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CHAPTER 3:

83

The characterization of structure and dynamics of intrinsically disordered proteins 
presents many challenges, because of their lack of stable native conformation. Key 
topological motifs with fundamental biological relevance are often hidden in the 
conformational noise, eluding detection. Here, we develop a circuit topology toolbox 
to extract conformational patterns, critical contacts, and timescales from simulated 
dynamics of intrinsically disordered proteins. We follow the dynamics of IDPs by 
providing a smart low-dimensionality representation of their 3D configuration in 
the topology space. Such approach allows us to quantify topological similarity in 
dynamic systems, therefore providing a pipeline for structural comparison of IDPs.
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1. INTRODUCTION

Until recent years, the dogma in protein biology entailed that functional pro-
teins or domains have unique and stable 3D structures. These native configura-
tions can be characterized by their virtually fixed atomic positions and backbone 
Ramachandran angles, which vary only slightly as a result of thermal fluctuations. 
However, there exists another class of functional proteins which contain highly 
dynamic regions or are characterized by the absence of apparent ordered structu-
re under physiological conditions. These proteins have no single, well-defined 
equilibrium structure but exist as heterogeneous ensembles of conformations 
that cannot be sufficiently described by a single set of geometric coordinates or 
backbone Ramachandran angles [1][2]. These proteins, present in all kingdoms 
of life, are biologically active and adapt to a highly specific structure upon impor-
tant functional interactions with biological partners [3]. They have been called 
many names[4], but are now commonly referred to as intrinsically disordered 
proteins (IDP) or intrinsically disordered regions (IDR). It is estimated that more 
than 30% of all proteins in the eukaryotic proteome are either entirely disordered 
or contain disordered regions of more than 50 consecutive amino acids [5]. This 
fraction of the proteome includes crucial proteins involved in essential biological 
functions, like signalling[6], transcriptional control [7], and allosteric regulation 
[8]. Mutations in these proteins thus might play a role in disease development 
[9]. Indeed, IDPs and IDRs are implicated in many pathologies ranging from 
cancer [10] and metabolic diseases to neuromuscular disorders [11] and have 
been suggested as an attractive target for therapeutic interventions [12]. For this 
reason, an understanding of the structure-function relation in these disordered 
molecules is paramount. The conformational disorder poses serious challenges 
for experimental and computational analysis of IDP/IDR conformations and in-
teractions and to date even the most state-of-the-art machine learning approa-
ches have been unable to successfully elucidate the native structures of disorde-
red proteins and regions [13]. Despite these challenges, modeling[14][15] and 
experimental [16][17] investigations have led to important insights into the fun-
ctional dynamics of these intrinsically disordered proteins (IDPs)[18][19].

 What hampers our understanding of these proteins is the lack of a proper 
description of the dynamics that captures topological motifs, hidden within the 
conformational noise. Furthermore, there is a need for a “reaction coordinate” 
to map the interconversion of potential motifs. Topology is a mathematical fra-
mework that is designed to detect such shape invariants in geometric ensembles. 
Recently, topology of unknotted protein chains has been defined based on the 
arrangement of loops or the associated intrachain contacts. This approach, called 
circuit topology (CT)[20]–[22],  has been applied to stable folded proteins for 
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various applications [23],[24], and has proven to be effective for modelling poly-
mer folding  reactions [25]. CT is a very simple yet effective framework for the 
characterization of the arrangement of interchain (residue-residue) contacts in a 
folded molecule. The core idea is that the arrangement of any pair of contact be-
longs to either one of three topological relations: series (S), parallel (P) and cross 
(X) (Figure 1). The assignment of topological relations relies on the numbering 
and positioning of contact sites along the chain sequence. Contacts belonging to 
the S class are spatially “noninteracting”: their contact sites appear serially along 
the chain, and the contacts do not intersect. On the other hand, a contact which 
is fully encompassed by another contact is said to be in P relation with the latter. 
Finally, contacts in X relation “interact” spatially, but one is not fully enveloped 
by the other. These three relations characterize all possible contact arrangements 
within a chain. It is possible for two of these relations, series and parallel, to share 
one of the contact sites between the contact pair (Figure 1). In this case, we call 
this subclass concerted relations, resulting in concerted parallel (CP) and concer-
ted series (CS). 

The CT approach has not yet been applied to disordered proteins. Since intrin-
sic disorder does not mean random, we believe such a framework could capture 
conserved features in the wide topological evolutions of such systems. Moreo-
ver, we suggest this method could be able to detect topological similarity betwe-
en IDPs with similar function, providing a new metric for the quantification of 
structural similarity suitable for IDPs and proteins with a stable 3D structure 
alike. Here, we coupled circuit topology and Molecular Dynamics (MD) simula-
tions for IDP analysis and applied it to the disordered N-terminal transactivation 
domains (NTDs) of three proteins from the family of nuclear hormone receptors 
(NHR), namely human androgen receptor (AR), glucocorticoid receptor (GR), 
and estrogen receptors (ER). We mapped the folding dynamics of the NTD do-

Figure 1. Circuit topology relations: each pair of contacts can be characterized by one of 
three relations: series, parallel, and cross. The topological relation between pairs of contacts 
is assigned based on the order in which contact sites (residues) appear along the sequence. 
Sometimes one contact site is shared between contacts (green dots in the panel). In this case, 
we talk about concerted relations, which are a subset of either S or P relations.
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mains onto the topological space, providing reaction coordinates to finally vi-
sualize the intrinsically disordered conformational dynamics. We performed a 
comparative analysis of these disordered receptor domains, using the disordered 
γ-synuclein (residues 1 to 114) and a few well-folded proteins as references. We 
prove how it is possible to find common traits characterizing such conformatio-
nal evolution, while also identifying differential patterns of behavior among our 
protein dataset, ranging from the extent and dynamics of topological evolution, 
as well as the topological content itself. Modeling intrinsically disordered pro-
teins poses significant challenges due to the limited sampling capabilities of their 
flat energy landscape [26]. Here, we do not aim at offering a solution to such 
challenges, but rather present a smart data representation for the topological cha-
racterization and comparison of IDPs.  

2. RESULTS

2.1. Basic 1D and 3D comparative analysis of NHR dynamics

As a case study, we focus on a comparative analysis of NTD regions of three 
hormone receptors, including AR (residues 1-538), GR (residues 1 to 420), 
and ER (residues 1 to 180). We first looked at the amino acid composition of 

Figure 2. Sequence analysis of NTDs. A Multiple sequence alignment of the AR, GR, and ER 
NTDs. B Fraction of order and disorder-promoting residues calculated based on the amino 
acid content of the chains. C Structural disorder analysis of AR-NTD obtained from PONDR 
VSL2. 
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the chains and performed multiple sequence alignment (MSA) and PONDR 
analysis[27]. MSA showed nonsignificant similarity between the NTDs, but 
by comparing the sequences pairwise, we saw more matching residues betwe-
en ER, GR, and the C-terminal half of AR (Figure 2A). Disorder prediction 
data produced by PONDR analysis reveal that all three chains are highly disor-
dered. To further understand the dynamic nature of these chains, we calcula-
ted the order (OPR) and disorder-promoting residues (DPR) content. For all 
three NTDs, we found a high DPR content (Figures 2B and 2C). As a compa-
rative analysis, the same parameters were calculated for intrinsically disordered  
γ-synuclein, which showed 64% and 24% disorder- and order-promoting amino 
acids content, respectively, and an average PONDR score of 0.83 ± 0.10.

