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1
Introduction

Cosmology is a purely observational science: we cannot put the Universe in a lab-

oratory and reproduce its history at our will, tweaking parameters to see how its

constituents react. It always has to rely on the detection of a signal, whether it is

a photon, or since 2016 [1], a gravitational wave (GW). Basing its hypothesis exclu-

sively on observations, cosmology attempts at providing a single description of the

Universe, from its early stages to the present, in terms of only few parameters. In this

sense, the first GW direct detection marked a breakthrough for the sciences of the

Universe: it opened up a new observational window affected by an entirely differ-

ent set of systematics compared to electromagnetic signals. The observation of the

Cosmic Microwave Background (CMB) by WMAP and Planck [2–4], confirmed that

the photons comprising this signal are described by a black-body spectrum with a

temperature of 2.73 K, up to one part in 105. Since the Universe is expanding, the

temperature of photons increases as we go backward in time so that, at the time of

the CMB emission, it was about 103 K. One can think of extrapolating this increasing

behavior to even earlier times, before the moment when nuclei and free electrons

combined to form neutral atoms and the photon-baryon fluid was kept in thermal

equilibrium by Compton scattering, or even before that, until one reaches the typ-

ical energy scale of the Universe at the moment of the formation of the first nuclei:

∼ 1010 K [5]. So, the ultimate goal of a cosmological model is to build a unique de-

scription of the Universe across (at least) roughly 10 orders of magnitude of different

energy regimes. This heroic effort has successfully produced the standard cosmo-

logical model, ΛCDM: gravity follows the laws of General Relativity, a cosmological

constantΛ embodies the dark energy driving the recent accelerated expansion of the

Universe, and cold dark matter (CDM), an unknown form of matter electromagneti-
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cally neutral, is responsible for structure formation. The last two components make

up almost 96% of the current energy budget of the Universe, while the remaining

portion is composed of standard model particles, which in cosmology are divided

into two categories: radiation and baryons, where in the latter leptons are included

as well.

TheΛCDM model’s success, lies in its ability to fit a wide range of observational data,

not only the CMB, but also type Ia Supernovae (SNe) datas [6, 7], and the mapping

of cosmic structures, with the baryon acoustic oscillation (BAO) peak [8]. Yet,ΛCDM

still fosters in its dark components large areas of theoretical uncertainties. Enlarging

the volume of data, with ongoing and upcoming galaxy and weak-lensing surveys [9–

12], will necessarily subject the standard model to a new level of scrutiny. The rise of

precision cosmology, has already seen the emergence of tensions between datasets

when interpreted within the ΛCDM framework [13, 14], which could signal the first

cracks in the model as we achieve a new level of precision in measuring its param-

eters [15]. Since one of the assumptions of ΛCDM is General Relativity, testing this

model also mean testing the theory of gravity on cosmological scales: after passing a

battery of tests in the Solar System and on galactic scales, we can investigate gravity

at work at low energies.

Thanks to the LIGO-Virgo-Kagra (LVK) [16, 17] collaboration, we can now add GW

observations to the pool of different datasets, giving us direct access to the dynam-

ical regime of gravity. The waves observed by these interferometers are produced

during the inspiral of a compact object binary. When two black holes or two neutron

stars, or a black hole and a neutron star, orbit around each other, they emit gravi-

tational waves. The energy lost through this channel makes the orbit of the binary

shrink until the two objects merge into one. In the coming years, the next genera-

tion of ground-based interferometers is expected to provide us with a "dark map"

of the Universe by observing tens of thousands of GW events [18, 19]. Comparing

this map with those compiled by galaxy surveys, will boost our understanding of the

electromagnetically neutral species of the Universe. For example, we may be able to

determine whether all astrophysical GW sources are located inside galaxies. If so, this

would suggest that GWs and galaxies trace the underlying dark matter gravitational

potential wells equivalently, so that these two probes can be used jointly, maximizing

the scientific return from the two missions. Alternatively, if some astrophysical GW

sources are found to be outside of galaxies, it would open up new avenues for scien-

tific inquiry [20]. The observation of exotic compact objects through GWs could have

significant implications for cosmology. A particularly intriguing possibility is the ex-

istence of primordial black holes [21] potentially accounting for part of the Universe’s

dark matter, which might have formed from the collapse of large, small-scale infla-

ton perturbations in the early Universe, or through other exotic channels (see [20]

and references therein).
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The concept that GW observations can enhance our understanding of the early Uni-

verse is not new. The detection of primordial tensor modes, through a B-mode po-

larization pattern of the CMB, would have significant implications for our compre-

hension of the primordial Universe [22–24]. According to the current model, dur-

ing the pre-standard model era, at least two quantum fields existed in the Universe:

the metric and the inflaton, driving a phase of exponentially accelerated expansions.

Their fluctuations were first stretched beyond the Hubble horizon, and then slowly

re-entered during standard cosmic history setting, for instance, the initial seeds for

the development of gravitational potentials, eventually leading to the formation of

cosmic structures. Since the inflationary paradigm treats scalar and tensor pertur-

bations on the same footing, primordial gravitational waves are a key prediction of

it. These types of GWs are substantially different from astrophysical events seen by

LVK. Since their source is a quantum process, they would constitute a stochastic grav-

itational wave background (SGWB), similar in nature to the CMB’s photons. From the

first GW detection, the literature on SGWB has expanded considerably, as there are a

number of mechanisms thought to take place in the early Universe that can produce

a diffuse GW signal. The SGWB can also be of astrophysical origin: if the single GW

events are not distinguishable one from the other, they are expected to form a back-

ground too. Because of the incredible wealth of information, detecting the SGWB is

a key science goal for the future GW missions, target of space-based interferometers

and pulsar-timing arrays [25–31].

The waveform of a GW and the frequency spectrum of the SGWB depend on the

specifics of their sources. Regardless of the generation mechanism, propagation ef-

fects can have a significant impact. For instance, a wave traveling through an ex-

panding Universe is damped faster than one traveling through a static one, or objects

along the way can cause various distortions. As a result, GWs also convey informa-

tion about the dynamics of the Universe, including the late-time cosmic expansion,

so dark energy, and the cosmic structures tracing the gravitational potential wells

of dark matter. Propagation effects introduce an irreducible error, setting an upper

limit on the precision with which we can measure the source parameters. However,

one can turn this around and look at propagation effects as a rich resource of cosmo-

logical information, both at the background and perturbed level.

Photons undergo similar effects during propagation, making it possible to use both

probes jointly. Joint observations of GWs and photons are particularly promising

for testing proposals for dark energy, where the two messengers behave differently.

Such proposals are widespread in the literature and, thanks to the degeneracy break-

ing between the two sectors, they can be thoroughly investigated in the near future.

Despite the similarities, GWs and photons can also exhibit very different behaviors,

especially when comparing them at different frequencies. The typical energy of a

photon, whether it belongs to the CMB or if it was emitted by an astrophysical event,
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is much higher than the energy scale associated to any (known) object it may en-

counter during propagation. In particular, an obstacle can be a large-scale structure,

roughly at the energy scale of 10−17 Hz, or a compact object, ranging from super-

massive to stellar black holes in the ∼ 10−3 −101 Hz band. Even the low-energy CMB

photons have frequencies of approximately 160 GHz. This implies that photons are

always well described by the ray-optics limit. By contrast, there are no limitations for

the wavelengths of GWs and, depending on the situation, wave-optics effects may

arise. The validity of these two regimes, and the kind of description they allow, will

be profusely discussed in this Thesis. However, we can already appreciate the fact

that GWs not only carry new valuable cosmological information, but also they offer

new theoretical challenges.

The main focus of this Thesis is characterizing the propagation effects affecting GWs

in the late time Universe, both in the ray-optics limit and in the wave-optics one. We

use the former to describe resolved astrophysical GWs, with frequencies higher than

the mHz, when these travel through the large-scale structures of the Universe. In this

case, we will explore their potentialities in testing particular models for dark energy

called scalar-tensor theories. Finally, we will give up the high frequency approxima-

tion and, in General Relativity, explore the wave-optics effects, paying particular at-

tention to the polarization content of the gravitational waves. The purpose of this

Introduction is to provide the reader with all the necessary tools to understand the

topics covered in the following Chapters.

1.1. The standard cosmological model
Two very important aspects which any proposed cosmological model has to describe

are the expansion of the homogeneous and isotropic Universe and the growth of lin-

ear perturbations. In the two sections below, we describe their phenomenology in

ΛCDM.

