0.10 0.15 



 

18 
 

 
Figure.2.5. Confusion matrix derived from the proposed network. 0, 1, 2 represent the 

classes of mild, intermediate and severe. The upper one is the result using data 

augmentation and the bottom one is the result without data augmentation. 

Ablation. In the proposed classification network, a module named FFM was used to 

fuse the features from two branches. To reveal the effectiveness of FFM, we 

evaluated the accuracy and confusion matrix derived from the three predictions 𝑃, 

𝑃1, 𝑃2 as reported in Table.2.2, Figure.2.5 and Figure.2.6. 𝑃1, 𝑃2 were derived from 

two individual braches, while 𝑃 was generated using the FFM. Compared with the 

other two predictions, 𝑃 achieved the best performance on all those classes and the 

overall. 
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Table.2.2. Comparison of the accuracy for each class derived from different branches. 

 
Figure.2.6. Confusion Matrix of two predictions 𝑃1, 𝑃2. The upper one is from the result 

𝑃1, the bottom one is derived from 𝑃2. 

2.5. Conclusion 

In this paper, we designed three data augmentation methods to enlarge the dataset 

and balance the classes for the cardiac MR image quality assessment task. Inspired 

by the idea of sample inspection, to enlarge the training data and to extract sufficient 

features, we randomly selected different combinations of 2D slices as the input of 

 P P1 P2 

Mild 0.77 0.71 0.73 

Intermediate 0.81 0.79 0.80 

Severe 0.48 0.29 0.29 

Overall 0.75 0.69 0.71 



 

20 
 

each branch of the network. The proposed method was trained and evaluated using 

four-fold cross validation. The results of the classification accuracy, precision, recall 

and F1-Score demonstrate that our method performed better than the baseline, and 

the results on the validation dataset shows a competitive performance against the 

other participants’ methods. 

Declaration. The authors of this paper declare that they did not use any additional 

medical image datasets other than those provided by the organizers. They also would 

like to acknowledge the organizer of the CMRxMotion challenge for collecting and 

sharing the dataset. 
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Chapter 3 SAUN: Stack attention U-Net for left 

ventricle segmentation from cardiac cine magnetic 

resonance imaging 
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Abstract 

Purpose: Quantification of left ventricular (LV) volume, ejection fraction and 

myocardial mass from multi-slice multi-phase cine MRI requires accurate 

segmentation of the LV in many images. We propose a stack attention-based 

convolutional neural network (CNN) approach for fully automatic segmentation 

from short-axis cine MR images. 

Methods: To extract the relevant spatiotemporal image features, we introduce two 

kinds of stack methods, spatial stack model and temporal stack model, combining 

the target image with its neighboring images as the input of a CNN. A stack attention 

mechanism is proposed to weigh neighboring image slices in order to extract the 

relevant features using the target image as a guide. Based on stack attention and 

standard U-Net, a novel Stack Attention U-Net (SAUN) is proposed and trained to 

perform the semantic segmentation task. A loss function combining cross-entropy 

and Dice is used to train SAUN. The performance of the proposed method was 

evaluated on an internal and a public dataset using technical metrics including Dice, 

Hausdorff distance (HD) and mean contour distance (MCD), as well as clinical 

parameters, including left ventricular ejection fraction (LVEF) and myocardial mass 

(LVM). In addition, the results of SAUN were compared to previously presented 

CNN methods, including U-Net and SegNet. 

Results: The spatial stack attention model resulted in better segmentation results 

than the temporal stack model. On the internal dataset comprising of 167 post-

myocardial infarction patients and 57 healthy volunteers, our method achieved a 

mean Dice of 0.91, HD of 3.37 mm and MCD of 1.08 mm. Evaluation on the publicly 

available ACDC dataset demonstrated good generalization performance, yielding a 

Dice of 0.92, HD of 9.4 mm and MCD of 0.74 mm on end-diastolic images, and a 

Dice of 0.89, HD of 7.1 mm and MCD of 1.03 mm on end-systolic images. The 

Pearson correlation coefficient of LVEF and LVM between automatically and 

manually derived results were higher than 0.98 in both datasets. 

Conclusion: We developed a CNN with a stack attention mechanism to 

automatically segment the LV chamber and myocardium from the multi-slice short-

axis cine MRI. The experimental results demonstrate that the proposed approach 

exceeds existing state-of-the-art segmentation methods and verify its potential 

clinical applicability. 
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3.1 Introduction  

Due to the excellent image resolution and soft-tissue contrast, cardiac cine magnetic 

resonance imaging (MRI) is considered the reference standard for quantitative 

assessment of cardiac size and function [1,2]. Typically, imaging is performed in 

short-axis orientation, and multiple slices and multiple phases are acquired to image 

the complete left ventricle (LV) over the cardiac cycle. Quantification requires 

segmentation of many images. Traditional manual segmentation is labor-intensive 

and relies on experienced experts. In recent years, the convolution neural network 

(CNN) based approaches have achieved immense success in LV segmentation, and 

many fully automatic segmentation algorithms based on CNN have been proposed. 

U-Net [3] and fully convolution network (FCN) [4] are the typical CNN models used 

in medical image analysis due to their capability of multi-scale feature extraction and 

fusion. Bai et al. [5] used a training set of 4875 subjects (93500 annotated image 

slices) to build a basic FCN for segmentation of the LV in short-axis MRI and used 

a fine-tuning approach to enable segmentation in other datasets. This approach 

required a massive set of images and also labor-intensive manual annotation effort. 

Isensee et al. [6] integrated the segmentation and classification task into an ensemble 

U-Net in which geometrical features extracted from the segmentation results were 

used for pathology classification. Recently, several unsupervised and self-learning 

strategies have been proposed, most of these methods use multiple branches to 

explore additional information and then add these branches to the segmentation 

backbone [7]. Qin et al. [8] proposed a joint model with two branches: one branch 

introduced an unsupervised Siamese style spatial transformer network to extract 

motion features, and the other branch was based on the fully convolutional network 

for segmentation. 

A limitation of previous work is that most of the proposed deep learning methods 

extract image features from a single 2D image only, which implies that potentially 

relevant spatiotemporal information that can be derived from neighboring slices and 

phases is not being exploited [9]. In recent literature, the classical optical flow (OF) 

method [10, 11, 12] has been introduced to extract temporal coherence among 

neighboring phases. For example, Zhao et al. [11] coupled the OF from the specified 

resolution scale to explore the motion features. Yan et al. [12] computed the OF 

features between two neighboring phases and integrated those features into a U-Net. 

However, the OF adopts an iterative method, which is time-consuming. Recently 

some other deep learning methods have been proposed to detect motion features. 

Zhang et al. [13] applied an LSTM model to incorporate local motion information 

by regarding several neighboring frames as input. Desai et al. [14] constructed a 

multi-channel architecture by stacking several neighboring frames to detect the 

spatiotemporal features. However, which architecture and input depth are optimal 

for LV segmentation performance in cine MRI is not fully explored. Therefore, we 
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proposed two image stack models to build a multi-channel architecture. One method 

is called the spatial stack model, combining the target image which is introduced for 

the segmentation and its neighboring slices from the same cardiac phase. The other 

method is called a temporal stack, containing the target image and its neighboring 

phases at the same slice level. Then a stack attention model is proposed to obtain 

weighted potential cardiac information from the stack. Traditional local image 

feature extraction, visual saliency detection, and sliding window methods can all be 

considered as an attention mechanism. However, in a CNN, the attention module is 

usually an additional brief neural network that can recognize the important parts 

from the images or assign different weights to different parts of the input. With the 

development of deep learning, building a neural network with an attention 

mechanism has been an active topic of research in computer vision [15, 16, 17]. 

Because a neural network can learn the attention mechanism autonomously, the 

inclusion of an attention mechanism can help the network to understand the image 

better. Due to its excellent performance, attention mechanism is currently widely 

used in many fields such as machine translation, speech recognition, image caption 

and computer vision. 

    To improve the accuracy of LV segmentation, our work mainly focuses on the 

following aspects: 

(1) We introduce two stack models (spatial stack and temporal stack) as a quasi-

volumetric architecture to extend the depth of the input. 

(2) We propose a stack attention mechanism in which the target image serves as a 

guide to weigh the features from multiple channels and select the spatiotemporal 

information. 

(3) A novel Stack Attention U-Net (SAUN) based on the stack attention and basic 

U-Net is proposed for automatic LV segmentation. 

3.2 Methods 

Different from natural images, MR images only have a single channel (grayscale) 

and have more complex texture features. Meanwhile, the shape, size and position of 

the LV only varies slightly between neighboring slices both in the spatial and 

temporal domain. To address those deformations and contextual information, we will 

first illustrate how to construct a volumetric architecture using the spatial stack 

model and temporal stack model respectively, and then integrate the features from 

the stack model with a novel stack attention mechanism. Finally, we propose the 

SAUN model based on stack attention and basic U-Net for segmentation. 
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3.2.1 Stack model  

Figure.3.1 illustrates the construction of a stack in a case having 30 cardiac phases 

and 12 slices. Spatial stack },,,{ 10,157,154,15 SSSSSM   and temporal stack 

},,,{ 7,187,157,12 SSSTSM 
 
can be used to generate an example image stack of dimension

7N as the input which produces the segmentation result for the central slice 
7,15S .  

 
Figure.3.1. Example of the construction of a spatial and temporal stack of dimension 7. 

Slice 
15,7S  is the target slice; spatial stack model uses slices 

15,4 15,5 15,9 15,10{S ,S ,L,S ,S }  from 

the same phase to build the stack model, while temporal stack model introduces slices 

12,7 13,7 17,7 18,7{S ,S ,LS ,S }  from the same slice level to construct another kind of stack model. 

i,jS  is the image from the ith phase jth slice. 

Spatial stack model (SSM) We propose a novel method named spatial stack model 

to combine the target image with its neighboring spatial slices. The stack model for 

the central slice tpS , can be described as the following, where 

),,2,1;,,2,1(, FjTiS ji   represents the image from the ith phase jth slice, T and 

F is the number of phases and slices in the data set respectively,  and N is the number 

of the images in the stack.  











FjFjif

jjif
and

NtNtjpiSNSSSM jitp

,

1,1

}2)1(,,2)1(,|{),( ,, 

        (3.1) 

Temporal stack model (TSM) Similar to the spatial stack, the temporal stack model 

can be defined as follows 











TiiTiif

Tiiiif
and

tjNpNpiSNSTSM jitp

,

,1

},2)1(,,2)1(|{),( ,, 

           (3.2)
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    The original MR image is a grayscale image with one channel. The image 

represented by the stack model can be regarded as a multi-channel image with 

abundant semantic features. It is important to note that, to our intuition, features 

derived from images closer (in space or time) to the target image contribute more in 

segmenting the object in the target slice. Hence, in order to filter out the background 

noise and extract relevant image information, we further propose the stack attention 

model. 

3.2.2 Stack attention model 

In this part, we introduce the target image as a guide to provide the channel 

information to fuse the neighboring images into the stack.  

 
Figure.3.2. Stack attention module structure 

    In detail, as shown in Figure.3.2, we first perform a 3×3 convolution with ReLu 

non-linearity function on the feature maps from the central slice to ensure the number 

of the feature maps generated from central slice and stack is the same. Then the 

global spatial information is extracted and squeezed to a vector ),,,( 21 CpppP 

through the global average pooling, which can be described as the following equation 

where LW   is the size of the feature map, cf is the feature map of the cth channel 

and C is the number of channels which is equal to the number of kernels in the 

convolution layer.  

),,2,1(),(
1

1 1

Ccjif
LW

p
W

i

L

j
cc 


  

 

                               (3.3) 

    Two different 1×1 convolutions 1K and 2K are applied to further compute the 

weights of each channel as follows: 

sKKPs  )*)*(( 21
'                                  (3.4) 
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where  is the convolution operation,  is ReLu activation function and s  is the 

feature map generated from the stack model. The first convolution 1K reduces the 

dimension of vector P from C  to 2C , and then convolution 2K resizes the length of 

vector P into C  again. However, the dot production with the weights which range 

from 0 to 1 repeatedly will degrade the feature values in deep layers, which may lead 

to negative results. To avoid this problem, finally the weighted stack feature maps 

are added with the original stack feature maps, which means 

),2,1(),()1(),( CcjifPjiattS ccc                           (3.5) 

where cattS  is the cth channel of the attention stack. When cP  approaches to 0, 

),( jiattSc  will approximate to the original features.  

3.2.3 SAUN Network Architecture 

Based on the mentioned stack attention and traditional U-Net, we propose the SAUN 

for the segmentation task. As shown in Figure.3.3, there are two inputs in SAUN, 

one is the central slice which is the target, and the other one is called the initial stack 

(either spatial or temporal stack) which is constructed according to ( , )Stack S N

proposed above. To ensure that the central slice and the stack are at the same feature 

level, the convolution operation is applied to both of them at the same time. 

 

 

Figure.3.3 Segmentation model structure based on Stack Attention and U-Net (SAUN). 

    During training SAUN, we aim to optimize the following loss function, which 

contains the generalized Dice loss and cross-entropy loss. The loss function can be 

formulated as 

 



 









l

i

n

j ijijn

j ijij

l

i i

n

j ijij

l

i i

pg
pgw

pgw
loss

1 1

11

11
)log(21                    (3.6) 



 

31 
 

C
h

a
p

ter 3
 

where the second term is the weighted Dice loss for multiple cardiac structure 

segmentation, and the third term is cross-entropy loss based on pixel-wise 

classification. Parameters pg ,  stand for ground truth and prediction results 

respectively, l  denotes three labels (background, chamber and myocardium), n  is 

the number of the pixels and iw is the weight of each label, which were set to 

]7.0,2.0,1.0[w . 

3.3  Dataset and data preprocessing 

3.3.1 Dataset  

Leeds University Dataset (LUD). One of the datasets in this work is from the 

University of Leeds, UK. This dataset contains 168 post-myocardial infarction 

patients and 57 healthy volunteers. All subjects were scanned on a Philips Ingenia 

1.5T MRI system using a slice thickness of 5.0 mm (or sometimes 8.0 mm) and slice 

gap of 2 mm. The number of slices ranged from 10 to 20, and 30 phases were 

reconstructed to cover a complete cardiac cycle. The in-plane image resolution 

varied from 0.78×0.78 mm2 to 1.18×1.18 mm2 and the range of field of view (FOV) 

varied from 280×280 mm2 to 470×470 mm2. Expert annotations were derived semi-

automatically in all cardiac phases and slices by one observer (RG) with 20 years of 

experience in cardiac MRI using Mass software (Version V2017-EXP; Leiden 

University Medical Center, Leiden, the Netherlands), resulting in 6703 annotated 

images. The subjects’ exams were randomly split into three parts with 141, 15 and 

69 for training, validation and testing, respectively.  

MICCAI 2017 Automated cardiac diagnosis challenge (ACDC 2017). The 

MICCAI 2017 Automated Cardiac Diagnosis Challenge (ACDC 2017) was 

organized by the University Hospital of Dijon and the data used in this challenge has 

become publicly available [18]. The dataset contains short-axis cine MRI exams of 

100 subjects of five patient categories (post-myocardial infarction, dilated 

cardiomyopathy, hypertrophic cardiomyopathy, abnormal right ventricle and healthy 

subjects). The subjects were scanned on two different scanners (1.5T Siemens Area 

and 3.0T Siemens Trio Tim) using a typical slice thickness of 5.0 mm (range 5 - 8 

mm), an inter-slice gap of 5 mm (range 5 - 10 mm) and pixel spacing ranging from 

1.37 to 1.68 mm. For all exams, the manual ground truth annotation was generated 

by a single clinical expert including contours of the LV cavity and myocardium and 

the right ventricular cavity in the end-diastolic (ED) and end-systolic (ES) images. 

In this work, the annotation of the right ventricular cavity was ignored and 

considered as background in the ground truth. The 100 subjects were randomly 

divided into five folds, each fold containing five patient categories and each category 

containing four subjects. We randomly selected three folds to train the network, and 

the other two folds were chosen for validation and testing, respectively. 
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3.3.2 Data preprocessing and augmentation 

Within the available dataset, the images vary in intensity range, FOV and pixel 

spacing. The field of view in the LUD data varies from 280 mm to 470 mm, while 

the heart as the object of interest typically measures 60 mm, occupying only a small 

proportion of the whole image. For example, in our LUD dataset, the average 

proportion occupied by the object relative to the full image is around 2.2%. Hence, 

several image preprocessing methods were performed to standardize those 

parameters.  

    We firstly resample the original images into a common pixel spacing of 1.5 mm, 

and then the image intensities were normalized according to the following formula 

where minP  and m axP  is the minimum and maximum value of 5% and 95% 

percentile of image P . 

minmax

min

PP

PP
p i




                                             (3.7)

 

    To solve the label imbalance problem, the YOLO model [19] is applied to localize 

the region-of-interest (ROI). As illustrated in Figure.3.4 each 2D original image is 

considered as an input, and then YOLO extracts the features from the input to 

generate the bounding boxes. Lastly, the images are cropped or zero-padded to a 

uniform matrix size of 128×128, centered at each bounding box. Additionally, in 

order to train a well generalizing network with limited data, data augmentation was 

employed, including horizontal and vertical clip, image transpose and elastic 

deformation. 

 
Figure.3.4. An example of localization preprocess. In the image, at the left, the red box is 

at the center of the image initially, but it didn’t detect the heart accurately, but after 

applying the YOLO model, the position of the object can be extracted precisely. Lastly, it is 

cropped into a fixed size, centred at the red bounding box. 

3.4 Evaluation metrics 

For quantitative assessment, two aspects, including segmentation and clinical 

parameter estimation, are proposed to compare the performance among different 

segmentation methods. All metrics are evaluated on a per-patient basis. 
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3.4.1. Segmentation accuracy assessment metrics 

Dice is introduced to evaluate the overlap between the automatic and manual 

segmentation mask. In addition, the distance metrics, including Mean Contour 

Distance (MCD) and Hausdorff Distance (HD) are employed as the segmentation 

metrics.  

    MCD and HD are defined as:  

1 1
( , ) ( , )

2 | | 2 | |
A B

B A

p C q CA B

MCD d p C d q C
C C 

                             (3.8) 

max(max ( , ),max ( , ))
A

B

B A
p C q C

HD d p C d q C
 

                           (3.9) 

where CA and CB are the automatic contour and manual contour respectively, 

( , ) min ( , )
q C

d p C d p q


  denotes the minimum distance from point p to contour C.  

3.4.2. Clinical metrics 

Clinical parameters such as LV volume, LV ejection fraction (LVEF) and 

myocardial mass (LVM) are another essential aspect of assessing the quality of 

automatic segmentation. The volume is computed by summation of the number of 

pixels corresponding to the LV or myocardium binary mask, multiplied by the pixel 

dimension. Myocardial mass is calculated by the following formula: 

31.05( / )LVM Myo Volume gram cm                               (3.10) 

and LVEF is defined as: 

100%
EDV ESV

LVEF
EDV


                               (3.11) 

where EDV and ESV are the LV volumes at the end-diastolic and end-systolic phases, 

respectively. 

3.4.3. Statistical analysis 

Pearson correlation coefficient (PCC), mean of differences (Bias) and limits of 

agreement (LOA, 1.96×standard deviation) are assessed to describe the differences 

and the agreement between automatically and manually derived segmentation. In 

addition, Bland-Altman is used to further describe the results. 

    To investigate the statistical significance of the differences between different 

segmentation models, the Wilcoxon signed-rank test is used to compare the 
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difference between paired Dice, HD and MCD without assuming the underlying 

distribution, P<0.05 indicates a significant difference. 

3.5 Experiments and Results 

We trained and evaluated our method on both LUD and ACDC datasets. The 

network is firstly trained on LUD from scratch, and then we performed transfer 

learning to train the network on ACDC. All the experiments were executed on a 

machine equipped with an NVIDIA Quadro RTX 6000 GPU with 24 GB internal 

memory. The networks were implemented using Keras with the following 

parameters: Adam optimizer, batch size as 50, learning rate as 10-5, 150 epochs, as 

well as early stopping, to avoid overtraining the network. 

    First, we explored and determined the optimal value of parameter N in the spatial 

and temporal stack. Second, we compared the results of three classical segmentation 

networks, U-Net, SegNet [20] and 3D U-Net, with SAUN based on Dice, MCD, HD, 

LVEF and LVM on both LUD and ACDC datasets. Meanwhile, to further explore 

the impact of using YOLO for localization and spatial stack for extracting potential 

features on the segmentation performance, another two networks named YOLO+U-

Net (YUN) and SSM+U-Net (SUN) were employed. The cropped images with a 

uniform matrix size of 128×128, centered to the original image, were used as the 

input of U-Net and SegNet. The input of YUN is presented after localization, and 

input of SUN and SAUN are preprocessed with localization and SSM. For the input 

of 3D U-Net, for both datasets, all the 2D slices in the ED or ES phase together are 

stacked to construct a 3D image. Then, all 3D images were resampled into the same 

resolution of 2.5×2.5×5 mm3 and the signal intensity normalized to (0,1). Lastly, all 

3D images were cropped or padded to a size of 112×112×24 as the input of the 3D 

U-Net. For the post-processing, the predictions were resampled to their original 

resolution. All of the networks are assessed using the defined evaluation metrics for 

different levels of the LV, including apex (25% slices in the apical region and 

beyond), middle (50% mid slices) and base (25% slices in the basal region and 

beyond). 

3.5.1 Multi-Channel architecture 

To analyze the impact of the two multi-channel architectures (SSM and TSM) of 

different dimensions on the segmentation results, we trained SAUN using SSM and 

TSM with different dimension parameters N as input. The results presented in 

Table.3.1 illustrates the segmentation performance for LV chamber and myocardium.  

    Results of multi-channel architecture showed four TSM versions (N=3,5,7,9) 

achieved stable segmentation performance for LV chamber and myocardium with 

the best Dice of 0.93 and 0.84, respectively. SSM, however, did work significantly 
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better than TSM with best performance Dice of 0.95 and 0.86 for chamber and 

myocardium with N set to 3. Hence, SSM with dimension N=3 is regarded as the 

optimal input of SAUN. 

