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Part I
Ray-optics limit:

beyond the homogeneous and
isotropic Universe
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Detecting the clustering of

Dark Energy

Luminosity distance estimates from electromagnetic and gravitational wave sources

are generally different in models of gravity where dark energy is a dynamical field be-

yond the standard cosmological scenario. This leaves a unique imprint on the angu-

lar power-spectrum of fluctuations of the luminosity distance of gravitational-wave

observations, which tracks inhomogeneities in the dark energy field. Exploiting the

synergy between supernovae and gravitational wave distance measurements, in this

Chapter we build a joint estimator that directly probes dark energy fluctuations, pro-

viding a conclusive evidence for their existence in case of detection. Moreover, such

measurement would also allow probing the running of the Planck mass. We discuss

experimental requirements to detect these signals.

Keywords: Gravitational waves, DE clustering, luminosity distance fluctuations,

number of sources
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2.1. Introduction
Any theory attempting at providing a cosmological model must include predictions

for the large-scale structures’ dynamics. As a result, the dispositions of galaxies and

the one of other tracers of the cosmic web, should contain footprints of any modifica-

tion of the standard pictures. Scientific missions trying to characterize the spacetime

always rely on the detection of a messenger: whether an electromagnetic (EMW) or

a gravitational wave (GW). Therefore, the first detection of GWs has guaranteed a

new observational window onto our Universe, promising to offer complementary

probes to shed light on the dynamics of the Universe on cosmological scales. As

described in Section 1.4.2, GW events at cosmological distances, in the geometric

optics regime, can be used as Standard Sirens [197, 225, 234] for measuring the ex-

pansion rate of the Universe. This recent approach is complementary to measuring

the luminosity distance of Standard Candles, like Type-Ia Supernovae (SNe): one of

the two principal probes for the recent exponential expansion of the Universe [6, 7].

On the homogeneous and isotropic background, the luminosity distances depend

only on redshift, leading to the standard distance-redshift relation tests as described

in Section 1.4.2. After their emission, photons and gravitons travel through the dark

matter gravitational potential wells, with the effect of spoiling the FLRW results re-

garding their luminosity distances to the sources. Inhomogeneities in the Universe

induce a dependence of the distances also on the direction of observation in ad-

dition to redshift, ∆dL(z, n̂), as described in Section 1.4.3. This additional depen-

dence must be kept into account to perform accurate tests: distance measurements

are reaching an unprecedented the level of precision, such that neglecting relativis-

tic effects can bias our cosmological parameter inference. However, fluctuations in

the luminosity distance do not only constitute a source of error: they give us direct

access to the LSS. The possibility of having multi-messenger observations opened

the powerful possibility of testing theoretical proposals which break the degeneracy

between the GW and the electromagnetic sector. This is exactly the case for scalar-

tensor theories of gravity described in Section 1.2, where photons, contrary to GWs,

are not coupled directly to the DE scalar field. In presence of a dynamical DE field,

the GW luminosity distance generally differs from the one traced by electromagnetic

signals, both at the unperturbed, background level [183–190] and in its large-scale

fluctuations [158, 235]. Importantly, fluctuations in the electromagnetic luminos-

ity distance, ∆d EM
L , are affected by the DE field only indirectly, as it can be seen in

Eq (1.114), while the GW one, ∆d GW
L , contains contributions directly proportional to

the running Planck’s mass, MP and the clustering of the DE field, δϕ, as it can be

seen in Eq. (1.112). In this Chapter, we combine two standard distance indicators,

SNe and GWs, and combine their luminosity distance fluctuations into a novel esti-

mator to directly detect the signal of DE clustering. This signal can not be mimicked

by other effects and would provide convincing evidence for the existence of the DE

field. If DE does not directly couple to known particles through non-gravitational
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interactions, the one proposed here is a promising method to pursue its direct de-

tection, on cosmological scales, far from sources that can hide its presence by means

of screening mechanisms (see e.g. [51, 236, 237]).