1.1.1. Friedmann equations

Observations suggest that on scales ≳ 100 Mpc, the cosmological principle holds,

namely that the properties of the Universe are the same for all observers comoving

with the expansion. Observations also suggest that the Universe, on large scales, does

not display a preferred direction. These two facts together, fixe the metric describing

the Universe at these scales to

d s2 = gµνd xµd xν = a2(τ)

[
−dτ2 + dχ2

(1−κχ2)
+χ2

(
dθ2 + sin2θdϕ2

)]
, (1.1)

also known as the Friedmann-Lemaître-Robertson-Walker (FLRW) metric [32],

where τ is the conformal time, a(τ) is the scale factor, describing how the Universe
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expands over time, κ is the intrinsic curvature of the 3D spatial hypersurfaces, and

it can take the discrete values κ= 0,+1,−1, representing flat, positively or negatively

curved spatial slices. In the metric above, χ is the comoving distance, related to the

scale factor as in Eq. (1.8). The FLRW metric (1.1) describes a Universe as spatially

homogeneous and isotropic. The cosmological principle also fixes the form of the

possible energy content of the Universe to that of a perfect fluid described by a stress-

energy tensor of the form [32]

Tµν = ρuµuν+PΛµν , (1.2)

here Λµν ≡ gµν+uµuν, is the orthogonal projector to the worldlines of the observers

whose 4-velocity is uµ, while ρ is the energy density and P is the isotropic pressure

of the fluid element. Then, in the standard cosmological model, the FLRW metric is

a solution of Einstein’s equations

Gµν = 8πG
[

Tµν+TΛ
µν

]
, TΛ

µν =− Λ

8πG
gµν (1.3)

where Gµν is the Einstein tensor, Tµν is given by Eq. (1.2). In the expressions above,

we have introduced Λ, the cosmological constant driving the late time cosmic ex-

pansion in the ΛCDM model. To close the system, it is necessary to supplement an

equation of state relating pressure and energy density of the perfect fluid, usually

in the form P = wρ. In the ΛCDM model, the matter species contributing to the

stress-energy tensor are: pressureless non-relativistic matter (CDM and baryons),

described by the equation of state wm = 0 and radiation supported by its pressure

and characterized by wr = 1/3 [32]. Also, TΛ
µν can be written in a similar fashion of

Eq. (1.2), with equation of state wΛ = −1 and ρΛ =Λ/(8πG). The independent con-

servation of their stress-energy tensors, gives the continuity equations

Ω′
i +3HΩi (1+wi ) = 0, with ′ = ∂τ , (1.4)

where we defined the time dependent density parameters

Ωi (τ) ≡ ρi (τ)

ρcr i t
, ρcr i t =

3H 2
0

8πG
(1.5)

with i = r,m,Λ. Note that Ω0
Λ = [Λ/(8πG)]/ρcr i t = Λ/(3H 2

0 ). According to the value

of the equation of state parameters, wi , the continuity equation takes the different

solutions

Ωr (a) =Ω0
r /a4 , and Ωm(a) =Ω0

m/a3 , and ΩΛ(a) =Ω0
Λ , (1.6)

where Ω0
i are the values of the density parameters today, i.e. at a = a0 = 1, choos-

ing the spatial curvature to be zero, κ = 0. The different power laws dictate that the

various species "dilute" at different rates, in such a way that we can consider one
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χM χΛ χ∗ χMΛ χi[
H0(Ω0

m)1/2
]−1 [

H0(Ω0
Λ)1/2

]−1 [
H0(Ω0

m)1/3(Ω0
Λ)1/6

]−1
χ∗−χΛ 3χ∗−χΛ

0.027 0.017 0.023 0.0054 0.052

Table 1.1: List of special comoving distance values entering in Eq. (1.9). The first row contains their defi-
nition, while the numerical values are computed considering H0 = 67.3,Ω0

m = 0.31 andΩ0
Λ
= 0.69 [4].

element at a time to drive the expansion of the Universe. In order, we will have: radi-

ation first, being the most abundant in the early stages of the Universe, succeeded by

a matter dominated phase and finally the cosmological constant in the very recent

time. Since we are interested in describing the late time Universe, in our discussion

we will always neglect the contribution of radiation to the energy budget. This results

in another simplification: we will treat CDM and baryons in the same way.

From Eq. (1.3), one can find Friedmann’s equation, relating the scale factor to the

energy density of the constituents

H2 = a2H 2
0 (Ωm +ΩΛ) , (1.7)

where H ≡ a′/a is the Hubble parameter in conformal time. We solve analytically

Friedmann’s equation separately in the matter and Λ dominated epochs, and match

the solutions at the moment of their equivalence, aMΛ = 3
√
Ω0

m/Ω0
Λ

. For later conve-

nience, we write the solution in terms of the comoving distance

χ ≡ τ0 −τ=
∫ 1

a

d ã

(ãH(ã))
, (1.8)

where τ0 is the value of conformal time today, i.e. such that a(τ0) = 1. From this def-

inition, it is clear that dχ=−dτ. The scale factor and the comoving distance belong

respectively to the range [0,1] and [0,χi ], where χi is the value of χ corresponding

to a = 0. Such initial value does not have any particular physical meaning, and it is

merely a consequence of having neglected the radiation contribution. We find the

solutions

a(χ) =


[
χ−χi

]2

4χM
χ ∈ [χMΛ,χi ]

χΛ

χΛ+χ χ ∈ [0,χMΛ]

, H(χ) =− 1

a

∂a

∂χ
=


2

χi −χ
χ ∈ [χMΛ,χi ]

1

χ+χΛ
χ ∈ [0,χMΛ]

(1.9)

where all the quantities defined in the equation above can be found in the Table 1.1.

We point out that a solution of Eq. (1.7) interpolating between matter and Λ domi-

nation eras exists [33], however it is quite intricate and impractical, therefore in this

Thesis we will use the explicit expressions given above when needed.
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In the ΛCDM model, dark energy (DE) is modeled with the cosmological constant.

To better understand the character of the accelerated expansion it drives, it is best to

rewrite the scale factor in terms of cosmic time d t ≡ adτ. In this case, and neglecting

the matter contribution in Eq. (1.7), it is easy to find that

∂a

∂t
=

√
Λ

3
a , → a(t ) = e

√
Λ
3 t . (1.10)

Because of this exponential behavior of the scale factor, the cosmological constant

is said to drive the accelerated expansion of the Universe in the very recent epoch,

a phenomenon detected via the observation of Supernovae type Ia (SNe) which was

worth a Nobel Prize [6, 7] .

Another important quantity in background cosmology is the cosmological redshift,

related to the scale factor as

1+ z = 1

a
, (1.11)

determining also the red-shifting of the wavelengths of photons and GWs as they

propagate through the expanding Universe.

1.1.2. Cosmological perturbation theory

Departures from the homogeneous and isotropic configuration characterize large-

scale structures (LSS) of the Universe. On scales between ∼ 100−50 Mpc, these de-

viations are still small in amplitude, and thus can be treated with linear relativistic

perturbation theory.

Prior to the emission of the CMB, photons and electrons were tightly coupled

through Compton scattering, forming a unique photon-baryon fluid. As a result, or-

dinary non-relativistic matter was supported by the radiation pressure of photons,

preventing it from collapsing under gravitational interaction. In contrast, the elec-

tromagnetically neutral and non-relativistic (pressureless) CDM could form clumps,

preparing the gravitational potential wells for the baryons to fall into, after the mo-

ment of recombination, when the Universe became transparent to photons. This

process eventually led to the formation of stars, galaxies, and galaxy clusters inside

the wells and filaments of the dark matter distribution. Therefore, it is often said

that galaxies trace dark matter introducing the concept of galaxy bias, as we will see

later. In the late-time Universe, relativistic species, such as photons, constitute a sub-

dominant part of the total energy density budget as they dilute faster than the other

components (see Eq. (1.6)). Since this is the period we are most interested in, we ne-

glect them when studying LSS and treat baryons and CDM jointly as a non-relativistic

pressureless component.

The equations of motion ruling the growth of LSS can be found by linearizing the



1

8 1. Introduction

gravitational field equations around the FLRW background,

gµν = a2(τ)ηµν+ϵδgµν , (1.12)

where ηµν = diag(−1,1,1,1) is the Minkowski metric and ϵ is the expansion parame-

ter tracking the LSS. We expect that CMB temperature anisotropies are of the same

order of magnitude of the metric perturbation, so that ϵ ∼ 10−5. The FLRW back-

ground is symmetric under rotations in the 3D spatial hypersurfaces. One can exploit

this fact and break down the metric perturbation δgµν into irreducible representa-

tions of the Euclidean rotations. This is the so-called scalar-vector-tensor decom-

position. Due to the symmetry of FLRW, each subgroup decouples from the others

to linear order, allowing an independent analysis of each type of modes [5, 34–38]1.

Considering the FLRW background fixed, then under an infinitesimal gauge trans-

formation xµ → xµ+ϵξµ, the metric perturbation transforms as

δg ′
µν = δgµν−

(∇̄µ ξν+∇̄ν ξµ
)

, (1.13)

where ∇̄µ are the covariant derivatives built with the FLRW metric. The metric per-

turbation, δgµν, being a 4 symmetric tensor, has 10 independent components. The

gauge freedom fixes 4 of them, leaving 6 modes to be fixed with Einstein’s equations.

A common gauge choice is the so-called Poisson’s gauge [34, 39], in which the line

element takes the form

d s2 = a2(τ)
[
− (1+2ϵΦ)dτ2 +2ϵωi dτd xi + (1−2ϵΨ)dx2 +2ϵγi j d xi d x j

]
, (1.14)

where

1. Φ andΨ are two scalar gravitational potentials (2 modes),

2. ωi is the vector potential, such that ∂iωi = 0 (2 modes),

3. γi j is the transverse and traceless tensor mode, such that ηi jγi j = ∂iγi j = 0 (2

modes),

with the convention that spatial indices are raised and lowered with the Minkowski

metric, ηi j . In Poisson’s gauge, the two gravitational potentials Φ and Ψ correspond

to the gauge invariant Bardeen’s potentials [40] and they describe the perturbation of

the time direction and of the spatial hypersurfaces’ curvature. Note that the tensor

mode γi j does not coincide with our definition of GWs, which will be given later.