Table.3.1. Dice of segmentation results generated from different multi-channel 

architectures with various values of parameter N at LUD using SAUN method. N is the 

dimension parameter. 

3.5.2 Results in LUD 

The performance of the SAUN method was evaluated in the LUD testing data set 

(69 subjects, 1611 2D images). We compared the segmentation performance for 

different heart structures between multiple neural networks using the evaluation 

metrics defined. As the cross-sectional area of the left ventricle at the apical level is 

very small and the image quality at this level is degraded due to particle voluming, 

segmentation errors are more likely to occur at this level, although it will have only 

little effect on the clinical metrics, especially on the LVEF. Hence, we further 

evaluated the segmentation performance on apex, middle and base level, respectively. 

Finally, we report the results of the clinical functional parameters.  

    Table 3.2 and Table 3.3 respectively show the Dice and distance metrics (HD and 

MCD) comparing manual with automatic segmentation. It can be observed that the 

networks with localization perform better than those without localization, which 

confirms that localization can filter out the data noise effectively for the label 

unbalanced data. Moreover, the SAUN method achieved the best segmentation 

results compared to the other networks on Dice, HD, and MCD. The results for the 

individual LV levels further indicate that the SAUN model provides much more 

precise feature maps, leading to the best evaluation metric scores for both LV 

chamber and myocardium at all LV levels.  

 

 Chamber Myocardium 

Parameters SSM TSM SSM TSM 

N=3 0.95(0.05) 0.93(0.07) 0.86(0.07) 0.84(0.11) 

N=5 0.93(0.11) 0.92(0.01) 0.84(0.14) 0.83(0.13) 

N=7 0.93(0.12) 0.92(0.10) 0.84(0.13) 0.81(0.14) 

N=9 0.92(0.13) 0.92(0.11) 0.82(0.13) 0.82(0.12) 
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    The PCC, bias and LOA of the clinical evaluation metrics comparing automated 

segmentation results with results from manual segmentation are reported in 

Table.3.4 and Figure.3.5. For both LVEF and LVM assessment, the proposed SAUN 

network achieves the highest PCC, the smallest bias and LOA. Table.3.5 summarizes 

the significance test results between SAUN and the other state-of-the-art methods on 

LUD, all the P-values are smaller than 0.05, which confirms the significantly better 

results of SAUN compared to the other methods. 

    Figure.3.6 illustrates examples of segmentation results obtained by automated 

SAUN method and conventional manual method from randomly selected cases from 

the test data. It shows that the automated results are highly similar to the manual 

reference at both ED and ES phases. 

Table.3.4. Results of clinical evaluation metrics from all networks against the reference. (1) 

U-Net: basic U-Net without localization, (2) YUN: combine YOLO for localization and 

basic U-Net, (3) SUN: SSM with N=3 as the input of basic U-Net, (4) SegNet: basic 

SegNet without localization, (5) SAUN: SSM with N=3 as the input of proposed SAUN 

network. 

 

Table.3.5. Wilcoxon signed-rank test based significance test results on LUD dataset. (1) 

W(SAUN,U-Net): Wilcoxon signed-rank test’s P-value between SAUN and U-Net, (2) 

W(SAUN,YUN): Wilcoxon signed-rank test’s P-value between SAUN and 

YUN(YOLO+U-Net), (3) W(SAUN,SUN): Wilcoxon signed-rank test’s P-value between 

SAUN and SUN(SSM stack + U-Net ), (4) W(SAUN, SegNet):Wilcoxon signed-rank test’s 

P-value between SAUN and SegNet. 

1.36E-05 means 1.36×10-5. 

 

 LVEF LVM 

Networks PCC (%) Bias ± LOA (%) PCC (%) Bias ± LOA (g) 

U-Net 0.969 2.22±5.89 0.957 3.11±28.60 

YUN 0.972 0.52±5.76 0.971 1.51±20.29 

SUN 0.974 0.22±5.36 0.976 1.47±19.21 

SegNet 0.967 3.34±6.01 0.954 4.51±31.57 

SAUN 0.982 0.11±4.62 0.985 0.58±14.24 

 Chamber Myocardium 

 Dice HD MCD Dice HD MCD 

W(SAUN, U-Net) 1.36E-05 7.09E-12 0.0129 2.86E-09 1.55E-12 6.22E-04 

W(SAUN, YUN) 5.21E-10 5.27E-09 1.37E-08 2.09E-12 1.45E-11 3.00E-10 

W(SAUN, SUN) 1.81E-10 6.70E-03 4.87E-07 4.10E-09 2.56E-04 3.24E-07 

W(SAUN, SegNet) 1.07E-08 1.36E-12 6.56E-07 1.29E-11 7.99E-13 1.19E-06 
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Figure.3.6. Examples of the segmentation results from the SAUN method. The left two 

columns show ED images, and the right two columns show images of ES phase. For each 

phase, images at the apex, middle and base levels are shown. 

3.5.3  Results in ACDC 

We also compared our method with other approaches on the public ACDC 2017 

dataset, which includes short-axis Cine MR exams of 100 patients with manual 

contours. As in this dataset, manual contours are only defined in the ED and ES 

phases; all results are based on those two phases only. 

    Table.3.6 summarizes the segmentation results for the ACDC dataset. The best 

segmentation results on both ED and ES phases are obtained using the SAUN 

method. In Table.3.7 and Figure.3.7, the PCC, bias and LOA are presented and 

illustrated for the comparison of the clinical parameters. It shows that the prediction 

results are highly correlated to the reference with a PCC of 0.985 for LVEF and 

0.981 for LVM. The Bland-Altman analysis illustrated in Figure.3.7 reveals a bias 

for LVEF and LVM, which is close to zero, while the LOA is less than 5% for LVEF 

and less than 6 g for LVM. 
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Table.3.7. Results of clinical evaluation metrics from all networks against the reference.  

(1) U-Net:basic U-Net without localization, (2) YUN: combine YOLO for localization and 

basic U-Net,  (3) SUN: SSM with N=3 as the input of basic U-Net, (4) SegNet: basic 

SegNet without localization,  (5) 3D U-Net: basic 3D U-Net without localization (6) 

SAUN: SSM with N=3 as the input of proposed SAUN network. 

 

Table.3.8 reports almost all the P-values between SAUN and U-Net, SegNet and 3D 

U-Net on ACDC dataset are smaller than 0.05, which confirms there is a significant 

improvement of SAUN compared to the other state-of-the-art methods. Figure.3.8. 

shows the example segmentation results of two randomly selected cases from the 

testing set. 

 
Figure.3.8. Examples of segmentation from the SAUN method from two randomly selected 

cases from the ACDC dataset. The left two columns show ED images, and the right two 

columns images of ES phase. For each phase, images at the apex, middle and base levels 

are shown. 

 LVEF Myo Mass 

Networks PCC Bias±LOA PCC Bias±LOA 

U-Net 0.956 7.40(12.06) 0.965 6.06(9.51) 

YUN 0.972 2.04(15.64) 0.974 2.60(7.08) 

SUN 0.962 0.29(11.09) 0.953 -2.69(10.56) 

SegNet 0.947 8.17(11.59) 0.958 9.26(10.97) 

3D U-Net 0.948 9.51(17.61) 0.963 5.37(8.96) 

SAUN 0.985 2.39(4.61) 0.981 -0.42(5.74) 
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3.6 Discussion 

To explore more spatiotemporal information for automatic cine MRI segmentation, 

we proposed two stack models to construct a multi-channel architecture, then 

introduced a segmentation network based on a stack attention mechanism to weight 

the feature maps from different channels. The method was evaluated on an internal 

and a public dataset demonstrating competitive results compared other typical CNN 

networks. 

3.6.1. Multi-Channel Architecture Comparison 

Our results demonstrate that, when the spatial stack was used to combine the target 

slice and its neighboring slices from the same phase together as the input of the 

network, the performance improved in the testing data. The segmentation results 

were found to be sensitive to the dimension of the spatial stack model. For both 

spatial and temporal stack the optimal value for the dimension parameter N was 

found to be 3. However, the use of temporal stack had a negligible impact on the 

cardiac segmentation results. It also can be observed that all of the evaluation metrics 

from the spatial stack and SAUN are much better than those predicted from basic U-

Net and SegNet whose input is a single 2D image, which illustrates the spatial stack 

model can provide more useful information than a single MRI slice and temporal 

stack. The images in the temporal stack are similar to each other and provided 

comparable features for the network. Whereas, the images from the spatial stack vary 

obviously with the heart region, and when combining the target slice and its 

neighboring spatial slices together as the input of the network, the spatial stack 

contains more information about position, size and shape of the heart.  

    However, including more slices in the stack does not necessarily result in better 

segmentation results. This was clearly demonstrated by the multi-channel 

architecture comparison experiment, which showed that when the parameter N was 

set to a value higher than 3, which implies introducing more spatiotemporal 

information, the performance degraded. In addition, the limited difference between 

the stack network and 2D network is only at the first convolution layer. The stack 

network regards a (W×L×N) volume as an input, and the 2D network accepts a single 

slice (W×L×1) as an input, while the other parts of the network are the same, which 

leads to the stack networks having more parameters only at the first convolution 

layer. 

    Unlike the stack model transferring stack input into multiple 2D feature maps, 

Çiçek [21] and Perslev [22] proposed a 3D network for the segmentation. A 3D 

network will introduce more parameters to extracts the depth-wise features through 

the entire network than 2D and stack networks. During the training process, in order 

to fit the scan volume in memory, Arjun [14] set the batch size to 1, resulting in less 
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stable feature regularization. Other researchers set the number of filters at the initial 

convolution layers into a low value to reduce the number of parameters, but a lower 

number of filters will likely contribute to inferior feature representation and in turn 

cause less accurate segmentation. Another disadvantage of repeated pooling and 

convolution operation is the loss in spatial information in cases with fewer slices. 

Whereas, the spatial stack network can maintain the spatial information and keep the 

approximately same number of parameters as a 2D network resulting in improved 

segmentation performance. 

3.6.2.  Effect of stack attention 

SUN achieved better performance than YUN in LUD; however, in ACDC SUN did 

not get as good results as YUN. Because the slice gap (5mm or 10mm) in ACDC is 

larger than in LUD (2mm), the recognizable variance between the spatially 

neighboring images, such as the shape, size or outline of LV is larger in ACDC, 

which will confuse the network. Meanwhile, when we combine neighboring slices 

having imbalanced labels to build the spatial stack, the proportion of the background 

will increase, compared with a single 2D image, which results in the spatial stack 

generating more data noise. This issue is overcome by employing the proposed 

attention mechanism which weighs and fuses the feature maps of different channels 

from the spatial stack and balances the noise. 

    During fusion of the features, the features from the target slice should be regarded 

as the primary components, and the others from the neighboring slices should be 

considered as the additional information. In the stack attention mechanism, the target 

slice serves as a guideline to keep the primary features, and the global pooling is 

used to compute the weights of different channels to select the feature maps 

generated from the target slice. Therefore, the stack attention can not only reserve 

the primary feature information but also balance the importance of different channels 

to pick up the more important maps. Figure.3.9 illustrates the process of SAUN 

method extracting the feature maps from a random sample taken from the LUD data 

set. The first row illustrates the features for the LV chamber, and the second row is 

the features for the myocardium. The first column is one test case, the last column is 

the ground truth segmentation, and the middle four columns represent feature maps 

from the low, middle, high level and final layer. 

    It can be observed from the performance of Dice in LUD that the segmentation 

predicted by SAUN for the apical level is much better than the other approaches., 

When comparing the results from SUN and SAUN, it can be found that the LOA 

from the SAUN is further improved. The clinical evaluation results in ACDC 

illustrate that the PCC, bias and the limit of agreement computed by SUN is inferior 

compared to the other networks. The evaluations predicted by SAUN achieve best 
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with the attention mechanism. The Bland-Altman plots show almost all of the 

subjects from LUD and ACDC distribute between the upper bound and lower bound, 

which confirms that in the clinical measures the automated method is almost 

unbiased to the manual results. The experiments demonstrate that the proposed stack 

attention mechanism performs well in filtering out data noise during integrating 

neighboring spatial information, weighting and confusing the feature maps of 

various levels as well.  

 
Figure.3.9. Feature map visualization of SAUN. There are 42 convolutional layers in 

SAUN, we did the visualization for each convolutional layer. The first and last columns are 

the original image and the ground truth, the other four columns represent the feature maps 

from low, middle, high levels (from 3rd, 18th, 32nd convolutional layer) and the output of 

the final layer. 

    Our proposed method has several limitations. It ignores the right ventricle (RV) 

and only provided segmentation for the left ventricle and myocardium. If more 

annotation information about the RV is provided for the network, the segmentation 

results could become more accurate. In the current implementation, we separately 

trained the localization and segmentation networks. As for both tasks, the MR image 

features need to be explored; integration of both tasks into a single network would 

result in improved efficiency of the segmentation algorithm.  

3.7 Conclusion 

In this work, we proposed a Stack Attention U-Net based method for automatic LV 

segmentation in short-axis cine MRI and confirmed its benefits in integrating more 

information from neighboring spatial images by employing an attention mechanism 

to weight each channel of the feature maps. The experimental results demonstrate 

that the proposed approach exceeds existing state-of-the-art segmentation methods 

and verify its potential clinical applicability. 
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Abstract 

Quantitative assessment of cardiac function requires accurate segmentation of 

cardiac structures. Convolutional Neural Networks (CNNs) have achieved immense 

success in automatic segmentation in cardiac magnetic resonance imaging (cMRI) 

given sufficient training data. However, the performance of CNN models greatly 

degrade when the testing data is from different vendors or different centers. In this 

paper, we introduce the use of image registration to propagate annotation masks from 

labeled images to unlabeled images as to enlarge the training dataset. Furthermore, 

we investigated various input modalities including 3D volume, single-channel 2D 

image, multi-channel 2D image constructed from spatial and temporal stack to 

extract more features to improve do-main generalization in cMRI segmentation. We 

evaluated our method in M&Ms-2 challenge testing data 

(https://www.ub.edu/mnms-2/), achieving averaged Dice scores of 0.925, 0.919 and 

Hausdorff Distance of 10.587 mm, 6.045 mm in right ventricular segmentation in 

short-axis view and long-axis view respectively.  
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4.1 Introduction 

In clinical routine, cardiac magnetic resonance imaging (cMRI) is considered a 

standard reference for the diagnosis of cardiac disease. Accurate segmentation of 

cardiac structures such as left ventricle (LV), myocardium and right ventricle (RV) 

is essential to quantitatively assess the cardiac function. Traditional manual 

segmentation method not only is time-consuming but also prone to inter-rater 

experience.  

    In recent years, deep learning based automatic segmentation approaches have been 

achieved immense success in cardiac segmentation. Tran et al. was the first to 

employ the fully convolutional neural (FCN) network  for LV and RV segmentation 

in short-axis MRI [1]. Poudel proposed a recurrent FCN network ensembling the 

spatial information for LV segmentation [2]. However, the performance of most of 

those deep learning based models degrade dramatically when the trained model is 

applied directly on other unseen datasets from different centers or vendors. 

Differences in image protocols, disease characteristics, scanner-specific bias and the 

other factors remain even after careful pre-processing [3]. In addition, the RV has a 

more complex shape and border characteristics compared to the LV. Hence, the 

M&Ms-2 challenge is motivated to build a method to segment the RV using multi-

center, multi-disease and multi-view cMRI data. 

    The most straight forward approach to tackle this problem is to collect and 

annotate data from multiple centers, vendors and patient pathologies. Tao used a 

large heterogeneous data with 41,593 images from different centers and different 

vendors to train a CNN model and achieved a good generalization [4]. Chen 

demonstrated that applying data augmentation strategies on a single-site single-

scanner dataset could improve the performance on an unseen dataset across different 

sites or scanners [5]. Based on those studies, we hypothesize that a large-scaled 

pooling data from different domains could improve a model’s performance on an 

unseen dataset. Additionally, in the conventional CNN models, the information 

derived from the neighboring images is usually ignored. Hence, we introduced two 

stack model to extract the spatiotemporal features to improve the performance.   

    In this paper, given limited data, we investigated several methods to generate more 

training data and extract more features including 1): The use of image registration to 

propagate annotation masks to unlabeled phases 2): Introducing the spatial and 

temporal neighboring images to construct a multi-channel 2D image to integrate 

more spatiotemporal information for the RV segmentation task.  
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4.2 Data  

Table.4.1. Description of training, validation and testing dataset 

The M&Ms-2 challenge provides 360 cases (160 for training, 40 for validation and 

160 for testing) in both short-axis (SA) and long-axis (LA) views from four different 

centers, acquired with three vendors (General Electric, Philips and Siemens). As 

shown in Table.4.1, except the normal subjects, there are five pathologies in the 

training dataset, two pathologies are not present in the training dataset but only in 

the validation and testing dataset. In addition, only end-diastolic (ED) and end-

systolic (ES) phases in the training data are annotated by experienced experts, 

including LV, RV and left ventricular myocardium (MYO). Although this challenge 

focused on the RV segmentation, in our experiments, LV and MYO annotations were 

also used to constrain the RV segmentation. 

4.3 Method 

4.3.1. Registration 

In the available dataset, only the ED and ES phases are labeled, while the other 

phases are continuous in time consistent with the ED and ES phases. All the phases 

from the same case have an almost identical intensity distribution, which will 

alleviate the errors caused by inter-subject variability [6]. Hence, we used intensity-

based registration method to propagate the labels, regarding the ED and ES as the 

template. The progress is described in Figure.4.1. Given three phases (ED, ES and 

unlabeled), the ED and ES are firstly registered to the unlabeled phase, generating 

two geometric transformation matrixes named ES-Tf and ED-Tf, then the 

transformation matrix with smaller norm was used to propagate the mask. Matlab 

inbuilt functions imregtform and imwarp were used to implement the registration 

Pathology 
Num. of 

training 

Num. of 

validation 

Num. of testing 

Normal subjects 40 5 30 

Dilated Left Ventricle 30 5 25 

Hypertrophic 

Cardiomyopathy 
30 5 25 

Congenital 

Arrhythmogenesis 
20 5 10 

Tetralogy of Fallot 20 5 10 

Interatrial Communication 20 5 10 

Dilated Right Ventricle 0 5 25 

Tricuspid Valve 

Regurgitation 
0 5 25 

Total 160 40 160 
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[11]. Mean square error (MSE) and Affine were set as the similarity metric and 

transformation type. 

 
Figure.4.1. Registration method to generate a mask for a unlabeled phase in SA view. 

4.3.2. Input modality of network 

A illustrated in Figure.4.2 a short-axis cine MRI scan contains multiple slices and 

multiple phases. Images from the same slice level describe a cardiac cycle, while 

images from the same phase describe the complete heart structure. In conventional 

methods [4,5], each single-channel 2D image or a 3D volume with the whole images 

from the same phase is usually considered as the input of a network. Although using 

a single-channel 2D image as the input could enlarge the training dataset, a 3D 

volume can provide more spatial information for the segmentation than using a 2D 

image. As a compromise, a spatial stack or temporal stack model, as proposed in our 

previous work [7], can be used to build a multi-channel 2D image which can provide 

accompanying spatial or temporal information respectively. 

Spatial Multi-channel 2D image (SMI). The slices from the same phase are used 

to construct a SMI. As illustrated in Figure.4.2, three 2D images from Phase 9 Slice 

5,6,7 are used to build a 3-channels SMI for the image of Slice 6 Phase 9. 

Temporal Multi-channel 2D image (TMI). In a similar way, a TMI consists of 

several neighboring phases of a particular slice. As shown in Figure.4.2, images from 

Slice 6 Phase 8,9,10 are used to construct a 3-channels TMI for the image of Slice 6 

Phase 9. 
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Figure.4.2. An example of constructing a spatial multi-channel 2D image and temporal 

multi-channel 2D image. The image in the red box is the target image which will be 

segmented. The three spatial neighboring images in the blue box is called an SMI with 

three channels, where the top one is the first channel, the middle one is the second channel 

and so on. The TMI consists of three temporal neighboring images in the dash-line box, the 

left one is the first channel and the right is the last channel. 

    Table.4.2 shows a brief summary of the training data size in SA view after 

combining the registration, SCI (single-channel 2D image), SMI and TMI. The 

original MnMS-2 dataset contains 320 3D volumes and 2,704 2D images with 

labeled annotation for training, when applying the registration approach to propagate 

the annotation masks, the data size of 3D volume and single-channel 2D image 

increased to 4,152 and 32,330 respectively. The LA-view images were acquired as 

single slice, resulting in the LA images being multi-phase single-slice. The 3D 

volumes and SMI cannot be constructed in LA view. Hence, the model achieving the 

best performance in SA view was used as the pre-trained model for the LA view 

instead of using different input modalities. 

Table.4.2. Training dataset description in SA MRI. SCI: single-channel 2D image. The 

number of channel in SMI and TMI is set to 5. 

Data modality Used registration Training Data Size 

SCI No 2,704  

SCI Yes 32,330 

3D volume No 320 

3D volume Yes 4,152 

SMI No 2,704  

SMI Yes 32,330 

TMI No 2,704  

TMI Yes 32,330 
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4.3.3. Network Architecture 

nnUNet [8] based on the U-Net architecture is a fully automatic and out-of-the-box 

medical image segmentation framework. To improve the robustness of domain shift 

in cardiac MRI, nnUNet_MMS [9] was specially designed by investigating various 

data augmentation techniques and ranked first at the first edition of M&Ms [10]. 

Hence, we introduced nnUNet as the baseline, and built our method upon 

nnUNet_MMS. All the models in this study are based on a 2D network. The data 

augmentation methods are the same in nnUNet_MMS model. 

    Since the propagated masks are not as accurate as the manual masks, those pseudo 

data was used to pre-train the model and the manually labeled data was applied to 

fine-tune the pre-trained network. The results are reported using Dice and Hausdorff 

Distance (HD). All experiments were executed on an NVIDIA Quadro RTX 6000 

GPU with 24 GB internal memory.  

