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CHAPTER 2:

35

What is the topology of a protein and what governs protein folding to a specific 
topology? This is a fundamental question in biology. The protein folding reaction is 
a critically important cellular process, which is failing in many prevalent diseases. 
Understanding protein folding is also key to the design of new proteins for applica-
tions. However, our ability to predict the folding of a protein chain is quite limited 
and much is still unknown about the topological principles of folding. Current pre-
dictors of folding kinetics, including the contact order and size, present a limited 
predictive power, suggesting that these models are fundamentally incomplete. 
Here, we use a newly developed mathematical framework to define and extract the 
topology of a native protein conformation beyond knot theory, and investigate the 
relationship between native topology and folding kinetics in experimentally cha-
racterized proteins. We show that not only the folding rate, but also the mechanistic 
insight into folding mechanisms can be inferred from topological parameters. 
We identify basic topological features that speed up or slow down the folding process. 
The approach enabled the decomposition of protein 3D conformation into topolo-
gically independent elementary folding units, called circuits. The number of circuits 
correlates significantly with the folding rate, offering not only an efficient kinetic 
predictor, but also a tool for a deeper understanding of theoretical folding models. 
This study contributes to recent work that reveals the critical relevance of topology 
to protein folding with a new, contact-based, mathematically rigorous perspective. 
We show that topology can predict folding kinetics when geometry-based predictors 
like contact order and size fail.
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of protein folding, PCCP, 23, 37, 21316-21328, September 21, 2021, https://doi.
org/10.1039/D1CP03390E 

TOPOLOGICAL PRINCIPLES OF PROTEIN FOLDING  



36

1. INTRODUCTION

Over the last 20 years, it has been hypothesized that protein folding rates and 
mechanisms can be inferred from the native state topology [1]. The importance 
of local intra-chain contacts for small one-domain proteins emerged with the 
definition of Contact Order (CO), a ‘‘topological’’ parameter still widely used to 
date to predict protein folding rates [2]. This parameter was then coupled with 
size (length of the protein) with the introduction of absolute CO [3], to allow 
for better description of the folding kinetics of larger proteins. For such pro-
teins, the folding pathway may be characterized by kinetic traps and escape from 
low free energy conformations [4][5]. In more recent years, other models have 
been suggested for folding rate prediction, based on total contact distance[6],  a 
small selection of contact information [7], cumulative torsion angle[8] and other 
structural information [9]–[13]. Moreover, an evolution of the concept of contact 
order called partial contact order was envisioned in order to follow the progres-
sion of such topological descriptor from the unfolded to the folded state[14]. The 
partial contact order pCO takes into account the likelihood that a certain contact 
is formed, and the associated reduction of loop entropy [14].However, contact 
distance, contact order and protein length are not inherently topological proper-
ties, if topology is to be intended in the mathematical sense of the word. Topology 
is a mathematical concept characterizing the properties of objects which remain 
unaltered through continuous, invertible transformations such as stretching, 
shrinking and bending. A first step to introduce topology-based predictors for 
the quantification of entanglement was taken by Marco Baiesi et al. [15]–[17]. 
Drawing from knot theory, the concept of Gaussian entanglement was first ap-
plied to the intertwined backbones of domain-swapped protein dimers [17], and 
then to non-overlapping looping sub-chains of the same protein, where it proved 
to complement absolute CO in folding rate prediction on a set of 48 proteins [15]. 
However informative, these topologically inspired descriptors often concern a 
fairly limited portion of the available protein datasets, with about 15% of  dimers 
displaying significant intertwining [17], and 32% of proteins from the CATH 
database showing non trivial Gaussian entanglement [16]. Topological concepts 
such as writhe and torsion were also applied to the protein backbone, yielding 
good results for folding rate prediction and revealing the role of handedness of 
proteins at both local and global organization levels [18].

Previous topological efforts to quantify the relation between the native state 
three-dimensional arrangement and folding kinetics relied on the concept of 
entanglement as defined by knot theory, and focused on the entanglement of 
the backbone. However, knots are rare in proteins, and knotted proteins gene-
rally yield very low folding rates [19]. Other topologically inspired descriptors 
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drawn from knot theory such as Gaussian entanglement also rely on the concept 
of backbone entanglement. 

Figure 1. Segment and Residue-based CT parameters correlate with folding rate. A Three 
pairwise arrangements of CT: series, parallel and cross. The inner contact is in parallel re-
lation (P) with the outer contact, while the outer contact is in inverse parallel relation (P-1) 
with the inner contact. B Circuit diagram for segment-based contacts. C Circuit diagram for 
residue-based contacts. D CT matrix for segment-based contacts. E CT matrix for residue-ba-
sed contacts. Segment and residue-based contacts offer very different resolution into protein 
topological arrangement, for the same protein (pseudoazurin, PDB code: 1ADW). F Scatter-
plot of topological fractions (Series, Parallel and Cross) versus Folding rate (ln kf), for seg-
ment-based contacts. G Scatterplot of topological fractions (Series, Parallel and Cross) versus 
Folding rate (ln kf), for residue-based contacts. H Size distribution (number of residues) for 
two-state and multi-state folders. I Contact Order distribution of the dataset. The dataset was 
divided into three sub-datasets (Lower, Average and Upper CO) by setting an upper (16.47) 
and lower (9.72) limit.
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The effect of entanglement of proteins with no knots and no slipknots to folding 
rates has been studied in Panagiotou and Plaxco[18]and  Baiesi, Orlandini et al. 
[15]–[17]. A mathematically rigorous topology concept, termed circuit topology 
(CT), has recently been proposed to describe the topology of unknots [20][21]. 
Circuit topology, in its first order definition, ignores possible backbone entangle-
ment, and focuses only on the intra-chain contacts present in the native protein 
structure. Contacts are considered to be fixed. This allows circuit topology to 
provide a topological description of unknotted yet folded linear chains [20]–[23], 
a type of description which is complementary to that provided by Gaussian en-
tanglement [15]–[17], writhe and torsion [18]. Moreover, contact-based topolo-
gical descriptors represent a very natural framework for proteins, since contacts 
often have not only geometrical but also biological relevance. The circuit topo-
logy framework allows us to readily combine our descriptors with information 
such as the energy of a contact, for example. The vast majority of proteins pre-
sent intra-chain contacts, making our analysis applicable virtually to all proteins. 
Once contacts in a structures have been identified, they are classified based on 
their pairwise topological arrangement (Figure 1A). According to CT, contacts 
can be in either one of three possible relations with each other: series (S), parallel 
(P) and cross (X) (Figure 1A). Series and parallel relations also include a subset 
of relations, called concerted relations, in which one of the two contact sites is 
shared between the two contacts. We call these relations concerted parallel (CP) 
and concerted series (CS). Here, we present a first order analysis, therefore CP 
and CS will be included in the main sets and counted respectively as parallel and 
series. We note that CT was already suggested to have an impact on the folding 
dynamics of model polymers [22][24], although its relevance to protein folding 
has not been evaluated. 

Here, we show how the three fundamental topological relations S, P, and X di-
splay differential patterns of correlation with folding rate, providing insight into 
which types of topological arrangements facilitate folding and which hinder it. 
We define as zipper effect the mechanism with which a predominance of series 
arrangement slows folding, while parallel and cross arrangements (the so-called 
entangled relations) yield higher folding rates. It is important to note that here 
the word ‘entangled’ is used in a broad sense, since we are dealing with unknots. 
Parallel and cross are designated as entangled because the two loops forming 
the relation are not independent of each other. We show that both two-state and 
multi-state class proteins display statistical evidence of the zipper effect, if we 
only consider the topology of short range, attractive energy contacts. Lastly, we 
will show how proteins can be decomposed into topological circuits [25], that is, 
topologically independent units. The number of these circuits normalized by size 
correlates positively with the logarithm of folding rate ln(kf), suggesting that the 
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localization of contacts inside topological circuits might play a role in facilitating 
folding efficiency.

