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The gravitational waves’

angular diameter distance

We analyze the propagation of high-frequency gravitational waves in scalar-tensor

theories of gravity, with the aim of examining properties of cosmological distances as

inferred from their measurements. By using symmetry principles, we first determine

the most general structure of the GW linearized equations and of the GW energy mo-

mentum tensor, assuming that GW propagate at the speed of light. We then specialize

to the case of GW propagating through a perturbed cosmological spacetime, deriving

the expressions for the GW luminosity and angular diameters distances, proving the

validity of the Etherington reciprocity law d GW
L = (1+ z)2d GW

A . We find that, as in the

case of the luminosity distance, also the GW angular diameter distance is explicitly

modified compared to the electromagnetic one. We discuss implications of this re-

sult in the context of strong lensing time delay, showing that the effects of the scalar

field representing dark energy compensate: lensed GW arrive at the same time as their

lensed electromagnetic counterparts.

Keywords: Gravitational waves, dark energy, geometric optics, angular diameter dis-

tance, distance duality relation, strong lensing

Based on: Gravitational-wave cosmological distances in scalar-tensor theories of

gravity

G. Tasinato, A. Garoffolo, D. Bertacca, S. Matarrese

JCAP 06 (2021) 050, e-Print: 2103.00155 [gr-qc]

83



4

84 4. The gravitational waves’ angular diameter distance

4.1. Introduction
Cosmologists use various different definitions of distance depending on the con-

text and the observables they are interested in [296, 297]. While usually definitions

make use of light detected from distant sources, GW offer new tools for measuring

cosmological distances. We have already seen an example of GW distance in Sec-

tion 1.4.2: using Eq. (1.104) one can infer the GW luminosity distance. This defini-

tion of d̄ GW
L (z) is simply given in analogy to the General Relativistic result (the GW’s

amplitude is inversely proportional to the luminosity distance), and it doesn’t fol-

low from rigorous definitions. The purpose of this Chapter is to formally derive the

gravitational waves cosmological distances, in particular the luminosity distance in

Section 4.5.2 and the angular diameter distance in Section 4.5.3, in a gravitational

theory where dark energy is represented by a scalar field. Following early important

works [197, 198, 204, 225, 234, 247], d (GW)
L is being recognized as a key observable to

independently measure cosmological parameters by means of GW, as well as testing

scalar-tensor theories of gravity, as we have seen in Chapters 2 and 3. Here, we wish

to draw some more general statements about GWs in scalar-tensor gravity models,

relaxing also the cosmological background assumption, namely that the background

metric is Eq. (1.14). To this extent, the high-frequency approximation is rather useful:

as discussed in Section 1.3.2, we can define GWs without specifying the background

line element. We use symmetries as a guiding principle, in particular generalized

coordinate invariance, for characterizing the scalar-tensor system and the behavior

of propagating degrees of freedom, without choosing a specific model. To disentan-

gle tensor and scalar waves, generically coupled when the propagation is considered

over arbitrary spacetimes, we assume that the properties of the GW at emission are

identical to those of General Relativity, and we identify physically reasonable con-

ditions to decouple the evolution equations of these different sectors. Focusing on

the propagation of tensor modes, we work out their stress-energy tensor at second

order, and define a covariant conservation of the graviton number density current,

which we use to formally define the Gravitational wave distances, d GW
L and d GW

A , in

scalar-tensor theories. The effects of a dynamical dark energy factorize into an over-

all multiplication factor.

Only after this general results, we focus on the case of cosmological perturbed space-

times, and we prove the validity of the Etherington’s reciprocity law

d GW
L = (1+ z)2 d GW

A , (4.1)

within a scalar-tensor framework considered. Since this relation is at the basis for

relating angular and luminosity distances in GW measurements, it is of crucial im-

portance to understand whether it is valid or not in a general theory of gravity, for

GW propagation on a general space-time. The definitions given in this Chapter

are, of course, compatible with Eq. (1.104). Considering that d GW
L can be modified
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with respect to the distance inferred through an electromagnetic signal, as shown in

Eq. (1.105), then the validity of Eq. (4.1) implies that also angular diameter distances

are rescaled by the same factor, i.e.

d GW
A = MP (z)

MP (0)
d EM

A . (4.2)

Finally, we investigate our results about d (GW)
A in the context of strong lensing of

GWs and their time delay, which depends on a combination of angular diameter

distances [149]. Strong lensing of GW can be important in the future for providing

alternative ways for determining cosmological parameters (see e.g. [298]). Since we

are considering theories where GWs travel at the speed of light, these follow null-

geodesics as photons, and we do not expect any different time delay between GW

and EM signals. We show explicitly that this is the case in Section 4.5.5, where we

rewrite the time delay formula, which is given in terms of the modified d (GW)
A , all in

terms of the geometrical comoving distances.

4.2. Tensor and scalar waves
Even though we do not restrict ourselves to a specific Horndeski theory, we assume

that the physical system under consideration derives from an action of the form

S =
∫

d 4x
p−g

(
M 2

p

2
R −L(gµν,ϕ)

)
, (4.3)

where ϕ is the DE field. In Section 1.3.2, we addressed the subtle issue of defining

the metric perturbation. In scalar-tensor theories, this problematic extends similarly

also to the definition of the scalar field fluctuations, which we address here. The

approach taken in this Chapter follows the definition of the field fluctuations typical

of geometric optics techniques.

We base our considerations on a double perturbative expansion for the metric and

the scalar field around quantities solving the background equations, as in [151, 152].

We expand metric and scalar fields as1

gµν(t ,x) = ḡµν(t ,x)+αhµν(t ,x) , (4.4)

φ(t ,x) = ϕ̄(t ,x)+αδφ(t ,x) , (4.5)

and we are interested to study the dynamics of the metric and scalar perturbations

hµν and δϕ. We adopt the geometric optics arguments to define the field fluctu-

ations: hµν and ϕ are small high-frequency fluctuations whose gradients are en-

hanced by a factor of ω with respect to the background. This parameter, defined

1Please note the notation: δφ corresponds to the scalar wave, while δϕ in, e.g., Eq. (1.110) is the large scale
structure contribution of the DE clustering. To make this difference more apparent, we use two different
expansion parameters: α and ϵ.
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for the first time in Eq. (1.85), is given by

1

ω
= λ

L
≪ 1, (4.6)

controlling the ratio among the typical (small) wavelength λ of the high-frequency

fields versus the (large) scale L of spatial variation of slowly-varying background

quantities.

The general topic of identifying the propagating scalar and tensor degrees of free-

dom in theories such as (4.3) started in the classic papers [299, 300], considering

a Minkowski background. It was then reconsidered, using a variety of methods,

in [158, 182, 235, 281, 301] attempting to go beyond the flat hypothesis. The problem,

technically speaking, arises because the generic background configuration {ḡµν,ϕ̄}

allows for coupling between tensor and scalar modes and, thus, correctly identify

their roles in the evolution equations can be subtle. The issue can be even more sub-

tle in theories where scalar and metric fluctuations propagate with different speed,

a phenomenon associated with spontaneous breaking of global Lorentz invariance

by means, for instance, of a non-vanishing time-like or space-like gradient of the DE

field. Note that these situations are the most interesting: they include cosmological

and screenings settings. Here we develop a covariant approach to address the prob-

lem, more similar in spirit to the original works of Isaacson [151, 152], and to the

effective field theory of inflation [82] and dark energy [86] (see e.g. [87] for a compre-

hensive review).

In our set-up, we assume to have an action in Eq. (4.3), invariant under generalized

coordinate transformations, and that the background fields profile break sponta-

neously Lorentz symmetry, providing the preferred vector

vµ ≡ ∂µϕ̄ . (4.7)

Under an infinitesimal spacetime translation, xµ → xµ + ξµ, the linearized fluctua-

tions transform as

h′
µν = hµν− (∇̄µξν+∇̄νξµ) , (4.8)

δφ′ = δφ− vµ ξµ , (4.9)

for infinitesimal vector ξµ and where ∇̄µ is the covariant derivative associated to ḡµν.