1There are many references for cosmological perturbation theory. This section is based on [34]. However,
we do change notation to be consistent with the rest of this Thesis, e.g. the two scalar gravitational
potentials have exchanged namesΦ→Ψ andΨ→Φ, we call H the conformal Hubble parameter instead
of η.
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Similarly to the metric, also the matter stress-energy tensor is decomposed as T µ
ν =

T̄ µ
ν +ϵδT µ

ν , or expliciting the components out, as

T 0
0 = − ρ̄−ϵδρ (1.15)

T i
0 = −ϵ (ρ̄+ P̄ ) v i (1.16)

T 0
i = +ϵ (ρ̄+ P̄ ) [vi +ωi ] (1.17)

T i
j = +P̄ δi

j +ϵ
(
δP δi

j +Σi
j

)
(1.18)

where ρ̄ = ρ̄(τ) and P̄ = P̄ (τ) are the background energy density and the isotropic

pressure, only time dependent. The anisotropic stress, Σi
j , accounts for velocity gra-

dients related to irreversible processes, and we assume it is traceless by reabsorbing

any bulk contribution in the definition of the pressure. Also, in the expression above,

v i is the peculiar velocity, whose definition is

uµ = 1

a

[
(1−ϵΦ), ϵv i

]
. (1.19)

An important quantity is the energy density contrast

δ ≡ δρ

ρ̄
, (1.20)

sourcing the gravitational potential wells. The peculiar velocity and Σi
j can be de-

composed into irreducible representations with respect to the spatial rotation as well

vi = vT
i +∂i v , Σi j =Di jΣ+∂(i Σ j ) +ΣT T

i j , (1.21)

with ∂i vT
i = 0 and ∂iΣT T

i j = 0 and

Di jΣ≡
(
∂i∂ j − 1

3
δi j∆

)
Σ , ∂(i Σ j ) ≡ 1

2

(
∂i Σ j +∂ j Σi

)
, (1.22)

and we called ∆= ∂k∂
k . In the decomposition of the velocity, v is called velocity gra-

dient, and it will play an important role later. All these expressions are then plugged

in Einstein Eqs. (1.3), yielding the linearized equations[
G0

0

]
: −k2Ψk −3H(Ψ′

k +HΦk ) = 4πGa2 ρ̄ δk , (1.23)[
G0

i

]
∥ : − (

Ψ′
k +HΦk

)= 4πGa2(ρ̄+ P̄ ) vk , (1.24)[
G0

i

]
⊥ : −k2ωk,i = 16πGa2(ρ̄+ P̄ )

[
vT

k,i +ωk,i

]
, (1.25)[

G i
i

]
: Ψ′′

k +H
(
Φ′

k +2Ψ′
k

)+ (2H′+H2)Φk −
k2

3
(Φk −Ψk ) = 4πGa2δPk , (1.26)[

G i
j ̸=i

]
∥ : (Ψk −Φk ) = 8πGa2Σk , (1.27)[

G i
j

]
⊥ : − (∂τ+H)k(i ωk, j ) = 8πGa2k(i Σk, j ) , (1.28)[

G i
j

]
T T

: (∂2
τ+2H∂τ+k2)γi j = 8πGa2ΣT T

k,i j , (1.29)
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in Fourier space (see Eq. (1.115) for notation). Note that k i is a 3D spatial vector and

k2 ≡ ηi j ki k j . The isotropy of the FLRW background guarantees that each perturbed

quantity is exclusively a function of (τ,k) and, in particular, does not depend on the

direction of the wave-vector. This point will become crucial in Chapter 6, and will

come back into the discussion. As usual, using Eq. (1.24) into (1.23), one finds the

Poisson’s equation

Ψk =−3H 2
0Ω

0
m

2ak2 δC
m(a,k) , δC

m(a,k) ≡ δk −3H(ρ̄+ P̄ )vk (1.30)

where we have defined the gauge-invariant density contrast, δC
m(a,k). Eq. (1.30)

clearly shows that Ψk is affected by the instantaneous variations of its source (con-

trary to the retarded time for solutions of wave-like equations). Crucially, some equa-

tions among (1.23) - (1.29) are of first or zero order in time derivative. These are called

constraint equations, and their role is to enforce particular relations between the field

variables, such as the one between the scalar gravitational potential and the density

contrast in Eq. (1.30).

In theΛCDM model and in the late time Universe, we neglect the contribution to the

stress-energy tensor given by radiation and focus only on baryons, cold dark matter

and the cosmological constant. The former two are given in terms of a collision-

less, non-relativistic gas of particles, with null adiabatic sound speed so that δP = 0

and negligible anisotropic stress, Σi j = 0. Not clustering, the cosmological constant

only affects the background dynamics and does not contribute to the perturbation

of stress-energy tensor. In this case, Eq. (1.27) becomes sourceless as the right-hand

side vanishes in absence of anisotropic stress, so that

Ψk (τ) =Φk (τ) . (1.31)

As far as vector modes go, we note that also Eq. (1.25) is a Poisson equation,

like (1.30), and that Eq. (1.28) shows that vector modes are redshifted away by the

Hubble expansion unless supported by the anisotropic stress [37]. Hence, relying

on the assumption Σi j = 0, one can set ωi = vT
i = 0. The matter equations (conti-

nuity and Euler equations) can be found either via the conservation of the stress-

energy tensor δϵ
[∇µT µ

ν = 0
]
, or via suitable combinations of the linearized Einstein

equations (and their time derivatives) and using also the background Friedmann’s

Eq. (1.1.1). Overall, in a ΛCDM late time Universe, the geometry of the spacetime

and of the energy-momentum density, at first order in ϵ, is governed by the set of

equations

δ′k −k2vk = 3Φ′
k , (1.32)

v ′
k +Hvk =−Φk , (1.33)

Φ′
k +HΦk =−3H 2

0 Ω
0
m

2a
vk , (1.34)

Φ′′
k +3HΦ′

k + (H2 +2H′)Φk = 0, (1.35)
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together with Eqs. (1.30), (1.31) and (1.29). An important consequence of these equa-

tions comes from evaluating the last one during matter domination. In this case, we

neglectΩΛ in Friedmann Eq. (1.7), so that

H2 +2H′ =H2 +H 2
0

(
2a2HΩm +a2Ω′

m

)= 3H2 −3H2 = 0, (1.36)

using also Eq. (1.6). Because of this, Eq. (1.35) becomesΦ′′
k +3HΦ′

k = 0, which admits

as a solution

Φk (τ) ∼ Ck

a2 +Φm
k , (1.37)

meaning that the gravitational potential is supported by one decaying and one con-

stant solution in matter domination. Neglecting the decaying branch, this leads to

the important results that Φk (τ) =Φm
k , i.e. the gravitational potential wells are con-

stant and do not grow during matter domination. Since we take δC
m , v and Φ to be

solutions of Einstein’s equation, we can relate them in a more compact form. To this

end, we define the matter transfer function, Tm(k), describing the behavior of the

matter density contrast through the equality between radiation and matter domi-

nated epochs, and the matter growth factor, Dm(a), accounting for its late time evo-

lution [5]. We write the field perturbations in terms of these two as

δC
m(a,k) = − 9

10
Tm(k)Gm(a,k)Ψi n

k , (1.38)

v(a,k) = − 9

10
Tm(k)Gv (a,k)Ψi n

k , (1.39)

Φ(a,k) = 9

10
Tm(k)

GΦ(a,k)

a
Ψi n

k . (1.40)

whereΨi n
k is the primordial value of the gravitational potential and

Gφ = Dm , Gm = 2k2

3H 2
0Ω

0
m

Dm , Gv = f (a)
H
k2 Gm . (1.41)

In the expression above f ≡ dlnDm/dln a is the growth rate. Ideally, one uses these

forms of the density contrast, velocity gradient and gravitational potential into the

linearized Einstein’s equations, to find the evolution equation for Tm(k) and Dm(a).

These are normally integrated numerically with Einstein-Boltzmann solvers codes,

such as CAMB, CLASS (see [41, 42]). This in particular means that the form of

{Gφ,Gm ,Gv } depends on the gravitational theory. Alternatively, one can use suitable

fitting formulas for them [5, 43–45]. Since we are interested in the late time Uni-

verse, well after the end of the radiation epoch, the transfer function is nearly con-

stant [5, 43, 44], while the growth factor for modes inside the horizon (k ≫H) can be

approximated as [5, 35, 46]

Dm(a) = 5H 2
0Ω

0
m

2

H(a)

a

∫ a

0

d a

[H(a)]3 . (1.42)
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Note that in our notations we use H = (a′/a)(τ) as the Hubble parameter in confor-

mal time, while in [5] they use H = (ȧ/a)(τ), and the dot stands for derivative with

respect to the cosmic time d t = adτ. A more handy fitting formula given in [35, 46]

is

Dm(a) = 5Ω0
m

2a2E 2(a)

[(
Ω0

m

a3E 2(a)

)4/7

− Ω0
Λ

E 2(a)
+

(
1+ Ω0

m

2a3E 2(a)

)(
1+ Ω0

Λ

70E 2(a)

)]
, (1.43)

with E 2(a) =H2/(a2H 2
0 ) = (Ω0

m/a3+Ω0
Λ). A quantity that will be used later in the text,

is the gravitational potential transfer function, which is given by

T Φ
k (a) = 9

10
Tm(k)

GΦ(a,k)

a
, (1.44)

as it can be understood from Eq. (1.40).

1.1.3. Statistical description of the large-scale structures

Describing the cosmic web is intrinsically a statistical task: we are interested in de-

scribing its average properties, rather than the exact shape and position of each grav-

itational potential’s well or tensor perturbation.2 Accordingly, we will treat δgµν(x)

and δT µ
ν (x) as random fields with zero mean, and their observed configurations are

a specific realization of the stochastic process, i.e. a particular member of the sta-

tistical ensemble. These random fields inhabit the cosmological Universe which, on

large-scales, is homogeneous and isotropic, suggesting the idea of promoting these

properties to a statistical level for the description of the cosmic inhomogeneities.