2. RESULTS

2.1. Topological parameters as kinetic predictors  

Circuit topology utilizes contacts as basic elements for topological classifica-
tion. However, a suitable definition of contacts is widely dependent on the pur-
pose of the study. For folding rate prediction, contacts between residues have 
mostly been used for quantifying parameters such as CO [2]. Here, we will also 
consider contacts between residues. However, this is not the only choice; the 
flexibility of the CT framework allows us to consider other type of protein buil-
ding blocks which can form contacts; one can define segments of proteins which 
correspond to secondary structure elements, and perform CT analysis on the 
contacts created by these coarse-grained structures. In Figure 1 we can see the 
CT diagram of segment-segment (Figure 1B) and residue-residue (Figure 1C) 
contacts, and their respective CT matrices, from which the frequencies of CT to-
pological relations can readily be extracted (Figure 1D and 1E). Strikingly, these 
CT frequencies correlate with the logarithm of folding rate. The two choices of 
contact definition provide very different structural resolution, and we expectedly 
observe different degrees of correlation with folding rate. Contacts were retrieved 
from PDB structures, by defining a spatial cutoff for atom-atom distance (5.0 Å), 
and a threshold for the minimum number of atoms to be found in spatial proxi-
mity below the cut-off in order to consider the two residues/segments in contact 
(5 atoms for residues, 10 atoms for segments). Our main conclusions are robust 
with respect to the choice of parameters. For other cut - off choices, see Supple-
mentary Information.  

Next, we investigated whether the observed correlations depend on folding pa-
thway complexity. Many proteins fold and unfold with one main fast event, by a 
simple two-state transition. These “two-state folders” [11][26][27] have gathered 
much of the attention of scientific inquiry in the past, and their folding rates 
correlate with relative CO[2]. On the other hand, proteins with more intricate 
multi-state transitions – “multi-state folders” – have shown a strong dependency 
of their folding kinetics on protein length (and not CO) [28]. Notably, CT para-
meters also provide differential patterns of correlations for two- and multi-state 
folders, at first sight (Figure 1F, 1G). For both segment and residue analyses we 
find statistically significant negative correlation between ln(kf) and series in mul-
ti-state folders (respectively r = -0.32, p = 0.043 and r = -0.48, p = 0.002). This 
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Figure 2. Classification based on Contact Order and length filtering highlight differential 
patterns of correlation. A Folding rate correlation map for segment-based CT, with CO clas-
sification. B Folding rate correlation map for residue-based CT, with CO classification. C Fol-
ding rate correlation map for Contact Order and Size, with CO classification. CT seems to 
be more informative than Contact Order for proteins with Lower and Upper Folding rate. D 
Boxplot of folding rate for different CO subsets. Slow folders populate the Upper CO sub-da-
taset, and display correlation between folding rate and long-range residue-based contacts. 
E Folding rate correlation map for residue-based CT, with CO classification. The two maps 
show only long-range contacts (on the left) and only short-range contacts (on the right). The 
threshold for range classification was set to 24 residues. F Triangular plot of the topological 
composition throughout the dataset, for residue-based CT. G Triangular plot of the topologi-
cal composition throughout the dataset, for long-range residue-based CT. H Triangular plot 
of the topological composition throughout the dataset, for short-range residue-based CT.
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is understandable as series relations favor delocalization along the chain, which 
seems to slow down folding of multi-state folders, but leaves two-state folders 
unaffected. On the other hand, two-state proteins display moderate negative cor-
relation with cross relations (r = -0.31, p = 0.006), in their segment representa-
tion. These differences might be due to the different average size of the two-state 
and multi-state proteins (Figure 1H). Two-state proteins are generally smaller, 
therefore highly entangled topologies such as those favored by cross arrangement 
might be less likely to appear on the secondary structure level, for geometric and 
energetic constraints. The likelihood of finding such structures might increase 
for longer folding times. Therefore, it is not surprising to find a negative correla-
tion between cross and folding rate in this instance. The folding rate in multi-sta-
te proteins is more affected by topology, showing evidence of statistically relevant 
zipper effect at both residue and secondary structure levels, having negative cor-
relation with series and positive correlation with at least one of the two entangled 
relations – parallel for segments (r = 0.46, p = 0.003), both parallel and cross for 
residues (r = 0.31, p =  0.049 for parallel, r = 0.50, p = 0.001 for cross).  Segment 
analysis yields correlation values for parallel (in multi-state folders) which are 
comparable to those obtained by Panagiotou and Plaxco for the writhe of the 
protein Primitive Path and the logarithm of folding rate [18]. Chain writhing is a 
mechanism (possibly the main one in proteins) which can indeed create parallel 
contact topologies; thus, in this case, contact topology might be seen as a proxy 
for backbone topology. However, no correlation is found for parallel topology in 
two-state proteins, indicating possibly that the protein is too short to produce 
substantial writhe. CT parameters are normalized by the number of contacts in 
the chain, making it possible to compare proteins with very different geometrical 
properties. However, due to the assembly principles of proteins and geometrical 
and steric constraints, a non-trivial relationship between size and CT parameters 
exists (Figure S1).

2.2. Disentangling the contributions of geometry and topology

We demonstrate that topology-based predictors complement CO and size, 
which are geometry-based predictors. In order to do so, we divided the dataset 
into three sub-datasets, based on their CO (Figure 1I): Upper, Average and Lower 
CO. CO values were retrieved from the ARCPro dataset [29] (cutoff value = 6 Å). 
Figure 2A and 2B show the correlation coefficients for three subsets, for two-state 
and multi-state proteins. Exact values can be seen in Tables S1 and S2. We also 
compare the CT correlation maps to those obtained by using CO and size on 
the same datasets (Figure 2C, Table S3). While CO is moderately accurate in 
predicting ln(kf) for the Average CO dataset (r = -0.53, p = 4.5e-04 for two-state, r 
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= -0.51, p = 0.03 for multi-state), CT seems to obtain the best results for the two 
tails of the CO distribution, obtaining correlations as high as r = -0.93 (p = 0.002) 
for series and r = 0.94 (p = 0.001) for cross for multi-state proteins in the Lower 
CO range (Figure 2B). These results imply that CO and CT give in fact comple-
mentary information about folding kinetics. Also, CT is able to provide resolu-
tion for those proteins that have similar CO but present significant discrepancies 
in folding rate. Size also provides strong correlations for the Upper and Lower 
CO datasets (Figure 2C, Table S4), although only for multi-state proteins (r = 
-0.89, p = 0.01 for Lower CO and r = -0.61, p = 0.01), as expected. By combining 
the kinetic information on multi-state proteins provided by residue-based CT 
and size parameters, we see that not only the number of residues is impactful but 
also their topological arrangement, with contact delocalization favored by series 
relations being as efficient as protein length in promoting a slow folding process. 
Interestingly, CT on the segment level displays an opposite trend for cross rela-
tions for multi-state, Lower CO proteins, indicating that such a level of entan-
glement at the secondary structure level might actually be hindering folding for 
those members of the multi-state protein class which are smaller (Figure 1H) and 
have higher folding rates (Figure 2D). The fact that smaller multi-state proteins 
show similar correlations for the cross fraction to two-state folders might sug-
gest a rather continuous transition with respect to size between multi-state and 
two-state classes, rather than two binary distinct folding styles [5][30].