In order to actively apply the transformation in Eq. (4.8) and have that h′
µν, is still a

small (first order in α) and high-frequency (its gradient of order ω), we assume that

ξµ is a high-frequency field too and that its size is reduced by a factor of ω−1 with

respect to hµν [150],

O
(
ξµ

) ∼ 1

ω
O

(
hµν

) ∼ α

ω
. (4.10)

The gradients acting on the high-frequency ξµ in Eq. (4.8), enhance their contribu-

tions by a factor O(ω), so that the result is of order α×O(ω−1)×O(ω) = α×O(ω0),

i.e. of the same order of hµν.
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We note that, because of the spontaneously broken background, i.e. vµ ̸= 0, the gauge

transformations in Eqs. (4.8) and (4.9) mix the metric and scalar perturbations, in the

sense that a gauge fixing on one will affect also the other and vice-versa. Even if DE

fluctuations are not produced at the source as we are assuming here (for example

thanks to some screening mechanism), they can be generated by metric fluctuations

that are travelling from source to detection. We then expect that propagation effects

are able to excite scalar modes with an amplitude suppressed by a factor of O(ϵ) with

respect to metric fluctuations:

O(ϕ) ∼ω−1 O(hµν) . (4.11)

This assumption makes compatible Eqs. (4.10) and (4.9) (vµ ξµ is of order α/ω). In

any case, understanding the extent of the implications of such assumption, and pro-

viding more formal arguments for all the considerations just illustrated, is the topic

of Chapter 5.

4.2.1. Decomposing the metric fluctuation

Assuming a time-like vµ, we introduce the vector

Xµ ≡
vµp
2X

, such that X µXµ =−1, (4.12)

where X ≡ −(vµvµ)/2. We decompose the gauge vector ξµ into its orthogonal and

parallel components with respect to vµ,

ξµ = ξ(T )
µ +Xµ ξ

(S) , with X µ ξ(T )
µ = 0. (4.13)

From this definition, and Eq. (4.9), it is clear that δφ transforms only under transfor-

mations generated by ξ(S). We also introduce the quantity

h̃µν ≡ hµν+∇̄µHν+∇̄νHµ , with Hµ ≡
Xµp
2X

δφ . (4.14)

Because of Eq. (4.11), the contributions to h̃µν are of the same order in the gradient

expansion ω−1, and it is easy to show that h̃µν, transforms only under transforma-

tions generated by ξ(T )
µ as

h̃′
µν = h̃µν−∇̄µ ξ(T )

ν −∇̄ν ξ(T )
µ , (4.15)

so that we can choose gauges for h̃µν and δφ independently. This procedure is equiv-

alent to performing a Stuckelberg trick [53]. We define the orthogonal projection op-

erator relative to the vector X µ,

Λµν ≡ ḡµν+XµXν , (4.16)
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and decompose h̃µν as,

h̃µν = XµXνh(S) −
(

Xµh(V )
ν +Xνh(V )

µ

)
+h(T )

µν , (4.17)

with h(S) ≡ X ρ Xσ h̃ρσ, h(V )
µ ≡ X ρΛσµ h̃ρσ and h(T )

µν ≡ΛρµΛσν h̃ρσUnder a T -type trans-

formation they transform as

h
′(S) = h(S) , (4.18)

h
′(V )
µ = h(V )

µ −X ρ ∇̄ρ ξ(T )
µ , (4.19)

h
′(T )
µν = h(T )

µν −
(
∇̄µξ(T )

ν +∇̄νξ(T )
µ

)
−X ρ

(
Xµ ∇̄ρ ξ(T )

ν +Xν ∇̄ρ ξ(T )
µ

)
, (4.20)

up to order O(ω0). Indeed, the gauge transformation in Eq. (4.15), produces also

terms at orders O(ω−1), which we do not consider here as we focus only on the geo-

metric optics orders O(ω) and O(ω2) (see discussion about geometric optics in Sec-

tion 1.3.2). We note that h(S) is both S− and T -gauge invariant at order O(ω0). For

later purposes, we further decompose h(T )
µν as

h(T )
µν = γµν+ 1

3
Λµνh(tr) (4.21)

with h(tr) ≡Λµνh(T )
µν andΛµνγµν = ḡµνγµν = 0, and whose transformation laws are,

h
′(tr) = h(tr) −2Λµν∇̄ν ξ(T )

µ , (4.22)

γ′µν = γµν−
(
∇̄µξ(T )

ν +∇̄νξ(T )
µ

)
+ 2

3
Λµν ∇̄ρ ξ(T )

ρ −X ρ
(

Xµ ∇̄ρ ξ(T )
ν +Xν ∇̄ρ ξ(T )

µ

)
.

(4.23)

4.2.2. Gauge fixing

We first choose ξ(S) and ξ(T )
µ such that

δφ+
p

2X ξ(S) = 0, → δφ′ = 0, (4.24)

h(V )
µ −X ρ∇̄ρ ξ(T )

µ = 0 → h
′(V )
µ = 0. (4.25)

The last condition is compatible, at order O(ω0), with the orthogonality requirement

X µh(V )
µ = 0 as it can be checked by contracting with X µ both sides. Eq. (4.25) leaves

the residual T -gauge freedom X ρ∇ρ ζ(T )
µ = 0, which we use to fix

∇̄µγ′µν = 0, (4.26)

at order O(ω0), using Eq. (4.23). After such gauge choices, the quantity γ′µν is trans-

verse and traceless; we identify it as the high-frequency GW and dub it

γ′µν ≡ h(T T )
µν . (4.27)
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We point out that is not possible to choose h(tr) = 0, using the residual gauge freedom,

left after the last transformation, if h(tr) depends on the coordinate in the direction of

Xµ. For simplicity, we can exhaust the gauge freedom imposing ∇µξ(T )
µ = 0, such that

the trace h(tr) is gauge-invariant, while the transverse-traceless GW excitations h(T T )
µν

are invariant under the residual transformation that can be read from Eq. (4.23):

h(T T )
µν → h(T T )

µν −∇̄µξ(T )
ν −∇̄νξ(T )

µ . (4.28)

After the gauge fixing procedure described, the metric perturbation reads

h̃µν = Xµ Xνh(S) + 1

3
Λµνh(tr) +h(T T )

µν . (4.29)

The quantity h̃µν, before we make any gauge choice, has 10 non-vanishing compo-

nents. Making gauge fixings as explained above, we imposed 6 conditions, since both

h(V )
µ and h(T T )

µν are by construction orthogonal to the vector X µ. Hence, we are left

with 4 independent metric components. In Section 4.3.1 we show that only 3 out of

these 4 are independent propagating degree of freedom, while h(S) is a constrained

field. We will decouple the evolution equations of The evolution equations of h(tr)

and h(T T )
µν under physical assumptions on the velocities of the fields involved.

4.3. Equations of motion
Isaacson, working in the context of the geometric optics limit of General Relativity,

showed that the original diffeomorphism invariance is preserved order-by-order in

the gradient expansion [151, 152] in the equations of motion. In our scalar-tensor

framework, we change perspective and impose the symmetry invariance at each or-

der in the ω-expansion. This viewpoint allows us to write the most general structure

for the equations governing the GW dynamics, and to encode the effects of the DE

field in few physically transparent parameters.

4.3.1. Separating the evolution equations

We consider that the equations of motion of h̃µν in Eq. (4.29), can be obtained from

the action (4.3). As usual in the context of geometric optics, we neglect the contribu-

tion of standard matter, considering that it does not have high-frequency excitations.