Next, we modelled the dynamics of these three protein domains in an aqueous 
solution with physiological salt concentration, to develop reasonable toy models 
for the proof-of-concept topological analysis. We note that modelling large di-
sordered protein chains is challenging due to the limited accuracy of the force 
fields used to model interactions, and the need for adequate sampling of the large 
conformational space of the solvated chain. Here, we took a practical approa-
ch and employed our recently developed and experimentally validated protocol 
for AR NTD analysis [28] on GR and ER protein chains. The initial structures, 
for all three NTDs, were built using the I-TASSER [29] server and choosing the 
best-ranked model. The model was superior to conformations predicted by the 
AlphaFold based on confidence measures. After minimization and relaxation, we 
performed molecular dynamics simulations of the full-length NTD structures 
(see the Method section for details). Visual examination of the trajectory and 
root mean square deviation (RMSD) plots show that the initial conformations 
have undergone an extensive structural change (Figures 3A and 3B). We repeated 
the MD simulation three times for each NHR using different initial velocities to 
ensure we had a sufficient sampling of the configuration space for the purpose of 
this study. Importantly, all three independent runs of all three NHRs consistently 
resulted in the emergence of compactness in the chain within 2 µs of simulations. 
Interestingly, among the three, AR formed two disjoint regions in Figure 3D wi-
thin 2 µs of simulations: an extended N-terminal sub-region (AR NR, residues 1 
to 224), and a C-terminal sub-region (AR CR, residues 225 to 538), as reported 
extensively in our previous study [30] (Figure 3F). In contrast, ER-NTD stayed 
as a whole globularly shaped conformation during the 3 runs of the simulations 
(Figure 3A). GR formed a few identifiable globular regions, which were intercon-
nected with each other. Despite the overall shape taken by the chains, all three 
showed a high level of disorder and structural dynamics (Figure 3C, 3D, 3E). 

After the initial folding phase, we monitored the dynamics for an additional 3 
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µs and computed root-mean-square fluctuations (RMSF) to quantify the fluctua-
tions of the chain. Interestingly, RMSF analysis led to the largest values in AR 
and significantly smaller in ER. It is worth mentioning that these values were 
significantly larger in comparison to the folded NHR-LBD, even for ER-NTD, 
with lowest RMSF values among the three NHRs (Figure 3C). Further analysis 
of the RMSF profiles (Figure 3E) revealed that in ER-NTD the fluctuations were 
more uniformly distributed within the chain, and distribution analysis showed a 
sharp peak at 0.5 nm. However, GR- and AR-NTD both had wide distributions 
with mean values at 1.5 nm and 1.3 nm respectively. 

Due to the highly dynamic nature of the chains, it was expected to see a large 
part of the chains be exposed to the solvent. In order to quantify that, we cal-
culated solvent-accessible surface area (SASA) of the polypeptide chains. SASA 
analysis revealed that all three NTDs are highly solvent-accessible (Figure 3D). 
Among them, ER-NTD showed the widest range of exposure from 0.35 nm2 (re-

Figure 3. Molecular dynamics simulation of NTDs. A Three representative conformations 
from the last 10 nanoseconds of each replicate of the MD simulations. B Time evolution of 
the root means square deviation (RMSD) of three runs of each NTD. All three NTDs show 
a dramatic deviation from the initial structure (reference frame) during the first 2 µs of the 
simulations. C Average root mean square fluctuations of AR-NTD were calculated per residue 
over the last 3 µs of the simulation. D The solvent accessible surface area was calculated for 
each residue during the last 3 µs of the simulation. E Distribution of RMSF values calculated 
per residue from the last 3 µs of the simulations. F Cartoon representation of the AR-NTD.  
Two disjoint regions are formed within 2 µs of simulations: an extended N-terminal sub-re-
gion (NR, residues 1 to 224) colored in red, and a C-terminal sub-region (CR, residues 225 to 
538) colored in blue. Bead representation of residue 224 is colored in pink. 



89

sidues buried inside a compact region) to 1.3 nm2, (residues are fully accessible 
to the solvent molecules). 

Formation of the collapsed region(s) within the chain was the common beha-
vior of the NTDs we observed in our simulations. In order to quantify the degree 
of compactness, we calculated the Radius of Gyration (RG) values over the last 
3 µs of the simulations, separately for NR and CR regions of AR and full-length 
ER-NTD. Comparing the radii of gyration of CR and NR regions in AR, one can 
clearly see that the CR region are significantly more compact than NR region 
(Figure S1) and both are less compact in comparison to the full-length ER-NTD. 
Note that all RG values are normalized to the size (Flory radius with ν=1/3) of 
the corresponding region(s). 

Disorder prediction data produced by PONDR analysis agrees with the sol-
vent-accessibility and RMSF profiles of three NTDs: with the central region 
within AR CR and GR having less disorder than the rest of the chain (Figure 
2C) and high disorder score predicted for the C-terminal half the ER-NTD. For 
ER-NTD, a high and low disorder score predicted for the N-terminal half of the 
chain is nicely matched with the SASA profile of residue 20 to 80. Furthermore, 
we clearly saw that the OPR content of the NR region was significantly less than 
the CR (18-23% of OPR content compared to 64-72% of DPR content, Figure S2). 
This is in an agreement with the PONDR score, SASA, and RG values calculated 
for CR and NR regions.

2.2. Multi time-scale topological analysis of IDP conformational 
evolution

The dynamic behavior of IDPs can hardly be characterized by focusing on a 
single time scale [31][32]. Here, we develop a multi-time scale topological analy-
sis, and we prove that different dynamic modes of IDP conformational search 
can present different topological characteristics. The time scale analysis reported 
here is a generalization of the procedure applied in our previous study [30] to 
the AR-NTD. To this end we will be focusing on the characteristic time-frame 
for contact dynamics, that is to say, contact formation and rupture. The ratio-
nale behind this choice is that interchain-interaction topology has been proven 
to be an efficient way to characterize IDP configurational search and functional 
similarity [33]. Our MD simulations provide us with very detailed information 
about atom coordinates and residue-residue contacts, as well as their temporal 
evolution (with a resolution of 5 ns). We define contacts between residues when 
those residues lie within a distance in the 3D space that is less than a specified 
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cutoff (4.5 Å for the purpose of this study). Figure 4A displays a residue-residue 
contact map for AR, MD run 1. Here, all contacts formed during the simulation 