2.3. Arrangement of short-range attractive contacts as a topologi-
cal driver of folding

Here, we investigate how topology, interaction energy, and interaction range 
work together to regulate folding kinetics. The CO reflects the relative impor-
tance of local and non-local interactions in the molecule [2]. The conceptual 
background behind CO is that contacts between residues that are closer along 
the chain are less entropically costly, and therefore tend to happen early in the 
folding process. Therefore, simple proteins structures which are rich in local con-
tacts tend to fold faster [1][31]. Broglia and Tiana [32] highlighted the  role of 
local contacts by identifying a specific hierarchy, which involves the formation of 
early local elementary structures (LES), followed by the assembly of the LES into 
a post critical folding nucleus at a later stage. Moreover, evidence exists that na-
tural selection favors folds with low contact order [33], and therefore structures 
rich in local contacts. Indeed, off-lattice models of protein folding showed that 
the suppression of local interactions prevents the structure from reaching the 
native conformation.[34] However, the respective role of local versus non local 
interactions is still a highly debated subject in literature. In silico studies of three 
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model 36-mers on a cubic lattice suggested that non-local interactions are the 
primary determinant of protein folding [35]. 

We can ask ourselves if not only the relative number of local versus non-local 
contacts, but also their topological arrangement has an impact on folding ki-
netics. To address this question, we applied a 24 residue threshold in order to 
discriminate between short-range and long-range contacts prior to CT analysis 
(Figure 2E,  Table S5 and S6). It is apparent to see that the topology of short-range 
contacts displays correlations which are higher in magnitude and also more wi-
despread over the whole CO range, as opposed to long range contacts. Multi-sta-
te proteins in the Lower CO range still display the highest correlations between 
topological content and ln(kf): r = -0.97, p = 1.9E-04 for series, r= 0.89, p = 0.007 
for parallel, and r = 0.94, p = 0.002 for cross. The zipper effect appears to be con-
firmed in the results from the short-range correlation panel (Figure 2E): once 
local contacts are uncoupled from non-local contacts in CT analysis, negative 
correlations with folding rate are only seen for series relations, and positive cor-
relations are observed with the entangled relations, cross and parallel. Short range 
contacts appear as the main topological folding drivers. This is compatible with 
the findings of Adesh Kumar and co-workers [36], who theorized that local con-
tacts might be fundamental for the differentiation between the native-like con-
formations during folding, by Montecarlo simulation of three protein structures. 
However, correlations with long-range contacts also appear for the ‘slow folding’ 
Upper CO proteins (Figure 2D, 2E). Since non-local contacts along the chain are 
generally formed at a later stage during folding [32], they can only affect the folding 
process after longer characteristic times. This finding suggests that, for very fast 
folders, the impact of the topology of long-range contacts might be negligible. 

Moreover, we find that short and long-range contacts are also qualitatively dif-
ferent with respect to the topological content. Figure 2F portrays in a triangular 
plot the percentages of series, cross and parallel for all residues. We can compare it 
to the topological content in long-range (Figure 2G) and short-range (Figure 2H) 
contacts; we see that non-local contacts are actually much richer in cross relations 
with respect to local contacts. This finding indicates that at the level of short-range 
contacts the high entanglement promoted by cross relations is unfavorable.

Contacts can also be discriminated by assigning energy-like quantities based 
on the statistical potential suggested by Paul Thomas and Ken Dill [37][38]. This 
procedure is a first order attempt to add bio-chemical information to contact to-
pology: contacts can be filtered based on the sign of the potential matrix element 
associated to residue-residue interaction, resulting in ‘repulsive energy contacts’ 
(E>0) and ‘attractive energy contacts’ (E<0). The correlation map for energy filte-
ring (Figure 3A, Table S7 and S8) clearly highlights how the topology of attracti-
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ve energy contacts plays the biggest role in folding kinetics. However, repulsive 
contacts can still correlate with slower folding processes, as in the case of Lower 
CO multi-state (r = -0.95, p = 0.001 for series), for Upper CO two-state proteins 
(cross, r = -0.58, p = 0.05) and Upper CO multi-state proteins (series, r = -0.50, 
p = 0.048).

Figure 3. Classification based on Contact Order and energy filtering highlight the kinetic 
role of the topology of short-range attractive contacts. A Folding rate correlation maps for 
residue-based CT, with CO classification. The two maps show only negative energy contacts 
(on the left) and only positive energy contacts (on the right). B Scatterplot for residue-based 
CT fractions and folding rate: only short-range and negative energy contacts were included. 
With this type of filtering, both folding types display zipping effect, and all correlations are 
significant (p value ≤ 0.05). C Bar plot of topological fractions with respect to Contact Or-
der classification, for negative energy/short-range residue-based CT. With increasing CO, we 
observe an increase in series fraction and a decrease in entangled fraction (parallel, cross). D 
Triangular plot of the topological composition throughout the dataset, for negative energy/
short-range residue-based CT. E Triangular plot of the topological composition throughout 
the dataset, for negative energy residue-based CT. F Triangular plot of the topological compo-
sition throughout the dataset, for positive energy residue-based CT.
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Considering the results for length and energy-based contact filtering, it beco-
mes clear that not all contact topologies are equally impactful when it comes to 
folding. Local, attractive energy contacts seem to be the topological drivers of the 
folding process. It is therefore natural to reconsider correlations for the whole da-
taset while considering short range, attractive energy contacts exclusively (Figure 
3B). Interestingly, this type of filtering yields statistically significant correlations 
for both two-state and multi-state proteins, for all three topological relations. 
Even more notably, now both two-state and multi-state proteins show evidence 
of zipper effect, making the distinction between the two classes more quantitati-
ve than qualitative; correlations seem to be still more pronounced in the case of 
multi-state folders, but correlation trends are the same for the two classes. Figure 
3C shows another evidence of zipper effect: with decreasing contact order (hi-
gher folding rate), there is a gradual increase in entangled relations. However, the 
triangular plot of the energy/length filtered dataset (Figure 3D) is a closer match 
to the short-range triangular plot (Figure 2H) rather than to the attractive energy 
plot (Figure 3E), indicating that the best predictor for the topological content is 
distance between contacts, and not energy. Moreover, the topological content for 
repulsive energy contacts (Figure 3F) does not look significantly different from 
the one for attractive energy contacts (Figure 3E).