The gravitational field equations can be expressed in terms of h̃µν as

G (1)
µν

[
h̃ρσ

]= T (1)
µν

[
h̃ρσ

]
, (4.30)

where G (1)
µν

[
h̃ρσ

]
is the linearized Einstein tensor, written in terms of h̃ρσ, and T (1)

µν

represent any other contribution to the field equations. Note that we are choosing

the gauge δφ= 0, hence it does not appear in the equations above. Taking the trace
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of Eq. (4.30), we find that the left-hand-side is given by (minus) the first order Ricci

scalar

R(1) = −□̄h(tr) +Λαβ ∇̄α∇̄β
(
h(S) + 1

3
h(tr)

)
, (4.31)

from which we see that, while the trace scalar h(tr) receives a kinetic contribution

controlled by the d’Alembert operator □̄, second derivatives acting on the scalar h(S)

are weighted by the projector operator Λµν. Let us consider, as an example, the

case of a background field configuration which is homogeneous and isotropic. In

this case, ḡµν is the FLRW metric and vµ ∝ δµ0ϕ
′
0 so that Λαβ ∇̄α∇̄βh(S) ∝ ∂i∂i h(S).

As a result, one finds that the kinetic contributions of h(S) coming from the Ricci

scalar, are not sufficient for propagating this field. Indeed, h(S) plays a role analo-

gous to the lapse function N in the ADM formalism (see e.g. [160]): not dynamical

and whose equation of motion serves as a constraint equation. We also discuss in

Appendix B an explicit, simple example where h(S) is manifestly non-dynamical. To

proceed further, one has to understand whether the energy-momentum tensor in the

right-hand-side of Eq. (4.30), can make h(S) dynamical by, for instance, containing a

term such ∼ □̄h(S). If in the action (4.3), the couplings of dark energy scalar to the

metric are expressed in a covariant form in terms of the metric, Riemann, and Ricci

tensors, we claim this is not possible. Indeed, if this is the case, their contribution

will have a form similar to the one of the Ricci in Eq. (4.31) and, consequently, the

same considerations as above apply. We conclude that the role of h(S) is to fix certain

conditions on the high-frequency modes.

Assuming that we have solved the equation of h(S), we are left with h(T T )
µν and h(tr) as

potentially propagating high-frequency degrees of freedom. The linearized gravita-

tional field equations, can be decomposed as

G (1)
µν

[
h(T T )
ρσ

]
+G (1)

µν

[
h(tr)] = T (T )

µν

[
h(T T )
ρσ

]
+T (tr)

µν

[
h(tr)] . (4.32)

We expect that second derivatives contributions to the scalar sector have a rich struc-

ture, due to the presence of vµ ̸= 0. As a consequence, tensor and scalar fluctuations

normally propagate with different velocities. We set the speed of GW to the one of

light, given the strong experimental bounds on the GW velocity associated with the

GW170817 event [302], and make the ansatzs

h(T T )
µν = A(T )

µν exp
[
i ωψ(T T )] , (4.33)

h(tr) = A(tr) exp
[
i ωψ(tr)] . (4.34)

The amplitudes of both modes are slowly varying, while the phases are rapidly vary-

ing thanks to the factors of ω in the exponent. When plugging Eqs. (4.33) and (4.34)

into Eq. (4.32), one gets a linear combination of terms with rapidly oscillating phases

and slowly varying overall coefficients, with structure(
. . . ]|ω2,ω1

)
exp

[
i ωψ(T T )]+ (

. . . ]|ω2,ω1

)
exp

[
i ωψ(tr)] = 0 (4.35)
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where within the parenthesis we collect slowly varying contributions at orderω2 and

ω1 in a gradient expansion. The ω2 contributions depend on the derivative of the

phases ψ(T T ) and ψ(tr): they control the dispersion relations for the two species of

excitations, scalar and GW. Since in general h(T T )
µν and h(tr) propagate with differ-

ent speed, they are characterized by distinct dispersion relations, hence the phases

ψ(T T ) and ψ(tr) are different. Eq. (4.35) is a linear combination of two contributions

weighted by two distinct phases which rapidly oscillate over space and time: in or-

der to satisfy it, we need to impose that the coefficients of each of these two terms

separately vanish. Within the geometric optics limit, this procedure effectively sepa-

rates the evolution of scalar modes (characterized by the phaseψ(tr)) and GW modes

(characterized by the phase ψ(T T )). Under all these assumptions illustrated, we con-

sider Eq. (4.32) satisfied if

G (1)
µν

[
h(tr)] = T (tr)

µν

[
h(tr)] , (4.36)

G (1)
µν

[
h(T T )
ρσ

]
= T (T )

µν

[
h(T T )
ρσ

]
, (4.37)

namely the two sectors solve individually their respective equations. As a result, the

GW sector is decoupled from the scalar one at the linearized level.

4.3.2. The tensor mode equation

We now investigate the tensor mode equation in Eq. (4.37). The left-hand-side corre-

sponds to the linearized Einstein tensor, evaluated in h(T T )
ρσ . Since the latter is trans-

verse and traceless, we have that

G (1)
µν

[
h(T T )
ρσ

]
]|ω2,ω1 = −1

2
□̄h(T T )

µν ]|ω2,ω1 . (4.38)

The right-hand-side of Eq. (4.37) is theory dependent, nevertheless, symmetry con-

siderations allow us to determine the general structure of T (1)
µν [h(T T )

ρσ ], without relying

on specific models. Considering Eq. (4.38) as left-hand-side of Eq. (4.37), and the in-

variance under residual T− types gauge transformations, we see that the right-hand-

side should be:

1. transverse and traceless,

2. orthogonal to vµ at orders ω2 and ω1,

3. invariant under the transformation (4.28),

4. conserved at order ω2:
[
∇µT (T )

µν

]
ω2

= 0,

5. containing at most second derivatives of h(T T )
ρσ : since we are considering an

action of the form (4.3), stability requires that the corresponding equations of
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motion are at most second order2.

Additionally, we demand that it ensures that GW propagate at the speed of light, to

be compatible with GW170817 [125]. The only allowed structure of the linearized

T (T )
µν (hρσ) that satisfies all of these requirements at orders ω2, ω is

T (T )
µν = τA □̄h(T T )

µν +τB vρ ∇̄ρh(T T )
µν , (4.39)

where τA,B depend only on slowly varying fields. Calling the combination

T = − 2τB

1+2τA
, (4.40)

we can rewrite the GW evolution equation as(
□̄h(T T )

µν

)
]|ω2,ω1 = T ×

(
vρ∇̄ρ h(T T )

µν

)
]|ω1 . (4.41)

The deviations from GR on the propagation of high-frequency GW only appear as

a first-order gradient of the GW high-frequency fluctuation, proportional to the pa-

rameter T depending on slowly-varying fields. Such contribution can be thought

as a ‘friction term’ for the GW, and is common in scalar-tensor theories with non-

minimal couplings between scalar and metric degrees of freedom. In the context

of gravitational wave cosmology, several groups explored the consequences of such

term in specific cosmological models [114, 123, 124, 161, 183, 184, 186, 191, 211, 222,

223, 303–308], as we did in Chapters 2 and 3.

4.3.3. Amplitude evolution equation

We consider the eikonal anstaz in Eq. (4.34) where the gradient of the phase defines

the GW 4-momentum as

kµ = ∇̄µψ(T T ) , (4.42)

and plug it into the equation of motion (4.41). As usual in the context of geometric

optics, we organize the equation obtained in this way in power of ω[
. . .

]
ω2 +

[
. . .