Figure 4. Adherence to the power law distribution can help us distinguish between short 
and long living contacts. A Cumulative contact map of AR NTD, MD run 1. The sub-divi-
sion into two sub-regions (NR and CR) can be seen in the contact arrangement patterns. B 
Graphics representing three contact maps, corresponding to three different time frames of 
an hypothetical IDP. Contacts represented in yellow are present in all three frames, because 
of their long lifetime. Contacts represented in orange live on the other hand for a short time, 
and they disappear in subsequent time frames. The presence of specific contacts over different 
time frames is detected in order to build the contact lifetime distribution. C Contact lifetime 
distribution, and Power Law fit for AR-NTD, MD run 1. The fit was performed exclusively 
over short-life contacts, and then extrapolated over the whole range, for visualization pur-
poses. D Coefficient of determination R2, used to evaluate the goodness of the Power Law 
fit performed over subsequent chunks of the contact lifetime distribution. After roughly 0.5 
to 1 us, R2 plummets. We picked this threshold in order to distinguish between short living 
contacts and contacts with a longer life, which make up only a smaller portion of the total 
number of contacts.
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are displayed, making this a cumulative contact map for all the temporal evolu-
tion. It is interesting to see how the separation between N and C terminal regions 
of AR-NTD are also visible from the map, highlighting a very clear boundary 
for the spatial range of contact formation. For this reason, as well as the diffe-
rent physical and geometrical characteristics of CR and NR highlighted in the 
previous section, we decided to treat these two regions separately for topological 
analysis. The MD frames give us access not only to the spatial but also temporal 
range of contacts, allowing us to measure the duration of contacts formed by 
each residue pair, as shown in the schematics presented in Figure 4B; different 
time frames present different configurations. Some contacts survive for multi-
ple time frames (contacts depicted in yellow) while others will be more fleeting 
connections, breaking in the span of one (or few) MD frames (contacts depicted 
in orange). We can compute the maximum lifetime of each individual contact 
(hereafter referred to as lifetime) and build a distribution of contact lifetimes. 
The log-log plot of such a distribution (Figure 4C, Figure S3) presents us with the 
opportunity of describing the phenomenon of contact formation as a power law 
distribution,  as many other processes in biology, such as scale-free networks[34]. 
However tempting, this theoretical approximation may sound, identifying power 
law distributions on empirical data presents various challenges, mostly given by 
the large fluctuations characterizing the right tail of the distribution, the one cha-
racterized by large but rare events [35]. For this reason, we decided to tread ca-
refully and define clear boundaries for the validity of the law by quantifying the 
agreement with the data by use of the determination coefficient R2 (Figure 4D). 
We will also use this agreement to disentangle the role of high-frequency con-
tact formation and breaking from that of longer-lived connections, which mi-
ght impact the configurational evolution in a meaningful way, steering towards 
a specific local minimum in the topological space. In order to do so, we fit the 
logarithm of the contact lifetime distribution by progressively larger segments 
(with increments of 5 ns, which is as low as our resolution allows us to reach). 
For each segment we calculate the coefficient of determination R2. Plotting the 
result of this calculation versus time yields trends such as that depicted in Figure 
4D, for all proteins (see Figure S4): we observe a good agreement between the 
law and the data for very short time frames (generally around 1 us). This range 
is also where the majority of contact lifetimes lie. From now on, we shall refer 
to the contacts within this range as short life contacts. Afterwards, we observe 
a drop in values of R2, reflective of lack of statistics in the distribution. We call 
this longer-lived connections middle life contacts. After roughly 3 us we start 
observing a mild increase in R2, but this increase is an artifact of the noise in the 
distribution. Long life contacts that live in this range have lifetimes comparable to 
the total duration of the MD simulation, and we are thus unable to observe their 
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Figure 5. The population of longer living contacts is statistically more hydrophobic, has hi-
gher attractive energy and presents a higher ratio of charged contacts than its shorter living 
counterpart. A Boxplot of the statistical potential [36] of short life and middle life attractive 
contacts, for all proteins involved in the study. The two distributions are statistically different, 
yielding a p value < 0.05 for all 20 extractions of randomly sampled subpopulations of 300 
data points from the two groups. B Boxplot of the hydropathy index for short life contacts 
and middle life contacts, for all proteins included in the study. The two distributions are stati-
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full dynamic evolution. 

It is challenging to provide a full biophysical characterization of the nature of 
these contacts, and thus explain the shape of the lifetime distribution. However, 
we can rely on statistical indicators to explore the different properties of short-, 
middle- and long-life contacts. It is intuitive to assume that longer-lived con-
tacts might have higher contact energies. By exploiting the statistical potential as 
expressed by Paul Thomas and Ken Dill [36], we can assign an energy value to 
each residue-residue contact. We observe thus that indeed middle life contacts 
have statistically higher absolute energy values (more negative), when it comes 
to attractive contacts, for all proteins in the study (Figure 5A). We can go beyond 
energy considerations and have a look at the chemical nature of the residues in-
volved in these contacts. A simple and useful parameter is the hydropathy index 
of a residue, a score indicating the hydrophobic/hydrophilic properties of its si-
de-chain[37]. In this instance, we assign a hydropathy score to a contact obtained 
by summing the hydropathic index of the two residues involved in its forma-
tion: the larger the hydropathy index, the higher the hydrophobicity of the ami-
no acids. Applying this procedure to short and middle life contacts reveals that 
the latter display consistently a higher hydrophobicity than the former (Figure 
5B). This crucial information suggests that middle life contacts are those that are 
more likely to belong to a semistable collapsed structure, as their hydrophobic 
nature will tend towards shielding the sidechains from the aqueous environment. 
This simple procedure can also be applied locally, by plotting the hydropathy 
score over the contact map (Figure 5C). This visualization can interestingly hi-
ghlight regions in the protein more or less prone to structure formation. In this 
case, it is clear to see how AR NR has more marked hydrophilic properties than 
AR CR, which is compatible with the structural properties of the two regions we 
identified previously [30].

Both hydrophobic and charged residues are thought to play a role in stabilizing 
distant parts of primary structures in proteins [38]. We can identify those con-
tacts that are formed by opposite charge residues (negatively charged – positively 

stically different, yielding a p value < 0.05 for all 20 extractions of randomly sampled subpo-
pulations of 300 data points from the two groups. C Cumulative heatmap of contacts formed 
after the first 2 µs of simulation in AR (MD run 1). The coloring is given by the sum of the 
hydropathy index of the two residues involved in the contact. Positive indexes indicate overall 
hydrophobic properties in the protein region. D Ratio charged versus total number of contacts  

          for short life and middle/long life, for each protein. E Circuit diagram of middle/long life 
charged contacts for each protein included in the study. Data from all three runs is included 
in each figure.
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charged residues) and what is the lifetime and spatial distributions of such con-
tacts. It is possible to define a ratio between the number of charged contacts and 
the total number of residue-residue contact combinations for a certain lifetime, 

     
       . We observe that taken together, middle- and long-life regimes present a hi-

gher charged contact ratio with respect to short life, in all proteins present in the 
study (Figure 5D). In this case, it was necessary to consider middle and long-life 
regimes as one group, in order to increase statistics: these two groups are compo-
sed by a small number of contacts, of which charged contacts are an even smaller 
subgroup. However, this relative sparsity of information allows us to visualize all 
such longer-lived charged contacts in one comprehensive circuit diagram (Figure 
5E). Circuit diagrams allow us to visualize the topological arrangement between 
a set of contacts, as well as the residues involved. Topological circuits are a useful 
tool to interpret such a diagram [23][39]: a topological circuit is defined a sub-
section of the chain that, if removed, would leave the topology of the rest of the 
chain unchanged. In Figure 5E, circuits are easily identifiable as those regions 
whose arcs to not intersect. In the case of AR, for example, we can observe two 
neatly identifiable circuits, as was to be expected from our structural subdivision 
into NR and CR. The situation is different for ER and γ-synuclein (SNCG), where 
charged contacts tend to bring together the two ends of the chain, making it one 
undivided circuit.  GR, much like AR, tends to create multiple substructures, as 
highlighted both by inspection of the 3D structure and the by the three circuits 
visible in the circuit diagram. Given the results of this exploratory analysis of the 
biophysical nature of short- and longer- lived contacts, it is fair to assume that 
longer-lived contacts maintain some significance in the formation of transient 
semistable configuration for IDPs. We will then uncouple the role of such con-
tacts from that of short-lived ones in the context of topological analysis, to incre-
ase the signal-to-noise ratio at the level of structural and biological characteriza-
tion. We will mostly focus on middle and short life contacts, as the sample size 
of long-lived contacts is often too small for statistical analysis. Moreover, such 
contacts have a lifetime compatible (or equal to) the duration of the MD runs; we 
are thus unable to view their topological evolution play out and we cannot assess 
how dependent their arrangement is from the chosen initial configuration.