Hence, given any cosmological perturbation, δA(τ,x), we will assume that it is sta-

tistically homogeneous, so that its mean and variance are independent of position,

and statistically isotropic, implying that there is no preferred direction. Assuming

also that the fields at large distances are uncorrelated [48], we get that these random

fields are Ergodic, in the sense that we can exchange

ensemble average ←→ volume average

since, in sufficiently far away portions of the Universe, δA(τ,x) and δA(τ′,y) should

be causally disconnected, making them two independent representative realizations

of the stochastic process. In this sense, ensemble expectation values of field depen-

dent observables are well approximated by volume averages, provided that the vol-

ume is large enough. A quantity which plays a major role in the description of LSS, is

the two-point autocorrelation function of the random field

ξA(τ,x;τ′,x′) ≡ 〈
δA(τ,x)δA(τ′,x′)

〉
, (1.45)

2This section takes inspiration form [47].
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where the average 〈. . .〉 is the ensemble average, or the volume one. For a statistically

homogeneous and isotropic field, the two-point function must be translation and

rotation invariant, therefore

ξA(τ,x;τ′,x′) = ξA(τ,τ′, |x−x′|) . (1.46)

Another important quantity is the power spectrum, namely the autocorrelation func-

tion in Fourier space

P A(τ,k;τ′,k′) ≡ 〈
δA(τ,k)δA(τ′,k′)

〉= ∫
d 3x d 3x ′ ξA(τ,x;τ′,x′)e−i k ·x−i k·x′ . (1.47)

When the real-space 2-point function depends only on |x−x′|, also the power spec-

trum takes a simplified form

P A(τ,k;τ′,k′) =
∫

d 3x d 3x ′ ξA(τ,τ′, |x−x′|)e−i k ·x−i k·x′ =

= (2π)3δ3(k+k′)
∫ +∞

0
dr 4π

sin(kr )

kr
r 2 ξA(τ,τ′,r ) (1.48)

from which we read that, in the case of statistically homogeneous and isotropic ran-

dom fields the power spectrum is such that

P A(τ,k;τ′,k′) = (2π)3δ3(k+k′)P A(k,τ,τ′) . (1.49)

In particular, the assumption of homogeneity results into a diagonal power spec-

trum, so that the different Fourier modes are independent, while isotropy implies

that it depends only on the modulus k = |k|, of the wave-vector.

But what is the physical meaning of these quantities? This is best understood looking

at the case of Gaussian Random Fields : fields whose probability density functional,

dictating the stochastic properties, is given by

P
[
δA(τ,k)

]=∏
k

1p
2πP (k,τ)

exp

[
−|δA(τ,k)|2

2P (k,τ)

]
. (1.50)

Therefore, for a Gaussian random field: each Fourier component is statistically inde-

pendent of the others and follows a Gaussian distribution with variance given by the

power spectrum (at equal time). P
[
δA(τ,k)

]
can then be understood as the joint

probability of having a specific realization for δA(τ,k) at each k. Since the Fourier

mode δA(τ,k) is complex, it is easy to understand that Eq. (1.50) actually implies

that the real amplitudes of each mode are gaussian distributed, while the phases are

drawn from a uniform distribution. Finally, in the case of Gaussian Random fields,

all odd-number correlation functions vanish.

If the random field δA(τ,x) is defined on the sphere, it is convenient to work in har-

monic space, rather than Fourier. This is the typical case, for instance, where we ob-

serve an incoming GW or photon: we are interested in the direction of arrival, while
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its comoving distance and time are related by the geodesic equation. In these cases,

it is more convenient to decompose the field on the spherical harmonics basis, rather

than the Fourier one, as

δA(τ,χ, n̂) =
+∞∑
ℓ=0

ℓ∑
m=−ℓ

a A
ℓm(τ,χ)Yℓm(n̂) , (1.51)

where χ is the comoving distance and n̂ = (θ,ϕ) the coordinates on the unit 2-

sphere, such that x = χn̂. By using the properties of the spherical harmonics (see

Appendix A), we can relate a A
ℓm with the Fourier component of the field as

a A
ℓm(τ,χ) = 4πiℓ

∫
d 3k

(2π)3 δA(τ,k) jℓ(kχ) Y ∗
ℓm(n̂) , (1.52)

[
a A
ℓm(τ,χ)

]∗ = 4π(−i )ℓ
∫

d 3k

(2π)3 [δA(τ,k)]∗ jℓ(kχ) Yℓm(n̂) (1.53)

where k = |k| and jℓ(kχ) is the spherical Bessel function. With these expressions, we

can define the angular power spectrum

C A
ℓm;ℓ′m′ (τ,χ;τ′χ′) = 〈

a A
ℓm(τ,χ) a A

ℓ′m′ (τ
′,χ′)

〉
, (1.54)

and relate it to the power spectrum. In the case of statistically homogeneous and

isotropic fields, it is easy to compute that

C A
ℓm;ℓ′m′ (τ,χ;τ′χ′) = 4πδℓℓ′δmm′

∫ +∞

0

dk

k
jℓ(kχ) jℓ(kχ′)

[
k3P (k,τ,τ′)

2π2

]
, (1.55)

from which we understand that the angular power spectrum, in this case, is given by

C A
ℓm;ℓ′m′ (τ,χ;τ′χ′) = δℓℓ′δmm′ C A

ℓ (τ,χ;τ′χ′) . (1.56)

With these definitions, we can understand the advantage of having introduced the

transfer functions in Eqs. (1.38) - (1.40): they allow describing three random fields

at the price of one. Let’s take the example of the gauge invariant density contrast,

δC
m(a,k). We promote it to a Gaussian random field, and its two point function in

Fourier space will be the matter power spectrum, Pm(k). This quantity is the target

of multiple observational campaigns, ranging from those targeting redshift-space-

distortions and galaxy clustering or weak lensing surveys. Using Eq. (1.38), we can

write it as

Pm(a,k) =
[

9

10
Tm(k)Gm(a,k)

]2

PΨi n(k) , (1.57)

because the transfer functions and growth factor incorporate only deterministic pro-

cesses, and similarly for v(a,k) and Φ(a,k). This means that we can describe the

statistical properties of the three fields characterizing the LSS all in terms of one sin-

gle power spectrum, PΨi n(k). In the expression above, PΨi n(k) is the primordial scalar
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Figure 1.1: The angular power spectrum of the CMB temperature anisotropies, displaying the acoustic
peaks of the photon-baryon fluid, from [4]. On the y-axis Dℓ = ℓ(ℓ+1)Cℓ. The blue line is the prediction
ofΛCDM with the best fit values of its parameters, while the red dots corresponds to data. The lower panel
shows the residuals with respect to this model. For small ℓ, the plateau corresponds to the integrated
Sachs Wolfe effect (ISW), an effect that depends on the integrated time dependence of the gravitational
potentials (see e.g. Eq. (1.114)). Since these are constant during matter domination, the ISW switches on
during dark energy domination. In this region, though, the error is dominated by the irreducible cosmic
variance.

power spectrum: it contains information about the initial conditions of the linear

scalar perturbations. In the standard theory, these are set by the inflaton, a pri-

mordial spin-0 field which guides the Universe through an exponentially accelerated

phase of expansion before the particles of the standard model were produced [5, 47].

The simplest inflationary theory predicts an almost scale-invariant primordial power

spectrum

PΨi n(k) = As

[
k

k∗

]ns−1

, (1.58)

with k∗ a pivot scale, As the amplitude of the scalar power spectrum and ns =
0.9649±0.0042 the spectral index, both measured through observations of the CMB

by the Planck satellite at the % precision [3]. So, from the matter power spectrum, by

knowing the gravitational theory, we can extract information about the initial stages

of the Universe in what would seem a remarkably straightforward way, at least on

linear scales. This seemingly simple task is then complicated by the fact that we do

not directly observe all the matter, as the majority of this is in the form of dark mat-
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ter, which does not emit electromagnetic radiation. This means that we do not have

direct access to the full density contrast δC
m(a,k), but only to galaxies which should

be located in the peaks of the CDM distribution. To account for this, cosmologist

introduce the time-dependent linear galaxy bias as

δg (z,k) = b(z)δC
m(z,k) , (1.59)

where z is the redshift and δg is the galaxy overdensity field, to which we have di-

rect access from a galaxy survey. Therefore, we can measure its power spectrum, and

relate it to the one of matter as Pg (z,k) = [b(z)]2Pm(z,k) [5, 47]. To further compli-

cate the matter, one has to keep into account the so-called Redshift Space distortions

(RSD): the peculiar velocity of the galaxy falling into the gravitational potential well

adds a contribution to the measured redshift [49]. This contribution introduces a

dependence on the cosine of the angle between the line-of-sight and the peculiar

velocity, µ, such that

Pg (z,k) = [
b(z)+bv f (z)µ2

k

]2
Pm(z,k) , (1.60)

where bv is the bias between the galaxy and matter velocity distributions and f the

growth rate already introduced.

Figure 1.2: The galaxy power spectrum from [50]. The solid curve is the best fit linearΛCDM model.
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All of these considerations can be generalized to the case of more random fields. For

instance, with two of them we can consider their correlation matrix

ξAB (τ,x;τ′,x′) ≡ 〈
δA(τ,x)δB(τ′,x′)

〉
, (1.61)

which allows defining the cross power spectrum P AB (k) through its 3D Fourier

transform, or the angular cross correlations C AB (ℓ) through its decomposition on

the spherical harmonics basis. Once again, we can appreciate the great value of

Eqs. (1.38) - (1.40): they clearly show that the different scalar tracers (δC
m , v,Φ) ac-

tually have the same statistical properties, and hence it is worth considering their

correlations. This possibility is very powerful as the measurements of the different

fields are, in general, independent, therefore less subject to systematic errors. Ad-

ditionally, since the growth factors {Gm , Gv , GΦ} in Eq. (1.41) depend differently on

the cosmological model parameters, the mixed estimators ξAB , can feature a greater

constraining power on the cosmological parameters, due to the breaking of degen-

eracies. As we will show in Section 1.4.3, also GWs and SNe can be used to trace

the underlying dark matter distribution, in a way that depends on the background

cosmology too. We will use GWs to build estimators to constrain the parameters of

scalar-tensor theories in Chapter 2 in combination with SNe, and in Chapter 3 in

combination with galaxy and weak lensing surveys.