4.4 Experiments and Results 

4.4.1. Validation Set Results 

We first evaluated the performance of different networks with different input 

modalities in the SA view from the validation dataset. Then we compared the results 

in the LA view with or without pre-training from SA view. 

Table.4.3. Segmentation results generated from different networks with different input 

modalities in the validation dataset in SA view. 

    Table.4.3 shows that using 3D volume without registration processing as the input, 

nnUNet_MMS achieved a slightly better dice than nnUNet, but yielded worse HD. 

However, when the registration method is applied to generate more 3D volume data 

to pre-train nnUNet_MMS, it achieved the best performance with a Dice of 0.922 

and HD of 9.472 mm. It also can be observed that the segmentation results derived 

from the two stack models (SMI and TMI) are better than that from SCI, which 

Network Input 
Used registration data 

to pre-train network   
Dice HD (mm) 

nnUNet(Baseline) 3D volume No 0.912 10.318 

nnUNet_MMS 

 

3D volume No 0.915 10.475 

3D volume Yes 0.922 9.472 

SMI No 0.919 9.577 

SMI Yes 0.920 9.539 

TMI No 0.917 10.343 

TMI Yes 0.914 12.221 

SCI No 0.915 11.354 

SCI Yes 0.914 10.515 
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confirmed that SMI and TMI could provide more spatial and temporal information 

for the segmentation task.  

    The results in LA views presented in Table.4.4 illustrates that the performance 

increased by 0.01 and 0.7 in terms of Dice and HD as a result of transferring the pre-

trained model from SA view to LA view. Figure.4.3 and Figure.4.4 show some 

segmentation examples derived from the best model. 

Table.4.4. Segmentation results in the validation dataset in LA view. 

 

 
Figure.4.3. A visual example from the apex, middle and base levels at ED (left) and ES 

(right) phases in SA view. 

 
Figure.4.4. A visual example  at ED and ES phase in LA view. 

Network Transfer from SA Dice HD 

nnUnet(Baseline) No 0.910 6.004 

nnUNet_MMS 
No 0.908 6.081 

Yes 0.920 5.343 
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4.4.2. Testing Set Results 

We chose the model which performs best in the validation data as the final model. 

As the testing dataset is hidden by the organizer, we submitted our final model to the 

organizer and evaluated the performance online. Table.4.5 shows the details of our 

method on the hidden test data. In the SA view our method performed best in 

congenital arrhythmogenesis yielding 0.949, 8.45 mm for Dice and HD. The best 

results in LA view are generated from the normal subjects with 0.935 and 5.006 mm 

for Dice and HD. In addition, two pathologies (dilated right ventricle and tricuspid 

valve regurgitation) are not present in the training data but only in the testing data. 

The results on those two pathologies reveal that our approach obtains promising 

performance on an unseen pathology. 

Table.4.5. Segmentation results on 8 pathologies of the hidden test set. The mean and 

standard deviation are reported. 

4.5 Conclusion 

In this paper, we investigated label propagation and multiple input modalities to 

increase the robustness in right ventricle segmentation from multi-disease, multi-

view and multi-center cMRI data. To enlarge the training dataset, we explored the 

use of image registration to propagate annotation masks to unlabeled phases. We 

further systematically investigated the effect of using different input modalities 

including 3D volumes, single-channel 2D image, spatial stack and temporal stack. 

The results illustrate that spatial stack and temporal stack provide more information 

for the segmentation task, and using 3D volume with label propagation could further 

improve the generalization ability in a unseen dataset. 

Declaration. The authors of this paper declare that the segmentation methods 

implemented in this challenge has not used any pre-trained models nor additional 

MRI datasets other than those provided by the organizers. 

 Dice HD (mm) 

Pathology SA LA SA LA 

Normal subjects 0.922±0.050 0.935± 0.035 8.999±4.540 5.006±2.657 

Dilated Left Ventricle 0.922±0.084 0.915± 0.052 13.257±13.134 5.944±3.547 

Hypertrophic Cardiomyopathy 0.934±0.057 0.932± 0.033 10.214±5.842 5.343±2.916 

Congenital Arrhythmogenesis 0.949±0.028 0.934± 0.031 8.450±4.838 5.125±1.738 

Tetralogy of Fallot 0.920±0.034 0.914± 0.037 14.157±8.232 7.404±3.673 

Interatrial Communication 0.910±0.048 0.906±0.066 12.045±4.189 8.021±6.089 

Dilated Right Ventricle 0.924±0.045 0.897± 0.121 10.397±5.223 7.064±5.091 

Tricuspidal Regurgitation 0.923±0.040 0.914± 0.039 9.236±3.675 6.112±3.349 

Overall 0.925±0.055 0.919±0.063 10.587±7.241 6.045±3.824 
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Abstract 

Background: 4D flow MRI enables assessment of cardiac function and intra-

cardiac blood flow dynamics from a single acquisition. However, due to the poor 

contrast between the chambers and surrounding tissue, quantitative analysis relies 

on the segmentation derived from a registered cine MRI acquisition. This requires 

an additional acquisition and is prone to imperfect spatial and temporal inter-scan 

alignment. Therefore, in this work we developed and evaluated deep learning-based 

methods to segment the left ventricle from 4D flow MRI directly. 

Methods: We compared five deep learning-based approaches with different network 

structures, data pre-processing and feature fusion methods. For the data pre-

processing, the 4D flow MRI was reformatted into a stack of short-axis view slices. 

Two feature fusion approaches were proposed to integrate the features from 

magnitude and velocity images. The networks were trained and evaluated on an in-

house dataset of 103 subjects with 69,619 2D images and 3090 3D volumes. The 

performance was evaluated using various metrics including Dice, average surface 

distance (ASD), end-diastolic volume (EDV), end-systolic volume (ESV), left 

ventricular ejection fraction (LVEF), kinetic energy (KE) and flow components. The 

Monte Carlo dropout method was used to assess the confidence and to describe the 

uncertainty area in the segmentation results. 

Results: Among the five models, the model combining 2D U-Net with late fusion 

method operating on short-axis reformatted 4D flow volumes achieved the best 

results with Dice of 84.51% and ASD of 3.13 mm. The averaged absolute error 

between manual and automated segmentation for EDV, ESV, LVEF and normalized 

KE was 20.27 ml, 17.21 ml, 7.41% and 0.54 µJ/ml, respectively. Flow component 

results derived from automated segmentation showed high correlation and small 

average error compared to results derived from manual segmentation.  

Conclusions: Deep learning-based methods can achieve accurate automated LV 

segmentation and subsequent quantification of volumetric and hemodynamic LV 

parameters from 4D flow MRI without requiring an additional cine MRI acquisition. 
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5.1  Background 

Four-dimensional flow magnetic resonance imaging (4D flow MRI) provides time-

resolved three-dimensional imaging of cardiac geometry and multi-directional intra-

cardiac blood flow velocity from a single acquisition [1]. Several quantitative left 

ventricular (LV) hemodynamic parameters can be derived from the acquired data, 

including intra-cardiac kinetic energy (KE), vorticity and functional flow 

components [2, 3]. Quantitative assessment of these parameters relies on accurate 

segmentation of the LV cavity. However, the contrast between the blood pool and 

the surrounding tissue is typically extremely poor in the acquired magnitude images 

of a 4D flow acquisition. For this reason, the segmentation is usually performed 

using the images of an additionally acquired balanced Steady State Free Precession 

(b-SSFP) cine MR acquisition [4, 5]. Based on the known spatial relation between 

the two acquisitions, the obtained segmentation can be transferred to the domain of 

the 4D flow acquisition. Unfortunately, due to breath-hold inconsistency and 

differences in heart rate, the cine MR images are prone to a spatial and temporal 

misalignment resulting in sub-optimal segmentation of the 4D flow acquisition. 

Therefore, it would be advantageous when the segmentation could be performed 

directly from the 4D flow acquisition, not requiring any additional acquisition.  

    Bustamante proposed a multi-atlas registration method to automatically generate 

a segmentation of the entire thoracic cardiovascular system using eight 3D phase-

contrast MR angiogram volumes as atlases [6]. A disadvantage of this approach is 

the high computational cost of the required image registration. In recent years, deep 

learning-based segmentation methods have been proposed and achieved immense 

success in medical image segmentation tasks. U-Net, consisting of a contracting and 

expanding path, has demonstrated excellent performance in segmentation of MR 

imaging data of the heart, brain and various other organs [7]. Benefiting from these 

convolutional neural networks (CNNs), a few studies reported the use of deep 

learning for the segmentation of 4D flow MRI. Berhane et al. developed a 3D U-Net 

with DenseNet-based dense blocks to segment the aortic arch from 4D flow MRI [8]. 

Based on U-Net and attention gate mechanism, Wu demonstrated that incorporating 

the information from the combination of magnitude and velocity images results in 

improved performance in LV myocardium segmentation in 4D myocardial velocity 

mapping MRI [9]. Corrado et al. applied a fine-tuned CNN model trained on cine b-

SSFP MRI data and used registration to derive segmentation of the 4D flow MRI 

[10]. However, this approach relies on the availability of a cine MRI acquisition. 

Bustamante et al. recently reported a 3D U-Net based method for segmentation of 

the cardiac chambers and great thoracic vessels directly from 4D flow MRI 

magnitude images, ignoring the velocity images [11]. An excellent geometric 

agreement with manual segmentation results was reported (DICE ≥ 0.9) and also 

good agreement of the derived quantitative results, such as end-diastolic (ED) and 
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and-systolic (ES) volumes and blood flow kinetic energy. However, since the 

employed 4D flow acquisition was acquired directly after gadolinium contrast 

administration it remains unknown whether the presented method performs equally 

well on non-contrast-enhanced imaging data. A CNN-based segmentation method 

that takes both magnitude and velocity images as input may yield better 

segmentation performance than one only using magnitude images.  

    Our main contributions are summarized as follows: (1) We evaluated multiple 

strategies to take advantage of the magnitude and velocity images of the 4D flow 

MRI acquisition. (2) We compared the performance of five different U-Net-based 

networks. (3) We used a Monte Carlo dropout method to evaluate the segmentation 

uncertainty of the implemented CNN models. 

5.2 Methods 

5.2.1 Study cohort and imaging protocol 

The dataset used in the study included 103 subjects, including 75 post-myocardial 

infarction (MI) patients (15 females, 60 males; mean age 69±12 years, range 40-94) 

and 28 healthy volunteers (11 females, 17 males; mean age 48±17, range 23-80). 

The study was approved by the local medical ethical committee of the University of 

Leeds, UK, and all participants provided written informed consent. All subjects 

underwent a comprehensive cardiac MR imaging protocol on a 1.5T MR system 

(Philips Healthcare), including cine MR imaging in standard cardiac views and 4D 

flow MR with whole-heart coverage.  

    A short-axis cine stack was acquired with a slice thickness of 8-10 mm and an 

inter-slice gap of 2 mm using 10-17 slices to cover the LV from the apex to the base. 

Imaging was performed during breath-holding in end-expiration. Other imaging 

parameters were a field of view (FOV) 300×300 mm2 to 470×470 mm2, pixel spacing 

0.83-1.19 mm, echo time (TE) 1.27-1.62 ms, repetition time (TR) 2.55-3.25 ms. 

Using retrospective gating 30 phases were reconstructed to cover a full cardiac cycle. 

4D flow MRI was acquired using an echo-planar imaging (EPI) accelerated sequence 

with retrospective electrocardiogram gating during free-breathing without using 

respiratory motion compensation. The 3D volume of the acquisition was planned in 

an oblique orientation with a voxel size of 3×3×3 mm3 , a field of view of 370-400 

× 370-400 mm2 and 33-52 reconstructed slices to cover the whole heart. The 

orientation of the acquired 3D volume varied from subject to subject and was 

adjusted such as to encompass the complete heart and proximal aorta using a minimal 

number of slices. The number of reconstructed cardiac phases was 30. Other scan 

parameters of the 4D flow MRI acquisition were TE 1.9-3.8 ms, TR 4.8-13.9 ms, 

flip angle 10˚ and velocity encoding (VENC) 150 cm/s. A more detailed description 

of the scan parameters can be found in previous work [12]. In patients, the 4D flow 
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acquisition was added to a regular clinical scan protocol, including late-gadolinium 

enhancement (LGE) imaging. Typically, the 4D flow acquisition was obtained post-

contrast (Magnevist, 0.2 mmol/kg) in the waiting period between contrast 

administration and LGE imaging. 

5.2.2 Ground truth generation  

 
Figure.5.1. The procedure of ground truth generation. A: The mask of left ventricle was 

first annotated in the short-axis cine MRI. B,C: it was propagated to original 4D flow MRI 

using rigid registration method. D: Given the orientation of short-axis cine MRI, the raw 

4D flow MRI was resliced into short-axis view.  

One experienced observer semi-automatically defined the LV endocardial contours 

in all slices and phases of the short-axis cine stack using in-house developed Mass 

research software (Version V2017-EXP; Leiden University Medical Center, Leiden, 

the Netherlands). Following SCMR recommendations, papillary muscles and 

trabeculations were included within the defined contours in order to derive a 

consistent and time-continuous segmentation of the LV geometry. Correction for 

spatial misalignment, resulting from patient movement between the cine MR and 4D 

flow acquisition, was performed using rigid registration using Elastix software as 

previously described [13, 14]. Subsequently, we generated two types of LV blood 

pool masks for the 4D flow MRI acquisition. The first type of mask, further labelled 

as RAW, was generated by labelling the pixels of the original slices of the 4D flow 

acquisition as either blood pool or background according to the nearest labelled pixel 

in the short-axis cine acquisition. Due to the relatively low through-plane resolution 

of the short-axis stack and the varying orientation of the acquired 4D flow volumes, 

the resulting RAW masks frequently suffer from jagged boundaries and are less 

smooth compared to the original contours as defined in the short-axis stack. 

Therefore a second type of mask, further labelled as SAX, was generated by 

reformatting the volume of the 4D flow acquisition into a stack of short-axis slices. 
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Given the known short-axis orientation, the original 4D flow acquisition was resliced 

into a short-axis view using a slice spacing of 3 mm and a fixed number of 41 slices. 

The in-plane resolution was chosen to be equal to that of the cine short-axis stack 

and ranged from 0.83×0.83 mm2 to 1.19×1.19 mm2. Subsequently, the SAX mask 

was generated by labelling the pixels in the reformatted 4D flow images as either 

blood pool or background, following the same approach as for the RAW mask. The 

resulting blood pool regions are more smooth compared to the RAW mask regions 

and vary less in shape since all masks are defined in short-axis orientation. 

Accordingly, two ground truths are available for training and testing: GT-RAW for 

the original 4D flow data and GT-SAX for the resliced 4D flow data. Figure.5.1 

describes the procedure of the ground truth generation, illustrating the more irregular 

GT-RAW masks compared to the GT-SAX masks. After excluding the images 

without LV, the dataset contained 90,313 SAX 2D image pairs, 69,619 RAW 2D 

image pairs and 3,090 (103×30) 3D volumes. 

5.2.3 Networks 

    Table.5.1. Different methods with different networks and inputs. SAX indicates that the 

resliced data in the short-axis view was used as input to the network. RAW indicates that 

the raw 4D flow data was used as input. 

Method 
Input 

orientation 

Ground 

truth 
Network Input Size Output Size 

SAX2D SAX GT-SAX 2D U-Net (256,256,4) (256,256,1) 

RAW2D RAW GT-RAW 2D U-Net (256,256,4) (256,256,1) 

SAX3D SAX GT-SAX 3D U-Net (256,256,40,4) (256,256,40,1) 

RAW3D RAW GT-RAW 3D U-Net (256,256,32,4) (256,256, 32,1) 

SAX2DF SAX GT-SAX 
   2D Fusion 

Network 

(256,256,1), 

(256,256,3) 
(256,256,1) 

 

We compare five deep learning models to investigate the effect of data preprocessing, 

information fusion strategies and network structures on the segmentation 

performance. The five proposed methods are summarized in Table.5.1. RAW and 

SAX represent the two different input orientations. RAW used the original 4D flow 

data to train the network, either as a 3D volume, or as individual 2D slices and SAX 

used 4D flow data resliced into the short-axis orientation. Each 2D slice was center-

cropped to a fixed size of 256×256. The number of slices in the 3D volume of the 

original 4D flow data varies from 33 to 52 The middle 32 slices in the original 4D 

flow data are stacked as the input of RAW3D. In the resliced dataset with fixed 

number of 41 slices, the last 40 slices are stacked as the input of SAX3D after 

excluding the first slice, resulting in an even number of spatial input dimension, 

which is convenient for the repeated down-sampling operations with a factor of 2. 
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    SAX2D and RAW2D models are adapted from 2D U-Net, an encoder-decoder 

CNN model with long-skip connections. The architecture includes five-scaled 

resolutions. Each level contains two convolutional blocks composed of a 

convolution layer with kernel size of 3×3 followed by a instance normalization (IN) 

layer, a rectified linear unit (ReLU) and one dropout layer. In the encoder feature 

maps are down-sampled by a max-pooling layer with kernel size of 2×2, while in the 

decoder transposed convolution layers are used to increase the resolution to its 

original scale. The long-skip connections are used to concatenate the features from 

fine to coarse scales at each level. Finally, a convolution layer with kernel size of 

1×1, followed by a Sigmoid function, is used to generate the probability map. The 

final segmentation results are determined by choosing the class with the highest 

probability at each pixel. 

    RAW3D and SAX3D models employ a 3D U-Net architecture, which is used to 

investigate the performance of varying volumetric inputs. The 3D volume generated 

from each phase is considered as an independent input of 3D U-Net. Compared to 

2D U-Net, the kernel size of all convolution layers in 3D U-Net is set to 3×3×3. The 

3D U-Net introduced four max-pooling layers for the down-sampling operations. 

The kernel size of all pooling layers in RAW3D are set to 2×2×2. Whereas in 

SAX3D the first three pooling layers are set to 2×2×2 and last pooling layer is set to 

2×2×1 because the spatial dimension will be reduced to 5 after three down-sampling 

operations.  

    Magnitude and velocity images can be considered as different modalities 

providing different information for the segmentation. To fuse the information from 

these two modalities, we introduce two approaches named early fusion and late 

fusion, respectively. SAX2D, SAX3D, RAW2D and RAW3D use the early fusion 

method where the magnitude and velocity images are concatenated along the channel 

dimension as the input. Whereas SAX2DF uses the late fusion method. As illustrated 

in Figure.5.2, separate encoders are used to extract the features from these two 

modalities. Thereafter, features in the same level from two encoders are added 

together. The aggregated features in the bottleneck are up-sampled to the original 

resolution. The other multi-scale aggregated feature maps are then concatenated with 

the features up-sampled from the lower level. The structure of decoder used in 

SAX2DF is the same as that in 2D U-Net. 

    Dice loss and cross-entropy were jointly used as the loss function to train the 

models. All the experiments were implemented using Pytorch with the following 

parameters: batch size=50; learning rate=0.0001; optimizer=Adam. Five-fold cross-

validation was applied to assess the performance and the averaged values are 

reported. All the experiments were implemented on a machine equipped with an 

NVIDIA Quadro RTX 6000 GPU with 24 GB internal memory.  
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Figure.5.2. The network architecture of SAX2DF. SAX2DF separates magnitude and the 

three velocity images as two inputs and uses two encoders to extract the features from each 

input. The late fusion method us used to integrate those features. 

5.2.4 Evaluation metrics 

The performance of the automated methods was evaluated using segmentation 

accuracy, uncertainty score and volumetric and flow related clinical metrics. 

Segmentation Accuracy. Dice and average surface distance (ASD) were used to 

assess the segmentation accuracy. Dice measures the overlap between the prediction 

and the ground truth. ASD is the average of all the distances from all surface points 

on the boundary of the predicted region to the boundary of the ground truth, which 

can be described as formula (5.1) 

'

1 ' 1'

1
( ( , ') ( ', ))

S Sn n

p pS S

ASD d p S d p S
n n  

 


                            (5.1) 

where 2
' '

min( , ') || ' ||
p S

d p S p p


   is the minimum of the Euclidean distance between 

a point 𝑝 on surface S and the surface S′. Dice and ASD reported in this work are 

computed based on each 3D volume and averaged over all phases. 

Clinical metrics. End-diastolic volume (EDV), end-systolic volume (ESV), LV 

ejection fraction (LVEF) and kinetic energy (KE) were derived as clinical metrics. 

The KE was computed as formula 5.2 with 
blood  being the density of the blood 

(1.06g/cm3), 
voxelV  the voxel volume and v  the velocity magnitude of one voxel. The 
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total KE is the summation of the KE of each voxel within the LV region. The total 

KE values were indexed for LV EDV and averaged over the complete cardiac cycle. 

21

2
blood voxelKE V v                                             (5.2) 

    Additionally, three phasic KE parameters were derived: peak systolic, peak E-

wave and peak A-wave KE. The result of LV segmentation was also used for LV 

flow component analysis. Based on previously described methods by Eriksson et al 

the segmented LV blood pool at the ED moment was used to define seeding particles 

of size 3×3×3 mm3 and particle pathlines were derived using particle tracing in 

forward (until the next ES moment) and backward (until the previous ES moment) 

direction [4]. The particle position at the two ES moments was then used to classify 

the defined pathlines as either direct flow (DIR), delayed ejection flow (DEL), 

retained inflow (RET) or residual volume (RES). The relative size of each flow 

component was expressed as a percentage of the ED volume. The clinical parameters 

derived from automated LV segmentation were compared to the results derived of 

manual segmentation. 

Uncertainty Score. Segmentation of anatomical structures is inherently ambiguous 

especially near an object border which is not clearly defined due to the poor contrast 

or restriction imposed by the image acquisition. The uncertainty score can give some 

insights into the confidence of a model in its predicted segmentation results [15]. In 

case of a high uncertainty score, it is more likely that the segmentation result is 

inaccurate. Usually, a CNN model only produces a single segmentation map without 

any information to explain its confidence in its prediction. A high probability value 

in a segmentation map doesn’t imply a high confidence score. A model also can be 

uncertain in pixels with high probability. In order to investigate the segmentation 

uncertainty of the different models we applied the Monte Carlo (MC) dropout 

method [16] to quantify the model’s confidence in the segmentation result.  