2.2. The GW luminosity distance power-spectrum
The luminosity distance, as inferred by an EM or GW signal propagating through a

Universe with structures, depends on the observed redshift, z, and on the direction

of arrival in the sky, θ̂. We decompose the observed luminosity distance of a source

as a sum of its background and fluctuation components, as in Eq. (1.111). We use

Eq. (1.112) to build the angular power-spectrum of GW luminosity distance fluctua-

tions averaged over a given redshift distribution of the sources

C GW
ℓ = 4π

∫
dlnk

(
∆d GW

L

d̄ GW
L

)W

k ℓ

(
∆d GW

L

d̄ GW
L

)W

k ℓ

, (2.1)

where we work in Fourier space for the perturbations, k being the momentum, and(
∆d GW

L

d̄ GW
L

)W

k ℓ

=
∫ ∞

0
d z jℓ(kχ)W (z)

(
∆d GW

L

d̄ GW
L

)
, (2.2)

and jℓ(x) is the spherical Bessel function and W (z) is the source window func-

tion, normalized to 1. The effect of each term in Eq. (1.112) on the angular power-

spectrum can be studied independently in terms of the different sources, highlight-

ing each relativistic or modified gravity effect,(
∆d GW

L

d̄ GW
L

)W

k ℓ

=
∫ τA

0
dτ jℓ(kχ)

{
SGW
κ +SGW

vol +SGW
Sh +SGW

SW +SGW
Dop +SGW

I SW +SGW
δϕ

}
, (2.3)

with τA is the conformal time corresponding to z =+∞ and

SGW
κ (τ) = (Φk +Ψk )

∫ τ

0
dτ̃

ℓ(ℓ+1)

2

(χ̃−χ)

χ̃χ
W (τ̃) (2.4)

SGW
vol (τ) = −W (τ)(Φk +Ψk ) , (2.5)

SGW
Sh (τ) = (Φk +Ψk )

∫ τ

0
dτ̃

W (τ̃)

χ̃
(2.6)

SGW
SW (τ) = W (τ)

( 1

χH − M ′
P

HMP

)
Ψk , (2.7)

SGW
Dop (τ) = −∂τ

[
W (τ)

(
1− 1

Hχ
+ M ′

P

HMP

)
v

]
(2.8)

SGW
I SW (τ) = (Φ′

k +Ψ′
k )

∫ τ

0
dτ̃W (τ̃)

(
1+ M ′

P

HMP
− 1

χH

)
, (2.9)

SGW
δϕ (τ) = W (τ)

MP,ϕ

MP
δϕ (2.10)
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where W (τ) = (1+ z)HW (z). In (2.4) we assumed v i (k,τ) = i k i v(τ), namely that

the peculiar velocity field is irrotational. The reason why we introduced this nota-

tion is that it is more suitable for direct implementation of the calculation of C GW
ℓ

in

EFTCAMB [90]: the Einstein-Boltzmann solver code, described in Section 1.2.2, allow-

ing us to study this quantity for a broad host of DE models. Note also that EFTCAMB
evolves the perturbed gravitational field equations in terms of the rescaled DE field

π(x) = δϕ(x)
ϕ′

0(τ)
, assuming thatϕ′

0(τ) ̸= 0, as it is in a cosmological setting. Therefore, the

last source among the ones above can be rewritten as

SGW
δϕ (τ) =W (τ)

MP,ϕ

MP
ϕ′

0(τ)π(x) =W (τ)
M ′

P

MP
π(x) . (2.11)

In order to explore in detail the impact of the DE field on C GW
ℓ

we focus for a
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Figure 2.1: Angular power-spectrum of gravitational-wave luminosity distance fluctuations. Solid lines
show the total power-spectrum, dashed lines the scalar field clustering component.
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Figure 2.2: Various contributions to the angular power-spectrum of gravitational-wave luminosity dis-
tance fluctuations according to Eqs. (2.4)-(2.10). Solid, dashed and dotted contributions stand for in-
creasing redshifts bins.

moment on two representative models. First, a designer f (R) model on a ΛCDM
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background [238], with the only model parameter set to B0 = 10−4 which is com-

patible with current constraints [239]. Second, an agnostic parametrization of MP ,

such that the ratio (M ′
P /MP ) is a linear function of the scale-factor, a(z), M ′

P /MP ≡
(M ′

P /MP )|o a, where (M ′
P /MP )|o is the value of the ratio today, which we set to 0.05.

This minimal parametrization, implemented on aΛCDM background, is representa-

tive of the Generalized Brans-Dicke (GBD) [240–242] family of theories. In both these

models, the Planck mass MP depends on the scalar field value alone, ϕ0(τ).

Figures 2.1 and 2.2 show the angular power-spectrum, C GW
ℓ

, for the two scenarios

described above. To highlight redshift dependencies, we choose a Gaussian distri-

bution for the GW sources centered in various redshifts zi , with width ∆z = 0.01, i.e.