]
ω+·· · = 0, (4.43)

and, since ω≫ 1, we require that the coefficient of each order vanishes, in order to

satisfy the equation. At order ω2 we obtain,

kµkµ = 0, kρ∇̄ρkµ = 0, (4.44)

2It could be possible that the equations of motion become second order only after having used specific
constraint relations. This should be the case of DHOST theories, for instance.
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which states that the GW 4-momentum is a null vector, propagating along null

geodesics. Calling λ the affine parameter of the geodesics, we have that for any func-

tion f , the derivative along the geodesics is d f /dλ= kρ∇̄ρ f . At order ω, we find the

evolution equation for the amplitude[
2kρ∇̄ρA(T ) + (∇̄ρkρ)A(T )] = T kρvρA(T ) , (4.45)

where we defined A(T ) as A(T ) =
√
A(T )
µν (A(T ))µν. Recalling that vµ = ∇̄µϕ̄, the pre-

vious equation can be ‘integrated’ to

∇̄ρ
(
e−

∫
T kρ

[
A(T )]2

)
= 0, (4.46)

where the schematic expression
∫
T denotes the following integral∫
T ≡

∫ λ

λs

T dϕ̄

dλ′ dλ′ . (4.47)

In the equation above, λs corresponds to the value of the affine parameter at the

source position. The quantity in Eq. (4.47) represents a cumulative integration of the

friction term in Eq. (4.41) over the GW geodesic’s affine parameter. In integrating

Eq. (4.45) we have chosen boundary conditions such that there are no scalar field

effects at the source position λ = λs , as assumed throughout the work. Importantly,

we do not need to demand that T is ‘small’ for writing Eq. (4.46).

4.4. Conservation laws
Eq. (4.45) shows that the DE field can introduce an additional damping term. How-

ever, the fact that this can be integrated, lead us to Eq. (4.46), giving us reasons to

believe that we can actually still formulate a conservation law.

4.4.1. The energy momentum of GW

The presence of GWs can back-react on the background curvature. These effects

were quantified, in the geometric optics limit and in General Relativity, by Isaac-

son [152], introducing the GW stress-energy tensor, which is at second order in the

amplitude expansion regulated by α. Focusing only on the tensor modes h(T T )
µν , we

derive their associated stress-energy tensor in the generalized gravitational set-up

outlined in the previous Sections. Again, we do so by changing perspective: we build

the stress tensor bottom-up by using symmetry arguments, namely finding the only

possible second-order tensor which is gauge invariant under the residual transfor-

mation in Eq. (4.28). Indeed, also Isaacson in [152] showed that the GW stress tensor

in General Relativity is gauge invariant, at the geometric optics order, and here we

use this symmetry property as a guiding principle to build T (2),ST
µν .
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We start by that the stress-energy tensor must be quadratic in h(T T )
µν , and contain

two derivatives acting on the transverse-traceless GW excitations (by ‘integration by

parts’, we can place one derivative per field). Given this information, the most gen-

eral structure that T (2)
µν can have is

T (2),ST
µν = 1

32πω2 〈∇̄µh(T T )
αβ

∇̄νh(T T )
γδ

〉Cαβγδ , (4.48)

where Cαβγδ depends on slowly-varying fields and the symbol 〈. . .〉 denotes the so-

called Brill-Hartle spatial average [152, 160]. Being h(T T )
γδ

traceless, we have that

Cαβγδ ̸∝ ḡγδ, otherwise the stress-energy tensor would vanish. Also, because T (2),ST
µν

is conserved at order ω2 and h(T T )
γδ

is transverse and traceless, the only way to ar-

range the free indices µ,ν is the one in Eq. (4.48). After fixing the gauge as discussed

in Section 4.2.2, we are left with invariance under the transformation in Eq. (4.28).

We select Cαβγδ in Eq. (4.48) such that the stress-energy tensor is invariant under the

same gauge transformations. Using Eq. (4.28), we see that the latter transforms as

T (2),ST
µν → T (2),ST

µν +δT (2),ST
µν where

δT (2),ST
µν = − 1

16πω2 〈∇̄µ∇̄αξ(T )
β

∇̄νh(T T )
γδ

〉Cαβγδ , (4.49)

= 1

16πω2 〈∇̄µξ(T )
β

∇̄ν∇̄αh(T T )
γδ

〉Cαβγδ , (4.50)

which must vanish for any ξ(T )
β

, and for any choice of µ, ν. This can be achieved by

choosing Cαβγδ = C δαγCβδ, for some function C and tensor Cβδ and upon using the

transversality of the GW. Plugging this result in Eq. (4.48) we obtain

T (2),ST
µν = C

32πω2 〈∇̄µh(T T ),α
β

∇̄νh(T T )
αδ

〉Cβδ . (4.51)

Since the EMT is symmetric in the indexes, the quantity Cβδ is symmetric. Applying

again the transformation (4.28), and integrating by parts, we find that the invariance

of the stress-energy tensor also imposes Cβδ∝ δβδ. Therefore, symmetry arguments

fixed the form of the GW stress-energy tensor, up to a multiplicative function, to

T (2),ST
µν = C

32πω2 〈∇̄µh(T T )
αβ

∇̄νh(T T )αβ〉 . (4.52)

This result would be identical to the General Relativistic one in [152], is the function

C of the slowly varying fields was = 1. In our case, we fix it by using the conservation

equation3.

∇µT (2),ST
µν = 0, (4.53)

3The GW stress-energy tensor enters the background gravitational field equations, of the form G(0)
µν =

T (2),ST
µν [h(T T )] + T (2),ST

µν [h(tr )]. Bianchi’s identities guarantee the conservation of the right-hand-side
of the latter equations. The assumption of having independent scalar and tensor sector guarantees that
the two stress-energy tensors are conserved separately.
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which, together with Eqs. (4.46) and (4.44) for the amplitude of the tensor modes,

fixes C to the value e−
∫
T . Hence, we find that the second order GW energy-

momentum tensor, in the geometric optics limit and at leading order, reads

T (2),ST
µν = e−

∫
T

32π

[
A(T )]2

kµkν . (4.54)

4.4.2. Conservation of the graviton number density current

The results of geometric optics of Section 4.3.3, allow us to interpret the GW stress-

energy tensor in Eq. (4.54) and its conservation in terms of a graviton number density

4-current. We identify the quantity

Nµ ≡ kµ
[
A(T )]2

e−
∫
T → ∇̄µN µ = 0, (4.55)

as the graviton number density 4-current, which is conserved by virtue of Eq. (4.46),

and all the assumptions it is based on. We can express the GW stress-energy tensor

in terms of the graviton number density as,

T (2),ST
µν = 1

16π
k(νNµ) , (4.56)

where the parenthesis stands for the symmetrization in the µ,ν indices. Being able

to express the GW stress-energy tensor as in Eq. (4.56), supports its definition found

through only symmetry arguments: it’s tensor whose components are related to the

flux of the µ− th component of the energy-momentum density through a surface

with xν constant coordinate (the vector kν is the wave-vector of the GW). This inter-

pretation relies on the possibility of defining the rays, identified by the wave-vector

kµ, which make clear the concept of a trajectory for a gravitational wave.

We can give a further interpretation of these results in terms of the geometry of the

cross-sectional area of the GW’s ray bundle, S(λ) in Figure 4.1, to further support the

identification of N µ as the graviton number density 4-current. If λ is the affine pa-

rameter associated to the GW rays with 4-momentum kµ, a geometric optics theorem

(see [160], exercise 22.13) states that,

d S(λ)

dλ
−∇̄µkµ S(λ) = 0, (4.57)

which combined with Eq. (4.55) implies

d

dλ

{
e−

∫
T [

A(T )]2
S(λ)

}
= 0, (4.58)

clearly showing that the combination e−
∫
T [

A(T )
]2

is inversely proportional to the

bundle’s cross-sectional area, rather than only
[
A(T )

]2
as in General Relativity.
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Figure 4.1: Geometric optics representation of graviton number conservation. The flux of a stream of gravi-
tons crossing the S-areas is conserved along the GW affine parameter. See Eq. (4.58).