One of the main advantages of using the CT framework for the representation 
of such complex configurations is the reduction in dimensionality. As a first or-
der analysis, we can characterize any configuration by the percentage of S, P and 
X relations which contacts at a certain time ti occupy. This procedure presents us 
with the nontrivial advantage of being able to represent configurations as coor-
dinates in a 3D space, which from now on we will call the topological space (the 
triangular plots in Figure 6A). Even with this substantial simplification in terms 
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Figure 6. Different time-scales of IDR/IDP dynamics can be characterized by different topo-
logical make up. A Topological evolution of short and middle life contacts of ER-NTD, MD 
run2. The evolution is depicted over the topological landscape, a three-dimensional space 
where the dimensions correspond to the percentage of series, parallel and cross contacts. B 
Distribution of topological relations over the three MD runs for each protein. In most cases, 
middle life distributions show more peaks, indicating that the system is exploring more tran-
sient states.
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of configurational complexity, the patterns created during IDP evolution over the 
topological space are extremely rich in information. One can, first and foremost, 
identify the number and boundaries of transient states, which appear as globular 
patterns in the triangular plot. Moreover, one can detect an overall direction in 
the configurational search, and quantify its topological evolution. The first obser-
vation that becomes apparent inspecting such plots is that the trajectories crea-
ted by middle life contacts generally present a higher number of transient states 
as opposed to those created by short life contacts, indicating that, indeed, IDPs 
experience a multi modal topological evolution, which is time-scale dependent. 
This phenomenon becomes also apparent if we plot the one-dimensional distri-
bution of each topological relation, for each protein under study (Figure 6B). We 
can observe how middle life distributions have more local maxima, indicating 
the transient occupation of multiple states. Moreover, even with this first order 
analysis, we could already envision two subgroups with different behavior among 
the NHR-IDRs under study and γ-synuclein (SNCG), a synuclein protein used 
in this study as an example of a non-NHR IDP; AR CR and GR display narrower 
and more peaked distribution, a sign of a much more stable structure subject to 
smaller fluctuations. On the other hand, AR NR, ER and SNCG present spread 
distributions, often overlapping, indication of a very fast-paced, plastic evolu-
tion. We will go in depth exploring these patterns with our suggested higher-or-
der topological analysis.

2.3. Characterization of IDP conformational trajectories in the 
topological space

The conformational space sampled by IDPs can be seen as a quasi-continuum 
of rapidly interconverting structures [40]. The topological evolution of such pro-
teins escapes traditional method of characterization, which are generally meant 
for funnel-like folding pathways rather than a flat energy landscape such as those 
characterizing IDP dynamics [26]. The dynamic behavior of IDPs is strongly re-
lated to their flexibility and versatility [41], and therefore the ability to characteri-
ze their interconversion between different topological states is key for understan-
ding their function. As a result of our intuitive representation of IDP trajectories 
over the topological space, we are now in condition to characterize their dynamic 
hopping between conformations. The first step in this direction is the identi-
fication and segmentation of the trajectory into different topological states. In 
order to do so, we performed clustering over the three-dimensional topology 
state, where the variables are the number of P, S and X relations in each configu-
ration. As pointed out by Grazioli et al. [42], accurate clustering procedures over 
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Figure 7. Topological evolution of IDRs/IDPs can be tracked and quantified by identifying 
intermediate topological states. A Scatter plot and one-dimensional distribution of the topo-
logical coordinates (in terms of number of series, parallel and cross contacts) for GR-NTD 
short life contacts The Gaussian Mixture (GM) clustering algorithm identified three clusters, 
corresponding to three different topological transient states. B The maximum BIC score in-
dicates the ideal number of clusters for the dataset, in this case, GR-NTD MD run 2, short 
life contacts. C On the left: graphical representation of clusters, cluster centroids and distance 
between the cluster centroids. On the right: representation of the outcome of the clustering 
procedure displayed in A over the triangular topological space. D Two examples of clustering 
over the topological space, one corresponding to high evolution score (AR NR, middle life), 
and one corresponding to low evolution score (SNCG, short life). E  Evolution score calcula-
ted over the whole dataset, subdivided into short and middle life regimes.
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the IDP conformational space can prove to be quite challenging, because of the 
vast and flat energy landscape characterized by innumerable microstates corre-
sponding to roughly the same energy [43]. For this reason, we opted for the more 
expensive Gaussian mixture clustering algorithm, instead of the more popular 
and fast option, K-means. Modeling the conformational states as a superposition 
of intersecting 3D Gaussian distributions yields a more natural partition of the 
topological space (Figure 7A), rather than a distinction based on 3D distance 
between coordinates (Figure S5). A rather crucial parameter for our analysis is 
the number of clusters in which to segment the configuration space. In order to 
provide an objective metric for it, we relied on the optimization of the Bayesian 
Information Criterion (BIC) score[44]. The BIC score is calculated for the data by 
fitting them for a varying number of clusters (Figure 7B). The number of clusters 
which provides the highest BIC score is picked for further analysis. We found 
that feeding the algorithm a different value of parameters such as reg_covar (the 
non-negative regularization added to the diagonal of covariance) might result in 
a different number of clusters selected by the BIC score. Here we report results 
for the default value of reg_covar = 1.0e-6. However, results for other values are 
reported in (Figure S6), together with a summary table of the number of clusters 
detected for each MD run and each protein (Table S1, S2, S3, S4, S5, S6). An 
example of such clustering procedure is reported in Figure 7A and 7C, for GR 
short life contacts, MD run 2. As previously mentioned, clusters (or topological 
states) appear as globules on the normalized triangular topological space (Figu-
re 7C). By inspecting such patterns, it becomes apparent that some trajectories 
happen to be more elongated, covering a higher portion of the topological space, 
and show a higher tendency to hop between states than others (Figure 7D). In 
order to quantify this tendency, and also to provide a metric to characterize the 
quasi-continuum interconversion between states typical of IDP dynamics, we de-
fined a new parameter. Given two clusters, C1 and C2, the evolution score E21 is 
given by:

where s1 and s2 are the spread of cluster C1 and C2 respectively, and d21 is the 3D 
distance between the centroid of C1 and C2. Since by choice of algorithm our 
clusters are described by Gaussian distributions, the centroid corresponds to the 
mean of the Gaussian. This definition is generalized for the case in which we have 
more than two clusters by summing each contribution  Eij to the total evolution 
score E, where Ci is the cluster subsequent to Cj from the point of view of tempo-
ral evolution. Other empirical definitions of the evolution score were also tested; 
the results can be found in Figure S7. Although our general conclusions do not 
change, we found that the formulation described above provided the best match 
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to the visual behavior of the trajectories in the topological space. What does this 
metric portray, intuitively? We can expect a trajectory characterized by a low E 
value to be very globular in nature, with few, wide clusters, that tend to occupy 
the same portion of the topological space. On the other hand, high E values are 
yielded by trajectories that are very narrow and directional, characterized by a 
substantial exploration of the topology space, often with multiple clusters occu-
pied in a row (Figure 7D). The results of such analysis are of course very much 
dependent on which part of the conformational ensemble is the IDR/IDP explo-
ring with one particular trajectory, and therefore several such trajectories should 
be explored in order to make IDP-specific statements. However, even with our 
limited sampling we can already deduce some general observations, looking at 
the results in Figure 7E. First of all, we see that, in most cases, scores for short 
life topology are lower than those for middle life topology. This finding quan-
tifies our previous intuition, which was, longer-lived contacts tend to occupy a 
higher number of topological states, and cover larger portions of the topological 
landscape. This conclusion could help identify key contacts for semistable IDP 
structures, as well as functional folding-upon-binding configurations [45]. This 
trend is particularly accentuated in AR NR, SNCG, and ER, which show a consi-
stent increase of E score from short to middle life, for all runs. These three IDR/
IDPs are also the ones showing the overall minimum scores for short life. This re-
sult suggests very wide clusters, characterized by a very unstable, plastic structu-
re. The bigger the spread, the less defined the underlying structure. Moreover, 
the effect we observe might be dependent on size, as these three specimens are 
the smallest in our dataset; the shorter the chain, the easier it might be to explore 
the configurational space with very wide clusters. However, once the short-lived 
contacts are filtered out, a directional topological evolution appears, which is not 
very dissimilar from that of larger proteins.