W (z) = N exp[−(z − zi )2/(2∆z2)] where N is the normalization constant. The to-

tal signal significantly changes shape with increasing redshift. At low redshifts and

large scales, the signal is dominated by the Doppler effect, encoded in SGW
Dop (τ), due

to the bulk-flow of the environment in which the GW sources are embedded. The

Doppler contribution then decays for growing ℓ, and the angular power-spectrum at

small scales is dominated by lensing convergence, described in SGW
κ (τ); the Doppler

term also decays in redshift, while lensing grows and eventually dominates the high-

redshift part of the signal. This is a standard behavior: as lensing is an integrated

effect, it accumulates throughout the propagation. These behaviors can be observed

in Figure 2.2. For both models considered, the relative behavior between Doppler

and lensing convergence is qualitatively unaltered with respect to the General Rela-

tivistic results [157]. Figure 2.1 also shows the direct contribution of δϕ to the total

signal, i.e. SGW
δϕ

of Eq. (2.10). This is of the same order of magnitude in both sce-

narios, and results largely subdominant compared to the total signal. For the f (R)

model, the scalar field contribution has a noticeable scale-dependent feature that

evolves in time as the Compton wavelength of the model. At higher redshift, the

Compton scale of the scalar field is smaller and, correspondingly, the feature in the

power-spectrum moves to smaller scales. In the GBD case, on the other hand, any

feature in the shape of the power-spectrum is less pronounced, as it only leads to the

decay of DE fluctuations below the horizon.

2.3. The joint SNe/GW estimator
The direct contributions of DE fluctuations to C GW

ℓ
are very small compared to other

effects, making it impossible to detect their presence in the angular correlations us-

ing GW data only. Interestingly, since photons are not affected directly by DE or MG,

∆d EM
L is structurally unchanged w.r.t. the results of General Relativity, hence is ob-

tained by neglecting all the explicit DE terms present in Eq. (1.112). The EM lumi-

nosity distance fluctuations, then, formally follow Eq. (1.114), with the gravitational

potentials following the modified laws as described in Sections 1.2.2. We can single
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out the distinctive DE field contributions, by combining standard sirens and stan-

dard candles: assuming that we have measurements of both SN and GW at the same

redshifts and positions and subtract the two luminosity distances fluctuations as

∆ϕ(n̂, z) ≡ ∆d EM
L (n̂, z)

d̄ EM
L

− ∆d GW
L (n̂, z)

d̄ GW
L

, (2.12)

where the average luminosity distances are given in Eqs. (1.106) and (1.105). In what

follows, we will use the estimator above in a statistical fashion. For this, we will need

populations of GW and SN in overlapping regions of the sky and redshift bin, instead

of having both events exactly in the same position and at the same redshift. For the

theories considered here, Eq. (2.12) takes the form

∆ϕ(θ̂, z) = M ′
P

HMP

(
Φ− v∥+

∫ χ

0
d χ̃ (Φ′+Ψ′)

)
− MP,ϕ

MP
δϕ , (2.13)

where only the explicit DE-dependent effects are present. In addition to the DE clus-

tering contribution, only three effects contribute to ∆ϕ: a residual Doppler, SW and

ISW effects. Most importantly, lensing convergence, which is the dominant contri-

bution to luminosity distance anisotropies, cancels out. Similarly as before, for the

joint estimator ∆ϕ we find the set of sources

S
∆ϕ
SW (τ) = W (τ)

M ′
P

HMP
Ψ

S
∆ϕ
Dop (τ) = ∂τ

[
W (τ)

M ′
P

HMP
v

]
S
∆ϕ
I SW (τ) = −

(
Φ′

k +Ψ′
k

)∫ τ

0
dτ̃W (τ̃)

(
M ′

P

HMP

)
,

S
∆ϕ
δϕ

(τ) = −W (τ)
MP,ϕ

MP
δϕ (2.14)

For particular classes of events, Eq. (2.12) could be directly evaluated for pairs of

sources at the same position and redshift. In our analysis we require this to hold only

statistically, by integrating Eq. (2.12) over a joint redshift distribution and computing

its angular power-spectrum:

C
∆ϕ
ℓ

=C SN
ℓ +C GW

ℓ −2C SN−GW
ℓ , (2.15)

where C SN
ℓ

(C GW
ℓ

) are the SN (GW) luminosity distance angular power-spectra, and

C SN−GW
ℓ

the cross-spectrum between the two. In this form we need the redshift and

position of GW/SNe sources to be the same only on average, i.e. same redshift dis-

tributions and overlapping regions in the sky. In Fig. 2.3 we show C
∆ϕ
ℓ

as a function

of the source redshift for the two representative DE models. We consider the case of

localized SN/GWs sources to study the redshift dependence of C
∆ϕ
ℓ

. In f (R), the DE

clustering component is dominating the total angular power-spectrum, making its
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Figure 2.3: The angular power-spectrum of the difference between GW and SN luminosity distance fluc-
tuations. Solid lines show the total power-spectrum, dashed lines the scalar field clustering component.

features manifest. In the GBD model, instead, the total signal is dominated by the

Doppler effect. Nevertheless, a detection of this signal still constitutes a direct proof

of the DE field’s presence.