1.2. Alternative models for the late time Universe
General Relativity is the unique theory for an interacting, massless, spin-2 field in

4 dimensions [51]. It is based on the assumptions of diffeomorphism invariance as

symmetry, the metric being the only field entering the gravitational action and that

the latter must lead to equations of motion at most of second order. Any alterna-

tive to General Relativity, then, will in general introduce new degrees of freedom by

abandoning any of these assumptions. This is true even if no new fields are explic-

itly added to the gravitational action. For example, having higher order equations

of motion leads to more propagating degrees of freedom, requiring additional ini-

tial conditions. In such cases, one constraint equation of General Relativity could

be promoted to a dynamical one [52]. Dropping diffeomorphism invariance also

introduces new degrees of freedom as symmetries can be restored by adding new

fields with suitable transformation laws under the broken generators, the so-called

"Stuckelberg fields" [53]. In the simplest scenario, compatibly also with the broken

time-translation of the expanding homogeneous and isotropic Universe, is to add

one additional degree of freedom. This field can, eventually, drive the late time cos-

mic acceleration on large scales [52, 54]. For this reason, we address it generically as

the "DE field". In order to satisfy some minimal stability requirements, scalar-tensor

theories must lead to second order equations of motion for the propagating degrees

of freedom, one massless tensor and one scalar. Scalar-tensor theories have a long
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history, and many famous gravitational theories belong to this class. Among them,

for instance, we account Quintessence theories [55], Brans-Dicke gravity [56], Co-

variant Galileon cosmologies [57] and K-essence theories [58]. Covariant Galileons

attracted much attention in cosmology because of the existence of a tracking solu-

tion which evolves into a de Sitter fixed point [59]. All of these theories belong to the

so-called Horndeski family [60–62]. Initially considered the most general action of a

scalar-tensor theory leading to a stable dynamics, this class of theories was subse-

quently enlarged in the beyond-Horndeski theories [63, 64], and then DHOST [65–

70]. General Relativity, plusΛ, corresponds to the trivial case in which the DE field is

constant, henceΛCDM is always contained in the class of scalar-tensor gravities.

To be able to source the cosmic exponentially accelerated expansion, the DE field

must have a mass of the order of magnitude of the Hubble scale, i.e. ∼ 10−33 eV. As

a result, its Compton wavelength is large, and the field mediates a long range inter-

action. Because of this extra force, the laws of gravity appear modified above this

scale [71–73]. Typically, this shows into a modification of the Poisson Eq. (1.30). Cos-

mological observables can be altered even below the scale of the Compton wave-

length, since the DE field can still influence the dynamics of the homogeneous and

isotropic Universe [74]. Another characteristic features of all scalar-tensor theo-

ries regards their small-scale behavior. If the DE field exists, it must hide itself in

high-density region environments, such as the Solar System, where General Relativ-

ity has passed all tests performed so far. Thus, viable scalar-tensor theories must

be equipped with a dynamical mechanism that make manifest the presence of the

DE field only on large-scales (low density), such as the linear scales of cosmological

perturbations, and suppresses otherwise. This screening can be achieved through

non-linear interactions, which become prominent at small scales, with the result of

effectively decoupling the DE field from matter (see [51] for a review).

1.2.1. The Horndeski subclass with luminal gravitational waves

The power of scalar-tensor theories, lies in the fact that they are a class. Practi-

cally, this means that one can treat many different alternatives at the same time,

simply by leaving their coupling functions unspecified, rather than going on a one-

to-one basis. Because of this, they are suited to build tests: instead of computing

the phenomenology of each specific theory, we will have a continuous parametrized

class of them, which we can constrain after gathering the necessary data. For in-

stance, we have already commented that surveys mapping the galaxies’ distribution

have access to the growth of the linear gravitational potentials, through Pg (a,k) =
[b(a)]2Pm(a,k), and that how matter inhomogeneities grow depends on the theory

of gravity, as it is shown in Eq. (1.57). In a dynamical dark energy scenario describ-

ing the late-time cosmic expansion, the initial condition set by PΨi n will be the same,

but the transfer function and the growth factor will be changed, Tm → T DE
m and
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Gm →GDE
m , in a way that depends on the free coupling functions of the scalar-tensor

theory. Another example comes from the tensor sector, as the amplitude, the propa-

gation speed and the polarization content of the GWs can, in principle, be modified

in a way which depends on the free scalar-tensor couplings.

For simplicity, in this Thesis we restrict our study to Horndeski models in which ten-

sor modes propagate luminally [75–78] at all redshifts, satisfying the bound from

GW170817 [79]. Therefore, we consider the action

S =SG [gµν,ϕ]+SM [gµν,χi ] , (1.62)

with the gravitational part given by

SG =
∫

d 4x
p−g

( M 2
P [ϕ]

2
R +G[ϕ, X ]□ϕ+K [ϕ, X ]

)
, (1.63)

where ϕ is the DE field, X ≡−∂µϕ∂µϕ/2 its kinetic term, and MP , G , K are free func-

tions encoding possible self-couplings of DE field, and interactions with the space-

time metric. We assume that the matter action, SM [gµν,χi ], is universally coupled

with the Jordan frame metric gµν. This means that photons are not directly coupled

to the DE field, and they interact with it only indirectly through gravitational interac-

tion. This observation is crucial as it is the starting point for all the multi - messen-

ger tests: the difference in the couplings between gravitational and electromagnetic

waves to the DE field produced different phenomenologies in these two sectors, even

when these two have similar frequencies. Because of the very different typical wave-

length, though, it could be that photons and GWs are in different optical regimes and

in this case DE effects can be degenerate with wave optics ones [80]. Note that some-

times it is convenient to perform a conformal transformation gµν =Ω2(ϕ)g̃µν, to re-

move the non-minimal coupling between the metric and the DE field. In this frame,

also known as Einstein frame, one fixes Ω2(ϕ) such that M 2
P [ϕ]R[gµν] → m2

0R[g̃µν]

to remove the minimal coupling, and where m2
0 = (8πG)−1 is the Planck’s mass. As a

result SM [gµν,χi ] →SM [Ω2(ϕ)g̃µν,χi ], and the matter action becomes explicitly de-

pendent on the DE field. This kind of description is useful in the context of screening

scenarios (see e.g. [51]) and we use it in Chapter 5.

Starting from (1.62), one can derive the gravitational and scalar field equations by

varying it with respect to gµν and ϕ. Effectively, the former can be recast in the

form (1.3) with a particular stress-energy tensor,

Gµν = 8πG
[

T (DE)
µν

[
gαβ,ϕ

]+Tµν
[
gαβ,χi

]]
, (1.64)

where the explicit form of T (DE)
µν depends on the Horndeski functions: MP ,K ,G .
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1.2.2. Cosmology in alternative scenarios

Starting from Eq. (1.64), one can work out how cosmology is changed in the cho-

sen extended theory. The presence of the DE field does not affect the cosmological

principle, or the fact that the Universe is expanding, nor that matter is in the form

of clumped structures on large scales. The effect of its presence is to, possibly, alter

the dynamics of the scale factor and of the growth of LSS. Therefore, the approach to

tackle the problem is the same as before: we choose the metric as in Eq. (1.12), and

solve Eq. (1.64) perturbatively, instead of Eq. (1.3). The result is a set of equations

similar to Eq. (1.7) and Eqs. (1.23) - (1.29), but with additional terms originating from

T (DE)
µν . The system of equations is also supplemented by the DE field equation of mo-

tion, both at the level of the homogeneous and isotropic configuration and its linear

perturbations. Analogously to the metric and the matter stress-energy tensor, the DE

field is decomposed as

ϕ(x) =ϕ0(τ)+ϵδϕ(x) , (1.65)

where we have chosen as background φ̄ = ϕ0(τ), namely a field configuration com-

patible with the symmetries of FLRW. Although conceptually simple, the exercise of

working out cosmology in these extended theories is rather long and tedious, un-

less one chooses some specific form for the Horndeski functions MP ,K ,G . Instead of

choosing a specific model, one can opt for more agnostic explorations [81]. A pow-

erful approach proposed in literature is the so-called Effective Field Theory of Dark

Energy (EFT) [82–87]: a unifying framework able to give predictions about the ex-

pansion of the Universe and the growth of LSS.

At the center of the EFT approach is the idea that the observed time evolving profile

of the expanding Universe is the result of a spontaneous symmetry breaking of time-

translation. The Goldstone boson of the symmetry breaking, π(x), is identified with

the DE field via π(x) = δϕ(x)/ϕ′
0, since the background expansion assures ϕ′

0 ̸= 0.

Using then techniques of the effective approaches in quantum field theory, one can

then write the most general action for the linear perturbations around the symmetry-

breaking background. The EFT, then, starts by considering the gauge transformation

of the perturbation of the DE field

ϵδϕ′ = ϵδϕ−ξ0ϕ′
0 , (1.66)

since ϕ0 is exclusively time dependent, and choosing the unitary gauge : δϕ′ = 0.

This way, the slices of constant time are identified with the hypersurfaces of uniform

scalar field. As a result, one is left exclusively with the metric perturbation to con-

struct the operators entering the second order action dictating the LSS linear dynam-

ics, and they can be organized in power of derivatives. Since LSS are large-scale fluc-

tuations, the most relevant operators dictating their dynamics contain fewer deriva-

tives. The unitary gauge breaks time translation invariance, so that explicit functions

of time are allowed in the EFT action. Additionally, the normalized vector orthogonal
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to the constant time hypersurfaces, in unitary gauge reads

nµ ≡− ∂µϕ√
−(∂ϕ)2

→ −
δ0
µ√

−g 00
, (1.67)

since ∂µϕ = δ0
µ if ϕ is used as time coordinates. This means that, when building

the EFT action we can contract tensors with nµ, terms with 0 free upper indices are

allowed, such as g 00 or R00. For more details on the construction of the EFT action,

see [82, 85, 86, 88]. Imposing second-order equations of motion, and additionally a

luminal speed of propagation for tensors, the resulting quadratic action reads

S =
∫

d 4x
p−g

{m2
0

2
[1+Ω(τ)] R +Λ(τ)− c(τ)a2δg 00+

+γ1(τ)
m2

0 H 2
0

2
(a2δg 00)2 −γ2(τ)

m2
0 H0

2
(a2δg 00)δK µ

µ

}
+Sm[gµν,χi ].