On the other hand GR and AR CR seem to maintain more or less the same 
range of E scores for both short and middle life, indicating a certain topological 
symmetry for what concerns different temporal modes of evolution, and most 
likely persisting semistable topological structures. In the case of these two IDRs, 
we even observe sometimes a decrease in evolution score going from short to 
middle life regime (run 1).  These simple considerations already allow us to clu-
ster together proteins displaying similar patterns of dynamic behavior in short 
and middle life modes. Such an approach, coupled perhaps with relaxation ti-
mes experimentally derived from NMR, or some other techniques for enhanced 
sampling, could provide invaluable for the quantification of IDP configurational 
dynamics. 
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Figure 8. The circuit topology, expressed in form of topology strings, can be used to measu-
re the similarity between different IDPs/IDRs. A Schematics representing the linearization 
procedure necessary to go from topology matrix to topology string. In the string, topological 
relations such as P-1, CP-1 are incorporated with P and CP, since they all represent the same to-
pological arrangement. The topology matrix is symmetric. The elements highlighted in white, 
(6,4) and (4,6) indicate the same topological relation between contact pair 4 and 6. It is easy to 
see how linearizing the matrix row by row accounts for all 4 nearest neighbors of each matrix 
element, along both rows and columns. Take element (4,6): its nearest neighbors on the string 
will be (4,5), CP and (4,7), S. However, when we get to its specular representation on the other 
side of the diagonal (6, 4), we see that its nearest neighbors in the string will be P and CP-1, 
which were the nearest neighbors of element (4, 6) along its column. We are therefore accoun-
ting for the proximity of elements on both rows and columns. B Pairwise similarity scores for 
model proteins and AR, GR and ER LBD. The scores were obtained by alignment of strings 
representing protein native topology. C Pairwise similarity scores for IDRs/IDPs. The scores 
were obtained by aligning strings corresponding to the topology reached by the protein in the 
centroid of the last occupied topological state during the MD run. Scores obtained for all 3 
MD runs are averaged into one value. On the diagonal, we have the average similarity score 
obtained by comparing the three runs of one protein.
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2.4. Topological strings and sequence alignment

Functionally similar IDPs often have no significant sequence similarity [46]. 
Moreover, the lack of stable tertiary structure complicates the picture further, 
making it challenging to compare such proteins by structure alignment techni-
ques. The issue of functional classification of IDPs was recently tackled by a tech-
nique called sequence charge decoration (SCD) [33], which relies on the charge 
patterning of the sequence, which serves as an indication of the ensemble average 
distance between pairs of residues [47]. Here, we propose a method to identify si-
milar topological blueprints between different IDPs, which can be applied to any 
transient conformation, without relying on averaging conformations over the 
ensemble. We create topological strings out of specific IDP conformations which 
are suitable for sequence alignment, overcoming the issue of little to no sequence 
similarity. In order to explain this topological alignment procedure, we have to 
introduce the concept of topology matrix (Figure 8A). So far, we have only con-
sidered the overall number (or percentage) of S, P and X relations characterizing 
a certain conformation occupied by the protein at time t. However, we can also 
consider the patterning with which these relations appear in the chain. To do 
this, we consider a NxN matrix, where N is the total number of contacts in the 
chain at a given timepoint. Each contact (formed by residue i, j) is numbered ba-
sed on the indexing of its first contact site (residue i). Each element in the matrix 
is filled in based on the topological relation between the relevant pair of contacts. 
We can see two versions of the P and CP relation in the matrix, that is, inverse P 
and CP (P-1, CP-1); this specification is made because parallel is not a symmetric 
relation: when contact A is enveloped by contact B, we say that A is in parallel re-
lation with B. However, B is now enveloping contact A, not being enveloped by it. 
We say therefore that B is in inverse parallel relation with A. However, these two 
wordings refer to the same topological arrangement between two contacts, so for 
the sake of topological sequence alignment only the labels P and CP will be used 
for all cases. To retrieve sequences out of topology matrices we perform a simple 
matrix linearization. Linearizing by rows or columns makes no difference in this 
case, since the matrix is symmetric. Thanks to symmetry, linearizing by rows me-
ans to account for the locality of matrix elements along both rows and columns. 
This fact can be clarified by looking at the elements highlighted in white in Figure 
8A. Take element (4,6): linearizing by rows, its nearest neighbors are CP on one 
side and S on the other. Its nearest neighbors along columns, P and CP, are at this 
stage not accounted for. However, when we get to the symmetric representation 
of the same element, (6,4), we see that its nearest neighbors along rows are now 
P and CP. In this way, the locality of topological relations is accounted for along 
both rows and columns, regardless of our choice of linearization along rows or 
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columns. In this way, we obtain topology strings from any conformation. We can 
couple this technique with the clustering procedure presented previously in this 
study, in order to pick meaningful configurations for our analysis. For our explo-
ratory comparative analysis, we picked the centroid of the last cluster occupied 
by each protein in each 5 µs MD run. In this way, we could calculate a similarity 
score for the pairwise alignment of 3 sequences for each IDR/IDP, resulting in 
a 15 x 15 similarity matrix (Figure S8). The choice in terms of cluster is by no 
means unique, and the analysis could be generalized to any state occupied by the 
IDP trajectory. We calculated the similarity score in two different ways: by glo-
bal sequence alignment, as provided by the Biopython Pairwise2 module (Figure 
8B, 8C), and by the difflib SequenceMatcher class in python (Figure S9). Both 
methods yield the same patterns of similarity. In order to test the capability of 
the method to retrieve structural similarity between related proteins, we tested it 
over 6 non IDPs, 3 evolutionary related regions (the LBD of AR, ER and GR) and 
3 unrelated model proteins (Maltose Binding Protein, Glutathione S-transferase 
and Lysozyme). The results can be found in Figure 8B, where the highest simila-
rity scores are indeed found among LBD of hormone receptors. Subsequently, we 
applied this analysis to the IDRs and SNCG, for short and middle life trajectories. 
The figure in 8C presents an average similarity score over the three runs for each 
protein. We see that, despite the natural heterogeneity of such system, we see a pi-
cture emerge that is compatible with the results obtained so far by looking at the 
dynamical properties of the topological evolution. GR NTD remains the most 
stable IDR in our dataset, scoring the highest similarity scores within its 3 runs. 
Also, GR and AR CR score relatively high in similarity for both short and middle 
life. ER is most similar to AR NR and SNCG for short life topology. However, for 
middle life, ER scores relatively high, behaving similarly to AR CR and GR. This 
dual behavior is in perfect agreement with the results obtained by conformatio-
nal diffusion analysis. SNCG records the lowest scores overall in the matrix, whi-
ch is unsurprising, since it is functionally very different from the NHRs. Howe-
ver, it does score relatively high with AR NR, also for what concerns middle life, 
indicating that these two systems share similarities in their topological behavior. 

3. DISCUSSION

The elusive structural nature of IDPs makes them a very challenging target for 
homology and functional classification. However, there is growing evidence that 
common functions of disordered regions and proteins can be found even across 
evolutionary distant organisms [48][49]. The recent development of computatio-
nal and theoretical tools has significantly enhanced our understanding of disor-
der in proteins [15]. Molecular dynamics simulations, often coupled with experi-



103

mental assays, provided new insight on IDP conformational search and ensemble 
[31][32][50]. Topology-based modeling [45] and machine learning techniques 
[42][51][52] proved to be invaluable in the characterization of IDP configuratio-
nal space, often due to their ability to reduce the dimensionality of the system to 
a few meaningful coordinates and metrics. However powerful, machine learning 
models are still very dependent on the quality of data and data representation 
they are fed. The features extracted by circuit topology have the potential to offer 
such data representation. We reduced the problem to its topological coordinates, 
offering various types of analysis, ranging from the characterization of the con-
formational evolution in the topological plane to the topological content itself, 
which can be quantitatively characterized and used for comparison. 