2.4. Observational prospects
We next investigate the detection prospects for the fluctuations of the GW luminosity

distance via C GW
ℓ

, and DE clustering via C
∆ϕ
ℓ

. We consider the noise power-spectrum

for both SN and GW, as given by only a shot-noise contribution [243, 244]:

N i
ℓ =

4π fsky

Ni

(
σi

dL

d i
L

)2

≡ 4π fsky

N eff
i

, (2.16)

where i = {SN,GW} and fsky is the sky fraction covered by observations, which we

assume to be fsky = 1 for simplicity. We also define the effective number of sources,

N eff
i , as the product of the number of events, Ni , in a given redshift bin and the ratio

σi
dL

/d i
L related to the relative uncertainty on the luminosity distance which is pro-

portional to the magnitude uncertainty. In this way N eff
i , which sets the overall noise

levels, takes into account the number of events detected and the precision of each

measurement. As the signal decays in scale faster than ∝ ℓ−2, we expect to have the

best chance of measuring it from large-scale observations. For this reason we assume

that future localization uncertainties can be neglected [245].

The noise for the joint estimator of Eq. (2.15) is given by the sum of the two noise

power-spectra for GW and SN, since we assume that any stochastic contribution is

uncorrelated. Consequently, the number of effective events needed for a detection
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of C
∆ϕ
ℓ

is given by the harmonic mean of the two single ones

N eff
∆ϕ

=
[

1

N eff
SN

+ 1

N eff
GW

]−1

. (2.17)

The error on a power-spectrum measurement is given by

σ(Cℓ) =
√

2/(2ℓ+1) fsky [Cℓ+Nℓ ] , (2.18)

and the corresponding signal-to-noise ratio is

S

N
=

√√√√∑
ℓ

(
Cℓ

σ(Cℓ)

)2

. (2.19)

In the case of C GW
ℓ

this applies directly, while for C∆ϕ

ℓ
one needs to do full error

propagation on Eq. (2.15): the final result is the same, provided one uses for N eff
∆ϕ

the harmonic mean given above. The noise power-spectrum in Eq. (2.16) is scale-

independent so we can solve the inverse problem of determining the number of ef-

fective events needed to measure the power-spectra with a desired statistical signif-

icance. In practice, we fix a target S/N = 5, and solve the equation of S/N for N eff

both in the case of GW sources alone and ∆ϕ. Finally, we investigate the scenario

where the GW source redshift is unknown. In this case we assume the shape of the

GW redshift distribution as given in [220], while the SN one as in [246]. Since the SN

and GW redshift distributions need to match for our estimator to work, we take the

product of the two and build the joint probability of measuring both SN and GW at

the same redshift. In particular, we consider

d N GW(z)

d z
=NGW

χ2(z)

(1+ z)2H ,
d N SN(z)

d z
=NSN ×


2.5

χ3(z)

(1+ z)1.5 z < 1

9.7
χ3(z)

(1+ z)3.5 z ≥ 1

,

(2.20)

where NGW and NSN are suitable normalization. Even if such redshift distributions

depend on the cosmological model (for instance through H(z)), we use theirΛCDM

expressions, as we have checked that this dependency is negligible. Intermediate

cases in which the EM counterpart is not available, but estimates of the redshift dis-

tributions are obtained via statistical methods [207, 209, 247, 248], would fall in be-

tween the two extreme cases examined here.