4.5. Gravitational wave distances and duality relation
In this Section we give the definitions of the gravitational waves distances by general-

izing to the case of GWs in scalar-tensor theories the works [157, 213–217, 309] about

fluctuations of the luminosity and angular diameter distances, both of photons and

GWs. All of these works descend from the one done by Sasaki in [212] regarding pho-

tons, which we follow very closely in this Section. After giving these definitions, we

prove the validity of Etherington’s reciprocity law, also known as distance duality re-

lation, between GW luminosity and angular distances, also in the scalar-tensor the-

ories considered in this Chapter4. This law states that, in General Relativity, between

the electromagnetic luminosity and angular diameter distance the following relation

holds

dL = (1+ z)2 dA , (4.59)

if: the spacetime is described by a pseudo-Riemannian manifold, photons prop-

agate along null geodesics of the spacetime and their number density is con-

served [149, 310, 311]. Such relation has been tested from several electromagnetic

observations [312–316] and its role in the context of multi-messenger observation

was explored as well in [185]. Etherington’s reciprocity law, because it relies on very

minimal assumptions, it provides a perfect playground to test the theory of gravity

or the cosmological model [317], so one might wonder if we should expect a similar

relation also for the GWs distances

d (GW)
L = (1+ z)2 d (GW)

A , (4.60)

in light of the results obtained in Sections 4.3.3 and 4.4.1.

4We study the propagation of GW over a perturbed cosmological background and prove its validity up to
first order in the perturbations
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4.5.1. Raychaudhuri equation

Before giving the definitions of the GW distances, we perform some preliminary steps

into further characterizing the GW’s rays, which will become useful later. Our start-

ing equations are the GW stress-energy tensor of Eq. (4.54), the amplitude evolution

equation in Eq. (4.46) and the geodesic equation (4.44).

We perform a conformal transformation, defining the metric ĝµν ≡ ḡµν/a2 and

ĝµν ≡ ḡµν/a−2 5, mapping a null GW geodesics in ḡµν into null geodesics in ĝµν with

rescaled affine parameter [32]

d λ̂ = a−2 dλ . (4.61)

The amplitude evolution equation in the comoving frame then results

d

d λ̂

(
e−

1
2

∫
T A(T ) a

)
+ 1

2

(
e−

1
2

∫
T A(T ) a

)
θ̂ = 0 with ∇̂µk̂µ = θ̂ , (4.62)

where ∇̂µ is the covariant derivative associated to the conformal metric and k̂µ ≡ kµ,

while k̂µ ≡ ĝµν k̂ν. The expansion parameter θ, satisfies the Raychaudhuri equation,

which can be determined from Eq. (4.44), is

d θ̂

d λ̂
= −R̂µνk̂µk̂ν− θ̂2

2
−2σ̂2 , (4.63)

where σ̂2 ≡ k̂(α;β) k̂(α;β)/2 − θ̂2/4 is the shear of the GW ray’s bundle, and R̂µν the

conformal spacetime Ricci tensor [212]. The graviton number conservation (4.58)

remains unchanged and reads

d

d λ̂

{
e−

∫
T A(T )2

S(λ̂)
}
= 0. (4.64)

4.5.2. Gravitational wave luminosity distance

In the physical frame, we introduce an observer the 4-velocity uµ, which measures

the GW’s energy flux given by

Fα = −[
T (2),ST]µ

νP
α
µuν , (4.65)

= F nα , (4.66)

with the GW flux amplitude and frequency measured by the observer are

F = e−
∫
T

32π

[
A(T )]2

ν2 , ν = −kµuµ , (4.67)

and also

Pα
µ = δαµ+uαuµ , nα = 1

ν

(
kα−νuα

)
. (4.68)

5From now onward, quantities in conformal frame are denoted with a hat
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The notion of GW frequency allows us to define the redshift z at the value λ̂ of the

comoving GW geodesics affine parameter as

1+ z(λ̂) = ν(λ̂)

ν(0)
. (4.69)

We assume that GW are emitted by an approximately spherically symmetric system,

with characteristic radius Rs , see left panel of Figure 4.2, which we will → 0 at the end

of the computation. The flux amplitude F measured at the source position is related

with the intrinsic source luminosity by the relation

F (λ̂s ) = LGW

4πR2
s

, (4.70)

with λ̂s the conformal affine parameter at the source. We define GW luminosity dis-

tance d (GW)
L as the ratio of GW power emitted at source position (intrinsic GW lumi-

nosity), versus the GW flux at detector location [212]

d (GW)
L ≡

[
LGW

4πF (0)

] 1
2 =

√
F (λ̂s )

F (0)
Rs . (4.71)

Substituting relation (4.67), we find the following expression

d (GW)
L = exp

[
−1

2

∫ λ̂s

0
T

]
× A(T )(λ̂s )

A(T )(0)
× [

1+ z(λ̂s )
] × Rs . (4.72)

Note the role of the scalar field-induced friction term in the overall exponential fac-

tor, that encodes the interesting phenomenology of these theories, providing inter-

esting observation prospects in case of multi-messenger events. By taking the defini-

tion of EM luminosity distance in [212], we find the ration between the two distances

d (GW)
L

d (EM)
L

= exp

[
−1

2

∫ λ̂s

0
T dφ̄

dλ′ dλ′
]

, (4.73)

singling out the modified gravity contribution as an integral from λ= 0 (the position

of the observer) to the source at λ̂ = λ̂S . This factor reduces to the effective Planck’s

mass of Eq. (1.105) for specific choices of T , as we show explicitly in Appendix A.

4.5.3. Gravitational wave angular distance

The GW angular distance d (GW)
A is defined in terms of the ratio between the angular

diameter ds of the source located at conformal affine parameter λ̂s , and the source

apparent angular size ∆φ as measured by an observer at λ̂= 0,

d (GW)
A ≡ ds

∆Ω
. (4.74)
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Figure 4.2: Representative plot of the GW/photon rays from source to detector position. The path of the ray
bundle in blue is parameterized by the affine parameter λ̂. Left panel: quantities entering the luminosity
distance are associated with a bundle diverging from source to detector. Right panel: quantities entering the
angular distance are associated with a bundle converging from source to detector. See text for definitions.

Following [212], it is convenient to reexpress d (GW)
A as

d (GW)
A =

(
S(λ̂s )

S(∆λ̂o)

)1/2
d(∆λ̂o)

∆Ω
, (4.75)

with S(λ̂) and d(λ̂) the cross-section area and the diameter of the GW’s ray bundle at

λ̂, and ∆λ̂o is the affine parameter in proximity of the observer (see Figure 4.2, right

panel). In [212], it is shown that

d(∆λ̂o)

∆Ω
= a2[τ(0)]∆λ̂o

(1+ z(λ̂s )) a[τ(λ̂s )]
, (4.76)

connecting the ratio d(∆λ̂)/∆Ω with ∆λ̂o . Thanks to Eq. (4.64), relating the ampli-

tude of the GW with the area of the cross-section of the ray bundle, we can rewrite

Eq. (4.75) as

d (GW)
A = exp

[
1

2

∫ λ̂s

∆λ̂o

T
]
×

(
A(T )(∆λ̂o)

A(T )(λ̂s )

)
× d(∆λ̂o)

∆Ω
. (4.77)

4.5.4. Etherington’s reciprocity law

We now prove the validity of Etherington’s reciprocity law, connecting luminosity and

angular GW distances. In the case of photons, the Etherington reciprocity law takes

the form in Eq. (4.59) and it descends from very generic hypothesis: the spacetime

is described by a Riemannian manifold, photons propagate along null geodesics of

the spacetime and their number density is conserved [149, 310]. Among them, and

in the case of GWs in geometric optics, our scalar-tensor scenario only affects the

conservation of the graviton number density, via the e−
∫
T in Eq. (4.64), standing
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for the friction induced by the DE scalar field. Nonetheless, we derived a modified

conservation law, namely Eq. (4.55), hence there are good reasons to believe that the

reciprocity law still holds for the GW distances, as defined in Sections 4.5.2 and 4.5.3.