2.4. Linear combination of CO and CT parameters as an impro-
ved folding rate predictor

The analysis outlined so far suggests complementarity between folding rate de-
scriptors such as CT parameters and Contact Order. We see, for example, how 
the pre-filtering of data based on Contact Order is useful to uncover differential 
patterns of correlations for CT parameters (Figure 2 A, B, C, E, Figure 3 A). CO 
pre- filtering highlights also how proteins belonging to different CO ranges mi-
ght be best described by CO, CT parameters or size, when it comes to folding rate 
prediction. It is then natural to ask whether these folding rate descriptors could 
be combined to produce more accurate folding rate predictions. In order to test 
this hypothesis, we envisioned a multilinear regression analysis of the dataset, 
using CT parameters, CT parameters combined with CO, and CT parameters 
combined with size as independent variables. Folding rate predictions yielded 
by using only CO and size are also reported for comparison. For the analysis, 
we use CT fractions derived from attractive energy short range contacts, since 
this unifies two- and multi-state folders for what concerns their correlation pat-
terns with respect to CT (Figure 3B). All CT parameter values reported in this 
paper were previously normalized by the total sum of S, P and X relations in the 
protein. This normalization implies that, once we provide two CT fractions, the 



46

third is automatically determined, as the sum of all three fractions needs to yield 
1. This allows us to compare proteins with very different number of contacts. 
However, one of the three CT parameters is actually redundant, when it comes to 
multilinear regression analysis (MLR). Therefore, we decided to discard one and 
only use two CT parameters for folding rate prediction. Since the independent 
variables used for MLR should not be too highly correlated, we chose the two CT 
parameters which presented the lowest correlation coefficient when confronted 
with each other, parallel and cross (r = 0.23 , p  = 0.011). The CT-based folding 
rate predictor is therefore defined as:

where KCT is the predicted logarithm of folding rate, P and X are the parallel 
and cross fractions and cP and cX  are coefficients which are calculated by the 
MLR model over the training set. Following the same reasoning, CT parameters 
can be combined with CO and size to obtain new predictors:

 

Figure 4. The linear combination of CT parameters and CO allows for folding rate predi-
ction with increased statistical significance. A Scatterplots of predicted folding rate (obtained 
with multilinear regression over CT fractions, CO, protein length and a combination of these 
parameters) and experimental Folding rate (ln kf), calculated over one of the 5 training/test 
sets combinations. B Average R2 score for CT parameters (parallel, cross), CO, Size (protein 
length expressed in number of residues) and linear combination of CT parameters and CO, 
CT parameters and size. Numbers between parentheses indicate the standard deviation. The 
average was performed over 3 different choices of training/test subsets.  Predictions obtained 
over test sets 1 and 5 were discarded by residual analysis, as their residual distribution did not 
satisfy the normality requirement. 
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where L is the size of the protein (number of residues), and cL , cCO  coefficients 
calculated by the MLR model. In order to perform this analysis we relied on 
a freely available Python tool for machine learning and predictive data analy-
sis, scikit-learn 0.24.2 [39]. Thanks to the scikit-learn cross-validator module, 
we divided the dataset into 5 consecutive folds (sub-sets). Iteratively, 4 of these 
5 datasets were used as training set for the model, and the remaining one as test 
set for folding rate prediction. Folding rate predictions on one of these test sets 
can be seen in Figure 4A, for all predictors. Predictions for all test sets can be 
found in Figure S2. A useful parameter to quantify the goodness of our predi-
ction (how well the MLR model is representative of our dataset) is the coefficient 
of determination R2 [40]. The table in Figure 4B presents the average R2 over the 
predictions from the 5 test sets: it is clear to see that both CO and size have hi-
gher predictive power when combined with CT than when they are used on their 
own, with KCT + CO representing the best folding rate predictor. Folding rate predi-
ctions from the first and last test set were excluded from the comparison, as the 
residual (predicted folding rate – experimental folding rate) distribution from 
CO prediction did not satisfy the normality requirement (Table S9). However, R2 
values and adjusted R2 values from all test sets can be seen in Table S10 and S11 
respectively. The adjusted determination coefficient R2

adj is a modified version of 
R2 which takes into account the number of independent variables in the model. 
It discriminates whether the added variables provide an improvement to the pre-
diction which is higher than what would be expected by the addition of random 
parameters. The R2

adj coefficient confirms our general conclusions which identify 
KCT + CO  as the best predictor (Table S11). This result proves the complementarity 
in predictive power for CT parameters and CO for folding rate prediction, which 
we already hypothesized from the analysis presented in Figure 2B and 2C.

2.5. Circuits as elementary folding units

The circuit topology of a chain enables bottom-up analysis of fold architectu-
re. We investigate whether higher order topological features are seen in proteins 
and whether they contribute to folding kinetics. It was previously suggested that 
protein folding might proceed in a step-wise manner from separately cooperative 
elementary units of about 20 residues, called foldons [41]. Analogously, we can 
look for the topological equivalent of folding sub-units, by exploiting a string no-
tation of contacts, such as that utilized by generalized circuit topology [25]. The 
string notation allows for identification of circuits in the chain, formally defined 
as a segment of a string that consists only of pairs of letters. Circuits represent 
independent topological structures within a complex topology. Let us have a look 
at Figure 5A and 5B to clarify the notation. Letters are assigned to contacts in 
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the order in which they appear along the chain. Each contact site will then be 
represented in the string by that letter; consequently, each letter will appear in the 
sequence twice, as each contact is formed by two contact sites (residues, in this 

Figure 5. The number of topological circuits normalized by the size of the protein correlates 
positively with folding rate. A Example of circuit, with string and diagram representation. 
This circuit can be further decomposed, as BCBC is itself a circuit. B Example of circuit, with 
string and diagram representation. Also in this case, the circuit can be further decomposed. If 
we remove contact B, we would obtain circuit ACCA, leaving the topology of contact C and 
A unaffected. The same goes for contact C and circuit ABBA. Contact C and B together also 
form a circuit, BBCC. C Scatterplot for number of circuits normalized by size and folding rate. 
Legends display Spearman correlation coefficients.  D Scatterplot for circuit mean length and 
folding rate, for 24 and 36 residue thresholds for long-range exclusion. No correlation was 
detected for the 12 residue threshold. E Histograms of the number of circuits, normalized by 
protein length, for all long-range exclusion thresholds. F Triangular plot of CT fractions for 
residue-based CT. The color code indicates the number of circuits normalized by size, calcu-
lated with 36 residues long-range exclusion threshold.
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case). Thus, if we take the diagram shown in Figure 5A, and we follow the chain 
from beginning to end, we first encounter contact A, then contact B, then C, B, C 
and finally A. Therefore, the string notation is ABCBCA. The choice of letter (or 
general symbol to identify the contact) is arbitrary: the notation is valid as long 
as the symbol used is unique to that contact in the string.  Each segment of chain 
which consists of full pairs of letters represents a circuit. Therefore, the chain 
identified by ABCBCA is itself a circuit. BCBC is also a circuit, while ABCB is 
not. In Figure 5B, ABBCCA is a circuit, as also BB and CC. These are topolo-
gically independent units: the circuit CC could be removed, and the topology 
of ABBA would be unaffected: ABBA would still be a circuit. However, whi-
ch circuit should we consider, when decomposing a longer chain? ABBCCA or 
the shorter BB, CC? This depends on the threshold we impose for the exclusion 
of long-range contacts. Three thresholds were tested on our dataset: 12, 24 and 
36 residues. Imposing a threshold implies, for example, that contacts which are 
formed by residues that are more than 12 residues apart along the chain are era-
sed, in order to reveal the self-contained topological sub structures of this length 
range. The retrieved number of circuits is related to the size of the protein in a 
non-trivial way [25]. The number of circuits in a protein can be considered as its 
topological size. Topological and geometrical size are clearly two closely related 
concepts. Here we show, however, that the information provided by these two 
parameters is not redundant. Correlations between protein size and number of 
circuits decrease as we increase the threshold for long range contact exclusion in 
circuit computation. Correlations go from being as high as r = 0.91 (p = 1.85e-47) 
for tlr = 12, to r = 0.64 (p = 2.98e-15) for tlr = 36. This consideration sets the lower 
boundary for our analysis, as for thresholds which are as low as 12 residues, the 
detected topological length size coincides with geometrical size. This conclusion 
becomes apparent when we normalize the number of circuits by protein length, 
and use the normalized number of circuits as folding rate predictor (Figure 5C). 
While we observe no correlation between normalized number of circuits and 
ln(kf) for tlr  = 12, the correlation increases as we higher the threshold. The cor-
relation is particularly pronounced for two-state folders, for which we observe 
significant correlations for both tlr  = 24 (r = 0.49, p = 3.05e-6 ) and tlr  = 36 (r = 
0.50, p = 2.55e-6). Multi-state folders, on the other hand, only display correlation 
for tlr =36, which is also weaker in magnitude as opposed to that of two-state 
proteins (r = 0.32, p = 0.039). This result is interesting especially if we consider 
how traditionally size as a folding rate predictor was particularly successful when 
applied to multi-state folders. Observing a significant, albeit weak correlation for 
multi-state folders for the normalized number of circuits indicates that topolo-
gical and geometrical size are not always equivalent concepts. This consideration 
is particularly true when we consider two-state folders, where size generally pro-
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vides only modest correlations. Indeed, for this dataset the correlation between 
protein length and ln(kf) for two-state folders is r = - 0.28, p = 0.010 (Figure S3); 
this finding suggests that for two-state proteins the topological length might be a 
better descriptor for folding kinetics than geometrical size. In general, the corre-
lations in Figure 5C suggest that, for proteins of comparable length, a subdivision 
in a higher number of topologically independent units might facilitate folding. 
Moreover, the size of the circuits also seems to matter for two-state folders, with 
proteins made up by smaller circuits folding faster (Figure 5D). 