    Generally during the testing phase, the dropout layers in the network are removed. 

The uncertainty score can be derived by preserving the dropout layers during testing 

while executing multiple inference runs. In our experiments the drop rate in the 

middle-level dropout layers was set to 0.5 and the testing was repeated 20 times 

resulting in 20 predictions denoted as ( 1,2, 20)iP i  . The uncertainty score can be 

derived using equation 5.3 where
20

1

1

20
i

i

P P


  .  

2 2log (1 ) log (1 )UQ P P P P                                            (5.3) 
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Figure.5.3. An example of segmentation probability and its corresponding uncertainty 

map. Left: Probability map derived from the last layer of RAW2D. Right: Corresponding 

uncertainty map derived from MC method. 

Figure.5.3 shows an example of a segmentation probability map and its 

corresponding uncertainty map. The uncertainty score for the pixels within the LV 

chamber is low, implying a high confidence of the models’ prediction, but due to the 

poor contrast between the heart chamber and myocardium the uncertainty near the 

ambiguous LV border with a corresponding probability varying from 0.4 to 0.6 is 

substantially higher. To compute the mean of uncertainty and to quantify the 

segmentation quality, we first computed the uncertainty score for the whole LV 

chamber where each pixel’s prediction probability is larger than 0.5. Then to 

highlight the higher uncertainty in the boundary region, we further computed the 

score for this area with a prediction probability ranging from 0.4 to 0.6. 

Statistical analysis. The correlation of the clinical metrics derived from the manual 

and predicted segmentation results were assessed using the Pearson correlation 

coefficient (PCC). Additionally, bias and limits of agreement (LOA, 1.96×standard 

deviation) were used to describe the agreement of prediction and ground truth.  

5.3 Results 

First, we compared the results derived by the five models on various evaluation 

metrics. Second, we explored the impact of the fusion methods on the uncertainty 

score. Lastly, we investigated the performance of the best model on the KE and flow 

components. 

5.3.1 Segmentation results 

Table.5.2 summarizes the segmentation performance derived from different models. 

SAX2DF achieved the best results with Dice of 84.51%, ASD of 3.13 mm and 

absolute error of ESV and LVEF of 17.21 ml, 7.41%, respectively. The best results 

in an absolute error of EDV and KE were obtained using the model of SAX2D, 

yielding an error of 19.96 ml and 0.41 µJ/ml, respectively.  
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    Due to the different ground truth masks used, a direct comparison of the 

performance using Dice and ASD derived from RAW and SAX data is not easily 

possible. Therefore, also clinical parameters were used to compare the performance 

of the models. Table.5.2 shows that SAX2D outperformed RAW2D and SAX3D 

performed better than RAW3D in all clinical metrics including EDV, ESV, LVEF 

and KE, demonstrating the models using images in short-axis view orientation can 

generate a better prediction.  

    We further compared the results derived from only using magnitude images 

(SAX2D-M and SAX3D-M) and combining magnitude and velocity images. The 

comparison was restricted to the models using the short-axis view data, since these 

models provided the best performance. Table.5.2 reveals that the Dice derived from 

models using the combination of magnitude and velocity data is 3% higher compared 

to the models using the magnitude images only. Adding velocity images as input to 

the model is clearly shown to be beneficial. The variation in Dice and ASD over the 

cardiac phase for each model is illustrated in Figure.5.4. All models achieved the 

best Dice and ASD in phases 1, 2 and 30 which is around the ED phase. The lowest 

performance is observed in the phases varying between phase 11-13, which is around 

the ES phase. These results demonstrate that LV segmentation from 4D flow data is 

more accurate in the ED phase than in the ES phase. 

    The PCC, bias and LOA of clinical evaluation metrics comparing manual with 

automatic segmentation results are reported in Table 5 3. Figure.5.5 and Figure.5.6 

show the scatter plots, including PCC and Bland-Altman plots of four clinical 

metrics. SAX2DF achieved the highest correlation of 90.34%, 92.09% and 75.83% 

for EDV, ESV and LVEF, respectively. The best PCC for KE was achieved using 

SAX2D method. Although the PCC in LVEF derived from all five methods are lower 

than 80%, the results in the other three metrics demonstrate a good linear correlation 

with the results derived from manual segmentation. Notably, all five models 

achieved a PCC for KE higher than 90%. Although there is a significant variation in 

the performance of EDV and ESV estimation derived from the different methods, 

the biases for those two metrics derived from SAX2D, RAW3D and SAX2DF are 

smaller than 10 ml. The smallest biases in EDV and ESV are 2.03 ml and 3.35 ml 

derived from SAX3D and SAX2DF, respectively. RAW2D achieved the worst 

performance, with a bias of 19.19 ml and 20.52 ml in EDV and ESV, respectively. 

RAW3D and SAX2DF achieved the smallest bias in LVEF and normalized KE with 

3.09% and 0.02 µJ/ml, respectively. 
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Figure.5.4. Average Dice and ASD results plotted over time (averaged over all subjects). 

The x-axis is the phase number, y-axis is the averaged Dice (upper) and ASD (bottom) 

derived from different models.  

 
Table 5-3. PCC and Bias of clinical metrics from the prediction against the reference. The 

best results are shown in bold. 

  SAX2D RAW2D SAX3D RAW3D SAX2DF 

PCC 

EDV(%) 89.44 86.51 88.69 87.97 90.34 

ESV(%) 91.47 80.61 85.51 79.48 92.09 

LVEF(%) 70.29 50.08 50.12 47.77 75.83 

KE(%) 98.63 92.58 92.82 93.51 94.32 

Bias ± LOA 

EDV (ml) 7.24±56.71 19.19±62.64 -2.03±57.94 -7.24±59.56 7.96±54.15 

ESV (ml) 8.31±46.62 -20.52±68.58 -11.39±58.88 -7.24±69.46 -3.35±45.75 

LVEF (%) 7.73±17.86 6.55±23.92 6.89±23.92 3.09±25.37 5.11±15.92 

KE(µJ/ml) 0.23±1.02 0.75±2.50 0.44±2.44 0.28±2.37 0.02±1.47 
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Figure.5.5. Correlation of clinical metrics derived from manual and automated segmentation. 

Each column represents one CNN model. The four rows denote four clinical metrics 

including EDV, ESV, LVEF and KE. For each plot, the x-axis is the measure derived from 

the manual segmentation and y-axis represents the results derived from automated prediction. 
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    Examples of 2D and 3D segmentation masks derived from the five models are 

shown in Figure.5.7.  

 
Figure.5.7. Examples of automated LV segmentation results in 2D and 3D. The first two 

rows are the results of 2D and 3D segmentation results. Green color represents the ground 

truth, blue color is the prediction, and red parts are the overlap between the prediction and 

ground truth. 

5.3.2 Uncertainty results 

Table.5.4 reports the averaged uncertainty scores both in the LV blood pool and the 

defined boundary area over 3090 phases (30 phases per subject, 103 subjects in total) 

derived from the five proposed models. SAX2DF achieved the lowest uncertainty 

scores with 0.12 and 0.75 in the whole LV and boundary area. SAX3D has lower 

uncertainty than SAX2D (0.13 vs. 0.15, 0.76 vs. 0.83). Similarly, RAW3D has a 

lower uncertainty than RAW2D (0.13 vs. 0.20, 0.77 vs. 0.82). The 3D models are 

shown to be more confident in its predictions than the 2D models. When comparing 

SAX2D and SAX2DF, it can be concluded that the late fusion method resulted in a 

lower uncertainty score. 

Table.5.4. The averaged uncertainty value derived from different defined areas. The LV 

chamber refers to the area with a probability larger than 0.5. Boundary area refers to the 

area with probability ranging from 0.4 to 0.6. 

5.3.3 Flow quantitative analysis 

SAX2DF is the best segmentation model among the proposed five models, 

according to the performance on segmentation accuracy, clinical metrics and 

uncertainty score. Therefore, we further investigated the performance of SAX2DF 

in quantifying KE and flow components. The low averaged error of indexed KE 

ranging from -0.03 mJ to 0.04 mJ and flow components varying from -4.58% to 3%, 

as reported in Table.5.5, shows a good agreement between the prediction and ground 

Area SAX2D SAX3D RAW2D RAW3D SAX2DF 

LV chamber  0.15±0.32 0.13±0.36 0.20±0.88 0.13±0.41 0.12±0.44 

Boundary area  0.83±0.29 0.76±0.54 0.82±0.66 0.77±0.28 0.75±0.17 
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truth. A detailed summary of the PCC of KE and flow components derived from the 

automatic and manual methods is illustrated in Figure.5.8.  
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    Figure.5.9 visualizes the result of LV flow component analysis derived from 

manual and CNN based segmentation in five subjects. The results demonstrate a 

good agreement between those two segmentation methods. More flow components 

visualization videos and segmentation result videos can be found in 

https://github.com/xsunn/4DflowLVSegmentation.  
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5.4 Discussion 

In this work, we developed and evaluated CNN-based methods for automatic 

segmentation and LV flow assessment from 4D flow cardiac MRI. The main 

findings of our study were (1) CNN models showed good performance in LV 

segmentation with an average Dice of 84.5% across 103 subjects with 90,313 

resliced 2D image pairs; (2) Data preprocessing has an impact on the segmentation 

results; (3) Combining the features from magnitude and velocity images together 

can benefit the segmentation performance in 4D flow MRI; (4) High correlation and 

low bias of EDV, ESV, KE and flow components analysis demonstrate CNN-based 

segmentation can provide reliable quantification of LV flow in 4D flow data. 

    Segmentation in 4D flow cardiac MRI is challenging due to the poor contrast 

between the heart chamber and its surrounding tissue. Few approaches have been 

proposed to overcome this challenge. Atlas-based methods [4] and registration-

based methods [10] are two prevailing traditional approaches. The atlas-based 

method relies on image registration to generate accurate transformation between a 

labelled atlas and the images. Registration-based segmentation methods rely on the 

registration between labelled cine MRI data and 4D flow data. Both of these 

methods require additional data and high computational costs due to the registration. 

Bustamente et al. [11] employed a 3D U-Net architecture for LV segmentation, but 

in their proposed method, only the magnitude images were used as input and 

information from velocity images were ignored. In this work, we compared five 

models named SAX2D, SAX3D, RAW2D, RAW3D and SAX2DF to segment the 

LV from 4D flow MRI without any additional cine MRI and we also investigated 

the impact of different data pre-processing approaches, feature fusion methods and 

model structure on the segmentation results.  

    The performance derived from our proposed method is not as good as that of 

Bustamente’s. The data cohort used in their work is much larger than ours; in our 

work, 2472 3D volumes are employed for training, which is significantly smaller 

than Bustamente's 5760 3D volumes. Meanwhile, our results are averaged over 3090 

3D volumes using five-fold cross-validation, whereas their results were directly 

derived from 1640 3D volumes. Furthermore, simply using the magnitude images 

as input allows them to introduce various data augmentation techniques to enlarge 

the training data. However, the conventional data augmentation methods such as 

rotation, Gaussian noise and transformation cannot directly work on our proposed 

approach because the velocity images are more complicated than the magnitude 

images. Therefore, compared to their work, we trained the model with fewer data 

but evaluated the performance on a larger data set. Since in Bustamente’s work all 

4D flow acquisitions were obtained post contrast injection in both patients and 

volunteers and navigator gating breathing motion was applied, it is expected that the 

image quality of the obtained magnitude images was higher in that study. 
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    For data preparation, given the known orientation, the original 4D flow MRI 

acquisition volume was resliced into short-axis slices. The raw data and resliced 

short-axis data served as two independent training data sets to train the networks. 

Improved segmentation results were derived when using the resliced short-axis data 

as the training data, demonstrating resliced short-axis data provided more accurate 

information for the segmentation, which could be explained by the more various 

shapes and ambiguous borders in the raw data when compared to the more 

consistent convex left ventricular shape in the short-axis view. 

    Considering magnitude and velocity images as two different modalities in 4D 

flow MRI, we proposed two approaches named early fusion and late fusion to fuse 

the information from these modalities. SAX2D, SAX3D, RAW2D and RAW3D 

employed early fusion by concatenating two modalities along the channel 

dimension as the input. While for the late fusion, SAX2DF employed two encoders 

to extract features from two modalities and then concatenated the features along the 

spatial dimension. A modestly improved performance was observed in SAX2DF 

when compared to the other methods, revealing that late fusion works better. We 

also compared the segmentation performance between 2D and 3D U-Net based 

methods. The results show that compared to SAX3D, SAX2D achieved better 

performance in all evaluation metrics. Constrained to the input spatial dimension, 

in SAX3D the kernel size of the final pooling layer was set to 2×2×1, resulting in 

the spatial features not being extracted completely. Moreover, a total of 3420 

resliced 3D samples (104 subjects, 30 phases in each subject) were used to train and 

test the 3D U-Net, which is much less than 91,182 2D samples. As a result, the 

smaller training data size may be the primary reason why SAX3D did not 

outperform the SAX2D model.  

    CNN models produce a pixel-level prediction without any knowledge about the 

confidence of the model in its predictions. In this work, we introduced the Monte 

Carlo dropout method to estimate the uncertainty of the model in its segmentation 

results. The uncertainty score assesses segmentation reliability and offers the 

quantification of error to increase trust into CNN models. The results showed that 

the most uncertain area in the prediction is near the LV endocardial boundary, which 

can be explained by the poor contrast in the magnitude images and also because of 

the low blood flow velocity near the LV wall. Segmenting the myocardium in 

addition to the LV blood pool may reduce the uncertainty but cannot eliminate the 

uncertainty. When analyzing the uncertainty scores derived from different models, 

it reveals that the 3D models (SAX3D and RAW3D) performed better than the 2D 

models (SAX2D and RAW2D). Because 3D models are able to extract more spatial 

information from the input than the 2D models. It can be observed that although 

SAX2DF is a 2D model, benefiting from the late fusion method, SAX2DF achieved 

the lowest uncertainty score among all five models. A further evaluation of the 
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results derived from the best model, SAX2DF, was performed by comparing the KE 

and flow components. The results shows a good agreement between the ground truth 

and prediction.  

    There are several limitations in our work. The major limitation is the lack of 

generalization of the proposed models. The data used in this study was acquired 

from one vendor and one center. Meanwhile, there is no publicly available 4D flow 

MRI dataset currently. Therefore the model might not generalize well to the other 

datasets from different vendors or centers. As Bai [17] pointed out, a CNN model 

can perform well in other datasets using fine-tuning or transfer learning. 

Additionally, exploiting advanced data augmentation methods utilizing domain 

knowledge is also crucial for model generalization and robustness [18]. However, 

due to the complicated structure of velocity images, commonly used data 

augmentation methods are not suitable for 4D flow data. A novel efficient late fusion 

based feature fusion method also needs to be investigated.  

5.5 Conclusions 

In conclusion, we developed multiple deep learning-based 4D flow MRI LV 

segmentation models that do not require additional cine MRI. The proposed CNN 

models were evaluated on a large in-house dataset, achieving good performance on 

several metrics. The results demonstrate that a model employing late fusion and 

trained on resliced short-axis view data generates the best performance for left 

ventricular segmentation in 4D flow MRI.  
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Chapter 6 Transformer based feature fusion for left 

ventricle segmentation in 4D flow MRI 
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Abstract 

Four-dimensional flow magnetic resonance imaging (4D Flow MRI) enables 

visualization of intra-cardiac blood flow and quantification of cardiac function using 

time-resolved three directional velocity data. Segmentation of cardiac 4D flow data 

is a big challenge due to the extremely poor contrast between the blood pool and 

myocardium. The magnitude and velocity images from a 4D flow acquisition 

provide complementary information, but how to extract and fuse these features 

efficiently is unknown. Automated cardiac segmentation methods from 4D flow 

MRI have not been fully investigated yet. In this paper, we take the velocity and 

magnitude image as the inputs of two branches separately, then pro-pose a 

Transformer based cross- and self-fusion layer to explore the inter-relationship from 

two modalities and model the intra-relationship in the same modality. A large in-

house dataset of 104 subjects (91,182 2D images) was used to train and evaluate our 

model using several metrics including the Dice, Average Surface Distance (ASD), 

end-diastolic volume (EDV), end-systolic volume (ESV), Left Ventricle Ejection 

Fraction (LVEF) and Kinetic Energy (KE). Our method achieved a mean Dice of 

86.52%, and ASD of 2.51 mm. Evaluation on the clinical parameters demonstrated 

competitive results, yielding a Pearson correlation coefficient of 83.26%, 97.4%, 

96.97% and 98.92% for LVEF, EDV, ESV and KE respectively. Code is available 

at github.com/xsunn/4DFlowLVSeg.  
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6.1 Introduction 

Quantitative assessment of left ventricular (LV) function from magnetic resonance 

imaging (MRI) is typically based on the use of short-axis multi-slice cine MRI due 

to its excellent image quality [1,2]. Recently, four-dimensional (4D) Flow MRI has 

been introduced, encoding blood flow velocity in all three spatial directions and time 

dimension. 4D Flow MRI can be used for detailed analysis of intra-cardiac blood 

flow hemodynamics, providing additional information over conventional cine MRI. 

The segmentation of the cardiac cavities is an important step to derive quantitative 

blood flow results, such as the total LV kinetic energy (KE) [3]. 4D Flow MRI 

generates four image volumes including a magnitude image and three velocity 

images, one for each spatial dimension. Figure.6.1 shows an example of magnitude 

and velocity images from one slice out of a 4D Flow MRI data set. The example 

highlights the extremely poor contrast between the heart chambers and the 

myocardium in the 4D Flow data. Therefore, most authors have used segmentations 

derived from co-registered short-axis cine MR in order to quantify ventricular blood 

flow parameters from the 4D Flow data. However, this relies on accurate spatial and 

temporal registration of the two MR sequences. Inconsistent breath-hold positioning 

may introduce spatial misalignment while heart rate differences will result in 

temporal mismatch between the acquisitions. The aim of the current work was 

therefore to develop an automated method for LV segmentation from 4D Flow MRI 

data, not requiring additional cine MRI data.  

       
Figure.6.1. A sample of cardiac 4D Flow data in short-axis view. The first image is the 

magnitude image, and the last three images are the velocities in x, y and z dimensions 

respectively. 

    Since U-Net [4] was proposed, convolutional neural networks (CNNs) have been 

predominant in the task of medical image segmentation. Many variants of U-Net 

have been proposed further improving the performance. For instance, nnU-Net [5] 

introducing automated self-configuring outperformed most existing approaches on 

23 diverse public datasets. Although those CNN based networks have achieved an 

excellent performance, restricted by the locality of convolutional kernels, they 

cannot capture long-distance relations [6,7].  

    Transformer is considered as an alternative model using its self-attention 

mechanism to overcome the limitation of CNN. Transformer was designed firstly for 
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natural language processing (NLP) tasks such as machine translation and document 

classification. More recently, Transformer-based approaches were introduced in 

medical image processing. TransUnet [8] applied a CNN-Transformer hybrid 

encoder and pure CNN decoder for segmentation. However, TransUnet still uses 

convolutional layers as the main building blocks. Inspired by the Swin Transformer 

[9], Cao proposed a U-Net-like pure Transformer based segmentation model which 

uses hierarchical Swin Transformer as the encoder and a symmetric Swin 

Transformer with patch expanding layer as the decoder [10]. Other Transformer-

based networks [11,12,13] also mark the success of Transformer in medical image 

segmentation and reconstruction.  

    Although numerous deep learning-based segmentation methods have been 

proposed in various modalities, the automatic segmentation of the LV directly from 

4D Flow data has not been explored yet. A specific challenge is that the magnitude 

and velocity images of a 4D Flow acquisition have different information content and 

should be considered as different modalities. Moreover due to velocity noise, a 

careful fusion method is needed to avoid redundancy or insufficient feature 

integration [14,15].  

    In this paper, we present, to the best of our knowledge, the first study to segment 

the LV directly from 4D Flow MRI data. Our main contributions are: (1) we propose 

two self- and cross-attention-based methods to fuse the information from different 

modalities in 4D Flow data; (2) we evaluate our method in a large 4D Flow dataset 

using multiple segmentation and clinical evaluation metrics. 

6.2 Method 

6.2.1 Attention mechanism 

Attention mechanism, mapping the queries and a set of keys-value pairs to an output, 

is the fundamental component in Transformer. In this section, we first introduce how 

the self-attention module models the intra-relationship of features from the same 

image modality. Then we explain how cross-attention explores the inter-relationship 

of features from two different modalities. The two attention modules are illustrated 

in Figure.6.2. 

Self-Attention module. In self-attention module [6], the Q (queries), K (keys) and 

V (values) are generated from the same modality. Q and K determine a weight matrix 

after the scaled dot product which is used to compute the weighted sum of V as the 

output. The computing process can be described as in equation (6.1): 

( , , ) ( )
T

a a
a a a a

Q K
Atten Q K V softmax V

d
                                           (6.1) 
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where d is the key dimensionality, and a denotes modality a. 

 
 

 
Figure.6.2. The structure of self-attention (upper) and cross-attention (bottom) 

modules. 

Cross-Attention module. Although self-attention explores the intra-modality 

relationship, the inter-modality relationship, such as the relationship between pixels 

in the magnitude image and velocity image is not explored. The cross-attention 

module takes two patches as the input to generate the Q, K, and V. V and K are 

generated from the same modality, while Q is derived from another modality. The 
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other operations are kept the same as in self-attention. It can be expressed as equation 

(6.2). Hence, cross-attention can be adopted to fuse the information from different 

modalities. 