Table 2.1 summarizes the results reporting the number of effective sources for a 5σ

detection of the angular power-spectra C GW
ℓ

and C
∆ϕ
ℓ

, both in the case of GW events

with known as well as unknown redshifts (the latter designated as “w/o z”). We

also indicate the value of N eff
GW in General Relativity, for comparison. The detection

threshold for GW luminosity distance fluctuations, N eff
GW, does not change apprecia-

bly for the different scenarios, since we selected representative models sufficiently
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GR f (R) GBD

N eff
GW N eff

GW N eff
∆ϕ

N eff
GW N eff

∆ϕ

z = 0.1 107 107 1014 107 1012

z = 0.3 108 108 1015 108 1011

z = 0.7 108 108 1016 108 1012

z = 1.5 107 107 1017 107 1012

w/o z 107 107 1019 107 1014

Table 2.1: Effective number of events for a 5-σ detection of C GW
ℓ

and C
∆ϕ
ℓ

.

close to ΛCDM to satisfy current constraints. In fact, as shown in Fig. 2.1, C GW
ℓ

is

dominated by lensing convergence at high redshifts and by Doppler shift at low red-

shifts. The former is indirectly modified by DE, while the latter is also sensitive to the

background configuration of the DE field: both these effects are small in the consid-

ered models. Since lensing convergence and Doppler effect dominate the angular

correlations of GW sources, it is not possible to distinguish the DE clustering contri-

bution in C GW
ℓ

within the total signal.

As far as N eff
∆ϕ

is concerned, the results show that it is possible to detect the signal of

the joint estimator in both cases of known and unknown redshifts. In f (R), this sig-

nal is dominated by the DE field fluctuations, as shown in Fig. 2.3, hence allowing for

its direct detection. In the GBD model, the signal of the joint estimator is dominated

by Doppler shift, easier to detect, explaining the lower number of effective events

compared to f (R). In this case, one would not be able to distinguish directly the DE

field inhomogeneities, but its detection is still a proof of a time-dependent Planck

mass. Comparing the two scenarios of known and unknown GW source’s redshift, we

see that the number of effective events is larger in the latter case because a broader

redshift range weakens the signal. However, in this situation the events are not re-

stricted to a redshift bin, hence one can use the whole population of SN/GW sources

provided that they are both present. Nonetheless, the number of effective events re-

quired is very high, suggesting that the detection precision per source has to improve

to eventually measure such signal. In fact, we remark that N eff
i is the effective num-

ber of sources, the real number of events can be lowered by having smaller statistical

errors on the single detection. As an example, in order to measure the DE signal, the

detection of a population of about 106 GW sources and about the same number of

SN events in a redshift bin at z > 1, would require a precision, per event, of about

σdL /dL ∼ 10−6 in the case of f (R), and ∼ 10−3 for the GBD model. Since the required

effective number of events scales quadratically with per-event precision,σdL /dL , but
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only linearly with number of events, increasing precision is likely a better strategy.

2.5. Discussion and Conclusions
Fluctuations in the DE field can distinctively alter the propagation of GWs with re-

spect to light. In this Chapter, by combining the luminosity distance measurements

from GW and SN sources, we proposed the new estimator∆ϕ for the direct detection

of the imprint of the DE fluctuations, that does not rely on non-gravitational interac-

tions between DE and known particles. This signal cannot be mimicked by other ef-

fects and, as such, it provides a distinctive evidence for a dynamical DE model. Even

in the case of a DE clustering signal below cosmic variance, any detection of our joint

estimator would be a convincing proof of a running Planck mass, as we showed for

two specific models. Reversely, it can be used to place complementary bounds on

theories of dynamical dark energy non-minimally coupled to gravity, along similar

lines of recent forecasts as in [161, 249] for the case of standard sirens. Since we ex-

ploit angular correlations at large scales, we expect our method not to be affected by

screening mechanisms nearby sources.

Since the required effective number of source is quite large, one should leverage as

much as possible on the precision of the measurement; for instance, given the num-

ber of SN/GW events (of order 106, at least in the higher redshift bins) that can be ob-

served with future SN surveys [12, 250] and space-based interferometers [251, 252],

a detection would be possible, if one decreases the statistical error on each mea-

sure according to table 2.1. Notice also that for our estimates we considered an ideal

case: the number of events needed for a detection might be higher to deal with possi-

ble systematic effects. This suggests that future facilities might have to develop new

technologies and observational strategies to meet these detection goals. We leave

it to future work to determine whether a detection of the signal we propose can be

aided by studying additional DE models, synergies with large scale structure surveys

or considering different sources of GW/EM signals. For example, future experiments

will detect large numbers of binary white dwarfs [253] on galactic scales and much

beyond [254, 255]. These events are supposed to be progenitors of Type-Ia SN in

the so-called double degenerate scenario [256], offering a common source for GW

and SN signals (see e.g. [257]). In this case, Eq. (2.12) holds locally and ∆ϕ could be

directly reconstructed in configuration space, provided that non-linearities and DE

screening effects can be properly taken into account.

Note: My contribution to the paper this Chapter is based on regards all the scientific

aspects, both theoretical and numerical, and the writing.