The distribution of the normalized number of circuits for two and multi-state 
folders also contains crucial information, concerning the topological makeup of 
the two folder types (Figure 5E). While for tlr = 12 and tlr = 24 we do not observe 
any particular difference between the two distributions, for tlr =  36 we actually 
observe a shift between the two, with two-state folders having a longer distribu-
tion tail towards high values of normalized number of circuits. For tlr= 36 resi-
dues, the multi and two-state distributions for normalized number of circuits 
are statistically different, as quantified by the Mann-Whitney U test (p=5.05e-4). 
There is still significant overlap between the two distributions for low values of 
normalized number of circuits, indicating, again, that the difference between two 
and multi-state folders is not binary. Nevertheless, the results suggest that to-
pology might be informative not only of the speed but also of the quality of the 
folding process.

Concerning the topological content of the circuits, we do not observe a clear 
trend between the normalized number of circuits and topological fractions (Fi-
gure 5F). While short-range contacts contained inside one circuit tend to be in 
series with local contacts present in other circuits, we also find that a relatively 
high number of normalized circuits can be compatible with high percentages of 
entangled relations. This enrichments in cross and parallel fractions can be due 
to the fact that circuits favor tight knit local interaction and tend to bring protein 
strands closer together. Moreover, circuits can also create long-range entangled 
relationships with each other, which are generally ignored in the computation of 
circuits, if they happen for residues which are more distant along the chain than 
the threshold for long-range exclusion.

3. DISCUSSION

Thanks to the theoretical framework of CT, we were able to draw a correlation 
between topological properties and folding kinetics, disentangling the role of to-
pology from that of geometry.  A significant step in the direction of topological 
description of folding phenomena was undertaken by Nikolay V. Dokholyan et al, 
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who demonstrated that average graph connectivity was a determinant of folding 
probability for pre-transition and post-transition states in the protein folding pa-
thway [42]. Different approaches drawn from knot theory were also used to de-
scribe the entanglement, torsion and writhe of the protein backbone [15]–[18], 
devising topologically inspired descriptors which yielded fairly good correlations 
with the logarithm of the protein folding rate [15][18]. Here, we have taken a 
fundamentally new step forward, by showing how folding rate can be predicted 
by CT parameters. Circuit topology (as presented in this study) only focuses on 
contacts, therefore ignoring the entanglement of the backbone. Moreover, this 
method does not require cumbersome mathematical and computational opera-
tions to connect the ends of the chain, such as those applied by Sulkowska et al. 
[43]. CT not only considers the number of contacts in the protein, but also shows 
that there are differential patterns of correlations with respect to the topological 
arrangement of the contacts. Series, parallel and cross contacts are invariant with 
respect to shrinking, bending, stretching and other continuous transformations 
[20], thus present true topological features of protein folds. Our analysis reveals 
that CT and CO have complementary ranges of validity and can be coupled to 
predict with accuracy the folding rate of a protein within a wide range of sizes 
and folding complexity. Moreover, CT offers invaluable information about what 
type of topological arrangements favor or hinder folding, therefore adding a me-
chanistic insight to folding rate prediction. The evidence of zipper effect for short 
range, attractive energy contacts offers a generalized model for folding which 
resolves the qualitative discrepancy between two-state and multi-state proteins. 
This unified view is beneficial since often attribution to two-state or multi-state 
classes is somewhat arbitrary [30], and the folding state of a protein might also 
not be known a priori. Moreover, we found that zipper effect yields a particularly 
high correlation for multi-state folders, which were previously found to mainly 
correlate with protein length [28]. 

Although the current implementation of CT ignores backbone entanglement, 
one can consider a comparison between the correlation scores obtained by CT 
analysis and those extracted by other topologically inspired descriptors such as 
torsion, writhe, Gaussian linking number and its linear combinations with relati-
ve and absolute contact order [15][18]. It is natural to compare the results obtai-
ned in Figure 1F for segments to the analysis carried out by Panagiotou and pla-
xco, about torsion and writhe of the protein backbone. They obtained correlation 
scores as high as 0.48 and 0.45 for writhe and torsion respectively, with respect to 
the logarithm of the folding rate. We obtain comparable results when considering 
the parallel relation. However, we only obtain it for multi-state folders, while wri-
the and torsion correlation values were only provided for two-state folders[18]. A 
combination of the two approaches might provide a more complete description 
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for protein folding kinetics at the secondary structure level. For what concerns 
Gaussian entanglement, correlations as high as -0.64 and -0.74 were obtained 
for two and multi-state proteins respectively [15], with correlations increasing 
when these scores were combined with RCO and ACO. However, these results 
were obtained on small datasets (26 two- and 22 multi-state proteins); it is im-
portant to take into account that this type of analysis is sensitive to the size and 
characteristics of the dataset [15]. In fact, CT provides comparable scores when 
applied to smaller subsections of the datasets, with sizes comparable to the ones 
in this study (Figure 2 and 3). Moreover, combining CT with traditionally used 
descriptors such as CO and protein length allows for an increase in the predictive 
power of both parameters (Figure 4). One might also consider the advantages 
of combining contact- and entanglement-based descriptors for protein folding 
prediction. Generalized CT [25][44] expands CT concepts to entangled subloops 
of a chain (the so-called soft contacts), therefore offering the opportunity for such 
complete description in future research.

The statistically significant correlations found between folding rate and the to-
pology of short-range contacts, as well as the number of circuits, suggest that fol-
ding happens primarily at the circuit level. We might find parallels between the 
concept of topological circuits and the one of local elementary structure (LES) 
envisioned by the hierarchical model of protein folding [32][45]. Following this 
reasoning, one would envision a folding model in which folding occurs early on 
inside the circuits, and at a later stage the circuits are arranged with respect to 
each other, forming inter-circuit contacts. This type of folding model also ma-
tches the ‘zipping and assembly’ mechanism theorized by S. Bano Ozkan and 
co-workers [46]. This folding mechanism would be compatible with our obser-
vations that the topology of long-range contacts correlates with folding rate only 
for slow-folding proteins (Figure 2E). Circuits presumably represent the elemen-
tary topological units of folding. The correlations between normalized number 
of circuits and folding rate for two-state folders (and to a lesser extent, multi-sta-
te folders) indicate that, for proteins of comparable sizes, the ones that present 
multiple, small folding elementary units will fold faster.  The high correlations 
obtained by two-state folders shed light on the nature of the different mechani-
sms experienced by two and multi-state proteins during folding. In particular, it 
would seem that topological length, as opposed to geometrical length, might play 
a role in folding rate prediction for two-state proteins. 