(1.68)

where m2
0 = (8πG)−1 and δg 00, δK µ

µ are, respectively, the reduced Planck mass, the

perturbations of the time-time component of the inverse metric, and the trace of

the perturbations to the extrinsic curvature of constant-time hypersurfaces. The

free functions of timeΩ(a),Λ(a),c(a) and γ1(a),γ2(a) are the EFT functions; the first

three affect the dynamics both of the background and linear cosmological perturba-

tions, while the latter two affect only perturbations. ΛCDM is included in this frame-

work, and it corresponds to the choice Λ(a) = const , with the rest of EFT functions

being zero. Different EFT functions correspond to different characteristics of the the-

ory: the non-minimal coupling Ω(a), leads to a running Planck mass; the kineticity

γ1(a), quantifies the independent dynamics of the scalar field; the braiding γ2(a),

broadly signals a coupling between the metric and the scalar degree of freedom. No-

tice that we adopt the convention of [89, 90] for the EFT functions. The matter action

is assumed to be universally coupled to the Jordan frame metric, as discussed previ-

ously.

The spirit of the EFT is to assign parametrization for the time dependency of the

EFT functions, without relying on information coming from having chosen a specific

model. Nonetheless, if one is interested in one specific realization of a scalar-tensor

theories, the gravity model included in the EFT approach can be translated into the

EFT language via particular mapping procedures. For reference: non-minimally

coupled quintessence, f(R) gravity and Brans-Dicke theories would be character-

ized by non-trivial background EFT functions, while having γ1 = γ2 = 0; k-essence

would further have γ1 ̸= 0 and k-mouflage correspond to all functions being non-

zero. Alternative conventions are found in the literature, most commonly the so-

called αi parametrization [91, 92] in terms of {αM ,αK ,αB } (while αT = c2
T −1 is zero

for our case) for which there is a simple direct correspondence with {Ω,γ1,γ2} (see

e.g. [90, 93]). A typical feature of EFT of DE is that it allows to formulate a set of con-

ditions that the EFT functions need to satisfy among them in order for the resulting
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theory to be viable and do not develop instabilities [86, 88, 92–95]. These can be quite

powerful in restricting the parameter space of the EFT functions for which it makes

sense to explore the phenomenology [96, 97] purely on theoretical grounds.

The modified equations of motion that follow from the EFT action are implemented

in the code EFTCAMB [89, 90]: the extension of CAMB to scalar-tensor theories based

on the EFT action (1.68). While we use this code to solve such equations numerically,

it is still enlightening to understand how DE field modifies the equations of the cos-

mological model. For a thorough review of the EFT formalism and its applications to

cosmological tests of gravity, we refer the reader to [93] and references therein.

Modifications to the expansion history

From Eq. (1.68), it is clear that only Ω(a),Λ(a),c(a) can affect the expansion history

of the Universe, as their presence in the EFT action results in a modification of Fried-

mann’s equation (1.7). In order to deal with more familiar quantities, one can opt

to work in the designer approach [85, 86, 90], and reverse the problem. In this ap-

proach, the expansion history is a given, and the two Friedmann equations are used

to fix two of three EFT functions, in terms of the third one and H(a). To fix the ex-

pansion H(a), one can choose the equation of state of the DE field, wDE, since the

background metric and DE field equations of motion can be rearranged to obtain

H2 = a2H 2
0

(
Ωm +ΩΛ+ ρDE(a)

ρcr i t

)
, ρ′

DE +3HρDE(1+wDE(a) ) = 0, (1.69)

and also two constraint equations giving Λ and c in terms of H(a) and the non-

minimal coupling, Ω(a). Therefore, a model in the designer approach is fully spec-

ified by a choice Ω(a) and wDE(a). While there is no preferred parametrization for

their time dependency, a very common choice for the DE equation of state is the

so-called "Chevallier-Polarski-Linder" (CPL) [98, 99] parametrization,

wDE(a) = w0 +wa(1−a) , (1.70)

where w0 and wa are two constants. Choosing a parametrization has the effect of

reducing the problem from constraining a time dependent function, throughout the

entire history of the Universe, to constraining just a few constant parameters. Fig-

ure 1.3 shows an example of such constraints coming from the Planck mission [4],

observing CMB temperature and polarization anisotropies, and the galaxy and weak

lensing survey DES [100].

Modifications to the growth of structures

By varying the second order EFT action (1.68) with respect to the metric perturba-

tion, one can find the equations of motion governing the linear growth of the cos-

mic structures. The results are implemented in the code EFTCAMB, which we use
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Figure 1.3: Marginalized constraints on {w0, wa } from CMB observation [4] (left panel) and the galaxy
survey DES [100] (right panel) alone or in combination with other probes. ΛCDM corresponds to w0 =−1
and wa = 0.

to compute the modified transfer functions and growth factors when needed. De-

spite the vast range of possibilities, including the DE field comes with some generic

features, which can help in understanding the modified phenomenology of the lin-

ear scales. Typically, a dynamical dark energy field sources a scalar anisotropic shear

stress, invalidating Eq. (1.31), and modifies the Poisson’s Eq. (1.30). Detecting such

deviations is the goal of galaxy and weak lensing surveys, such as DES [101, 102]

and KiDS [103, 104], already delivering data, or the Stage IV missions: Euclid [105],

the Vera C. Rubin Observatory [12, 106, 107] and Nancy Grace Roman Space Tele-

scope [108]. All of these instruments are able to map LSS by analyzing properties

of some tracers of it: the distribution of galaxies on large scales follows the gravita-

tional potential, and the weak lensing induced distortions of their shapes depend on

the foreground matter distribution (weak lensing is a typical propagation effect, as

we will also see later). If one is not interested in the specific footprint of each oper-

ator in the EFT action (1.68) into the final observable, then it is also possible to opt

to parametrize directly the gravitational field equations. Focusing only on the scalar

sector, we rewrite Eqs. (1.31) and (1.30) as [109–111]

Ψk = η(a,k)Φk (1.71)

Φk = −4πGa2µ(a,k) ρ̄ δC
m(a,k) , (1.72)

Φk +Ψk = −8πGa2Σ(a,k) ρ̄ δC
m(a,k) , (1.73)

and it is easy to prove the relation η = 2Σ/µ−1. These parametrizations are valid in

the absence of shear anisotropic stress, otherwise the left-hand-side of the last two

equations must be generalized [4, 109, 110]. The two functions η(a,k) and Σ(a,k)

have specific physical interpretations3. The factor η(a,k), signifying a difference be-

3We use notations of [4] and call η(a,k) the slip parameters. In other references, such as [110] the slip is
also referred to as γ(a,k).
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tween the two gravitational potential, is called gravitational slip. µ parametrizes

modifications to the Newtonian gravitational potential, while Σ regulates variations

of the Weyl potential, ΨW ≡ (Φ+Ψ)/2, affecting the geodesic equations of photons.

While η is not directly linked to an observable, µ and Σ are, therefore, they can be

probed with future observations [112–114]. A modified growth pattern of LSS, also

causes changes in the velocities at which galaxies fall inside the gravitational po-

tential wells, opening also redshift space distortions as another investigation chan-

nel for µ, to be combined with weak lensing surveys probing Σ [115, 116]. While

the parametrizations in Eqs. (1.72) and (1.73) are incredibly handy to make contact

with observations, their embedding into the theoretically motivated EFT functions

is highly non-trivial. This fact is not to be underestimated: when dealing with the

EFT functions (or equally the Horndeski functions), it is straightforward to formu-

late the stability conditions and explore viable theories, while it is not the case for

µ(a,k),Σ(a,k). It is possible, to some extent, to translate these theoretical priors onto

the phenomenologically motivated µ(a,k),Σ(a,k), and reduce the parameter space

to investigate [95, 97, 117]. The parametrizations Eqs. (1.72) and (1.73) are also em-

ployed in parameterized approaches to cosmological perturbation theories, such as

the Post-Friedmann Framework [52, 118–121].

Figure 1.4: Marginalized posterior distributions of the values of µ and η today from [4], from Planck alone
or in combination with additional external data, neglecting any scale dependence. The CMB photons are
sensitive to modifications of the cosmic structures’ growth both through the integrated Sachs Wolfe effect,
and the lensing inducing secondary anisotropies.

The dynamics of the tensor perturbations is, in general, affected by the DE field as

well. Since we are considering theories where the tensor modes propagate luminally,

Eq. (1.29) can only be modified as (see e.g. [122–124])

γ′′i j +2H (1−δ(τ))γ′i j +k2γi j = 0. (1.74)

One can understand this as follows: being the DE field a scalar, it cannot produce

a source for the linear order tensor modes. Therefore, the only way it can enter in

their equation is through a modification of the time dependent coefficients already

present in Eq. (1.29). Since we are requiring a luminal propagation speed, the ratio
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between the coefficients with the second derivatives must remain 1 (in our units c =
1), so that, effectively, the only term that is allowed to gain extra contribution is the

damping one. For theories described by the action (1.68), it can be checked that

δ(τ) =−∂ log MP [ϕ0]

∂ log a
=− M ′

P [ϕ0]

HMP [ϕ0]
, (1.75)

where M ′
P [ϕ0] is the time derivative of the running Planck’s mass. This factor is com-

monly found in literature also under the name αM [91]. As in the case of the scalar

perturbations, one can opt for a phenomenological approach also in the case of GWs,

instead of relating δ(τ) to a specific theory, similarly to µ and Σ. In this case, devia-

tions from General Relativity are usually parametrized by {Ξ0,n}, as we will show in

Eq. (1.108).