( , , ) ( )
T

b a
b a a a

Q K
Atten Q K V softmax V

d
                                   (6.2) 

Multi-head self(cross)-attention module. To consider various attention 

distributions and multiple aspects of features, the multi-head attention mechanism 

[6] is introduced. The multi-head attention is the concatenation of h single attentions 

along the channel dimension followed by a linear projection. Thus, the multi-head 

attention can be formulated as equation (6.3, 6.4) 

0

1 2( , , ) ( , , , )hMultiHead Q K V Concat H H H W                      (6.3) 

,( , )i i i iH Atten Q K V                                                (6.4) 

where Atten is self-attention or cross-attention, 
iQ ,

iK ,
iV  are the i-th vector of Q ,

K ,V . In each single attention head, the channel dimension 
'd d h . 

6.2.2 Feature Fusion Layer 

To fuse the features generated from the magnitude and velocity images, we proposed 

a feature fusion layer (FFL). The structure of FFL shown in Figure.6.3 contains two 

branches, each branch has one cross-fusion layer and one self-fusion layer. 

Cross-Fusion Layer (CFL). CFL is proposed to fuse the features from different 

modalities. The structure of CFL is illustrated in the upper dash box in Figure.6.3. 

Given Q, K and V generated from two modalities, the Multi-head Cross-Attention 

(MCA) module followed by a linear projection firstly integrate those information. 

Then the fused features are added to the original input. Subsequently, another two 

linear projections and one residual connection followed by a normalization layer are 

used to enhance the fused information.  

Self-Fusion Layer (SFL). The lower dash box in Figure.6.3 shows the structure of 

SFL. SFL is a simple stack of Multi-head Self-Attention (MSA), linear projection, 

residual and normalization layer. Different from CFL, the SFL only uses one input 

to generate the values for the MSA. CFL aims to fuse the features from different 

image modalities, SFL further enhances the fused features using self-attention. 

    Having two feature maps from the magnitude and velocity images respectively, 

we first transform the feature maps into sequence data using the patch embedding. 

Specifically, the feature f RH W C  is divided into
2N HW P patches, where the 
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patch size P is set to 16. The patches are flattened and embedded into a latent D-

dimension, obtaining a embedding sequence RN De  . However, dividing feature 

maps into patches leads to loss of spatial information. Therefore, a learnable 

positional encoding sequence is added to the embedding sequence to address this 

issue. Then the sequence data is passed into the FFL. In this work, we used a stack 

of 4 FFLs as the feature fusion network (FFN). 

 
Figure.6.3. Structure of feature fusion layer (FFL). The input of the feature fusion layer is 

two features derived from magnitude and velocity images respectively. The upper box is 

the structure of cross-fusion layer (CFL) and the lower one is the structure of self-fusion 

layer (SFL).  

6.2.3 Network Structure  

Figure.6.4 illustrates the proposed segmentation network, which takes the U-Net as 

the backbone. The encoder uses two parallel branches to extract features from 

magnitude and velocity image separately. The features at the same level are 

integrated using the feature fusion network. By doing so, the size of integrated 

features reduces due to the patch embedding. Hence, the fused features are up-

sampled first, then added to the original features as the final aggregated features.  

    The four-level paired aggregated features derived from the encoder are taken as 

the inputs to the decoder part. The fused features at the same level generated from 

the magnitude and velocity branch in the encoder are concatenated followed by a 

convolutional layer to reduce the number of feature maps. The remaining decoder 

parts including the up-sampling, convolutional and softmax layers are the same as in 

U-Net. 
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Figure.6.4. The architecture of our proposed segmentation network structure. The feature 

fusion network is a stack of 4 FFLs. 

6.3 Materials 

6.3.1 Dataset 

4D flow MRI was performed in 28 healthy volunteers and 76 post-myocardial 

infarction patients on a 1.5T MR system (Philips Healthcare). The 4D flow 

acquisition covered the complete LV and was acquired in axial orientation with a 

voxel size of 3×3×3 mm3 and reconstructed into 30 cardiac phases. The other 

imaging parameters are as follows: flip angle=10°, velocity encoding (VENC) of 150 

cm/s, FOV= 370-400×370-400 mm2, echo time (TE)=1.88-3.75 ms, repetition time 

(TR)= 4.78-13.95 ms. In addition, standard cine-MRI was performed in multiple 

short-axis slices covering the LV from base to apex. More details about the MR 

acquisition protocol can be found here [16].The short-axis cine acquisition was used 

to segment the LV endocardial boundaries in all slices and phases. After rigid 

registration with the 4D flow acquisition, the defined segmentation served as ground 

truth segmentation of the 4D flow acquisition. Based on the known short-axis 

orientation, the 4D flow data was resliced into the short-axis orientation using a slice 

spacing of 3 mm and a fixed number of 41 slices. The spatial in-plane resolution was 

defined equal to the available short-axis cine acquisition and varied from 0.83×0.83 

mm2 to 1.19×1.19 mm2.  

    Excluding the images without any objects this resulted in 91 182 annotated pairs 

of 2D images, each pair has one 2D magnitude image and three-directional velocity 

images. The subjects were randomly split into three parts with 64, 20, 20 (total 

number of images: 55 825, 17 335 and 18 022) for training, validation and testing 

respectively. We normalized the magnitude image into [0,1] using min-max method. 

The images were cropped into 256×256.  
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6.3.2 Evaluation metrics 

Segmentation metrics. To quantitatively evaluate the segmentation performance, 

Dice and Average Surface Distance (ASD) were measured.  

Clinical metrics. The clinical metrics, including the end-diastolic volume (EDV), 

end-systolic volume (ESV), left ventricle ejection fraction (LVEF) and kinetic 

energy (KE) [3] were measured. The formula of LVEF and KE are defined as: 

  2

1

1
100%

2

N

blood i i

i

EDV ESV
LVEF KE V v

EDV





              (6.5) 

where N means the number of voxels in the LV, 
blood  represents the density of 

blood (1.06g/cm3), V is the voxel volume and v is the velocity magnitude. For each 

phase, the total KE is the summation of the KE of every voxel within LV. KE was 

normalized to EDV as recommended by other researchers [3]. 

Statistical Analysis. The results are expressed as mean ± standard deviation. 

Pearson correlation coefficient (PCC) was introduced to measure the correlation of 

the clinical metrics between the manual and automatic segmentation approaches. 

Paired evaluation metrics were compared using Wilcoxon-signed-rank test with P < 

0.05 indicating a significant difference. 

    The Dice, ASD and KE reported in this work are the mean values as computed 

over 30 phases per subject.  

6.4 Experiment and results 

All the models were implemented in Pytorch and trained with a NVIDIA Quadro 

RTX 6000 GPU with 24 GB memory from scratch. We employed Adam as the 

optimizer with 0.0001 as the learning rate. All of the models were trained for 1000 

epochs with a batch size of 15. The sum of Dice loss and cross-entropy loss was used 

as the loss function. Additionally, due to the complexity of the velocity images, we 

did not employ any data augmentation methods to enlarge the dataset. 

    We first evaluated our model against the U-Net, TransUnet [8], and U-NetCon. 

TransUnet added the self-attention module to the last layer of the encoder. The 

structure of U-NetCon (shown in the Supplementary) is similar to our proposed 

network. After removing the feature fusion network, the U-NetCon introduces two 

U-Net encoders which extract the features from two modalities separately and 

subsequently, the features from the same level in the encoder are concatenated as the 

input of the decoder. The input of U-Net and TransUnet is a four-channel stack of 

one magnitude and three velocity images. Whereas, in our method and U-NetCon, 

the magnitude and velocity images are taken as two separate input branches.  
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Table.6.1. Segmentation performance of different methods. Err means the absolute error 

between the manual and automatic segmentation methods. 

    Table.6.1 reports the evaluation results of various metrics. It shows our method 

achieved the best performance for all of the six metrics. In Table.6.2 the PCC of the 

clinical metrics derived from different models are presented. Our method performs 

the best on all clinical metrics demonstrating a high correlation. Comparing the 

results of U-Net and TransUnet, the Dice and ASD only showed marginal 

improvement, but the performance decreased in LVEF with a low PCC of 48.7%. In 

order to evaluate the effectiveness of feature fusion network, we further compared 

our method to U-NetCon. As compared to U-NetCon, our method improves the Dice 

by 2% and the PPC by 3%, 9%, 7% and 16%  for LVEF, EDV, ESV and KE, 

respectively, confirming that the proposed feature fusion network efficiently 

aggregates the features from magnitude and velocity images. More results about the 

boxplot and correlation comparing the Dice and four clinical parameters derived 

from our method and U-NetCon can be found in the supplementary. 

Table.6.2. PCC of the clinical metrics derived from manual and automatic segmentation 

results. 

Model LVEF EDV ESV KE 

U-Net 70.65% 84.09% 91.50% 83.76% 

U-NetCon 80.61% 88.46% 89.49% 82.46% 

TransUnet 48.70% 91.36% 90.33% 97.86% 

Ours 83.26% 97.40% 96.97% 98.92% 

    The P-value of Wilcoxon test results between the ground truth and our method in 

LVEF, EDV, ESV, KE are 0.13, 0.43, 0.35 and 0.43, as shown in Figure.6.5. All of 

those P-values are larger than 0.05, which confirmed that there is no significant 

different between the clinical parameters derived from the manual and our automatic 

segmentation.  

6.5 Conclusion 

In this paper, we proposed a Transformer based feature fusion network to aggregate 

the features from different modalities for LV segmentation in 4D flow MRI data. In 

Model 
Dice 

(%) 

ASD 

(mm) 

EDV-Err 

(ml) 

ESV-Err 

(ml) 

LVEF-Err 

(%) 

KE-Err 

(µJ/ml) 

U-Net 84.62±5.91 2.99±1.66 20.35±31.53 16.01±19.76 7.60±7.10 1.50±1.64 

U-NetCon 84.57±6.15 3.19±1.74 22.57±29.46 17.08±24.46 6.11±5.43 0.95±1.94 

TransUnet 84.27±5.35 3.09±1.33 18.09±22.91 23.92±16.06 11.79±7.64 0.51±0.48 

Ours 86.52±5.54 2.51±1.14 9.02±10.03 11.86±10.55 5.10±4.55 0.36±0.34 
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the feature fusion network, we introduced a self- and a cross-fusion layer to 

investigate the inter- and intra- relationship for the features from two different 

modalities. The proposed method was trained and evaluated in a large in-house 

dataset and the results of the segmentation accuracy and clinical parameters 

demonstrate superiority of our method against state-of-arts. We expect that the use 

of carefully designed data augmentation methods for the velocity images may result 

in further improvement of the performance of the proposed method. 

 
Figure.6.5. Box plots comparing four clinical evaluation metrics including EDV, ESV, 

LVEF and KE derived from the manual segmentation and our prediction. GT represents the 

ground truth. P-value was computed using Wilcoxon-signed-rank test. P<0.05 indicate a 

significant difference between two variables.  
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Supplementary 

 
Figure. S6.1. The structure of U-NetCon. 

 
Figure. S6.2. Box plot comparing the Dice derived from our method and U-NetCon on 20 

testing cases. The Dice was computed based on each phase, and each box contains 30 

phases.  
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Figure. S6.3. Correlation comparing EDV, ESV, LVEF and KE derived from our method 

and U-NetCon. GT in the X-axis represents the parameters derived from the ground truth, 

the Y-axis represents the parameters derived from the prediction of different models. 

 

 

 
Figure. S6.4. Correlation of EDV, ESV and LVEF derived from TransUnet and ground 

truth. 
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                       Ours                      U-Net             TransUnet            U-NetCon 

Example#1     

Example#2     

Example#3     

Figure. S6.5. Examples of segmentation results from our method, U-Net, TransUnet and U-

NetCon. The blue represents the ground truth, the yellow is the prediction, and the red is the 

overlap between the prediction and ground truth 
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Chapter 7 Deep Learning-based Prediction of Intra-

Cardiac Blood Flow in Long-axis Cine Magnetic 

Resonance Imaging 
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van der Geest. Deep Learning-based Method for Intra-Cardiac Blood Flow 

Pattern Prediction using 4D Flow Data. International Journal of Cardiovascular 

Imaging. (2023): 1-9. 
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Abstract 

Purpose: We aimed to design and evaluate a deep learning-based method to 

automatically predict the time-varying in-plane blood flow velocity within the 

cardiac cavities in long-axis cine MRI, validated against 4D flow. 

Methods: A convolutional neural network (CNN) was implemented, taking cine 

MRI as the input and the in-plane velocity derived from the 4D flow acquisition as 

the ground truth. The method was evaluated using velocity vector end-point error 

(EPE), angle error and accuracy. Additionally, the E/A ratio and diastolic function 

classification derived from the predicted velocities were compared to those derived 

from the 4D flow.  

Results: For intra-cardiac pixels with a velocity >5 cm/s, our method achieved an 

EPE of 8.65 cm/s, angle error of 41.27°. For pixels with a velocity >25 cm/s, the 

angle error significantly degraded to 19.26°. Although the averaged blood flow 

velocity prediction was under-estimated by 26.69%, the high correlation (PCC=0.95) 

of global time-varying velocity and the visual evaluation demonstrate a good 

agreement between our prediction and 4D flow data. The E/A ratio was derived with 

minimal bias, but with considerable mean absolute error of 0.39 and wide limits of 

agreement. The diastolic function classification showed a high accuracy of 86.9%. 

Conclusions: Using a deep learning-based algorithm, intra-cardiac blood flow 

velocities can be predicted from long-axis cine MRI with high correlation with 4D 

flow derived velocities. Visualization of the derived velocities provides adjunct 

functional information and may potentially be used to derive the E/A ratio from 

conventional CMR exams. 
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7.1 Introduction 

Assessment of cardiac function using cardiac magnetic resonance imaging (CMR) is 

typically based on cine MR imaging. Four-dimensional (4D) flow MRI enables time-

resolved three-dimensional visualization of intra-cardiac blood flow to gain a better 

understanding of the patient’s cardiac condition [1, 2]. Cardiac dysfunction is 

strongly associated with abnormal patterns of blood flow within the cardiac 

chambers. Therefore, visualization and quantification of intra-cardiac blood flow 

may provide relevant diagnostic information. However, 4D flow MRI is usually not 

performed in routine clinical protocols as it requires additional scan time and post-

processing. During post-processing typically registration is required of the 4D flow 

acquisition with the acquired long-axis and short-axis cine views, which may be 

hampered by variations in respiratory condition and heart rate [3, 4]. Interestingly, 

in standard long-axis cine MR views, the intensity fluctuations within the cardiac 

cavities provide a visual clue about the global blood flow pattern. While the signal 

intensity variations are dependent on various factors such as saturation effects and 

spin dephasing due to magnetic field inhomogeneity or complex flow [5, 6], we 

speculate that time-varying flow velocity information can be derived from those 

intensity variations. 

    There have been many attempts in using balanced steady-state free precession 

(SSFP) MR imaging for measuring blood velocity by modifying the SSFP sequence. 

Markl et al. measured through-plane flow using a SSFP sequence by inverting the 

slice encode gradient between two consecutive acquisitions [7]. The through-plane 

velocity was then calculated by subtracting the resulting phase images. Neilson et al. 

augmented the slice encode gradient in the SSFP sequence for measuring blood 

velocity in a readout direction [8]. They used the resultant phase information without 

a reference for measuring the blood velocity in the readout direction. In recent years, 

convolutional neural networks (CNN) have been introduced to extract cardiac 

motion information, which could be interpreted as an ensemble of relatively small, 

periodical variations of the shape and position of heart structures during a cardiac 

cycle [9, 10, 11]. However, the potential applications for velocity field prediction 

has not been explored yet.  

    Accordingly, in this work we proposed a deep learning-based method to track the 

blood flow displacement within consecutive cardiac frames from long-axis cine MR 

images. As ground truth, we used the velocity field derived from registered 4D flow 

MRI. Once the blood flow is tracked and the displacement vectors in X and Y 

directions are measured, pixel wise blood velocity in each direction can be derived 

by dividing its displacements to the temporal resolution of each frame. To the best 

of our knowledge, we are the first to employ deep learning and 4D flow MRI for 

automated cardiac blood flow prediction. Additionally, in clinical routine, diastolic 
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function is usually evaluated using Doppler echocardiography. Although, several 

studies demonstrated the usefulness of CMR in deriving conventional diastolic 

parameters, those methods rely on additional scan time and extra post-processing, 

such as the manual localization of regions of interest (ROI), which is time-

consuming [12, 13, 14]. In our work the E/A ratio is automatically derived from the 

predicted blood flow and was used to classify the diastolic function as a potential 

clinical application.  

7.2 Methods 

7.2.1 Dataset 

The study cohort included 78 post-myocardial infarction (MI) patients and 34 

healthy subjects who underwent cardiac MRI on a 1.5T MR system (Philips 

Healthcare). The study was approved by the local medical ethical committee and all 

participant in the study provided written information consent. The MR imaging 

protocol included conventional SSFP cine in 4-chamber (4CH) view and short-axis 

cine stack. In addition, whole-heart 4D flow MRI was performed for 3D blood flow 

velocity assessment in the four cardiac chambers. Both cine MRI and 4D flow MRI 

were reconstructed into 30 phases covering a complete cardiac cycle. MR imaging 

parameters of the acquisitions are listed in Table.7.1. More details about the MR 

acquisition protocol have been reported in earlier work [15, 16]. 

Table.7.1 4D flow and SSFP data acquisition parameters. VENC: velocity encoding; FOV: 

field of view; TE: echo time; TR: repetition time; bpm: beats per minute. 

 

    Mass software (Version V2017-EXP; Leiden University Medical Center, Leiden, 

the Netherlands) was used to derive LV volumetric parameters from the short-axis 

cine stack by semi-automated segmentation of the endocardial and epicardial borders. 

 4D Flow Data SSFP 

Spatial resolution (mm3) 3×3×3 0.95-1.25× 0.95-1.25×8 

Reconstructed temporal resolution (ms) 20.83-46.73 20.21-48.21 

Electrocardiogram gating retrospective retrospective 

VENC (cm/s) 150 — 

FOV (mm2) 300-440 × 300-440 300-440 × 300-440 

TE/TR (ms) 3.10-3.75/7.46-13.95 1.5-1.72/3.0-3.44 

Flip angle (°) 10 60 

Reconstructed heart phases 30 30 

Scan time 7-10 min 6-8 s 

Heart rate (bpm) 41-94 42-99 

Motion correction            None (free breathing) Breath hold 
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The semi-automatically defined ventricular and atrial contours in the 4CH view were 

used as a mask and for each pixel within the mask the in-plane component of velocity 

as derived from the aligned 4D flow acquisition was used as the ground truth. To 

avoid temporal inconsistency, cine acquisitions were excluded if the heart rate 

deviated from that of the 4D flow acquisition by more than six beats per minute. 

Based on this exclusion criterion, 92 cases (2760 2D images) remained for training 

and testing. Table.7.2 summarized the detailed demographics derived from the short-

axis cine and 4D flow data.  

Table.7.2. Demographics of the study cohort derived from the short-axis cine and 4D flow 

data. Data is presented as mean ± standard deviation or count.  EDV: End-diastolic volume, 

ESV: End-systolic volume, SV: Stroke volume,  EF: Ejection fraction. 

Characteristic Subjects(n=92) 

Gender (Male, n) 56 

EDV (ml) 179.71±63.93 

ESV (ml) 90.14±58.27 

SV (ml) 89.58±19.38 

EF (%) 53.11±12.27 

E/A ratio 1.41±0.54 

    In-plane spatial alignment was performed between the SSFP cine and reformatted 

4D flow images since 4D flow images were acquired during free-breathing while 

SSFP cine images were acquired during breath-hold. In addition, significant patient 

motion can occur in between the acquisition of the long-axis cine view and the 4D 

flow acquisition. Based on the image position information, the in-plane velocity 

derived from 4D flow was projected on the cine long-axis views. In case a 

misalignment was observed between the visualized anatomy and the velocity vectors, 

the cine view images were manually translated in order to optimize the alignment. 

We further assumed that both 4D flow and SSFP cine images are registered in time 

since both have the same number of cardiac phases and nearly similar heart rates. 

Therefore, each cardiac phase of 4D flow is assumed to correspondent to same 

cardiac phase of SSFP cine. Tri-linear interpolation was used to generate the in-plane 

velocity components for the 4CH long-axis views. 

7.2.2 Data preprocessing 

In this work, we aim to predict the blood flow velocity within the cardiac chambers. 

To filter out irrelevant velocity information, we applied a binary blood pool mask in 

the long-axis view to exclude the region outside of the cardiac chambers. The signal 

intensities of the input cine sequence were normalized based on the histogram of the 

signal intensities within the masked region. The histogram was constructed by 

aggregating the blood pool pixels of all cardiac phases, which implies that signal loss 
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information is still preserved and flow-induced artifacts can still be tracked from 

frame to frame. The normalization can be described as in formula 1, where 𝑃norm−i , 

the normalized value of the pixel-i is derived from 𝑃𝐼 the signal intensity of pixel-i,  

𝑃5𝑡ℎ and 𝑃95𝑡ℎ represent the 5th and 95th percentile value of the intensity histogram.  

𝑷𝒏𝒐𝒓𝒎−𝒊 =
𝑷𝑰−𝑷𝟓𝒕𝒉

𝑷𝟗𝟓𝒕𝒉−𝑷𝟓𝒕𝒉
                                      (7.1) 

    The intensity fluctuations in the cine MR sequence are used to predict the 

displacement of a pixel, i.e. a blood sample, from frame to frame. However, the 4D 

flow acquisition provides each pixel’s velocity instead of displacement. Therefore, 

the pixel velocities derived from the 4D flow acquisition are converted into the pixel 

displacements using formula 7.2, 

                         𝐃 = (
∆𝑡𝑣𝑥

𝑝𝑠𝑥
,

∆𝑡𝑣𝑦

𝑝𝑠𝑦
)                                             (7.2) 

in which 𝐕 = (𝑣𝑥, 𝑣𝑦) stands for velocity of each pixel in frame t, 𝑣𝑥 , 𝑣𝑦 are the 

velocities projected on the long-axis image, ∆t is the time interval between image 

frame t and t+1, 𝐏𝐒 = (𝑝𝑠𝑥, 𝑝𝑠𝑦) is the pixel spacing. After this preprocessing, the 

displacement D (in pixel units) from frame t to frame t+1 is regarded as the ground 

truth for model training. 