These insights into the role of native topology offer not only new tools for theo-
retical understanding of protein kinetics, but also powerful principles for protein 
design. The framework of CT has already proved to be effective in the field of 
molecular engineering [47]. The zipper effect and circuit decomposition might 
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provide an easily applicable topological prescription for obtaining proteins with 
the desired kinetic properties.

4. METHODS

All proteins, CO and kinetic information were retrieved from the ARCPro da-
taset[29]. Contact order retrieved from the ARCPro dataset was computed as 
the absolute contact order (ACO) based on a 6 Å cutoff for determining contacts 
in a multiple contact all-heavy atom method. Four proteins were excluded from 
analysis: 1FMK, 1M9S and 2BLM for incompleteness of structural information in 
the PDB files, and 1RA9 for incompleteness in kinetic information in the dataset. 
Therefore, the whole dataset for analysis comprised 122 proteins. The sub-data-
sets contained the following number of proteins: 36 proteins for Lower CO (mul-
ti-state: 7, two-state: 27), 58 proteins for Average CO (multi-state: 18, two-state: 
40) and 28 for Upper CO (multi-state: 16, two-state: 12). The partitioning of the 
dataset into CO ranges was made by calculating mean x and standard deviation 
σx of the CO distribution and defining the following thresholds:

Circuit Topology parameters were retrieved using custom-made Python code, 
which allows for energy, length filtering and circuit decomposition options. All 
PDBS are pre-processed automatically before analysis, in order to remove water 
molecules, hydrogen atoms and various binders. Only one chain (the first contai-
ned in the PDB) is selected. 

Contacts between segments were calculated based on a distance cutoff of 5.0 Å 
and a cutoff in number of atoms equal to 10. See Supplementary information for 
distance cutoffs equal to 3.5, 4.0, 5.0, 5.5 and 6 Å (Figure S4). For the definition 
of segments, the secondary structure files of the proteins as produced by the free 
web service STRIDE[48] were used. Each secondary structural element as defi-
ned in the STRIDE file represents a segment, to which contacts formed by atoms 
included in the segment are assigned.

Contacts between residues were calculated based on a distance cutoff of 5.0 Å. 
Residues were deemed to be in contact when more than na = 5 atoms were found 
to be closer than the distance cutoff. We repeated the analysis for cutoffs equal to 
3.5, 4.0, 4.5, 5.5 and 6.0 Å (Figure S5) and for na = 1, 2, 3, 4, 5 and 6 (Figure S6). 
The four closest neighbors of each residue were excluded from analysis. Each 
retrieved contact site in the protein structure was given an index. Indexes were 
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given based on the order in which contact sites appeared along the protein chain, 
from left end to right end of the chain. In this way, each contact was characterized 
by the two indexes (i, j) of its constituent contact sites. In order to define the CT 
relation between two contacts, their contact indexes (i,j) and (r,s) were compa-
red. CT relations were assigned based on the mathematical relations summarized 
below:

P denotes the powerset i.e., all subsets of a set including the null set (Ø). The to-
pological relations introduced above are sufficient and necessary to describe the 
topology of any folded linear chain with binary contacts[20]. For simplicity, CP 
and CS relations were counted respectively as parallel and series in the analysis 
presented in this paper. One can readily adjust the set theoretic definition to re-
duce the relation set {P, S, X, CP, CS} to {P, S, X} and to make the parallel relation 
symmetric so that P = P-1:

                       Series:   

                 Parallel:  

        Cross:  

Correlation analysis for segments and residues subdivided in CO subgroups, 
for different distance cutoffs, can be seen in Figure S7 and Figure S8. Distance 
filtering (short range versus long range contacts) was carried out with a threshold 
for long range exclusion of 24 residues. The analysis was also repeated for thre-
sholds equal to 12 and 36 residues (Figure S9). Energy filtering was carried out by 
exploiting the statistical potential matrix calculated by P. Thomas and K.Dill[37]. 
The Pearson correlation coefficient and two-tailed p value were calculated by cu-
stom-made data analysis Jupyter lab files. All correlation maps shown in the pa-
per display correlations with p value ≤ 0.05. 

Multilinear regression was performed by using an ordinary least squares Linear 
Regression from the linear_model module in scikit-learn 0.24.2. The subdivision 
into subsequent training and set tests was performed by model_selection modu-
le, with the KFold function. The five sets are formed respectively by: protein 1 to 
25, protein 26 to 49, protein 50 to 73, protein 74 to 97 and 98 to 121. Indexes refer 
to those assigned to proteins in the ARCPro database.
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 Residuals from folding rate prediction were tested for normality with the Sha-
piro test. Distributions with P values < 0.05 were considered not normal. In order 
to evaluate the quality of the prediction, the determination coefficient R2 was 
used, as calculated by the metrics.r2_score function:

where     is the predicted value of the i-th data point,      is the corresponding true 

value, n the total number of samples and                         . The adjusted determina-
tion coefficient is defined as:

where n is the number of samples and p the number of predictors (independent 
variables).

Circuit decomposition and counting was performed by setting a threshold on 
the length of the circuits. Given the average length l of the circuits in a protein, 
and σl their standard deviation, the circuits with a length below a threshold  

                    
                       were discarded. This was done under the assumption that the folding 

speed of bigger circuits represents the bottleneck for folding rate, and therefore 
the smaller circuits are negligible. Results without application of threshold tl are 
displayed in Figure S10.
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7. SUPPLEMENTARY