The fact that the DE field affects both scalars and tensors is a reflection of the as-

sumption of having one, unique underlying theory describing the LSS: the same set

of parameters enters the dynamics of all the perturbation modes. For this reason,

it is possible to combine the information coming from scalar sector probes, such as

galaxy clustering and lensing or the CMB angular power spectrum, with those from

tensor sector probes, and exploit their joint power to pin down the effects of the DE

field. GW170817 [125] is an example of such synergy: with one GW detection, the pa-

rameter space of the full Hordenski action has been restricted to three free functions,

MP ,K ,G4, and the EFT functions to four, Ω(a), wDE(a),γ1(a),γ2(a) [76, 127, 128].

This is understandable since the equations of the tensor modes and of the gravita-

tional slip both come from the spatial, traceless part of the gravitational field equa-

tions [124]. This drastic reduction of the parameter space, naturally, has caveats and

loopholes [129, 130]. Other signatures of the DE field which affect both scalar and

tensor modes have been investigated, for instance, in [110] and a more general re-

view can be found in [78].

1.3. Gravitational waves
In Section 1.1.2 we have introduced large-scale structures and decomposed them

into irreducible representations of the Euclidean spatial rotations. Among them,

there was a tensor contribution, γi j , but we claimed that this is not what we iden-

tify as GWs in this Thesis. So what are GWs in our description? We define a GW, hµν,

as a linear perturbation, around a background configuration, ḡµν, of the spacetime

metric

gµν = ḡµν(x)+αhµν , with α≪ 1, (1.76)

where α is the expansion parameter used to keep track of the order of magnitude of

the GW. Naturally, if one is considering scalar-tensor theories, also the DE field must

4See [126] for generalization to beyond Horndeski theories.
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be expanded as

ϕ= ϕ̄(x)+αδφ . (1.77)

In analogy with hµν being called GW, δφ is usually named scalar wave (SW)5. Note

that in Eqs. (1.76) and (1.77), the background configurations are not necessarily

homogeneous and isotropic and, as such, they can depend on the four spacetime

coordinates, as indicated. If one takes a closer look at these two definitions and

Eqs. (1.12) and (1.65) for LSS, it is easy to realize that these are formally the same,

and the only difference is the background spacetime: in the case of LSS {ḡµν,ϕ̄(x)} =
{a2(τ)ηµν,ϕ0(τ)}, while these two can assume different forms in the case of GWs and

SWs. This consideration, which might be argued a subtlety, has substantial conse-

quences, both at the computational and interpretation level. Therefore, according

to our definition, GWs are more similar to the whole LSS, δgµν, rather than just its

tensor subgroup and the study of their propagation is, in some way, similar to the

study of the growth of cosmic structures. Note that we use two different expansion

parameters to count the expansion in powers of the GW and the LSS: in the first case

we use α, while in the second ϵ. This notation will be kept consistent throughout the

entire Thesis, and can always be used as a guideline to understand which quantity is

being used.

The linear dynamics of a GW, in the general theory of Eq. (1.64), can be found by

considering

δα

[
Gµν−8πG T (DE)

µν

[
gαβ,ϕ

]−8πGTµν
[
gαβ,χi

]]
= 0, (1.78)

where δα means linearization to first order inα. The case of General Relativity is con-

tained in these equations if one chooses K =G = 0 and MP (ϕ) = (8πG)−2 as forms of

the Horndeski functions. As in the case of LSS, from the general coordinate covari-

ance of the full theory, the linear metric perturbation inherits the gauge freedom

αh′
µν =αh′

µν−
(∇̄µ ξν+∇̄ν ξµ

)
, (1.79)

with ∇̄µ the covariant derivatives with respect to ḡµν. So, we are free to choose a

gauge for αhµν, in the same way as we choose the Poisson’s one to describe the

cosmic structures in Eq. (1.14). Poisson’s gauge was convenient in the case of LSS,

because the symmetries of the FLRW background guaranteed the decoupling of the

linear scalar, vector and tensor modes, as it can be clearly seen in Eqs. (1.23) - (1.29).

In the case of a GW, where ḡµν is, usually, either treated as unknown, or less sym-

metric than FLRW, the typical gauge choices performed in the context of LSS are not

particularly convenient, and one usually opts for different ones. Nonetheless, one

can already start appreciating the difficulty of the problem at hand: in cosmology it

is clear which part of ϵgµν propagates (ϵγi j in Eq. (1.29)) and which part corresponds

5Note that we are using the symbol αδφ for the scalar wave and ϵδϕ for the DE clustering participating in
the LSS.
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to the gravitational potential (ϵΨ in Eq. (1.30)). What about αhµν? How can we sep-

arate, in the far zone, the static potential from the propagating modes (i.e. those

modes which remain even when setting the sources to zero) when the background

spacetime is highly non-symmetric? Engineering ways to go tackle this problem is

the main focus of Chapter 6. As a general rule, when the background does not dis-

play any particular symmetry, it is convenient to go for a covariant gauge choice, such

as the de-Donder gauge,

∇̄µĥµν = 0, (1.80)

where ĥµν = hµν −hḡµν/2 is the trace-reversed metric perturbation. In this gauge,

the first order Einstein tensor reads

δαGµν =−α
2

[
□̄ĥµν+2R̄λµανhλα−hλν R̄λµ−hλµR̄λν+hµνR̄ − ḡµνhαβR̄αβ

]
, (1.81)

where all the barred quantities are computed with the background metric. Assum-

ing also that the background fields are on-shell, namely satisfying the field equa-

tions (1.64), we rewrite equation (1.78) as

□̄ĥµν+2R̄λµανhλα− ḡµνhαβR̄αβ+8πG
[
δαΘµν+δαΘDE

µν

]
= 0, (1.82)

where

δαΘµν ≡ 1

2α

[
ḡµσ

(
δαTσ

ν

)+ ḡνσ
(
δαTσ

µ

)]
, (1.83)

and δαΘ
DE
µν the same for T (DE)

µν . These equations constitute the starting point for

studying the propagation of GWs through the background spacetime, ḡµν.

1.3.1. Sources and wavelengths of GWs

Although it might look like GWs and electromagnetic waves are similar, there are

some essential differences between the two. For instance, astronomical electromag-

netic signals are usually an incoherent superposition of photons emitted from indi-

vidual sources, while GWs can also be produced by coherent bulk motions of mass-

energy or by nonlinear spacetime curvature features [131]. Moreover, the photon’s

wavelength is usually much smaller than the dimension of the source, allowing us

to make pictures of the source and to treat them in the ray-optics limit. For GWs the

situation is the opposite, and their frequency spectrum ranges from ∼ 103 Hz down-

ward for roughly 20 orders of magnitude, almost complementary to the range typical

of astronomical electromagnetic radiation (from 107 Hz upward) [132]. Even the low

energy CMB photons have frequencies of the order of 160 GHz. Because of the vari-

ety of frequencies that GWs might have, they cannot always be treated in the ray (or

geometrical) optics limit, as often it is necessary to opt for a treatment able to include

wave effects.

Broadly speaking, GWs sources are divided into two main categories: astrophysi-

cal or cosmological. Among the first class, we include: continuous sources (rotating
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pulsars with intrinsic asymmetry from crust deformations), burst events (collapses

of stars) and inspirals of compact objects binaries, by far the most famous as they

are the sources of the GWs detected by LIGO-Virgo. The frequencies of these events

depend on properties of the astrophysical sources, such as the masses of the black

holes and neutron stars composing the binaries, and are typically in the high fre-

quency side of the GW spectrum (>mHz). Belonging to the second class, instead,

we find waves normally generated in the early Universe, such as the inflationary ten-

sor modes [22–24, 133], or by quadrupolar collapse of large cosmic structures [134].

Various mechanisms can source GWs in the primordial Universe: cosmic strings and

phase transitions [135–139], or second order scalar perturbation [140–148] are the

most widely investigated. These waves are spread in a broad band of the frequency

spectrum and are expected to form a stochastic background.

Regardless of the specifics of their source, we want to stress the vast range of frequen-

cies characterizing GWs, contrary to the typical high ones for photons. This unique

feature makes them the perfect test ground to probe some particular assumptions

usually made in the context of wave propagation over curved spacetimes, well jus-

tified for the highly energetic electromagnetic signals but not necessarily for GWs.

These assumptions are necessary in order to solve Maxwell’s equations in curved

spacetime (see e.g. [149]), or Eq. (1.82) in the case of GWs, otherwise too compli-

cated. According to the frequency, different simplifying approaches are more or less

convenient, as we will see.

1.3.2. Definition of a gravitational wave: optical regimes

Assuming that the theory we are working with admits general coordinate invariance,

then its linearized version inherits the invariance under infinitesimal gauge transfor-

mations, such as in Eq. (1.79) for the metric perturbation. In the context of scalar-

tensor theories, one also has the freedom to gauge the DE field according to

αδφ′ =αδφ−ξµ∂µϕ̄(x) . (1.84)

The background ϕ̄(xµ) is generic, and it can depend on all the four spacetime coordi-

nates, in contrast to the LSS expansion and transformation in Eqs. (1.65) and (1.84).

Due to this gauge freedom, it can soon be realized that the expansions in Eqs. (1.76)

and (1.77) are easier said than done, and the problem of the definition of the GW and

SW arises right away. Considering that the numerical components of a tensor can be

made large or small by means of coordinate transformation, using the smallness ofα

as a criterion to distinguish the linear perturbation from the background spacetime,

is not sufficient [150]. In other words, the splittings in Eqs. (1.76) and (1.77) are un-

ambiguous only if supplemented by an additional coordinate independent criterion

to distinguish ḡµν from hµν, and ϕ̄ from δφ. There are two main approaches to tackle

this problem,
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1. linking the additional criterion to properties of the GWs and SWs such as their

frequency: when these are much higher than the typical background time vari-

ation scale, the splitting in Eqs. (1.76) and (1.77) can be achieved by means of

suitable averaging procedures.

2. assigning a priori a background {ḡµν,ϕ̄} and assuming it to be gauge invariant.