Concerning our dataset, we can summarize a few interesting findings. Traditio-
nal methods such as disorder prediction with PONDR and solvent accessibility 
analysis suggested a lower level of disorder for AR CR and GR with respect to the 
rest of the dataset. This finding was corroborated and expanded by circuit topo-
logy analysis, which found consistent similarities in dynamic behavior and topo-
logy for these two IDRs. Multi-timescale analysis revealed that these two IDRs 
tend to maintain the highest topological coherence between short and middle life 
modes. AR CR and GR also score the highest in terms of self-similarity among 
runs (Figure 8C). All these data depict a picture of a higher relative structural 
stability for these regions, which are also quite different from the rest in terms of 
topological make-up. If we look at Figure 6B, we see that AR CR and GR score 
consistently higher in series relations and lower than the rest in parallel and cross. 
This finding is not surprising when taken in context with the rest of the analysis; 
generally speaking, IDPs have higher cross and parallel relations with respect to 
proteins with stable tertiary structure. This difference is due to the principles of 
protein folding and assembly: folded proteins tend to favor local connections 
first, and form subdomains containing these local elementary structures [53]. 
Contacts within a domain will then be in series with contacts within a different 
domain, or region, because they are shielded and there is no interaction. In IDPs, 
on the other hand, this happens to a lesser extent, as stable structures are seldom 
created, and interaction remains very dynamic at all times. Therefore, the high 
percentage of series in AR CR and GR might indeed indicate the formation of 
semistable structures. This conclusion is also supported by the circuit diagram in 
Figure 5E: AR CR and GR do not present, like the other IDP/IDRs in the study, 
the tendency to have charged contacts bringing together the ends of the chain, 
but rather a more structured circuit structure, potentially indicating the forma-
tion of highly connected subdomains.

Multiple sequence alignment found insignificant similarities in the NHR NTD 
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presented in this study, as is often the case with IDRs/IDPs. However, relatively 
higher matches between ER, AR CR and GR. Circuit topology analysis depicted 
a much more nuanced picture for ER, which displays a high heterogeneity and 
asymmetric behavior with respect to short and middle lifetime scales. While we 
do find significant similarity in topology sequence matching with AR CR and GR 
for middle life, in short life ER reveals a very dynamic behavior which makes it 
easier to cluster it together with AR NR and SNCG. Finally, AR NR and SNCG 
display very similar behavior across the board, in spite of being evolutionarily 
unrelated. They show very plastic evolution, with less tendency to form semi-
stable structure, and with significant asymmetry when it comes to topological 
evolution in short and middle life modes. It has been hypothesized that some 
IDPs present residual structures which modulate the entropic cost of folding fa-
cilitating binding thermodynamics [45][54]. However, other cases suggest that 
increased local structure in the unbound state of IDPs might actually reduce bin-
ding rate [55], stressing the importance of disorder for functionality and versati-
lity of these proteins. It is possible that we are now observing these two opposite 
tendencies in our dataset, with AR CR and GR presenting residual structure, 
AR NR and SNCG having higher level of disorder and plasticity, and ER being 
somewhere in the middle. 

The analysis presented in this paper explores the possibility of comparative IDP 
analysis by use of the circuit topology framework coupled with Molecular Dyna-
mics simulation. While challenges related to the vast and flat energy landscape 
and conformational space of IDPs remain, we believe CT could be an invaluable 
framework for data processing and visualization to tackle these systems. More-
over, several elements of the presented pipeline can easily be coupled to other, 
well established topological frameworks, in order to enhance their predictive 
capabilities and provide a more complete description of protein structure. We 
exemplify here this concept by discussing possible applications of the dynamic 
CT pipeline to a successful mathematical tool for topological analysis of biomo-
lecules, persistent homology [56][57].  

Persistent homology is a branch of algebraic topology which has allowed in 
recent years to define topological fingerprints (MTF) of proteins [57][58], and 
reached high performance predictions in a variety of tasks, protein classifica-
tion [58], protein/ligand binding affinities [59]–[61], protein/protein interaction 
energy [62], protein folding and stability changes upon mutation [63] and drug 
virtual screening[60], [64]. To summarize, persistent homology concerns itself 
with the identification of topological properties of a given space, such as holes 
and voids, and to quantify how long these features persist over different spa-
tial scales. This process, known as filtration, allows researchers to examine the 
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structure of a space at various resolutions and understand how it changes as fea-
tures appear and disappear. At a given resolution, these topological properties are 
expressed in terms of Betti numbers, indicating the number of connected com-
ponents, tunnels, cavities, etc. [57]. The CT formalism was previously applied 
in the context of extended persistent homology [65]: specifically, CT relations 
were used for the characterization of simplicial complexes, which constitute the 
mathematical construct used to represent the topology of a space for PH cha-
racterization. It is noteworthy to mention that spaces characterized by the same 
Betti numbers might correspond to different configurations in the CT space, as 
CT relations are mostly concerned by the reciprocal arrangement of connected 
components of a space rather than the number of connected components speci-
fically. Therefore, CT relations might be used to discern between different confi-
gurations in the formalism of PH, if the problem at end requires for it. Moreover, 
various methods described in this paper could be coupled to PH in a variety of 
ways. For example, Betti numbers could be used to select which configurations 
to plot in the 3D topological space created by CT parameters (Figure 6A). One 
could decide to plot only those configurations that are topologically equivalent 
(identified by the same Betti number) and follow their evolution in the CT space. 
Alternatively, one could choose to plot only those configurations whose topo-
logical features display a certain persistence, or to observe only configurations 
at a given resolution, provided by the filtration parameter. Moreover, multiscale 
persistent functions such as, for example, multiscale persistent entropy (MPE)
[66], can be used to assign specific indexes to any given configuration, such as 
a protein structure index (PSI). Such index could be easily plotted as color map 
on the triangular CT space, to observe how configurations evolve in terms of 
disorder. Various additions have been made on the persistent homology fra-
mework to ensure retention of fundamental biological, chemical and geometric 
characteristics. Examples of these are multiscale and element-specific persistent 
homology (ESPH) [63], weighted and localized weighted persistent homology 
(LWPH) [67] . These methods could be used for selection of biologically mea-
ningful contacts to plot with our circuit analysis (Figure 5E), while leveraging 
on this type of visualization to identify the underlying reciprocal structure of 
these contacts. Topological features extracted by persistent homology have seen 
very successful machine learning applications [59]–[61][63], displaying the po-
tential of topology for predictive analysis. Similarly, CT could easily be coupled 
with enhanced sampling, clustering and various machine learning and network 
analytics methods, to provide a new topological perspective on intrinsic disorder. 
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4. METHODS

4.1. Three-dimensional structure prediction of NHR NTDs

There are no resolved structures of the N-terminal transactivation domains of 
the Nuclear Hormone Receptors deposited on the Protein Databank (PDB) due 
to their disordered nature. To initiate our studies from computationally efficient 
initial structures, the three-dimensional structure of the NTDs was modeled 
using the I-TASSER server [29], the best protein structure prediction method 
according to the Critical Assessment of Protein Structure Prediction (CASP) 
community [68]. I-TASSER employs a hierarchical approach to protein structu-
re prediction and structure-based function annotation. This approach is either 
comparable to or outperforms AlphaFold [69] and RoseTTAFold [70] in pre-
dicting the experimentally measured secondary structure content of disordered 
proteins included in this study, based on the available data [28]. To further opti-
mize the initial structures, energy minimization steps using the steepest descent 
method were performed followed by conjugate gradients with a ff99SB all atom 
force field to perform a total of 100,000 steps per protein construct using GRO-
MACS software packages [71]. 