Figure S1. Relationship between CT parameters and protein size. All CT parameters are 
normalized by the number of contacts in a protein, making it possible to compare proteins 
with different contacts and sizes. However, a non-trivial relationship between size and CT 
parameters exists, because of the assembly principles of proteins and geometrical and steric 
constraints. Series topological content correlates positively with size, while proteins which are 
relatively richer in entangled fraction tend to be smaller.
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Figure S2. Circuit topology parameters in linear combination with traditional folding rate 
predictors such as CO and size allow for folding rate prediction with increased statistical si-
gnificance. A Scatterplots of predicted folding rate (obtained with multilinear regression over 
CT fractions, CO, protein length and a combination of these parameters) and experimental 
Folding rate (ln kf), for the first training/test set combination. B Scatterplots of predicted 
folding rate (obtained with multilinear regression over CT fractions, CO, protein length and a 
combination of these parameters) and experimental Folding rate (ln kf), for the second trai-
ning/test set combination. C Scatterplots of predicted folding rate (obtained with multilinear 
regression over CT fractions, CO, protein length and a combination of these parameters) and 
experimental Folding rate (ln kf), for the third training/test set combination. D Scatterplots 
of predicted folding rate (obtained with multilinear regression over CT fractions, CO, protein 
length and a combination of these parameters) and experimental Folding rate (ln kf), for the 
fifth training/test set combination. 
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Figure S3. Protein size correlates with folding rate. Scatterplot of protein length versus fol-
ding rate (ln kf), for two- and multi-state folders.
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Figure S4. CT parameters for segment-based contacts correlate with folding rate, with di-
stance cutoffs ranging from 4.0 to 6.0 Å. A Scatterplot of topological fractions (Series, Parallel 
and Cross) versus Folding rate (ln kf), for segment-based contacts, calculated with distance 
cutoff r = 3.5 Å. This cutoff represents the lower limit of our analysis, as 50 proteins out of 
122 result devoid of contacts with this contact definition. There are no significant correla-
tions between folding rate and CT parameters with this threshold. B Scatterplot of topological 
fractions (Series, Parallel and Cross) versus Folding rate (ln kf), for segment-based contacts, 
calculated with distance cutoff r = 4.0 Å. C Scatterplotof topological fractions (Series, Parallel 
and Cross) versus Folding rate (ln kf), for segment-based contacts, calculated with distan-
ce cutoff r = 4.5 Å. D Scatterplot of topological fractions (Series, Parallel and Cross) versus 
Folding rate (ln kf), for segment-based contacts, calculated with distance cutoff r = 5.5 Å. E 
Scatterplot of topological fractions (Series, Parallel and Cross) versus Folding rate (ln kf), for 
segment-based contacts, calculated with distance cutoff r = 6.0 Å.
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Figure S5. CT parameters for residue-based contacts correlate with folding rate, with distan-
ce cutoffs ranging from 4.0 to 6.0 Å. A Scatterplot of topological fractions (Series, Parallel and 
Cross) versus Folding rate (ln kf), for residue-based contacts, calculated with distance cutoff 
r = 3.5 Å. This cutoff represents the lower limit of our analysis, as 55 proteins out of 122 result 
devoid of contacts with this contact definition. There are no significant correlations between 
folding rate and CT parameters with this threshold. B Scatterplot of topological fractions (Se-
ries, Parallel and Cross) versus Folding rate (ln kf), for residue-based contacts, calculated with 
distance cutoff r = 4.0 Å. C Scatterplot of topological fractions (Series, Parallel and Cross) ver-
sus Folding rate (ln kf), for residue-based contacts, calculated with distance cutoff r = 4.5 Å. D 
Scatterplot of topological fractions (Series, Parallel and Cross) versus Folding rate (ln kf), for 
residue-based contacts, calculated with distance cutoff r = 5.5 Å. E Scatterplot of topological 
fractions (Series, Parallel and Cross) versus Folding rate (ln kf), for residue-based contacts, 
calculated with distance cutoff r = 6.0 Å.
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Figure S6. CT parameters for residue-based contacts correlate with folding rate, with r = 
5.0 Å and na thresholds ranging from 1 to 6. A Scatterplot of topological fractions (Series, 
Parallel and Cross) versus Folding rate (ln kf), for residue-based contacts, calculated with na = 
1. B Scatterplot of topological fractions (Series, Parallel and Cross) versus Folding rate (ln kf), 
for residue-based contacts, calculated with calculated with na = 2. C Scatterplot of topological 
fractions (Series, Parallel and Cross) versus Folding rate (ln kf), for residue-based contacts, 
calculated with calculated with na = 3. D Scatterplot of topological fractions (Series, Parallel 
and Cross) versus Folding rate (ln kf), for residue-based contacts, calculated with na = 4. E 
Scatterplot of topological fractions (Series, Parallel and Cross) versus Folding rate (ln kf), for 
residue-based contacts, calculated with na = 6.
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Figure S7. Segment-based CT parameters display differential patterns of correlation with 
folding rate, which can be highlighted by CO classification. A Folding rate correlation map 
for segment-based CT, with CO classification, calculated for distance cutoff r=4.0 Å. B Fol-
ding rate correlation map for segment-based CT, with CO classification, calculated for distan-
ce cutoff r=5.5 Å. C Folding rate correlation map for segment-based CT, with CO classifica-
tion, calculated for distance cutoff r=6.0 Å. Analysis for distance cutoff r=4.5 Å yielded an 
empty correlation map.
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Figure S8. Residue-based CT parameters display differential patterns of correlation with 
folding rate, which can be highlighted by CO classification. A Folding rate correlation map 
for residue-based CT, with CO classification, calculated for distance cutoff r=4.0 Å. B Fol-
ding rate correlation map for residue-based CT, with CO classification, calculated for distance 
cutoff r=4.5 Å. C Folding rate correlation map for residue-based CT, with CO classification, 
calculated for distance cutoff r=5.5 Å. D Folding rate correlation map for residue-based CT, 
with CO classification, calculated for distance cutoff r=6.0 Å.
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Figure S9. The topology of local and non-local contacts impacts folding rate in different 
measures, with short-range contacts displaying overall higher correlations. A Scatterplot of 
topological fractions (Series, Parallel and Cross) versus Folding rate (ln kf), for short-range 
residue-based contacts, with a threshold of 12 residues. B Scatterplot of topological fractions 
(Series, Parallel and Cross) versus Folding rate (ln kf), for short-range residue-based contacts, 
with a threshold of 24 residues. C Scatterplot of topological fractions (Series, Parallel and 
Cross) versus Folding rate (ln kf), for short-range residue-based contacts, with a threshold 
of 36 residues. D Scatterplot of topological fractions (Series, Parallel and Cross) versus Fol-
ding rate (ln kf), for long-range residue-based contacts, with a threshold of 12 residues. E 
Scatterplot of topological fractions (Series, Parallel and Cross) versus Folding rate (ln kf), for 
long-range residue-based contacts, with a threshold of 24 residues. F Scatterplot of topologi-
cal fractions (Series, Parallel and Cross) versus Folding rate (ln kf), for long-range residue-ba-
sed contacts, with a threshold of 36 residues.
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Figure S10. Folding rate correlates positively with the number of topological circuits compo-
sing the protein, normalized by size. A Scatterplot of number of circuits normalized by pro-
tein length versus folding rate (ln kf). Circuits we calculated with a threshold for long-range 
exclusion equal to 12, 24 and 36 residues. No additional threshold tl was applied (all circuits 
were computed regardless of their size). B Histogram of the number of circuits normalized by 
protein length for two and multi-state folders, for long-range exclusion equal to 12, 24 and 36 
residues. No additional threshold tl was applied.
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SEGMENTS

1.a)     LOWER CO
series (r) pvalue parallel (r) pvalue cross (r) pvalue

Two -0.10 0.631 0.15 0.497 -0.11 0.617
Multi -0.75 0.050 0.82 0.025 -0.96 0.001

1.b)     AVERAGE CO
series (r) pvalue parallel (r) pvalue cross (r) pvalue

Two 0.09 0.600 -0.06 0.693 -0.02 0.879
Multi -0.31 0.204 0.51 0.029 -0.45 0.058

1.c)     HIGHER CO
series (r) pvalue parallel (r) pvalue cross (r) pvalue

Two 0.08 0.803 0.24 0.444 -0.40 0.198
Multi -0.66 0.006 0.61 0.012 0.16 0.543

Table S1. Correlation coefficients for segment-based CT parameters, subdivided by CO clas-
sification. All correlation coefficients were calculated for distance cutoff r=5.0 Å and thre-
shold na = 10.
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RESIDUES

2.a)     LOWER CO
series (r) pvalue parallel (r)  pvalue cross (r)  pvalue

Two -0.45 0.016 0.27 0.157 0.24 0.218
Multi -0.93 0.002 0.83 0.021 0.94 0.001

2.b)     AVERAGE CO
series (r) pvalue parallel (r)  pvalue cross (r)  pvalue

Two 0.02 0.892 -0.08 0.607 0.08 0.615
Multi -0.43 0.075 0.43 0.072 0.06 0.802

2.c)     HIGHER CO
series (r) pvalue parallel (r) pvalue cross (r) pvalue

Two 0.01 0.973 0.53 0.075 -0.59 0.045
Multi -0.58 0.019 0.33 0.206 0.65 0.006

Table S2. Correlation coefficients for residue-based CT parameters, subdivided by CO clas-
sification. All correlation coefficients were calculated for distance cutoff r=5.0 Å and thre-
shold na = 5.
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CONTACT ORDER

LowerCO(r) pvalue AveCO(r) pvalue HigherCO(r) pvalue
Two -0.037 0.85 -0.529 0.00045 0.044 0.891

Multi -0.605 0.15 -0.51 0.031 -0.273 0.306

PROTEIN LENGTH

LowerCO(r) pvalue AveCO(r) pvalue HigherCO(r) pvalue
Two -0.343 0.068 0.225 0.163 0.157 0.626

Multi -0.889 0.007 -0.459 0.055 -0.607 0.013

Table S3. Correlation coefficients for contact order and folding rate, subdivided by CO clas-
sification. Contact order values refer to Absolute Contact Order (ACO), calculated for a di-
stance cutoff r = 6 Å.