Our findings and definitions so far are valid in any background spacetime, provided

that the background scalar field assumes a non-trivial profile and vµ ̸= 0. Here we

choose a perturbed cosmological background

ḡµν = a2(τ)
[
ηµν+ϵδĝµν

]
, (4.78)

ϕ̄ = ϕ0(τ)+ϵδϕ(x) , (4.79)

and derive the Etherington’s relation up to first order in cosmological perturbations

as in [212]. In the expressions above, ηµν is the Minkowski metric, and we have intro-

duced again ϵ as the parameter keeping track of the order of magnitude of the long

wavelength metric and scalar field perturbations, describing the large-scale struc-

tures, opposed to α for the high-frequency fluctuations. Therefore, even if we chose

the unitary gauge for the high-frequency scalar field αδφ(x), the long wavelength

DE field perturbation, ϵδϕ(x), is still present. Recalling that we defined the comov-

ing wave-vector as k̂µ ≡ ĝµνkν, we introduce a null vector

K̂ µ ≡ − k̂µ

ν(λ̂s )a[τ(λ̂s )]
, (4.80)

and, from now onward, λ̂ will be the affine parameter associated to it. This vector

is normalized such that
(
ĝµνK̂ µûν

)
λ̂s

= 1, where ûµ is the observer 4-velocity in the

conformal frame. The introduction of the vector K̂ µ is convenient to easily relate the

physical size of the source with the affine parameter along the GW geodesics. In fact,

as shown in [212], the characteristic size Rs of the source can be expressed as

Rs = a(τ(λs ))∆λ̂s , (4.81)

with ∆λ̂s the infinitesimal affine parameter associated with the source size (see Fig-

ure 4.2, left panel).

We prove the distance duality relation by taking the following steps:

i. We use Raychaudhuri equation (4.63), to relate the expansion parameter, θ̂,

to the comoving affine parameter, λ̂. The integration in λ̂ requires the choice

of boundary conditions; these will be different between luminosity and angu-

lar diameter distance because of the different geometry of the ray’s bundle, as

shown in Figure 4.2.

ii. We use Eq. (4.62) to relate the GW’s amplitude to θ̂ and, using the result of the

previous step, to the comoving affine parameter. We plug these relations in
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Eqs. (4.72) and (4.77), written in terms of the GW’s amplitude, to have d (GW)
L

and d (GW)
A in terms of the comoving affine parameter (and the perturbation of

the expansion rate).

iii. We combined the expressions obtained and arrive to Eq. (4.60).

Step i.

We solve Raychaudhuri equation (4.63) perturbatively in ϵ, the expansion parame-

ter which tracks the large-scale structures in Eq. (4.78). We expand the expansion

parameter as

θ̂(λ̂) = θ̂0(λ̂)+ϵδθ̂(λ̂) , (4.82)

so that θ̂0(λ̂) would represent its value on a Minkowski spacetime (remember we

have performed a conformal transformation). The affine parameter λ̂ still has con-

tributions at linear order in ϵ [156, 157]. By expanding Eq. (4.63) in ϵ, and solving it at

each order (see also [212, 318] for details), it can be checked that θ̂0 and δθ̂ are given

by,

θ̂0(λ̂)− θ̂0(λ̂b) = 2

λ̂− λ̂b

, (4.83)

δθ̂(λ̂)−δθ̂(λ̂b) = −[
θ̂0(λ̂)

]2
∫ λ̂

λ̂b

dλ′ 1[
θ̂0(λ′)

]2 × δ(R̂µνK̂ µK̂ ν)(λ′) , (4.84)

where θ̂0(λ̂b), δθ̂(λ̂b) are boundary conditions to be fixed at λ̂b . We choose different

boundary conditions in the case of the luminosity or the angular diameter distance.

Looking at the left panel of Figure 4.2, it is clear that, in the first case, the expansion

parameter θ̂ is zero at the source position λ̂s +∆λ̂s , while from the right panel of

Figure 4.2, we see that θ̂ = 0 at λ̂=∆λ̂o , namely the observer position, in the case of

angular distances. The main difference between the two situations is the direction

the GW ray’s bundle is diverging: toward or away from the observer. Therefore, for

the luminosity distance boundary conditions we have

θ̂L
0 (λ̂) = 2

λ̂− λ̂s −∆λ̂s
, (4.85)

δθ̂L(λ̂) = 1[
λ̂− λ̂s −∆λ̂s

]2

∫ λ̂s

λ̂
dλ′ [λ′− λ̂s −∆λ̂s

]2 × δ(R̂µνK̂ µK̂ ν) , (4.86)

while for the angular diameter distance boundary conditions

θ̂A
0 (λ̂) = 2

λ̂−∆λ̂o
, (4.87)

δθ̂A(λ̂) = − 1[
λ̂−∆λ̂o

]2

∫ λ̂

∆λ̂o

dλ′ [λ′−∆λ̂o
]2 × δ(R̂µνK̂ µK̂ ν) . (4.88)
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Step ii.

As in [212], we can use the results above to integrate Eq. (4.62) and obtain the relation

exp

[
−1

2

∫ λ̂s

0
T

]
× A(T )(λs ) a(τ(λs ))

A(T )(0) a(τ(0))
= λs +∆λ̂s

∆λ̂s
exp

[
−1

2

∫ λ̂s

0
dλ δθL(λ)

]
. (4.89)

in the case of the luminosity distance boundary conditions, while

exp

[
−1

2

∫ λ̂s

0
T

]
× A(T )(λs ) a(τ(λs ))

A(T )(0) a(τ(0))
= ∆λo

λ̂s
exp

[
−1

2

∫ λ̂s

∆λo

dλ δθA(λ)

]
(4.90)

in the case of the angular diameter distance ones. We plug these two results into

Eqs. (4.72) for d GW
L and (4.77) for d GW

A , and obtain

d (GW)
L (λ̂s ) = a[τ(0)]

[
1+ z(λ̂s )

]
λ̂s × exp

[
−1

2

∫ λ̂s

0
dλ δθL(λ)

]
, (4.91)

d (GW)
A (λ̂s ) = a[τ(0)]

1+ z(λ̂s )
λ̂s × exp

[
1

2

∫ λ̂s

0
dλ δθA(λ)

]
, (4.92)

where we have used also the relation in Eq. (4.76) and sent ∆λ̂s ,∆λ̂o → 0.

Notice that all the effects of scalar field-induced friction, are implicitly included in

the expressions (4.89) and (4.90), which relate the affine parameter at the source po-

sition, λ̂s , with the remaining quantities. The compact expressions in Eqs. (4.91)

and (4.92) (accompanied by relations (4.89) and (4.90)) include the effects of cos-

mological fluctuations implicitly. These can be made explicit by following the same

procedure of [212]. Another possible approach is to use the Cosmic Rulers formalism,

first developed in the context of photon propagation [156], then for GWs in General

Relativity [157] and eventually in a scalar-tensor theory set up in [158]. This approach

explicitly identifies contributions from peculiar velocities, weak lensing, Sachs-Wolfe

effects, volume effects, and Shapiro time delay, and allows appreciating the contri-

butions due to presence of the DE field, as in Eq. (1.112) of the Introduction. For the

purpose of proving the validity of Etherington reciprocity law, Eqs. (4.91) and (4.92)

are sufficient.

Step iii.