 
4.2. Molecular dynamics 

For this study, 5 µs Molecular Dynamics (MD) simulations were perfomed on 
the energy minimised structures acquired by the structure prediction pipeline in 
the previous section. To reduce computational costs, the SIRAH coarse-grained 
force field [72] for proteins was used in combination with a WT4 explicit coar-
se-grained water model.  The proteins were mapped to a coarse-grained repre-
sentation according to the standard SIRAH mapping. Rhombic dodecahedron 
box was used to dissolve the structure by adding WT4 water molecules. Electro-
neutrality and physiological concentration of salt were achieved by replacing cor-
responding amount of water molecules with NaW and ClW (coarse-grained re-
presentations of Na+ and Cl− ions, respectively). All coarse grained systems were 
minimized using the steepest descent algorithm before a 5 ns NVT equilibration, 
5 ns NPT equilibration, and a NPT production run. The leapfrog integrator with 
a 20 fs time step was used throughout. Protein beads were constrained with the 
LINCS algorithm [73] during the equilibration, and no constraints were em-
ployed during the minimization and production steps. The temperature was kept 
at 310 K with a velocity rescale thermostat [74], and the pressure at 1 bar with 
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the Parrinello−Rahman barostat. τT for the thermostat was set to 1.0 ps during 
the equilibration phases and to 2.0 ps during the production. τP for the barostat 
was set to 10.0 ps during both the NPT equilibration and the production. Both 
nonbonded cut-offs (van der Waals and shortrange electrostatics) were set to 1.2 
nm. Long-range electrostatics were treated with the PME method with a 0.2 nm 
grid spacing during the equilibration and 0.25 nm during the production. Non-
bonded interactions were calculated using a 1.2 nm cut-off neighbour list, upda-
ted every 25 steps (in the production and the NPT equilibration) or 10 steps (in 
the NVT equilibration). Both energy and pressure dispersion corrections were 
applied. Periodic boundary conditions and the minimum image convention were 
used. Snapshots were collected every 1000 steps (20 ps). All simulations and sub-
sequent analyses were carried out with GROMACS 2020 [71].

 
4.3. Order-disorder prediction

The amino acid sequences for the NTD constructs are in table X. Structural 
disorder was analyzed using the PONDR [27] webserver and raw data obtained 
from the server and plots were made using OriginPro 2021 (OriginLab Corpora-
tion, Northampton, MA, USA).

4.4. Preparing the structures for circuit topology analysis

After the trajectories of the systems were retrieved, atomic positions of amino 
acids were generated from the location of CG beads. Backmapping was done 
using the sirah_vmdtk.tcl plugin, followed by a 100 steps of steepest-descent and 
50 steps of Conjugated Gradient minimization in vacuum using the sander mo-
dule of AmberTools [75]. This procedure was robust and independent of the fine 
details of the backmapping library. The obtained atomistic coordinates were used 
for circuit topology analysis.

4.5. Timescale analysis

Contact maps were exported from our custom-made circuit topology Python 
3 tool [76]. In our CT tool, contacts are identified by means of two cutoffs, one 
relative to the spatial distance r between atoms (4.5 Å), and one relative to the 
number of atom pairs that need to be found at a distance less than r to consi-
der the two residues in contact. Contact maps were then processed to extract 
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the contact lifetime distribution of a specific MD run. Each contact is identified 
by the unique pair of residues forming it; the same contact can form and break 
multiple times in a MD run, therefore its lifetime is not unique. We picked the 
maximum lifetime for each possible pair of residues to build the contact lifetime 
distribution, under the assumption that a contact will contribute the most to the 
structure when it persists the longest in the run. The lifetime data were fitted by 
NaiveKDE from the KDEpy library [77], a naive computation of a kernel density 
estimate, in order to extract the underlying distribution. The log-log plot of such 
distributions can be seen in Figure 4C and Figure S3. The log-log distribution 
was then fit to a power law:

with least square fitting procedure (Scipy.stats.linregress [78]). Fitting was per-
formed over subsequently larger subsets of data, starting from the first 3 data-
points, and incrementing the set one datapoint at a time. The quality of each fit 
was then evaluated by calculating the coefficient of determination R2. This ste-
p-wise fitting and evaluation procedure was done in order to set the boundaries 
for the applicability of the power law, and identify thus two different time scales 
for IDP dynamics (short and middle life regime). We set two thresholds for R2 

values (Figure 4D): we set the end of the short life regime when R2 displays and 
initial drop below t1 = 0.8. The second boundary is retrieved from the datapoint 
where the R2 curve rises above t2 = 0.3, after reaching its global minimum. These 
two thresholds were set empirically based on the good visual agreements betwe-
en different IDPs (Figure S4). Contacts were then assigned to either short, middle 
and long life regimes based on their lifetime and the temporal threshold found 
via R2 evaluation. Two contact maps were created, one for short and one for mid-
dle life contacts, while long life contacts were discarded.

4.6. Circuit topology analysis

Contact maps calculated for specific time-regimes were loaded as filters in 
our CT tool [76], in order to calculate topological parameters selectively for the 
chosen dynamic mode. Topological relations are calculated from residue-resi-
due contacts, by assigning an index to contacts based on the order with which 
the first residue in the contact residue-pair appears along the chain, scanning it 
from left to right. CT relations were assigned based on the mathematical relations 
summarized below:
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P denotes the powerset i.e., all subsets of a set including the null set (Ø). Ci,j and 
Cr,s indicate contacts formed respectively by the i-th and j-th, and by the r-th and 
s-th contact sites. Contact indexes (i, j, r, s) were assigned by scanning the chain 
left end to right end. For more information about the formalism, we invite the 
reader to refer to Mashaghi et al. [20][21] and Schullian et al. [79]. Topology ma-
trices store then the topological relation between each pair of contacts. Both CT 
relations and topology matrices were exported for further analysis.

4.7. Clustering 

Clustering was performed by means of scikit-learn [80], library for machine 
learning in Python. CT relations were preprocessed for clustering using MinMa-
xScaler (scaling values from 0 to 1). Claustering was performed by following a 
Gaussian mixture model probability distribution (mixture.GaussianMixture), by 
inputting a number of clusters ranging from 0 to 10. Results reported in the paper 
were calculated with the following input parameters: number of initializations 
to perform: 100, convergence threshold: 1e-4 , maximum number of iterations to 
perform: 10000, non-negative regularization added to the diagonal of covarian-
ce: 1e-6. Results for different regularizations can be found in Figure S6. The ideal 
number of cluster for each dataset was then picked by optimizing the Bayesian 
Information Criterion (BIC) score [44]. Centroids of the clusters were calculated 
as 3D mean the cluster data points. The spread of the cluster was evaluated by 
calculating the mean of the Euclidian distance between the data points in the 
cluster and the centroid.

4.8. Sequence alignment and similarity score

The similarity score between topology strings was calculated with two different 
procedures, to test the robustness of the method and finding the least expensive 
computational method:

• Global alignment with Bio.pairwise2 (Biopython[81]): the module provi-
des pairwise sequence alignment using a dynamic programming algorithm. 
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Global alignment finds the best concordance between all characters in two 
sequences; the score thus found was then normalized by multiplying it by 
2/(l1 + l2), where l1 and l2 are the length of the first and the second sequence 
respectively. Such alignment procedure is symmetric, which means that the 
similarity score does not depend on the order in which the sequences are 
fed into the algorithm. Although its many advantages, this method is com-
putationally expensive in terms of memory usage and time. Since we often 
incurred in memory errors while handling alignment for the largest topolo-
gy strings, we decided to apply a coarse graining procedure over all topolo-
gy strings. A comparison between similarity scores with and without coarse 
graining is presented in Figure S10, for middle life contacts: differences in 
scores are negligible and do not affect the general conclusions in the study. 
Coarse graining was performed by assigning a number to each topological 
relation: S = 0, CS = 1, P = 2, CP = 3 and X = 4. Numbers were assigned 
following the rationale according to which entangled, interacting topolo-
gies like X might weight more than non-interacting one, such as S.Then, we 
performed a mean over each 5 subsequent elements of the string, yielding 
the corresponding element of the new coarse grained string. Each element 
was then rounded in order to yield an integer. Sequence alignment was then 
performed on the coarse-grained string.

• Similarity score calculation with the Python module difflib, SequenceMa-
tcher: this algorithm does not yield minimum edit distance between se-
quences, but rather finds the longest contiguous matching subsequence, 
and then recursively applies the same procedure to the rest of the sequence, 
to the right and to the left of the matching part. This procedure is less preci-
se than global alignment. However, it is faster and does not require any type 
of coarse graining. The two procedures yield the same general results; the 
score similarity score in this case is calculated as ‘quick_ratio’ or ‘real_qui-
ck_ratio’.
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6. SUPPLEMENTARY

Figure S1. Radius of gyration analysis of AR NR, AR CR and full length ER NTD. Compa-
ring the radii of gyration of CR and NR regions in AR, clearly showed that the CR region is 
significantly more compact than NR region and both are less compact in comparison to the 
full-length ER-NTD. The data is normalized by the size of the corresponding chain. 