7.2.3 Network structure 

The displacement information and moving direction of a pixel, or group of pixels, 

can only be extracted using the current and its neighboring frames. To predict the in-

plane components of blood flow velocity, we consider a sequence of cine MR images 

containing a central image and its 8 temporal neighboring phases as the input and 

the displacements in X and Y direction derived from the 4D flow sequence as the 

ground truth to train an end-to-end network. The proposed CNN architecture is 

illustrated in Figure.7.1. 

    The implemented network is a variant of U-Net [17] and ResNet [18] containing 

a contracting path and an expanding path. In the contracting path, to provide dense 

per-pixel predictions, one pooling operation and three strided convolutions with a 

1×1 kernel size are applied for the down-sampling. The conventional convolution 

layers in the contracting path of U-Net are replaced with residual convolution 

modules [18] to extend and deepen the network. In the expanding path, we reserved 

the concatenation-based skip connections to integrate the local features and the 

global information. 
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    Deep supervision [19] is employed to overcome the problem of vanishing 

gradients in a deep CNN architecture. As shown in Figure.7.1, three auxiliary 

prediction layers are inserted before the up-sampling operation, each prediction is 

resampled into the original image size using nearest neighbor interpolation. The end 

point error (EPE), being the Euclidean distance between two displacement vectors 

averaged over all pixels within the cardiac cavities, is used as loss function. Given 

𝐷𝑥,𝑔, 𝐷𝑦,𝑔, 𝐷𝑥,𝑝, 𝐷𝑦,𝑝  representing the displacement values of ground truth and 

prediction in X and Y directions, 𝐃𝑖,𝑔 = (𝐷𝑥,𝑔, 𝐷𝑦,𝑔)  and 𝐃𝑖,𝑝 = (𝐷𝑥,𝑝, 𝐷𝑦,𝑝) 

 denoting the displacement vectors for ground truth and prediction of ith pixel within 

the blood pool, then the EPE is defined according to formula 7.3 where M indicates 

the number of pixels within the blood pool. 

EPE =
1

𝑀
∑ ‖𝐃𝑖,𝑝 − 𝐃𝑖,𝑔‖ =

1

𝑀
∑ √(𝐷𝑥,𝑝 − 𝐷𝑥,𝑔)2 + (𝐷𝑦,𝑝 − 𝐷𝑦,𝑔)2𝑀

𝑖=0
𝑀
𝑖=0      (7.3) 

    The EPE loss is the sum of length of the displacement vector difference to compute 

the magnitude and angle error between prediction and ground truth for all pixels 

within the blood pool. The total loss is defined as: 

Loss = EPE (G, O) + ∑ 𝑤𝑐𝐸𝑃𝐸𝑐(𝐺, 𝑃𝑐)𝑐                   (7.4) 

where G is the displacement generated from the 4D flow data, O is the final output 

from the network, 𝑃𝑐 is the prediction of the cth auxiliary prediction layer and 𝑤𝑐 is 

the loss weight of each auxiliary prediction. 

    To improve the performance and the generalization of the model, five-fold cross-

validation was applied. The output of CNN was divided by the temporal resolution 

to convert to velocity to compute the evaluation metrics.  

7.3 Evaluation metrics 

7.3.1 Visual evaluation 

To visually assess the intra-cardiac blood flow patterns derived from either the CNN 

prediction and 4D flow, the in-plane velocity was displayed in movie mode as vector 

overlay projected on the cine MR images. The length and color of the displayed 

vectors were scaled according to the velocity magnitude. 

7.3.2 Quantitative evaluation metrics 

The performance of the proposed method was evaluated using EPE and angle error. 

    To quantitatively assess the performance of predicted blood flow, both the 

magnitude and angle error are required to be measured. Therefore, EPE described in 

formula 7.3 and trigonometric function are employed to compute the magnitude error 
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and angle error, respectively. Here, the EPE was computed using the velocity vectors 

instead of the displacement vectors. The angle error 𝜃, between the ground truth 𝐕𝑖,𝑔 

and prediction 𝐕𝑖,𝑝 of the ith pixel within the blood pool, is defined as, 

θ =
1

𝑀
∑ arccos (

𝐕𝑖,𝑝∙𝐕𝑖,𝑔

‖𝐕𝑖,𝑝‖ ‖𝐕𝑖,𝑔‖
)𝑀

𝑖=0                               (7.5) 

where i represents the ith pixel and M indicates the total number of pixels within in 

the blood pool,  ‖∙‖  is the length of a vector and arccos means the inverse 

trigonometric function of cosine. The angle error ranges between 0° and 180°, with 

0° denoting two vectors in the same direction and 180° denoting two vectors in the 

opposite direction. 

7.3.3 Clinical parameters 

A commonly clinically used flow-related parameter is the E/A ratio. The E/A ratio 

can be used to classify diastolic function as either normal or abnormal using the 

cutoff values for E/A ratio as commonly used in cardiac ultrasound. In our work, a 

region of interest was first defined by three points, being two end points of the 

defined endocardial contour, which correspond to the valve hinge points, and a third 

point in the center of LV cavity. A b-spline curve was fitted through the three points, 

resulting in a region just below the mitral valve plane. The E and A velocities were 

found by searching for the pixel with maximum (in-plane) velocity within the region 

to derive the E/A ratio. 

7.3.4 Statistical analysis 

Results are expressed as mean ± standard deviation (SD). Pearson correlation 

coefficient (PCC) was used to evaluate the correlation between our prediction and 

the 4D flow data for the velocity values during a complete cardiac cycle. In addition, 

Bland-Altman analysis was used to analyze the mean differences (Bias) and limits 

of agreement (LOA, 1.96×SD) of the E/A ratio derived from either the deep learning 

method or 4D flow data. Paired t-test was performed to test the statistical 

significance of the differences between paired E/A ratio measurements, P<0.05 

indicates a significant difference. PCC was also used to measure the correlation of 

E/A ratio derived from 4D flow data and our approach. 

7.4 Results 

We first introduced 9 neighboring cine MR phases in the input (more results using 

different number of inputs can be found in the Supplementary file), then we reported 

the predicted results using the defined metrics. At last, the E/A ratio results were 

reported. 
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7.4.1 Visual comparison 

The predicted and 4D flow derived in-plane blood flow velocity were dynamically 

visualized as overlay on the original long-axis cine images. The length and colouring 

of the vectors were used to encode the local blood velocity magnitude. To avoid 

cluttering of the vectors and to suppress velocity noise the velocity vectors were only 

generated for image pixels with a velocity >4 cm/s. Figure.7.2 shows an example of 

selected frames of predicted blood flow velocities compared to 4D flow derived 

velocities in one of the study subjects. Overall a good agreement is seen in the blood 

velocity pattern within the cardiac cavities both in systole and diastole. In general it 

was observed that the visual agreement in flow pattern was better in the ventricles 

than in the atria. Video examples can be found here 

(https://github.com/xsunn/BloodFlowPrediction). 

                                        

F
ig

u
re

.7
.2

. 
F

iv
e 

o
u

t 
o
f 

3
0

 f
ra

m
es

 o
f 

b
lo

o
d

 f
lo

w
 p

at
te

rn
 g

en
er

at
ed

 f
ro

m
 d

ee
p
 l

ea
rn

in
g

-

b
as

ed
 m

et
h

o
d
 a

n
d

 4
D

 f
lo

w
. 

(A
):

 B
lo

o
d

 f
lo

w
 p

at
te

rn
 i

n
 4

C
H

 v
ie

w
 u

si
n

g
 d

ee
p
 l

ea
rn

in
g

. 

(B
):

 C
o

rr
es

p
o

n
d

in
g

 g
ro

u
n

d
 t

ru
th

 f
ro

m
 4

D
 f

lo
w

 d
a
ta

 i
n

 4
C

H
 v

ie
w

. 
T

h
o

se
 f

iv
e 

fr
am

es
 

ar
e 

at
 1

3
%

, 
2
7

%
, 

5
7

%
, 

7
3

%
an

d
 9

3
%

 o
f 

o
n

e 
ca

rd
ia

c 
cy

cl
e.

 



 

118 
 

7.4.2 Quantitative Results 

Figure.7.3 shows probability distributions of blood flow velocity in different heart 

chambers generated from 4D flow data and our prediction. Compared with the 

ground truth, the predicted velocities were generally lower.  
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    To quantify the prediction error, those pixels with velocities greater than 5cm/s 

were involved in computing the EPE and angle error. The accuracy was computed 

with 30th percentile as a threshold. All pixels were used to compute the relative error 

(RE) of velocity between the 4D flow and automated velocity prediction. PCC was 

used to measure the correlation of the time-varying averaged velocity between the 

4D flow data and prediction. The results in different heart chambers are reported in 

Table.7.3. The relative error shows that the velocities were under-estimated by 

26.69%. The small standard deviation in the relative velocity difference suggests that 

potentially a constant correction factor may be applied to the predicted velocity to 

improve the performance. The PCC of velocity within all four chambers were 0.95, 

which illustrates a good correlation in the blood flow pattern between the 4D flow 

and our prediction.Fig.S7.1 in Supplementary shows more details about the 

performance of our method for different chambers with varying velocity thresholds. 

Table.7.3. Prediction results of different chambers. 4CH indicates the results were 

computed within all 4 chambers; LV, LA, RV and RA mean the results were based on each 

single chamber separately. RE: relative error. PCC: Pearson correlation coefficient. The 

mean ± standard deviation are reported. 

  EPE (cm/s) Angle Error (°) Velocity-RE(%) Velocity-PCC 

4CH 8.65±2.69 41.27±11.39 -26.69± 4.43 0.95 

LV 9.10±2.96 37.98±10.94 -24.53±4.29 0.98 

LA 8.45±2.20 41.19±12.78 -27.84±6.62 0.94 

RV 7.06±1.54 40.99±11.28 -26.18±8.05 0.93 

RA 8.64±2.44 47.52±16.90 -29.83±4.53 0.93 

 

7.4.3 E/A ratio results 

The average absolute error in E/A ratio estimation were 0.39±0.32. The Bland-

Altman analysis as shown in Figure.7.4 reveals a minimal bias with wide limits of 

agreement (LOA) between our prediction and 4D flow derived E/A ratio and more 

than 95% of cases are distributed between upper and lower agreement limits.  

    To investigate the potential clinical applicability of the automated E/A ratio 

prediction we tested whether the wide LOA effects the classification of diastolic 

function. Echocardiography is the main imaging modality for assessment of LV 

diastolic function. It defined 0.75< E/A ratio <1.5 as normal diastolic function and 

E/A ratio varying in the other ranges as abnormal diastolic function [20]. The 

confusion matrix of the diastolic function classification experiment are summarized 

in Figure.7.5. The diastolic function binary classification accuracy was 

(60+20)/92=86.9%. The other three classification metrics including precision, recall 

and F1-Score, PCC and P values are reported in Table.7.4. Our method was able to 

classify 93.75% (60/64) of cases qualified by the 4D flow data as the normal diastolic 
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function, and 71.43% (20/28) of the abnormal cases were also correctly identified. 

Due to the wide LOA, the overall PCC of the E/A ratio is 66.71%. The PCC of E/A 

ratio in the groups with normal and abnormal diastolic function are 39.41% and 

75.1%, respectively. But all p values of E/A ratio in both two classes are larger than 

0.05, meanwhile, the p value of 0.795 derived from all 92 subjects also confirmed 

that the E/A ratio generated from our prediction was not significantly different from 

the 4D flow data. 

 
Figure.7.4. Bland-Altman plots of E/A ratio. 

 

 

 
Figure.7.5. Confusion matrix of diastolic function classification derived from the predicted 

velocities. Label 0 means normal diastolic function, 1 represents abnormal function. 
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Table.7.4. The results of  diastolic function classification, PCC and p value of E/A ratio in 

each class with normal and abnormal diastolic functions. 

7.5 Discussion 

We designed and evaluated a deep learning-based method for the prediction of intra-

cardiac blood flow velocity from long-axis cine MRI using 4D flow derived 

velocities as ground truth. The predicted velocities highly correlated with the 4D 

flow derived velocities with an overall good visual agreement in time-varying flow 

pattern. Our work shows a potential clinical application to visualize the blood flow 

pattern without an additional 4D flow data. As the E/A ratio is a well-established 

clinical parameter used to classify diastolic function, the results demonstrated that 

the proposed method can be applicable to estimate the E/A ratio without significant 

bias and to classify the diastolic function with a high accuracy. Although the 

observed underestimation of the predicted velocities and the variability in the derived 

measurements indicate that further refinement of the deep learning model using a 

larger patient cohort is warranted. we believe our results demonstrate the potential 

of the proposed method. 

    The variation in blood signal intensity in the cine MR images provides information 

on the direction and magnitude of the blood flow in the cardiac cavities. The 

observed displacement of the apparent visible structures in the blood pool in 

subsequent frames reflects the velocity. Therefore, we performed experiments with 

different number of neighboring phases as input of the network. Using only three 

phases as input was shown to result in the worst performance. This may be explained 

by the fact that the small total displacement like just one pixel in three neighboring 

temporal phases makes the velocity prediction sensitive to the spatial resolution of 

the cine images. When using more frames as the input the structures can be followed 

over a larger time window making it less sensitive to the spatial resolution. It was 

concluded that more than three neighboring phases are required to predict the blood 

flow pattern and for the final model 9 neighboring phases was used as input.  

    The high correlation of the time varying velocity averaged all subjects between 

our prediction and the 4D flow data, as well as the visual evaluation results, 

demonstrated a good agreement in the global velocity patterns. However, the 

velocity values predicted by the proposed model are close to 30% lower than those 

derived from 4D flow data. In the training data, the low velocities (0-20 cm/s) 

account for a large proportion which may lead the model to underestimate the 

 Recall Precison F1-Score PCC P value 

Normal 93.75% 88.24% 90.91% 39.41% 0.052 

Abnormal 71.43% 83.33% 76.92% 75.10% 0.088 

Overall - - - 66.71% 0.795 
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velocities in regions of high velocity. In addition, the evaluation results are sensitive 

to the selected velocity thresholds, because different levels’ velocities are relatively 

concentrated at certain areas. For example, in the left ventricle, the distribution of 

the lower velocities are more dispersed and complicated in the apical region, 

therefore, it is much harder to predict the irregular movement which leads to a 

relatively large EPE and angle error. The pixels with higher velocities, such as the 

blood flow from LA to LV in diastole and from the LV towards the aorta in systole, 

have a relatively fixed direction of motion. Therefore, the angle error decreased 

when the velocity thresholds increased. However, since the high velocities only 

account for a small proportion the model is prone to underestimation of high 

velocities, resulting in a larger EPE for the pixels with higher velocities.  

   The E/A ratio derived from the velocities could be assessed without bias since both 

E- and A-velocity were underestimated similarly. Additionally, the statistical test 

confirmed that there was no significant difference between 4D flow and CNN 

derived E/A ratio. However, the Bland-Altman analysis revealed a wide limit of 

agreement. Despite this, the results of diastolic function classification demonstrated 

that the variability in E/A ratio had  minimal effect on the accuracy of diastolic 

function classification in our study cohort. Echocardiography allows reliable 

visualization of blood flow pattern. Vector flow mapping (VFM) in 

echocardiography uses the mass-conservation principle to estimate the azimuthal 

component of the flow [21]. VFM has been used in many clinical applications 

including cardiac function evaluation, valvular diseases diagnosis and congenital 

heart disease. However, VFM is sensitive to out-of-plane flow and boundary 

conditions [22]. Additionally, the conventional VFM method is applied only to the 

left ventricle [23]. Our proposed method can be applied to predict the blood flow in 

the whole heart from any cine long axis view and does not rely on accurate cardiac 

boundary segmentation. Since cine MRI acquisitions are routinely acquired in 

standard CMR exams, given the cine MRI, our method can directly predict the in-

plane velocities without requiring additional scan time. The combined visualization 

of blood flow and myocardial motion provides detailed information about cardiac 

function and hemodynamics. The clinical value of the developed technique should 

be evaluated in future clinical studies.  

    There are several limitations in our study. Velocity underestimation is the main 

limitation since it is patient dependent and varies across the subjects. The use of 

appropriate data augmentation techniques to artificially enlarge the available set of 

training data or introducing a weighted loss function by setting larger weights to 

higher velocities may result in improved performance of the deep learning model. 

The ground truth generated by projecting the 4D flow data derived in-plane 

velocities on the long-axis cine MRI is not a perfect reference, due to heart rate 

difference and patient movement. The heart rate difference cannot be eliminated 
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completely, even though some cases were excluded to keep the temporal consistency. 

Registration errors can be corrected for visually by applying in-plane translation of 

the cine MRI images series. Through-plane misalignment and rotational errors are 

more difficult to correct for. Additionally, as our method relies on converting 

predicted pixel displacement to velocity, the limited spatial and temporal resolution 

of the cine MRI data will have an impact on the velocity magnitude and direction 

prediction. The 4D flow MRI was acquired during free-breathing while SSFP cine 

images were acquired during breath-hold, implying a difference in physiological 

condition of the subject. For regions of low blood flow velocity the noise in the 4D 

flow data may be non-negligible. Additionally, training and testing the model on a 

wider range of data from multiple scanner types, centers is also required to gain a 

further understanding in the potential of the proposed blood flow velocity prediction 

method. Furthermore it would be valuable to investigate the applicability of our 

method in patients with valvular regurgitation or stenosis and other patient cohorts 

with cardiac pathologies associated with abnormal flow patterns, such as patients 

with dyssynchronous myocardial contraction. Since a full detailed 

electrocardiographic QRS duration evaluation was not available for the patients in 

our study, we were unable to perform a patient sub-group analysis. 

    In conclusion, we proposed a deep learning-based method for automated intra-

cardiac blood flow velocity prediction from standard long-axis cine MRI. It was 

demonstrated that, although the predicted velocity magnitude is underestimated, the 

global velocity patterns show good correlation with the blood flow patterns derived 

from 4D flow MRI. The method enables estimation of E/A ratio without significant 

bias, but with wide limits of agreement. After further improvement of the velocity 

prediction model the method could potentially be valuable for clinical application. 
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Supplementary  

1. Evaluation metrics 

As the third error metric we quantified the “accuracy of the positions” of the pixels 

with velocities higher than a given threshold. For this, we used the accuracy metric 

as defined in formula S.1. 

Accuracy =  
‖𝐺∩𝑃‖

‖𝐺‖
                                          (S7.1) 

where set G = {(𝑖, 𝑗)|‖𝑉𝑔(𝑖, 𝑗)‖ ≥ 𝑔𝑝}  and set P = {(𝑖, 𝑗)|‖𝑉𝑝(𝑖, 𝑗)‖ ≥ 𝑝𝑝}  contain 

the pixels whose resultant velocities 𝑉  are greater than a certain threshold. The 

threshold 𝑔𝑝 and 𝑝𝑝 are the pth percentile of the resultant velocity of ground truth 

and prediction, respectively.  

2. Results of input dimension  

Table S7.1. Prediction results generated using different input dimensions and different velocity 

thresholds in 4CH and 2CH view. For EPE and angle error, >5 indicates that only the pixels in the 

ground truth with a velocity magnitude greater than 5cm/s are included to compute the metrics. 

ACC >30th indicates that only the pixels with a velocity magnitude greater than 30th percentile of all 

four chambers (LV,RV,LA, RA) in 4CH view and all two chambers (LV, LA) in 2CH view are 

included to compute the accuracy. N is the dimension of the network input. ACC means the 

evaluation metric accuracy. The best results within four different dimensions are shown in bold. 

3. Results in four-chamber view 

Intra-cardiac flow velocity varies greatly within the cardiac cycle, across regions, 

cardiac phases and also across patients. Hence, to further analyze the prediction 

results, various velocity thresholds were used to compute the evaluation metrics for 

those pixels exceeding a chosen threshold (as shown in Fig.S7.1 and Fig.S7.4). By 

View 
 EPE(cm/s) Angle Error(°) ACC(%) 

 >0 >5 >10 >0 >5 >10 >30th >50th >70th 

4CH 

N=3 7.0±1.5 8.7±2.7 10.9±2.3 51.9±9.9 41.9±11.2 33.2±11.0 79.0±4.0 68.0±7.5 55.9±12.1 

N=5 7.0±1.5 8.7±2.6 10.8±2.3 51.7±10.0 41.6±11.3 32.9±11.2 79.2±3.9 68.4±7.5 56.4±11.9 

N=7 6.9±1.5 8.6±2.1 10.9±2.4 51.7±9.9 41.6±11.1 33.0±10.7 78.9±4.1 68.1±7.6 56.3±12.2 

N=9 6.9±1.5 8.6±2.7 10.8±2.4 51.4±10.1 41.3±11.4 32.7±11.0 79.1±4.0 68.2±7.7 56.3±12.1 

2CH 

N=3 7.2±1.8 9.1±2.0 11.8±2.6 56.9±10.9 47.2±11.9 36.5±12.4 78.8±4.9 66.7±9.5 53.5±16.0 

N=5 7.1±1.80 9.0±2.0 11.7±2.6 56.5±11.1 46.7±12.0 36.4±12.0 78.9±5.0 66.85±9.6 53.7±16.1 

N=7 7.1±1.8 9.0±2.0 11.6±2.5 56.4±11.1 46.6±12.0 36.4±12.4 78.8±5.0 66.9±9.6 53.8±16.2 

N=9 7.1±1.8 8.9±2.0 11.7±2.6 56.5±11.6 46.4±12.3 35.9±12.6 79.0±4.9 67.0±9.4 54.1±15.8 
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excluding the low-velocity pixels, the performance of the model can be more clearly 

revealed. 

Table S7.2. Prediction results of Accuracy in different chambers in 4CH view. Accuracy was 

computed using the 30th percentile as the threshold. 4CH indicates the results were computed within 

all 4 chambers; LV, LA, RV and RA mean the results were based on each single chamber separately. 