Table S4. Correlation coefficients for protein length and folding rate, subdivided by CO clas-
sification. Protein length values are expressed in number of residues.
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RESIDUES (LR)

2.a)     LOWER CO
series (r) pvalue parallel (r)  pvalue cross (r)  pvalue

Two 0.16 0.445 -0.19 0.367 0.17 0.434
Multi -0.69 0.087 0.39 0.393 0.62 0.135

2.b)     AVERAGE CO
series (r) pvalue parallel (r)  pvalue cross (r)  pvalue

Two -0.11 0.504 -0.16 0.332 0.28 0.075
Multi -0.55 0.019 0.30 0.231 0.10 0.703

2.c)     HIGHER CO
series (r) pvalue parallel (r) pvalue cross (r) pvalue

Two -0.13 0.683 0.74 0.006 -0.73 0.007
Multi -0.48 0.060 0.12 0.649 0.65 0.006

Table S5. Correlation coefficients for long range residue-based CT parameters, subdivided 
by CO classification. All correlation coefficients were calculated for distance cutoff r=5.0 Å, 
na = 5 and a threshold of 24 residues for range exclusion. 
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RESIDUES (SR)

2.a)     LOWER CO
series (r) pvalue parallel (r)  pvalue cross (r)  pvalue

Two -0.46 0.014 0.46 0.013 0.09 0.650
Multi -0.97 1.9E-04 0.89 0.007 0.94 0.002

2.b)     AVERAGE CO
series (r) pvalue parallel (r)  pvalue cross (r)  pvalue

Two 0.03 0.846 -0.05 0.779 0.01 0.946
Multi -0.47 0.048 0.41 0.094 0.18 0.471

2.c)     HIGHER CO
series (r) pvalue parallel (r) pvalue cross (r) pvalue

Two -0.30 0.346 0.28 0.377 0.19 0.546
Multi -0.61 0.012 0.55 0.028 0.59 0.016

Table S6. Correlation coefficients for short range residue-based CT parameters, subdivided 
by CO classification. All correlation coefficients were calculated for distance cutoff r=5.0 Å, 
na = 5 and a threshold of 24 residues for range exclusion. 
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RESIDUES (E<0)

2.a)     LOWER CO
series (r) pvalue parallel (r)  pvalue cross (r)  pvalue

Two -0.47 0.012 0.27 0.160 0.29 0.133
Multi -0.89 0.007 0.77 0.045 0.85 0.016

2.b)     AVERAGE CO
series (r) pvalue parallel (r)  pvalue cross (r)  pvalue

Two 0.04 0.829 -0.14 0.376 0.14 0.393
Multi -0.46 0.054 0.51 0.030 0.07 0.785

2.c)     HIGHER CO
series (r) pvalue parallel (r) pvalue cross (r) pvalue

Two -0.02 0.948 0.58 0.050 -0.48 0.112
Multi -0.60 0.013 0.37 0.161 0.69 0.003

Table S7. Correlation coefficients for attractive energy residue-based CT parameters, sub-
divided by CO classification. All correlation coefficients were calculated for distance cutoff 
r=5.0 Å and threshold na = 5. 
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RESIDUES (E>0)

2.a)     LOWER CO
series (r) pvalue parallel (r)  pvalue cross (r)  pvalue

Two -0.18 0.381 -0.07 0.744 0.28 0.161
Multi -0.95 0.001 0.91 0.004 0.64 0.122

2.b)     AVERAGE CO
series (r) pvalue parallel (r)  pvalue cross (r)  pvalue

Two -0.01 0.958 0.03 0.875 -0.03 0.876
Multi -0.36 0.143 0.29 0.240 0.11 0.652

2.c)     HIGHER CO
series (r) pvalue parallel (r) pvalue cross (r) pvalue

Two 0.10 0.761 0.32 0.313 -0.58 0.050
Multi -0.50 0.048 0.26 0.329 0.49 0.056

Table S8. Correlation coefficients for repulsive energy residue-based CT parameters, sub-
divided by CO classification. All correlation coefficients were calculated for distance cutoff 
r=5.0 Å and threshold na = 5. 
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COEFFICIENT OF DETERMINATION (R2)

Validation set CT parameters CO Size CT + CO CT + size
1 0.402 -0.185 0.437 0.170 0.497
2 0.367 0.451 0.391 0.517 0.502
3 0.384 0.324 0.153 0.487 0.337
4 0.385 0.448 0.382 0.541 0.476
5 -0.171 0.389 0.107 0.232 -0.069

ADJUSTED COEFFICIENT OF DETERMINATION (R2
adj)

Validation set CT parameters CO Size CT + CO CT + size
1 0.348 -0.237 0.413 0.051 0.425
2 0.307 0.426 0.363 0.444 0.427
3 0.326 0.293 0.115 0.410 0.238
4 0.327 0.423 0.354 0.472 0.397
5 -0.282 0.361 0.067 0.116 -0.229

Table S9. R2 coefficients for folding rate prediction, using multilinear regression over CT 
parameters, CO and size. The dataset was divided into 5 subsets. Of these, 4 were used as 
training set, while the remaining one was used as test set. This process was repeated iteratively 
so that each subset was used as test set once. The adjusted determination coefficient is higher 
when we combine CT parameters (parallel and cross) with traditional folding rate predictors 
such as CO and protein length. Validation sets 1 and 5 were then excluded from the compu-
tation of the average presented in Figure 4, since the residuals retrieved from these sets were 
not normally distributed (Figure S11).

Table S10. Adjusted R2 coefficients for folding rate prediction, using multilinear regression 
over CT parameters, CO and size. The dataset was divided into 5 subsets. Of these, 4 were 
used as training set, while the remaining one was used as test set. This process was repeated 
iteratively so that each subset was used as test set once. The adjusted determination coefficient 
is higher when we combine CT parameters (parallel and cross) with traditional folding rate 
predictors such as CO and protein length. 
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RESIDUAL ANALYSIS 
Shapiro test, p values

Validation set CT parameters CO Size CT + CO CT + size
1 0.997 0.002 0.382 0.006 0.821
2 0.201 0.187 0.094 0.479 0.243
3 0.417 0.308 0.291 0.927 0.356
4 0.275 0.178 0.934 0.386 0.831
5 0.710 0.029 0.103 0.333 0.511

Table S11. Residual analysis reveals residuals from folding rate prediction in the first and fi-
fth validation sets are not normally distributed, when CO is used as independent variable in 
the linear regression. In order to verify normality, the Shapiro test was applied to the residuals 
distribution (Predicted (ln kf) - (ln kf)) for each validation set. P values which are lower than 
0.05 indicate the distribution does not satisfy the hypothesis of normality.
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