Figure S2. Order (OPR) and disorder-promoting residues (DPR) content of the chain calcu-
lated separately for AR NR and AR CR regions. The calculation clearly showed that the OPR 
content of the NR region was significantly less than the CR. 
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Figure S3. Contact lifetime distribution for IDP/IDRs. Contact lifetime distribution, and 
Power Law fit for all IDP/IDRs, all MD runs. The fit was performed exclusively over short-li-
fe contacts, and then extrapolated over the whole range, for visualization purposes.
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Figure S4. Coefficient of determination R2, used to evaluate the goodness of the Power Law 
fit performed over subsequent chunks of the contact life time distribution.  The interval was 
increased by 1 datapoint for each fit iteration.
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Figure S5. Comparison K-means and Gaussian Mixture (GM) clustering. A Scatter plot and 
one-dimensional distribution of the topological coordinates (in terms of number of series, 
parallel and cross contacts) for AR NR, middle life contacts. The clustering was performed 
by K-means and Gaussian Mixture clustering techniques, for the purpose of comparing their 
performance. B Representation of the outcome of the clustering procedure displayed in A 
over the triangular topological space, for K-means and GM methods.
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Figure S6. Evolution score results for different clustering parameters. A Evolution score cal-
culated from clusters obtained by running the Gaussian Mixture clustering algorithm with the 
following parameters: n_init=100, tol=1e-4,  max_iter=10000, reg_covar= 1e-4. B Evolution 
score calculated from clusters obtained by running the Gaussian Mixture clustering algorithm 
with the following parameters: n_init=100, tol=1e-4,  max_iter=10000, reg_covar= 1e-5.
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Figure S7. Evolution score results for different empirical definitions of evolution score. A 
Evolution score result calculated following the formulation:

where si and si+1 are the spread of cluster Ci and Ci+1 respectively, di+1, i is the 3D distance 
between the centroid of Ci and Ci+1 and N is the total number of clusters. Here, distances 
between centroids and spread are calculated by using the total number of S, P and X contacts, 
without further normalization. B Evolution score result calculated following the formulation:

where si and si+1 are the spread of cluster Ci and Ci+1 respectively, di+1, i is the 3D distance 
between the centroid of Ci and Ci+1 and N is the total number of clusters. Here, distances 
between centroids and spread are calculated by using the number of P, S and X contacts di-
vided by the total number of contacts in that specific configuration, in order to obtain their 
relative trends. C Evolution score result calculated following the formulation:

where si and si+1 are the spread of cluster Ci and Ci+1 respectively, di+1, i is the 3D distance 
between the centroid of Ci and Ci+1 and N is the total number of clusters. Here, distances 
between centroids and spread are calculated by using the total number of S, P and X contacts, 
without further normalization. D Evolution score result calculated following the formulation:

where si and si+1 are the spread of cluster Ci and Ci+1 respectively, di+1, i is the 3D distance 
between the centroid of Ci and Ci+1 and N is the total number of clusters. Here, distances 
between centroids and spread are calculated by using the number of P, S and X contacts di-
vided by the total number of contacts in that specific configuration, in order to obtain their 
relative trends.
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Figure S8. Similarity score for each pair of IDP/IDR in the dataset. Pairwise similarity sco-
res for IDRs/IDPs. The scores were obtained by aligning strings corresponding to the topo-
logy reached by the protein in the centroid of the last occupied topological state during the 
MD run.
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Figure S9. Similarity score as calculated by SequenceMatcher method.  Pairwise similarity 
scores for IDRs/IDPs. The scores were obtained by running the SequenceMatcher.quick_ratio 
method on strings corresponding to the topology reached by the protein in the centroid of 
the last occupied topological state during the MD run. Scores obtained for all 3 MD runs are 
averaged into one value.  
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Figure S10. Similarity score (for middle life contacts) calculated with and without coarse 
graining of the topology strings.  Coarse graining was performed by making substrings of 5 
topological element. The value assigned to the substring is then the average of these 5 elemen-
ts. We do not observe any significant difference in the patterns present in the similarity score 
matrix calculated with and without coarse graining, with differences in score amounting to a 
maximum of 0.03 for each element. 
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MIDDLE LIFE

Protein Run 1 Run 2 Run 3
AR NR 5 7 9*
AR CR 6 8 7

ER 4 5 6
GR 6 7 5

SNCG 4 5 4

SHORT LIFE

Protein Run 1 Run 2 Run 3
AR NR 3 2 2
AR CR 4 2 3

ER 4 2 3
GR 5 3 3

SNCG 4 2 3

Table S1. Ideal number of clusters as identified by the BIC model, obtained by running the 
Gaussian Mixture clustering algorithm with the following parameters: n_init=100, tol=1e-4,  
max_iter=10000, reg_covar= 1e-4. In the case of AR NR run 3, the asterisk indicates a failure 
in the BIC model; the BIC score should decrease after we reach the ideal number of clusters, 
but in this case the score keeps rising indefinitely, even broadening the range of possible clu-
ster numbers. Therefore, the number 9 was picked as the highest number of clusters which still 
provided good visual division into clusters of the data, without overfitting. 

Table S2. Ideal number of clusters as identified by the BIC model, obtained by running the 
Gaussian Mixture clustering algorithm with the following parameters: n_init=100, tol=1e-4,  
max_iter=10000, reg_covar= 1e-4. 
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MIDDLE LIFE

Protein Run 1 Run 2 Run 3
AR NR 5 7 9*
AR CR 7 8 8

ER 4 5 6
GR 6 7 5

SNCG 4 5 4

SHORT LIFE

Protein Run 1 Run 2 Run 3
AR NR 3 3 2
AR CR 4 3 3

ER 4 2 3
GR 4 3 3

SNCG 4 2 3

Table S3. Ideal number of clusters as identified by the BIC model, obtained by running the 
Gaussian Mixture clustering algorithm with the following parameters: n_init=100, tol=1e-4,  
max_iter=10000, reg_covar= 1e-5. In the case of AR NR run 3, the asterisk indicates a failure 
in the BIC model; the BIC score should decrease after we reach the ideal number of clusters, 
but in this case the score keeps rising indefinitely, even broadening the range of possible clu-
ster numbers. Therefore, the number 9 was picked as the highest number of clusters which still 
provided good visual division into clusters of the data, without overfitting.

Table S4. Ideal number of clusters as identified by the BIC model, obtained by running the 
Gaussian Mixture clustering algorithm with the following parameters: n_init=100, tol=1e-4,  
max_iter=10000, reg_covar= 1e-5. 
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MIDDLE LIFE

Protein Run 1 Run 2 Run 3
AR NR 5 7 9*
AR CR 7 8 8

ER 4 5 6
GR 6 7 5

SNCG 4 5 4

SHORT LIFE

Protein Run 1 Run 2 Run 3
AR NR 3 3 2
AR CR 4 3 3

ER 4 2 3
GR 5 3 3

SNCG 4 2 3

Table S5. Ideal number of clusters as identified by the BIC model, obtained by running the 
Gaussian Mixture clustering algorithm with the following parameters: n_init=100, tol=1e-4,  
max_iter=10000, reg_covar= 1e-6. In the case of AR NR run 3, the asterisk indicates a failure 
in the BIC model; the BIC score should decrease after we reach the ideal number of clusters, 
but in this case the score keeps rising indefinitely, even broadening the range of possible clu-
ster numbers. Therefore, the number 9 was picked as the highest number of clusters which still 
provided good visual division into clusters of the data, without overfitting.

Table S6. Ideal number of clusters as identified by the BIC model, obtained by running the 
Gaussian Mixture clustering algorithm with the following parameters: n_init=100, tol=1e-4,  
max_iter=10000, reg_covar= 1e-6. 
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