The mean ± standard deviation are reported. 

 

 
Figure.S7.1. Relative EPE, angle error and accuracy under different threshold values in 

different chambers in 4CH view. 4CH means all four chambers are included to compute 

the evaluation metrics. LV, LA, RV and RA means only one chamber was used to compute 

the metrics. (A): The relation between relative EPE, and the velocity threshold. (B): The 

relation between angle error and velocity threshold. (C): The relation between the 

accuracy and the velocity percentile threshold in different chambers. 

 

    It defined E/A ratio<0.5 as impaired relaxation pattern, 0.75< E/A ratio <1.5 as 

normal diastolic function and E/A ratio >2 as restrictive filling. The confusion 

matrix of the diastolic function classification experiment are summarized in Figure 

S7.2. The diastolic function classification accuracy was 88.1%. 

 4CH LV LA RV RA 

Accuracy (%) 79.09±4.02 79.40±5.17 78.72±6.38 77.77±5.75 75.62±5.91 
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Figure.S7.2. Confusion matrix derived from the predicted velocities in the 4CH views. 

Label 0 means normal diastolic function, 1 is restrictive filling and 2 is impaired relaxation 

pattern. 

We also test the performance of our model in two-chamber view. 86 cine 2CH views 

(2580 2D images) were used for training and testing. 

4. Results in two-chamber view 

Table.S7.3. Prediction results of different chambers in 2CH view. EPE and angle error were 

computed using a velocity threshold of 5 cm/s. Accuracy was computed using the 30th percentile as 

the threshold. 2CH indicates the results were computed within all 2 chambers; LV, LA mean the 

results were based on each single chamber separately. PCC: Pearson correlation coefficient. The 

mean ± standard deviation are reported. 

 

 2CH LV LA 

EPE (cm/s) 8.99±2.02 9.18±2.15 8.78±2.40 

Angle Error (°) 46.45±12.26 45.19±13.60 48.91±16.12 

Accuracy (%) 79.03±4.93 79.90±5.72 76.21±6.76 

Velocity-RE (%) -32.29±4.08 -31.46±4.68 -33.12±8.25 

Velocity-PCC 0.971 0.984 0.869 
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Figure.S7.3. Probability distribution of velocity generated from 4D flow data and 

prediction in 2CH view. The blue color represents the distribution generated from the 4D 

flow data, and the light green means the distribution generated from the prediction. The 

light blue represents the overlap between the prediction and 4D flow data. 

 

 
Figure.S7.4. Relative EPE, angle error and accuracy under various thresholds in different 

chambers in 2CH view. 2CH means LV and LA are included to compute the evaluation 

metrics. LV, LA means only one chamber was used to calculate the metrics. (A): The 

relation between relative EPE and velocity threshold. (B): The relation between angle error 

and velocity thresholds. (C): The relation between the accuracy and the velocity percentile 

threshold in different chambers. 

The average absolute error in E/A ratio estimation in 2CH view was 0.46±0.42. In 

the 2CH view, there are 47 subjects with normal diastolic function, of those 47 

subjects, seven were classified as having restrictive filling and six as having impaired 

relaxation. Two out of eleven subjects with restrictive filling were classified as 

normal diastolic function. The confusion matrix of the diastolic function 

classification experiment are summarized in Figure S7.6. The classification accuracy 

in 2CH view was 73.3%. The Wilcoxon signed-rank test with P=.67 in 2CH view, 
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confirmed that the E/A ratio generated from our prediction was not significantly 

different from the 4D flow data. 

 
Figure.S7.5. Confusion matrix derived from the predicted velocities in the 2CH (right) 

views. Label 0 means normal diastolic function, 1 is restrictive filling and 2 is impaired 

relaxation pattern. 

 

Figure.S7.6. Confusion matrix derived from the predicted velocities in the 2CH views. 

Label 0 means normal diastolic function, 1 is restrictive filling and 2 is impaired relaxation 

pattern. 
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Chapter 8 Summary and future work 

Cine and 4D flow cardiac MRI are two important non-invasive MR imaging 

techniques to assess cardiac function and diagnose cardiovascular diseases. Cine 

MRI offers great soft tissue detail which allows clinical experts to evaluate structure 

and function of the heart. 4D flow MRI further has the ability of three-dimensional 

time-resolved acquisition of blood flow velocity, which can be used to derive intra-

cardiac hemodynamic parameters. In this thesis, we developed deep learning-based 

approaches to analyze cine and 4D flow cardiac MRI. In this chapter, we summarize 

the previous chapters and discuss potential directions of future work. 

8.1 Summary 

In Chapter 1, we provided a general introduction about cine and 4D flow cardiac 

MRI and deep learning applications in the field of cardiac MRI. In Chapter 2, we 

proposed a sampling inspection network combining specially designed data 

augmentation methods to assess CMR image quality. The proposed method showed 

a competitive performance against the other methods in the CMRxMotion challenge. 

In Chapter 3, we proposed temporal and spatial stacks to incorporate temporal or 

spatial information using stack attention mechanism for left ventricle segmentation 

in short-axis cine MRI. In Chapter 4, we further studied the concept of domain 

generalization in the setting of right ventricle segmentation in unseen datasets, such 

as data with differences in acquisition protocol, across different centers, scanner 

vendors and diseases. In Chapter 5, we investigated the feasibility of using deep 

learning-based approaches to segment the LV directly from 4D flow MRI and 

explored the performance of integrating features extracted from magnitude and 

velocity images. A transformer based feature fusion model was developed to 

improve the performance of LV segmentation from 4D flow MRI in Chapter 6. 

Chapter 7 aimed to train a CNN model to predict blood flow velocity from long-axis 

cine MRI using the corresponding 4D flow data as ground truth.  

    Chapter 2 CMR may suffer from motion-related artifacts resulting in non-

diagnostic quality images. Visual inspection of image quality is time-consuming and 

also relies on experienced radiologists. In this chapter, we proposed an automatic 

method for CMR image quality assessment. Given limited data and an unbalanced 

class ratio, we proposed three specially designed data augmentation methods to 

enlarge the dataset including generating transition phases between ED and ES phases, 

generating images using different levels of respiratory motion and generating images 

using histogram matching and linear interpolation. To mimic the sampling 

inspection, we randomly take two subsamples from one 3D volume to estimate the 

quality of a 3D volume. In the developed model, which was adapted from ResNet, 
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channel attention is used to explore the intra-channel relationship for the features 

extracted from each subsample. Subsequently, a feature fusion module is introduced 

to fuse features from two subsamples to predict the image quality. The proposed 

method is validated in the 2022 CMRxMotion competition, achieving a mean 

accuracy of 75% and 72.5% in training and validation dataset, respectively. 

Additionally, our method ranked at the 4th place in the testing dataset which was 

hidden by the organizer.  

    Chapter 3 In this chapter, we leveraged the spatiotemporal information from 

neighboring slices to improve the segmentation accuracy. The target image is 

stacked with its spatial or temporal neighboring images as the input. Then a stack 

attention is developed to extract and weigh the relevant features using the target 

image as a guide. The stack attention is inserted into U-Net to automatically segment 

the LV and myocardium from multi-slice short-axis cardiac MRI. An internal data 

set from one center and one public data set of the 2017 Automated Cardiac 

Segmentation Challenge (ACDC) were involved in evaluating and validating the 

proposed method. The model is trained on the internal data set first and then fine-

tuned on the public data set. The method achieved a Dice of 0.91 and Hausdorff 

Distance of 3.37 mm on the in-house data set. The performance on the ACDC data 

set achieved a Dice of 0.92, 0.89 and Hausdorff Distance of 9.7 mm and 7.1 mm on 

ED and ED phases, respectively, which confirms a good generalization. Additionally, 

the results in both data sets show high correlation of LVEF and myocardium mass 

derived from the model and manual segmentation, demonstrating a potential 

valuable application in clinical practice.   

    Chapter 4 This chapter focuses on model generalization, in which the aim is to 

develop a model that performs well on unseen data sets from different centers, 

vendors or different diseases. The M&Ms-2 Challenge is motivated to segment the 

right ventricle based on a multi-disease, multi-view and multi-center samples of 360 

cardiac MRI datasets. The most straightforward approach to tackle this problem is 

to collect more data to train a model. Given limited labeled data, we first introduce 

an intensity-based registration method to propagate the available labels from the end-

diastolic and end-systolic phases to the other unlabeled phases. We subsequently 

investigate the performance of different input modalities including single 2D image, 

multi-channel 2D image and 3D volume. The multi-channel 2D image is constructed 

using the spatial and temporal stack proposed in Chapter 3. On the validation data 

set, our method achieved a Dice of 0.92 and 0.92, Hausdorff Distance of 9.5 mm and 

5.3 mm in short-axis and long-axis view, respectively. Our method also generates a 

good performance on the hidden testing dataset, yielding a Dice of 0.93, 0.92 and 

Hausdorff Distance of 10.6 mm, 6.0 mm in short-axis and long-axis view, 

respectively. The experimental results demonstrate that the multi-channel 2D image 
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provides more information for the segmentation. Combining volume input and label 

propagation can further improve the generalization ability.  

    Previously reported 4D flow segmentation approaches rely on the registration 

between cine MRI and 4D flow data, which requires high computational cost. 

Chapter 5 and Chapter 6 focus on LV segmentation directly from 4D flow MRI 

without being dependent on additional cine MRI. In Chapter 5, we explored using 

the combination of magnitude and velocity images together in 4D flow data as input. 

The poor contrast between the heart chambers and myocardium will result in 

inherent uncertainty in the segmentation results. Therefore, Monte Carlo dropout 

method is introduced to assess the segmentation uncertainty. Additionally, five deep 

learning based models are compared to investigate the effect of using different 

network architectures, data pre-processing, inputs and feature fusion methods on the 

segmentation performance. Based on the results, the proposed method was shown to 

be highly accurate. Additionally, the clinical parameters derived from the best model 

show a high correlation with results derived from manual annotations, confirming 

the feasibility of LV segmentation from 4D flow MRI directly. 

    Chapter 6 presents a transformer based efficient feature fusion method to fuse the 

information from magnitude and velocity images and to improve the segmentation 

performance in 4D flow MRI. The network is an encoder-decoder structure based on 

U-Net. In the encoder, the magnitude and velocity images are considered as the 

inputs of two branches separately. The features from the same level are integrated 

using the feature fusion module. The cross- and self-fusion layer in the feature fusion 

module aim to explore the inter- and intra-relationship between those features. The 

fused features are added into the original features. The paired multi-level features 

are concatenated along the channel dimension followed by a convolutional layer as 

the input of the decoder. The decoder is kept the same as that in U-Net. The proposed 

methods achieve the best performance compared to the other models and get 

significant improvement in clinical parameters, yielding a Pearson correlation 

coefficient of 83.3%, 97.4%, 96.97% and 98.92% for LVEF, EDV, ESV and KE, 

respectively. The proposed feature fusion method therefore facilitates to aggregate 

the features from different modalities in an efficient manner. 

    Chapter 7 In this chapter, we designed and evaluated a deep learning based 

method to predict the intra-cardiac blood flow pattern from long-axis cine MRI using 

the velocities derived from 4D flow data as the ground truth. The network, a variant 

of U-Net and ResNet, takes a subsequence of cine MR images as the input to extract 

the displacement of blood over the cardiac frames. Although the averaged predicted 

velocity was shown to be under-estimated by 26.69%, the global time-varying blood 

flow pattern shows a high correlation with the 4D flow derived velocities. A potential 

application of the proposed method is to estimate the E/A ratio. The results indicated 
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that the E/A ratio can be estimated without significant bias and can further classify 

the diastolic function with a high accuracy. Our study is the first to employ deep 

learning for blood flow prediction from cine MRI. After further improvement of the 

model this work could potentially be valuable in clinical applications to visualize the 

intra-cardiac blood flow without additional 4D flow data.  

8.2 Discussion and Future work 

The work presented in this thesis aims to develop deep learning based methods for 

automated analysis of cardiac cine and 4D flow MRI.  

    The networks developed in chapter 3 and 4 focused primarily on automated 

segmentation in cine MRI. In chapter 3, we demonstrated that extracting temporal or 

spatial information from neighboring slices can benefit the segmentation 

performance in short-axis view cine MRI. The performance derived from 

introducing spatial features is better than using temporal information. Because the 

spatial stack can provide more information about the position, size and shape of the 

heart. While the images in the temporal stack are similar to each other and contain 

comparable features. In these studies deep learning has shown its promising 

applications in cardiac MRI segmentation. However, the developed approaches are 

validated in cases where the testing data is from the same domain as the training data. 

In a realistic scenario an significant performance drop can be observed when a 

trained model is applied on data from another domain. For example, when our model 

trained on the Leeds University dataset (LUD) is applied to the ACDC dataset 

directly, the segmentation accuracy drops from 90% to 70%. This can be explained 

by the population bias from different sites, ages, genders, races and diseases, and 

image appearance differences from various vendors, protocols, and magnetic field 

strengths resulting in data distribution heterogeneity. The heterogeneity cannot be 

eliminated completely using data pre-processing. The model needs to be fine-tuned 

or re-trained on the new data set to achieve a good performance. Therefore, domain 

generalization is a technical bottleneck for deploying deep learning in real-world 

clinical environments. Collecting and labeling vast amount of data from various 

centers and vendors it the most straight-forward solution. However, it is prohibitively 

expensive to obtain high-quality manual annotations for every domain, as it requires 

expert knowledge and it is also impossible to cover full spectrum of data. In chapter 

4 we introduced registration to propagate the available segmentation labels to 

unlabeled images in order to enlarge the training data. Additionally, data 

augmentation techniques are used to increase the variety of training data to improve 

the model’s robustness. The results show that the model has a good generalization 

on data with unseen pathologies. As a promising direction of future research, it’s 

also worth investigating self-learning and semi-supervised learning to extract more 
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prior knowledge to improve model’s generalization ability when the training data is 

limited. 

    In chapter 5, we compared several models for LV segmentation directly from 4D 

flow MRI without relying on the registration between cine and 4D flow MRI. In 

chapter 6, we further improve the performance using a novel feature fusion method. 

However, there are also other considerations that need to be taken into account. 

Firstly, although most studies focus on introducing novel algorithms, data pre-

processing including correction, enhancement, resample and normalization is also 

significantly important. For example, as shown in chapter 5 the performance derived 

from resliced data volumes is better than using the original data without data pre-

processing. Similarly, the model of nnUnet (no new Unet), a self-configuring method, 

surpasses most existing deep learning-based segmentation approaches on 23 public 

datasets. The strong performance is not achieved by introducing a new network 

architecture for each type of data, but is the result of the carefully designed process 

of automatic self-configuration. Secondly, it is important to be aware that the final 

evaluation measurements should be valuable and reliable for the quantitative 

assessment of model’s performance. The proposed models in Chapter 5 achieved 

similar results in terms of Dice and ASD as reported in Table 5.2, which makes it 

difficult to select the best model. In general, clinical relevant metrics derived from 

the segmentation results provide meaningful and actionable information for 

diagnosis and treatment. As compared to the other state-of-arts, the proposed method 

in Chapter 6 improves the Dice by only 2%, but the Pearson correlation coefficient 

in EDV, ESV and KE got improved by 9%, 7% and 16%. Therefore, the clinical 

parameters should be involved when comparing the performance of different models 

to ensure that the algorithms are reliable for use in medical applications. It would be 

possible to develop deep learning based multi-task networks to jointly perform the 

task of cardiac segmentation task and the regression of volume or ejection fraction 

prediction. Thirdly, in chapter 6 a transformer based feature fusion module was 

presented and achieved the best performance. The module can integrate information 

extracted from two different modalities or views efficiently. It can be adapted to the 

other applications such as integrating short- and long-axis view cine MRI for disease 

diagnosis, or combining apical four chamber (A4C) and two chamber (A2C) 

acquisitions in echocardiography data. 

8.3 General conclusions 

In conclusion, this thesis proposes deep learning based methods for quantifying 

cardiac MRI. The described methods can be applied for cine MR image quality 

classification and ventricle segmentation without any human interactions. 

Investigating combining and fusing magnitude and velocity images can be helpful 

for left ventricle segmentation in 4D flow MRI, which is not fully explored yet. 
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Moreover, we proposed a network to predict the blood flow pattern from the cine 

MRI. By combining visualization of the blood flow and myocardial motion in the 

routinely acquired standard CMR exams, the method can be potentially used in 

clinical studies. All the deep learning methods described in this thesis were evaluated 

on MRI data, but can potentially also be applied in other imaging modalities such as 

computed tomography and echocardiography. 
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Samenvatting en toekomstig werk 
Cine en 4D flow cardiale MRI zijn twee belangrijke niet-invasieve MR-

beeldvormingstechnieken om de hartfunctie te beoordelen en cardiovasculaire 

ziekten te diagnosticeren. Cine MRI biedt grote details van het zachte weefsel, 

waardoor klinische deskundigen de structuur en functie van het hart kunnen 

beoordelen. 4D flow MRI heeft verder de mogelijkheid tot het maken van 

driedimensionale tijdsopnamen van de bloedstroomsnelheid, die kan worden 

gebruikt om intra-cardiale hemodynamische parameters af te leiden. In dit 

proefschrift hebben we op deep learning gebaseerde benaderingen ontwikkeld voor 

het analyseren van cine en 4D flow cardiale MRI. In dit hoofdstuk vatten we de 

voorgaande hoofdstukken samen en bespreken we mogelijke richtingen voor 

toekomstig werk. 

Samenvatting 

In hoofdstuk 1 hebben we een algemene inleiding gegeven over cine en 4D flow 

cardiale MRI en deep learning toepassingen op het gebied van cardiale MRI. In 

hoofdstuk 2 hebben we een netwerk voor bemonsteringsinspectie voorgesteld dat 

speciaal ontworpen methoden voor datavergroting combineert om de CMR-

beeldkwaliteit te beoordelen. De voorgestelde methode presteerde concurrerend ten 

opzichte van de andere methoden in de CMRxMotion challenge. In hoofdstuk 3 

hebben we temporele en ruimtelijke stacks voorgesteld om temporele of ruimtelijke 

informatie op te nemen met behulp van het stack-aandachtsmechanisme voor 

segmentatie van de linkerventrikel in korte-as cine MRI beelden. In hoofdstuk 4 

hebben we het concept van domein generalisatie verder bestudeerd in de setting van 

rechterventrikel segmentatie in ongeziene datasets, zoals data met verschillen in 

acquisitie protocol, over verschillende centra, scanner leveranciers en ziekte beelden. 

In hoofdstuk 5 onderzochten wij de haalbaarheid van op deep learning gebaseerde 

benaderingen om de LV rechtstreeks te segmenteren op basis van 4D flow-MRI en 

onderzochten wij de prestaties van de integratie van kenmerken die werden 

geëxtraheerd uit magnitude- en snelheidsbeelden. In hoofdstuk 6 werd een op 

Transformers gebaseerd feature fusie model ontwikkeld om de prestaties van LV-

segmentatie van 4D flow MRI te verbeteren. In hoofdstuk 7 werd een CNN-model 

getraind om de bloedstroomsnelheid te voorspellen op basis van lange-as cine-MRI 

beelden, waarbij de corresponderende 4D-flow gegevens als referentie werden 

gebruikt. 

    Hoofdstuk 2 CMR kan last hebben van bewegingsgerelateerde artefacten die 

resulteren in beelden van niet-diagnostische kwaliteit. Visuele inspectie van de 

beeldkwaliteit is tijdrovend en bovendien afhankelijk van ervaren radiologen. In dit 
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hoofdstuk stellen we een automatische methode voor om de kwaliteit van CMR-

beelden te beoordelen. Met beperkte hoeveelheid data en een onevenwichtige 

klassenverhouding hebben wij drie speciaal ontworpen datavergrotingsmethoden 

voorgesteld om de dataset uit te breiden, waaronder het genereren van 

overgangsfasen tussen de ED- en ES-fasen, het genereren van beelden met 

verschillende mate van ademhalingsbeweging en het genereren van beelden met 

behulp van histogrammatching en lineaire interpolatie. Om de 

bemonsteringsinspectie na te bootsen, nemen we willekeurig twee deelmonsters van 

één 3D-volume om de kwaliteit van een 3D-volume te schatten. In het ontwikkelde 

model, dat werd aangepast aan ResNet, wordt kanaalaandacht gebruikt om de intra-

kanaalrelatie te onderzoeken voor de kenmerken die uit elk deelmonster worden 

geëxtraheerd. Vervolgens wordt een feature fusie module geïntroduceerd om 

features van twee subsamples te fuseren om de beeldkwaliteit te voorspellen. De 

voorgestelde methode is gevalideerd in de CMRxMotion-wedstrijd van 2022 en 

behaalde een gemiddelde nauwkeurigheid van 75% en 72,5% in respectievelijk de 

training- en validatiedataset. Bovendien eindigde onze methode op de vierde plaats 

in de testdataset die door de organisator verborgen was gehouden. 

    Hoofdstuk 3 In dit hoofdstuk gebruiken we de spatio-temporele informatie van 

naburige beelden om de nauwkeurigheid van segmentatie te verbeteren. Het 

doelbeeld wordt gestapeld met zijn ruimtelijke of temporele naburige beelden als 

input. Vervolgens wordt een stapel aandacht ontwikkeld om de relevante kenmerken 

te extraheren en te wegen met het doelbeeld als leidraad. De stackaandacht wordt in 

U-Net ingevoegd om automatisch de LV en het myocard te segmenteren uit multi-

slice korte-as cardiale MRI. Een interne dataset van één centrum en een openbare 

dataset van de 2017 Automated Cardiac Segmentation Challenge (ACDC) werden 

betrokken bij het evalueren en valideren van de voorgestelde methode. Het model is 

eerst getraind op de interne dataset en vervolgens verfijnd op de openbare dataset. 