Combine Eqs. (4.91) and (4.92), we get

d̃ (GW)
A = d̃ (GW)

L

(1+ z̃)2 exp

[
1

2

∫ λ̂s

0
(δθA(λ)+δθL(λ))dλ

]
, (4.93)

= d̃ (GW)
L

(1+ z̃)2 . (4.94)
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The explicit computational steps between Eqs. (4.93) and (4.94) can be found

in [212]: since Eqs. (4.86) and (4.88) do not contain explicit DE-modifications, they

are the same of the analogous computation for photons in General Relativity. The

second line, Eq. (4.94), is the desired Etherington’s relation, valid including first or-

der perturbations.

Hence, we have proved that in the scalar-tensor framework discussed in this work,

with the modified conservation of graviton number density in Eq. (4.55), luminosity

and angular distances for GW are connected by the classic Etherington’s law (4.94).

A straightforward consequence of this result is that also the GW angular diameter

distance satisfies an analogous relation to Eq. (4.73), namely

d (GW)
A

d (EM)
A

= exp

[
−1

2

∫ λ̂s

0
T dφ̄

dλ
dλ

]
. (4.95)

Given the relevance of Eq. (4.73) in the context of multi-messenger events to test DE,

Eq. (4.95) states that the same important role can be played by the angular diameter

distances.

4.5.5. Implications for GW lensing

We discuss the implications of our findings for GW strong lensing: when a massive

object is located between a source, emitting photon or GWs, and the observer, its

gravitational field bends the messenger’s path, resulting in a remapping of the source

into multiple images. By comparing the arrival time between the images, it is pos-

sible to derive another distance measure, the so-called time delay distance, defined

as

D∆t = (1+ zl )
d A

OLd A
SO

d A
SL

, (4.96)

where zl is the lens redshift and d A
OL , d A

SO d A
SL are the angular diameter distances

between observer-lens, source-observer and source-lens [149]. The time delay dis-

tance can be used to trace the distance-redshift relation and infer cosmological pa-

rameters [319, 320], similarly to what is done with the luminosity and angular di-

ameter distances, or test the GW propagation properties [190]. Determining the

value of the Hubble parameter today, H0, through the observations of multi-lens

system is a very promising avenue, and a great effort is being dedicated into mak-

ing this tool more efficient and competitive [321]. Strong lensing of GWs hasn’t been

observed yet, however future interferometers such as LISA will likely detect lensed

events [322], since it is able to probe high redshifts, so the literature of this topic is

quite broad [164, 171, 178, 179, 226, 301, 322, 322–349]. One very promising appli-

cation of these types of events is exactly that they can be used to test the distance

duality relation: strong lensing events of standard distance indicators (SN [350] or
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GWs [351]) can give us access both to luminosity distance and angular diameter dis-

tance.

We consider strong GW lensing from point-like lens in the geometric optics limit,

valid when the GW wavelength is well shorter than the Schwarzschild radius of the

lens. In this limit, we do not need to discuss interference effects, that will be the topic

of Chapter 6. The goal of this section is to understand whether, in the scalar-tensor

theory of gravity considered in this Chapter, the time delay between "light images"

can differ from the time delay between "GW images", in a multi-messenger detec-

tion. Indeed, multi-messenger time delay can prove to be a powerful test for cos-

mology [333, 347]. The works [346, 348] show conclusively that GW and EM lensed

signals arrive at the same time at the detector, provided that both waves propagate at

the same speed and are emitted at the same time. In the geometric optics limit, this

is expected when photons and GW travel through null geodesics, since by definition

both sectors cover the minimal possible distance from source to detector. Causal-

ity arguments based on Fermat principle allow one to prove this statement in full

generality and [348] also argues that the same result should be valid in any theory of

gravity.

As for photons, the GW time delay ∆t (GW) can be expressed as [149]

∆t (GW) = (1+ zl )
d (GW)

OL d (GW)
SO

2d (GW)
SL

|θ−θS |2 + t (GW)
Φ

, (4.97)

where z is the lens’s redshift, d (GW)
OL the GW angular distance as measured from the

observer to the lens, d (GW)
SO the one from source to the observer, and d (GW)

SL from

source to lens. In Eq. (4.97), θ is the observed angular position of the source, θS

the would-be angular position of the source in absence of the lens. The first con-

tribution in Eq. (4.97) is the geometrical time delay, and its derivation can be found

in Appendix C, while the second contribution, tΦ, is the Shapiro time delay, due to

the due to the gravitational field of the lens. This contribution is similar to the one

found in Eq. (1.112), and it is the same for GW and EM observations in a scalar-tensor

framework, as it can be checked by also considering the same term in Eq. (1.114). In

other words t (GW)
Φ

= t (EM)
Φ

. The geometrical contribution to Eq. (4.97), though, de-

pends on the GW angular diameter distance, which can be modified compared to

the EM ones, as Eq. (4.95) states. The corresponding EM-time delay, ∆t (EM), can be

found by substituting d (EM)
A in the same time delay expression [149]. Hence, even

if apparently ∆t (GW) ̸= ∆t (EM), because of the different angular diameter distances,

we will prove that the two time delay coincides, in line with the causality arguments
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previously mentioned. Using Eq. (4.95), we can write

∆t (GW)
geo = (1+ z)

d (GW)
OL d (GW)

SO

2d (GW)
SL

|θ−θS |2 ,

=
(

d (GW)
OL

d (EM)
OL

)(
d (GW)

SO

d (EM)
SO

)(
d (EM)

SL

d (GW)
SL

)
∆t (EM)

geo ,

=
(
exp

[
−1

2

∫ λL

λO

T dφ̄

dλ
dλ− 1

2

∫ λO

λS

T dφ̄

dλ
dλ+ 1

2

∫ λL

λS

T dφ̄

dλ
dλ

])
∆t (EM)

geo ,

= ∆t (EM)
geo . (4.98)

We can see that integrals in the exponential carefully compensate, so that the geo-

metric part of the time delays are equal, ∆t (GW)
geo = ∆t (EM)

geo . Together with the fact that

the Shapiro contribution is the same for photons and GWs, the result extends to the

full time delay, as in Eq. (4.97).

4.6. Discussion and Conclusions
In this Chapter, we studied the propagation of high-frequency gravitational waves in

scalar-tensor theories of gravity, with the aim of examining properties of cosmolog-

ical distances as inferred from GW measurements. We first developed a bottom-up,

covariant approach to describe the dynamics of the high-frequency perturbations,

based on the principle of coordinate invariance. Symmetry considerations allowed

us to extract transverse-traceless components of the high-frequency scalar-tensor

fluctuations, identified with GW. In scenarios where scalar and tensor components

propagate at different speeds, we argued that the two sectors decouple at the lin-

earized level around an arbitrary background, and the evolution of high-frequency

GW and scalar modes can be studied independently. We then determined the most

general structure of the GW linearized equations, namely Eq. (4.41) and of the GW

energy momentum tensor in Eq. (4.48), where the presence of a dynamical DE scalar

field is encoded in the slowly varying factor
∫
T . Following the guide of [212], we de-

fined the gravitational waves distances, d GW
L and d GW

A , which descend from the GW’s

stress-energy tensor, obtainable exclusively because of the geometric optics assump-

tion which allows for a simultaneous definition of wave-vector, kµ, and trajectory via

kµ = d xµ/dλ. Both GW luminosity and angular distances can be modified with re-

spect to General Relativity, as shown in Eqs. (4.73) and (4.95), in a way that Ether-

ington’s reciprocity law (4.60) still holds, in a perturbed universe and within a scalar-

tensor framework. We discussed implications of this result for gravitational lensing,

focussing on time-delays of lensed GW. Compatibly with causality arguments, we

showed that the time delay between EM images, ∆t (EM), corresponds to the same in

terms of GW images, ∆t (GW), because we assumed that these were traveling on null

geodesics.
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Appendices

A. Comparison with the literature
To make contact with literature, here we show that Eq. (4.73), when specialized

for a FLRW Universe, coincides with the standard expression. We choose d s2 =
a2(τ)ηµνd xµd xν and ϕ̄=ϕ0(τ), so that vµ = (ϕ̄′

0, 0, 0, 0). For definiteness, we com-

pare our results with the notation of [249], in which the evolution of the amplitude of

high-frequency tensor modes is given by

h′′+2H (1−δ(τ)) h′−∇2h = 0, (4.99)

where ∇2 = ∂i∂i and the ratio of the luminosity distances is written as

d (GW)
L

d (EM)
L

= exp

[
−

∫ z

0

δ(z ′)
1+ z ′ d z ′

]
. (4.100)

Evaluating Eq. (4.41) on the homogeneous and isotropic gives

h′′+2H
(
1− T ϕ′

0

2H

)
h′−∇2h = 0. (4.101)

Comparing this equation with Eq. (4.99), we identify

δ(τ) = T ϕ′
0

2H , (4.102)

so that

d (GW)
L

d (EM)
L

= exp

[
−

∫ zs

0

δ(z)

1+ z
d z

]
= exp

[
−

∫ ts

t0

δ(t ) H d t

]
= exp

[
−

∫ τs

τ0

δ(τ)Hdτ

]

= exp

[
−

∫ τs

τ0

T φ̄′

2H Hdτ

]
= exp

[
− 1

2

∫ τs

τ0

T φ̄′ dτ

]
= exp

[
− 1

2

∫ λs

0
T dφ̄

dλ
dλ

]
, (4.103)

which is Eq. (4.73). In the derivation above, we also used dτ/d t = 1/a, H = H/a, 1+
z = a(0)/a(t ). Using the relation between δ(τ) and the running Planck’s mass [122]

δ(τ) = ∂ ln MP [ϕ0(τ)]

∂ ln a
(4.104)

it is also straightforward to check that

d (GW)
L

d (EM)
L

= exp

[
− 1

2

∫ λs

0
T dφ̄

dλ
dλ

]
= exp

[
−

∫ zs

0

δ(z)

1+ z
d z

]
= MP (z)

MP (0)
, (4.105)

recovering Eq. (1.105).
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B. A simple example: F (ϕ)R

Let us make a specific, simple example of the friction-term contributions found in

our general formula of Eq. (4.41), which arises in models characterized by a time-

varying Planck mass controlled by the dark energy scalar field ϕ. We consider the

following non-minimal kinetic coupling between scalar ϕ and metric

L = F (ϕ)R , (4.106)

which can be considered a part of the classic Brans-Dicke action [56]. We linearize

the gravitational field equations following this action and decompose them in terms

of the high-energy fluctuations, focusing on orders ω2 and ω1 in the gradient expan-

sion, as described in Section 4.3.1. We find that GW modes, as defined in Eq. (4.27),

obey the equation

□h(T T )
µν = 2F,ϕ

F
vλ ∇̄λh(T T )

µν , (4.107)

where F,ϕ = ∂F /∂ϕ. An evolution equation governing scalar modes can be deter-

mined by taking the trace of the Einstein equations

□̄h(tr) −Λαβ ∇̄α∇̄β
(
h(S) + 1

3
h(tr)

)
= − 3

p
2X F,ϕ

F
X λ∇̄λ

(
h(S) +h(tr)) , (4.108)

where the vector Xµ is defined in Eq. (4.12), and the projectorΛµν in Eq. (4.16). These

equations have the structure described in Section 4.3.1. Comparing the GW evolu-

tion equation (4.107), with the general expression in Eq. (4.41), we notice that the

former has a friction term T = 2F,φ/F . Upon renaming F [ϕ] = M 2
P [ϕ]/2, one can

realize that this is the usual friction term. Using the results of section 4.4.1, we find

that the stress-energy tensor at second order in the transverse-traceless fluctuations

reads

T (2),ST
µν = ϵ2 e−

∫
T

32π
〈∇µh(T T )

ρσ ∇νh(T T ) ρσ〉

= ϵ2 1

32π
exp

[∫ ϕ

ϕin

d lnF

dϕ̃
dϕ̃

]
〈∇µh(T T )

ρσ ∇νh(T T ) ρσ〉

= ϵ2 F (ϕ)

32π
〈∇µh(T T )

ρσ ∇νh(T T ) ρσ〉 , (4.109)

where we chose the extreme of integration ϕin such that F (ϕin) = 1. This tensor has

the expected structure associated with the Lagrangian density of Eq. (4.106). We

can apply these findings to cosmology, and consider the case of GW propagating

through a FLRW Universe, with metric d s2 = a2(τ)ηµνd xµd xν, and for a homoge-

neous scalar field ϕ̄ = ϕ0(τ). Then Eq (4.107) turns into

h(T T )′′
µν +2H

(
1− F,ϕϕ

′
0

F H

)
h(T T )′
µν −∇2h(T T )

µν = 0, (4.110)
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where H is the conformal Hubble parameter. The effect of the friction term due to

the non-minimal scalar-tensor couplings has the expected structure and is manifest

within the parenthesis of the previous expression.

C. The geometric time-delay

Figure C.3: The configuration we consider.

We derive the expression for the geometric time delay, i.e. the first term in Eq. (4.97).

Since we are considering GWs propagating at the speed of light, these follow null

geodesics whose affine parameter is the comoving distance, which we denote ℓ. For

example, ℓAL is the length of the line that joins point A with point L in Figure C.3. An-

gular distances are defined as ratios between lengths and angles they subtend with

respect to who observes them (which we write as the first letter, remember the defi-

nition of d A using Figure 4.2, right panel). We will have

DOL = ℓAL/θs , DSL = ℓLB /γ , DSO = ℓOC /γ . (4.111)

We work in the limit of infinitesimal angles, so that

ℓOL sinθs = ℓAL ⇒ ℓOL ∼ DOL , (4.112)

ℓOB cosθ = ℓOL cosθs ⇒ ℓOB ∼ ℓOL ∼ DOL (4.113)

Considering GWs traveling at the speed of light, the geometrical time delay can be

computed as

∆t = ℓSB +ℓOB −ℓSO . (4.114)

Since the triangles LSB and OSC are similar, we can write the equality

ℓLS

ℓOS
= ℓLB

ℓOC
= DSL

DSO
, (4.115)
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so that

ℓOS = ℓOL +ℓLS = ℓOL +ℓOS
DSL

DSO
. (4.116)

implying

ℓOS = DOL

(
1− DSL

DSO

)−1

= DOLDSO

DSO −DSL
. (4.117)

Moreover, the law of cosines ensures that

ℓ2
SB = ℓ2

OB +ℓ2
OS −2ℓOBℓOS cos(θ−θs ) . (4.118)

Expanding the cosine for small angles, we can reassemble the previous formula as

ℓSB ≃ (ℓOS −ℓOB )

√
1+ ℓOBℓOS

(ℓOB −ℓOS )2 |θ−θs |2 , (4.119)

≃ (ℓOS −ℓOB )

(
1+ ℓOBℓOS

2(ℓOB −ℓOS )2 |θ−θs |2
)

. (4.120)

Then the time delay reads

∆t = ℓOBℓOS

2(ℓOS −ℓOB )
|θ−θs |2 = DOL

2

DOLDSO

DSO −DSL

1
DOL DSO

DSO−DSL
−DOL

|θ−θs |2 ,

= DOLDSO

2DSL
|θ−θs |2 , (4.121)

which is the formula used in Eq.(4.97) of the main text, with the GW angular diameter

distance.

Note: My contribution to the paper this Chapter is based on regards all the scientific

aspects, especially, but not only, the theoretical computations of the first part. I also

had an active role in writing.