De methode behaalde een Dice van 0,91 en een Hausdorff Distance van 3,37 mm op 

de interne dataset. De prestaties op de ACDC-dataset bereikten een Dice van 0,92 en 

0,89 en een Hausdorff Distance van 9,7 mm en 7,1 mm voor respectievelijk de ED- 

en ES-fasen, wat een goede generalisatie bevestigt. Bovendien laten de resultaten in 

beide datasets een hoge correlatie zien van LVEF en myocardmassa afgeleid van het 

model en handmatige segmentatie, wat een potentieel waardevolle toepassing in de 

klinische praktijk aantoont. 

    Hoofdstuk 4 Dit hoofdstuk richt zich op modelgeneralisatie, waarbij het doel is 

een model te ontwikkelen dat goed presteert op ongeziene datasets van verschillende 

centra, leveranciers of verschillende ziekten. De M&Ms-2-challenge is gemotiveerd 

om de rechterhartkamer te segmenteren op basis van een steekproef van 360 cardiale 

MRI-datasets met meerdere ziekten, meerdere beeld oriëntaties en meerdere centra. 

De meest eenvoudige aanpak van dit probleem is het verzamelen van meer data om 
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een model te trainen. Met beperkte gelabelde data introduceren we eerst een op 

intensiteit gebaseerde registratiemethode om de beschikbare labels van de eind-

diastolische (ED) en eind-systolische (ES) fasen te propageren naar de andere 

ongelabelde fasen. Vervolgens onderzoeken wij de prestaties van verschillende 

invoermodaliteiten, waaronder een enkel 2D-beeld, een meerkanaals 2D-beeld en 

een 3D-volume. Het meerkanaals 2D-beeld wordt opgebouwd met behulp van de in 

hoofdstuk 3 voorgestelde ruimtelijke en temporele stapeling. Op de validatiedataset 

behaalde onze methode een Dice van 0,92 en 0,92, Hausdorff Distance van 9,5 mm 

en 5,3 mm in respectievelijk de korte en lange as beelden. Onze methode levert ook 

goede prestaties op de verborgen testdataset, met een Dice van 0,93 en 0,92 en een 

Hausdorff Distance van 10,6 mm en 6,0 mm in respectievelijk korte- en lange-as 

aanzicht. De experimentele resultaten tonen aan dat het meerkanaals 2D-beeld meer 

informatie biedt voor de segmentatie. De combinatie van volume-invoer en 

labelpropagatie kan het generalisatievermogen verder verbeteren. 

    Eerder gerapporteerde benaderingen voor 4D-flow segmentatie zijn gebaseerd op 

de registratie tussen cine-MRI en 4D-flow gegevens, wat hoge rekencapaciteit 

vereist. Hoofdstuk 5 en Hoofdstuk 6 richten zich op LV-segmentatie direct vanuit 

4D flow MRI zonder afhankelijk te zijn van aanvullende cine MRI. In Hoofdstuk 5, 

hebben we onderzocht met behulp van de combinatie van magnitude- en 

snelheidsbeelden samen met 4D-flow gegevens als invoer. Het slechte contrast 

tussen de hartkamers en het myocard zal resulteren in inherente onzekerheid in de 

segmentatieresultaten. Daarom wordt de Monte Carlo-uitvalmethode geïntroduceerd 

om de segmentatie-onzekerheid te beoordelen. Daarnaast worden vijf op deep 

learning gebaseerde modellen vergeleken om het effect te onderzoeken van het 

gebruik van verschillende netwerkarchitecturen, datavoorverwerking, invoer en 

functiefusiemethoden op de segmentatieprestaties. Op basis van de resultaten bleek 

de voorgestelde methode zeer nauwkeurig te zijn. Bovendien vertonen de klinische 

parameters die zijn afgeleid van het beste model een hoge correlatie met resultaten 

die zijn afgeleid van handmatige annotaties, wat de haalbaarheid van LV-

segmentatie rechtstreeks uit 4D flow MRI bevestigt. 

    Hoofdstuk 6 presenteert een op een Transformer gebaseerde efficiënte 

kenmerkfusiemethode om de informatie uit magnitude- en snelheidsbeelden te 

fuseren en om de segmentatieprestaties in 4D flow MRI te verbeteren. Het netwerk 

is een encoder-decoderstructuur gebaseerd op U-Net. In de encoder worden de 

magnitude- en snelheidsbeelden beschouwd als de invoer van twee afzonderlijke 

takken. De functies van hetzelfde niveau zijn geïntegreerd met behulp van de feature 

fusie-module. De cross- en self-fusion-laag in de feature fusie-module is bedoeld om 

de inter- en intra-relatie tussen die features te verkennen. De gefuseerde kenmerken 

worden toegevoegd aan de originele kenmerken. De gepaarde kenmerken op 

meerdere niveaus worden aaneengeschakeld langs de kanaaldimensie, gevolgd door 
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een convolutionele laag als invoer van de decoder. De decoder wordt hetzelfde 

gehouden als die in U-Net. De voorgestelde methoden leveren de beste prestaties in 

vergelijking met de andere modellen en zorgen voor een significante verbetering van 

de klinische parameters, resulterend in een Pearson-correlatiecoëfficiënt van 

respectievelijk 83,3%, 97,4%, 96,97% en 98,92% voor LVEF, EDV, ESV en KE. 

De voorgestelde feature fusie-methode maakt het daarom mogelijk om de features 

van verschillende modaliteiten op een efficiënte manier samen te voegen. 

    Hoofdstuk 7 In dit hoofdstuk hebben we een op deep learning gebaseerde 

methode ontworpen en geëvalueerd om het intra-cardiale bloedstroompatroon te 

voorspellen op basis van cine-MRI lange as opnamen, waarbij we de snelheden 

afgeleid van 4D-flow gegevens gebruiken als referentie. Het netwerk, een variant 

van U-Net en ResNet, neemt een reeks cine-MR-beelden als input om de 

verplaatsing van bloed over de cardiale frames te extraheren. Hoewel werd 

aangetoond dat de gemiddelde voorspelde snelheid met 26,69% werd onderschat, 

vertoont het globale in de tijd variërende bloedstroompatroon een hoge correlatie 

met de van de 4D-flow afgeleide snelheden. Een mogelijke toepassing van de 

voorgestelde methode is het schatten van de E/A-ratio. De resultaten gaven aan dat 

de E/A-ratio zonder significante bias kan worden geschat en daarnaast de 

diastolische functie kan classificeren met een hoge nauwkeurigheid. Onze studie is 

de eerste die deep learning gebruikt voor de voorspelling van de bloedstroom op 

basis van cine-MRI. Na verdere verbetering van het model zou dit werk potentieel 

waardevol kunnen zijn in klinische toepassingen om de intracardiale bloedstroom te 

visualiseren zonder aanvullende 4D-flow gegevens. 

Discussie en toekomstig werk 

Het werk dat in dit proefschrift wordt gepresenteerd, heeft tot doel op deep learning 

gebaseerde methoden te ontwikkelen voor geautomatiseerde analyse van cardiale 

cine en 4D flow MRI. 

    De in hoofdstuk 3 en 4 ontwikkelde netwerken waren voornamelijk gericht op 

geautomatiseerde segmentatie in cine MRI. In hoofdstuk 3 hebben wij aangetoond 

dat het extraheren van temporele of ruimtelijke informatie uit naburige coupes de 

segmentatieprestatie in korte-as cine MRI kan verbeteren. De prestaties van het 

gebruik van ruimtelijke kenmerken zijn beter dan die van temporele informatie. De 

ruimtelijke stack kan namelijk meer informatie verschaffen over de positie, grootte 

en vorm van het hart. Terwijl de beelden in de temporele stack op elkaar lijken en 

vergelijkbare kenmerken bevatten. In deze studies heeft deep learning zijn 

veelbelovende toepassingen in cardiale MRI-segmentatie aangetoond. De 

ontwikkelde benaderingen zijn echter gevalideerd in gevallen waarin de testdata 

afkomstig zijn uit hetzelfde domein als de trainingsdata. In een realistisch scenario 
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kan een aanzienlijke prestatiedaling worden waargenomen wanneer een getraind 

model wordt toegepast op data uit een ander domein. Wanneer ons op de Leeds 

University dataset (LUD) getrainde model bijvoorbeeld rechtstreeks wordt toegepast 

op de ACDC dataset, daalt de segmentatienauwkeurigheid van 90% naar 70%. Dit 

kan worden verklaard door de populatie verschillen van verschillende locaties, 

leeftijden, geslachten, rassen en pathologieën, en verschillen in beeldvorming door 

verschillende scanner leveranciers, protocollen en magnetische veldsterktes die 

resulteren in heterogeniteit van de dataverdeling. De heterogeniteit kan niet volledig 

worden geëlimineerd door voorbewerking van de data. Het model moet worden 

verfijnd of opnieuw worden getraind op de nieuwe datareeks om goede prestaties te 

bereiken. Daarom is domeingeneralisatie een technisch knelpunt voor de toepassing 

van deep learning in realistische klinische omgeving. Het verzamelen en labelen van 

een grote hoeveelheid data van verschillende centra en leveranciers is de meest 

eenvoudige oplossing. Het is echter kostentechnisch onhaalbaar om voor elk domein 

handmatige annotaties van hoge kwaliteit te verkrijgen, omdat daarvoor expert 

kennis nodig is, en het is ook onmogelijk om het volledige spectrum van data te 

bestrijken. In hoofdstuk 4 introduceerden wij registratie om de beschikbare 

segmentatielabels door te geven aan ongelabelde beelden om de hoeveelheid 

trainingsdata te vergroten. Bovendien worden technieken voor datauitbreiding 

gebruikt om de verscheidenheid aan trainingsdata te vergroten om de robuustheid 

van het model te verbeteren. De resultaten tonen aan dat het model goed generaliseert 

op data met ongeziene pathologieën. Als veelbelovende richting voor toekomstig 

onderzoek is het ook de moeite waard selflearning en semi-gesuperviseerd leren te 

onderzoeken om meer voorkennis te extraheren om het generalisatievermogen van 

het model te verbeteren wanneer de hoeveelheid trainingsdata beperkt is. 

    In hoofdstuk 5 vergelijken we verschillende modellen voor LV-segmentatie 

rechtstreeks uit 4D flow-MRI zonder gebruik te maken van de registratie tussen cine 

en 4D flow-MRI. In hoofdstuk 6 verbeteren we de prestaties verder met behulp van 

een nieuwe feature fusie methode. Er zijn echter ook andere overwegingen waarmee 

rekening moet worden gehouden. Ten eerste, hoewel de meeste studies zich richten 

op de invoering van nieuwe algoritmen, is de voorbewerking van de data, waaronder 

correctie, verbetering, resampling en normalisatie, ook van groot belang. Zo blijkt 

uit hoofdstuk 5 dat de prestaties van herschikte datavolumes beter zijn dan die van 

de oorspronkelijke data zonder datavoorbewerking. Evenzo overtreft het model van 

nnUnet (no new Unet), een zelfconfigurerende methode, de meeste bestaande op 

deep learning gebaseerde segmentatiebenaderingen op 23 openbare datasets. De 

goede prestaties worden niet bereikt door de invoering van een nieuwe 

netwerkarchitectuur voor elk type data, maar zijn het resultaat van het zorgvuldig 

ontworpen proces van automatische zelfconfiguratie. Ten tweede moeten de 

uiteindelijke evaluatiemetingen waardevol en betrouwbaar zijn voor de 
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kwantitatieve beoordeling van de prestaties van het model. De in hoofdstuk 5 

voorgestelde modellen behaalden vergelijkbare resultaten voor wat betreft Dice en 

ASD, zoals gerapporteerd in tabel 5.2, wat het moeilijk maakt het beste model te 

selecteren. In het algemeen leveren de klinisch relevante metrieken, afgeleid van de 

segmentatieresultaten, zinvolle en bruikbare informatie op voor diagnose en 

behandeling. In vergelijking met de andere state-of-arts verbetert de voorgestelde 

methode in hoofdstuk 6 de Dice met slechts 2%, maar de Pearson 

correlatiecoëfficiënt in EDV, ESV en KE werd verbeterd met 9%, 7% en 16%. 

Daarom moeten de klinische parameters worden betrokken bij de vergelijking van 

de prestaties van verschillende modellen om ervoor te zorgen dat de algoritmen 

betrouwbaar zijn voor gebruik in medische toepassingen. De mogelijkheid bestaat 

om op deep learning gebaseerde multi-task netwerken te ontwikkelen om 

gezamenlijk de taak van hartsegmentatie en de regressie van volume of 

ejectiefractievoorspelling uit te voeren. Ten derde werd in hoofdstuk 6 een op 

Transformers gebaseerde feature fusie module gepresenteerd die de beste prestaties 

leverde. De module kan informatie uit twee verschillende modaliteiten of beeld 

oriëntaties efficiënt integreren. De module kan worden aangepast voor andere 

toepassingen, zoals de integratie van korte-as en lange-as cine-MRI voor 

automatische diagnosetoepassing, of de combinatie van apicale vier-kamer en twee-

kamer opnames in echocardiografische beelddata. 

Algemene conclusies 

    Concluderend stelt dit proefschrift deep learning-gebaseerde methoden voor om 

cardiale MRI te kwantificeren. De beschreven methoden kunnen worden toegepast 

voor cine MR-beeldkwaliteitsclassificatie en ventrikelsegmentatie zonder humane 

interactie. Onderzoek naar het combineren en samenvoegen van magnitude- en 

snelheidsbeelden kan nuttig zijn voor de segmentatie van de linkerventrikel in 4D 

flow-MRI, wat nog niet volledig is onderzocht. Bovendien hebben wij een netwerk 

voorgesteld om het bloedstroompatroon te voorspellen op basis van de cine MRI. 

Door de combinatie van visualisatie van de bloedstroom en myocardiale beweging 

in een routinematig verkregen standaard CMR-onderzoek, kan de methode mogelijk 

worden gebruikt in klinische studies. Alle in dit proefschrift beschreven deep 

learning-methoden werden geëvalueerd op MRI-beelddata, maar kunnen potentieel 

ook worden toegepast op andere beeldvormingsmodaliteiten zoals 

computertomografie en echocardiografie. 

 



 

145 
 

Publications 
Journal articles 

Xiaowu Sun, Pankaj Garg, Sven Plein, Rob J. van der Geest. SAUN: Stack attention 

U‐Net for left ventricle segmentation from cardiac cine magnetic resonance imaging. 

Medical Physics, 48(4), 1750-1763. 

 

Xiaowu Sun, Li-Hsin Cheng, Sven Plein, Pankaj Garg, Rob J. van der Geest. Deep 

learning based automated left ventricle segmentation and flow quantification in 4D 

flow cardiac MRI. Journal of Cardiovascular Magnetic Resonance (under review) 

 

Xiaowu Sun, Li-Hsin Cheng, Sven Plein, Pankaj Garg, Mehdi H. Moghari, Rob J. 

van der Geest. Deep Learning-based Method for Intra-Cardiac Blood Flow Pattern 

Prediction using 4D Flow Data. International Journal of Cardiovascular Imaging. 
(2023): 1-9. 

 

Conference proceedings 

Xiaowu Sun, Li-Hsin Cheng, Rob J. van der Geest. Right Ventricle Segmentation 

via Registration and Multi-input Modalities in Cardiac Magnetic Resonance Imaging 

from Multi-disease, Multi-view and Multi-center. International Workshop on 

Statistical Atlases and Computational Models of the Heart (STACOM, Oral). 

Springer, Cham, 2021. 

 

Xiaowu Sun, Li-Hsin Cheng, Sven Plein, Pankaj Garg, Rob J. van der Geest. 

Transformer based feature fusion for left ventricle segmentation in 4D flow MRI. 

International Conference on Medical Image Computing and Computer-Assisted 

Intervention (MICCAI, Oral). Springer, Cham, 2022. 

 

Xiaowu Sun, Li-Hsin Cheng, Rob J. van der Geest. Combination Special Data 

Augmentation and Sampling Inspection Network for Cardiac Magnetic Resonance 

Imaging Quality Classification. International Workshop on Statistical Atlases and 

Computational Models of the Heart (STACOM). Springer, Cham, 2022. 

 

Xiaowu Sun, Li-Hsin Cheng, Rob J. van der Geest. Self-and Cross-attention based 

Transformer for left ventricle segmentation in 4D flow MRI. Medical Imaging with 

Deep Learning (MIDL). 2022. 

 

Li-Hsin Cheng, Xiaowu Sun, Rob J. van der Geest. Contrastive Learning for 

Echocardiographic View Integration. International Conference on Medical Image 

Computing and Computer-Assisted Intervention (MICCAI, Oral). Springer, Cham, 

2022. 



 

146 
 

  



 

147 
 

Acknowledgements 
 

“I am not a rich, smart or talented person in the world, but I’m simply an ordinary 

man who keeps going and going and going”. 

    I've been using this quotation to encourage myself during the past four and a half 

years. Being a PhD student outside of China is not easy. I could not have done it 

without the supporting and help from my supervisors, colleagues, friends and 

families along this journey. I am deeply grateful to each of you. 

    First and foremost, I would like to express my gratitude to my promotor Prof. 

Boudewijn Lelieveldt and my esteemed supervisor Rob van der Geest. Boudewijn, I 

sincerely appreciate your selfless assistance, unwavering support and the friendly 

and inclusive work environment that you have fostered. 

    Rob, throughout our time working together, your friendly and approachable 

demeanor, open-door policy and willingness to engage in meaningful conversations 

have been invaluable in helping me navigate complex tasks and projects. Also thank 

you for organizing the memorable boat trip in Leiden canals and the delightful BBQ 

in your house. Dankuwel! 

    I appreciate that I met those friendly and amazing colleagues in LKEB. Niels, it’s 

my honor to have you as a colleague and friend. I enjoyed our funny daily talks and 

thank you for your concerns during the Covid pandemic. Li-Hsin, I am grateful for 

our discussions throughout our weekly group meetings, and it is unforgettable how 

we worked all night to accomplish the tight deadlines for MIDL and MICCAI. 

Baldur, your knowledge expands my horizons and I learned a lot from you during 

our in-depth talks. Marius, I appreciate your encouragement for my oral presentation 

at MICCAI in Singapore. Berend and Els, thank you for your wonderful concert 

performances. Oleh, thank you for sharing your trip experiences  during LKEB beach 

outgoing. Michèle, you are always there when I need any IT supporting, also thank 

you for your “Daddy care” when I worked overtime in office. I would like to thank 

Patrick, Jeoren, Denis, Jouke and Alexander for your invitation for lunch every 

working day. Thanks to Jingnan, Li-Hsin, Viktor, Patrick, Yunjie, Yanli, Xiaotong, 

Chang, Ruochen, Chinmay, Mody, Mohamed, Laurens, Simon, Vincent, 

Konstantinos, Silvia, Bo, Zhiwei, Qing, Hessam, Sahar, Qian, Kilany and Tahereh, 

all the members of AI meeting for sharing your cutting-edge technologies. I also had 

a lot of fun with you guys, playing board games, travelling, hiking and bouldering. 

Of course, I’ll never forget how awkwardly we run through Schiphol airport to catch 

the flight, only to miss it.  



 

148 
 

    Special thankfulness goes to my teachers in China. Prof. Shengde Li, thank you 

for supervising my scientific contests and bachelor thesis, which is where I first 

experienced academic research. Your rigorous scientific research attitude also shows 

me how to be an excellent researcher. Prof. Linghua Kong, you were the one who 

enlightened and encouraged me when I wanted to drop out. Thank you for your 

selfless assistance tutoring in my mathematics professional competition. Prof. 

Lizhen Liu, your valuable advice pointed me in the right direction when I was 

standing at the crossroads. 

     I extend my sincere thanks to my dear friends. Qing, Lingling, Ling Lin, Zhiwei, 

Ningning, Kaixuan, Chenhong, Lu, Qian, Zexu, Wensen, Jiemiao and all Chinese 

PhDs in LKEB, those moments when we cooked, traveled and played games together 

are the most precious memories in my study abroad. 谢谢. A special gratitude to 

Ruizhe in Nottingham, it’s a great treasure to meet you in UCL summer school. I 

appreciate your collaboration during the CMRxMotion Challenge. My volleyball 

teammates in SKC, thank you for all the hilarious moments on and off the field, you 

made my life in Leiden joyful.  

    Things are never quite as scary when you’ve got a best friend. Xiaofan, we 

encourage each other from undergrad to master, and then to our PhD studies. What 

a blessing it is to have a buddy like you for more than 10 years. 

     Last but most certainly not least, I would like to thank my families. 感谢姥姥、

姥爷年逾八十，护我周全；感谢爸妈育我成人，焉得谖草，言树之背；姐姐、

姐夫以及我亲爱的外甥昊昊，谢谢你们无微不至的关心，一如既往的支持，

让我心无旁骛前行。爱你们, I love you all! 

  



 

149 
 

Curriculum Vitae  
 

Xiaowu Sun was born in Yantai, Shandong Province, China in November,1992. In 

2011, he started his bachelor in the major of Applied Mathematics at Dalian Ocean 

University, Liaoning Province, China. He won national scholarship awards (highest 

honor) in 2013 and 2014, respectively. In 2015, he received “Best Undergraduate 

Dissertation Award” and graduated as an “outstanding student” of Liaoning Province. 

At the same year, he began his master study in the major of software engineering at 

Capital Normal University, Beijing. In his master project, he developed machine 

learning based approaches to predict the protein complexes from protein-protein 

interaction network. In 2018, he got his master degree with “outstanding student”.  

    From September 2018, he started his PhD study in the Division of Image 

Processing (LKEB) under the Department of Radiology at Leiden University 

Medical Center in the Netherlands. His PhD project mainly focuses on automated 

analysis for cardiac MRI using deep learning based methods. The results of his 

research are included in this thesis.  

    From May 2023, he worked as a post-doctoral researcher in EPFL, Lausanne, 

Switzerland, with the project of automated analysis of coronary angiography and 

cardiac ultrasound images using deep learning, under the supervision of Prof. 

Emmanuel Abbe and Prof. Pascal Frossard.  