Note that the second avenue is the one adopted in standard cosmological perturba-

tion theory for LSS, which suffers from the same problematics. In this case the FLRW

background configuration of the metric, ḡµν = a2(τ)ηµν, and scalar field, ϕ̄ = ϕ0(τ),

are considered fixed and gauge independent.

According to the specific situation, one approach is more suitable than the other. We

take the problem of the definition of the GW and SW at the heart of our discussion,

and use this initial bifurcation to set up the two different optical regimes for GWs and

SWs: ray-optics, where these two are defined according to the first method, and the

wave-optics when using the second criterion. This assumption is going to be ques-

tioned and revisited throughout this entire dissertation, especially in Chapters 4, 5

and 6.

Ray-optics definition

We can separate clearly what is « wave » from what is background when these two

vary on two distinguishable scales. The literature of GWs in ray-optics, alternatively

called geometric optics regime, starts from the pioneering works of Isaacson [151,

152], and then proceeds in many other papers, such as [153–155].

Figure 1.5: GW wavelength λ compared to background curvature radius L. A GW can be distinguished
from an unknown background when λ≪ L.



1

30 1. Introduction

In the geometric optics picture, one starts by introducing the parameter

1

ω
≡ λ

L
≪ 1, (1.85)

where λ is the wavelength of the GW and L the typical scale of spatial variation of the

background metric (see Figure 1.5). In the case where the background still varies on

length scales smaller than the GW frequency, but it is practically static, one can use

the different time profiles to separate GW and background, as in

1

ω
≡ fB

fg w
≪ 1, (1.86)

where fg w = c/λ and fB is the frequency of the background. This is the typical situ-

ation in a GW detection through ground-based detectors: the size of their arms are

smaller than the wavelength of the GW itself (λ ≃ 500−50 km corresponding to fre-

quencies of 102−103 Hz for typical waves detected by those interferometers) making

the short-wave expansion as in Eq. (1.85) useless. Moreover, the variations of the

gravitational field around the Earth due to its in-homogeneities are greater than the

amplitude of the wave and occurs on small scales with respect to λ, but it is almost

static [150]. Given this separation of scales (spatial or temporal), one can perform

the splitting in Eq. (1.76) in a coordinate independent fashion, by defining an aver-

age 〈. . .〉 such that the background metric is the "mean" metric: ḡµν ≡
〈

gµν
〉

, and hµν
is defined via

〈
hµν

〉= 0. For scalar-tensor theories, the same goes for the SW and the

background DE field profile. The description is completed by assigning a prescrip-

tion on how to perform the averaging, and this is where the high-frequency nature

of the GWs (and SWs) comes into play. The most widely used technique, also de-

scribed in [151, 152], is the ADM scheme : we perform a space (or temporal) averages

over volumes containing many periods of the GW, so that oscillatory perturbations

average out to zero. Additionally, when the condition (1.85) is met, the background

spacetime is practically constant in a wavelength and an almost plane-wave ansatz

hµν = Re
[
Aµν e i ωθ

]
, (1.87)

δφ = Re
[
Ξe i ωϑ

]
(1.88)

can be chosen. In the expressions above, Re is the real part, Aµν is the amplitude

(tensorial) of the GW and Ξ the one of the SW, θ and ϑ the phases of the waves. Note

that the high frequency character is encoded in the ω≫ 1. The amplitudes and the

phases are assumed to be varying slowly, so they are almost constant within a pe-

riod. Alternative names which can be found in literature for the ansatz above are:

eikonal, geometric optics ansatz or WKB ansatz. The gradients of the metric pertur-

bations chosen as in Eqs. (1.87) and (1.88) are enhanced by a factor ω, coming from

a derivative acting on the exponential: ∂hµν , ∂δφ∼ 1/ω≫ 1.

Given these expressions, one proceeds in plugging them into the differential

Eq. (1.82) which, then, can be organized in powers of ω. Being second order, the
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equation has the schematic form

ω2
[

. . .
]
+ω

[
. . .

]
+

[
. . .

]
= 0, (1.89)

since each derivative acting on the exponential brings down a factor ω. Because

ω≫ 1, in order for this equation to be satisfied, the coefficients of each term in the

ω expansion must vanish independently. From setting the coefficient of ω2 equal to

zero, one finds the dispersion relation of the GW, while the first order gives an evo-

lution equation for the amplitude of the wave. Additionally, it is usually assumed

that the standard matter content does not have high frequency excitations [38]:

δαΘµν[χi ] = 0. This assumption will be widely commented and explored in Chap-

ter 6, where we dubbed it Classical Matter approximation. In theories in which the

DE field is dynamical, the situation is slightly more complicated (one has to decou-

ple the kinetic terms of the degrees of freedom by performing a diagonalization), but

conceptually analogous.

The ray-optics description is well suited to describe GWs in the bands observed

by the ground- and space- based interferometers, considering their propagation

through the large-scale structures of the Universe. These waves have frequencies

≳ 10−3Hz, while the typical frequency associated to the linear matter structures lies

in the CMB band, ∼ 10−16 Hz so that ω≲ 10−13. Nevertheless, the power of the geo-

metric optics approximation is that it allows to draw general conclusions regardless

of the spacetime of propagation, as long as Eq. (1.85) remains valid. Let us make an

example in General Relativity. We plug the WKB ansatz in Eq. (1.87), into Eq.(1.82)

with the choice MP = (8πG)−2 and K =G = 0, and find

ω2 : ḡµνkµkν = 0, (1.90)

ω1 : ∇̄µ
(
A2 kµ

)= 0, (1.91)

where A2 ≡AµνAµν and

kµ ≡ ∂µθ , (1.92)

is the GW wave vector, or equally defined in terms of the covariant derivative. These

equations allow the effective interpretation of a GW as a collection of particles, the

gravitons, propagating with a wave vector kµ, which according to Eq. (1.90) is a null

vector, and the wave’s amplitude satisfies the continuity Eq. (1.91). The wave vec-

tor kµ identifies the rays via kµ = d xµ/dλ, with λ the affine parameter, which are

geodesics of the background spacetime, since

kµ∇̄µkν = kµ∇̄µ(∂νθ) = kµ∇̄ν(∇̄µθ) = 1

2
∇̄ν(kµkµ) = 0. (1.93)

Note that Eqs. (1.90) and (1.91) are valid regardless of the form of ḡµν, as previously

claimed. In this picture, the physical nature of the GW clearly arises (as opposed to
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gauge modes), with the possibility of defining a GW stress-energy tensor [152], ac-

counting for the energy and momentum transport by the waves (more details can

be found in Chapter 4). One can also understand this by making the following con-

sideration: within a wavelength λ, space appears locally flat, and so the Riemann

tensor describing curvature is gauge invariant. As long as 1/ω≪ 1, GWs do not have

long wavelengths modes and the gauge invariant local behavior carries over the en-

tire spacetime. Not only, because of the particle interpretation, one can adopt the

techniques typical of photons, to treat GWs as well. Two relevant examples are: the

Cosmic Rulers formalism [156–158], to describe projection effects induced by cosmic

structures on the propagating GWs, and the Boltzmann equation [159], to describe

the stochastic gravitational wave background (SGWB) similarly to the CMB.

Finally, the parameter ω is sometimes used to set up an expansion of the high-

frequency perturbations’ amplitudes. These additional terms are called the beyond

geometric optics corrections, and they take the form

hµν = Re
[(
Aµν+ω−1A1

µν+ω−2A2
µν+·· ·

)
e i ωθ

]
, (1.94)

δφ = Re
[(
Ξ+ω−1Ξ1 +ω−2Ξ2 +·· ·) e i ωϑ

]
. (1.95)

The beyond geometric optics order can contain valuable information and their role

in lensing of GWs, in General Relativity, has been intensively investigated, e.g. in [154,

155, 160, 161].

Wave-optics definition

Whenever Eq. (1.85) is not satisfied, the eikonal approximation cannot be cho-

sen. This is the case, for instance, of stochastic backgrounds of gravitational waves

(SGWB): it contains arbitrarily low frequencies, so it is preferable to have a descrip-

tion for it valid across its entire spectrum. In this case, we are forced to use the

second approach to define waves: one must specify a fixed background fields con-

figuration, and the field perturbations are simply defined as αhµν = gµν − ḡµν or

αδφ=ϕ− ϕ̄, in every gauge. We will use this approach in Chapter 6, to describe the

SGWB without employing techniques which rely on the eikonal ansatz, typical of the

ray-optics limit. This way, our formalism will be valid in every frequency range and

can accommodate wave optics effects: interference and diffraction of the waves in-

duced by masses situated along the path of the GW. These types of problems have

been addressed for the first time in [162], and proceeded with many subsequent

works [149, 163–166], showing that these become important when the mass of the

lens is such that

ML ≲ 105M⊙
(

f

H z

)−1

, (1.96)

where f is the frequency of the GW. Such papers were then generalized to the case

of multi-lens systems [167], or lenses composed of binary objects [168] and expand-
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ing backgrounds [169], and they are all in General Relativity. Wave-optics phenom-

ena are expected to occur, for instance, in micro-lensing events due to substruc-

tures [170, 171] for GWs in the LIGO-Virgo frequency band [16]. Interestingly, it

was proposed to use such events to discover unknown objects, such as intermedi-

ate mass black holes [172], more exotic forms of compact dark matter [173], or low-

mass dark matter halos [174] and primordial black holes [175]. In the case of resolved

GW events observed by LISA, it has been assessed that over (0.1−1.6)% of massive

black hole binaries in the range of 105 −106.5 solar masses will display wave-optics

effects [176, 177], while, in the frequency band of the ground-based detectors, it is ex-

pected that such events will be visible for sources up to redshift zs = 2−4 with third

generation observatories [178]. The condition in Eq. (1.96) can also be rewritten in

terms of λ, the GW wavelength, and L, the background variation scale, as λ≳ L: it is

the opposite regime compared to the one of Eq. (1.85). Not surprisingly, wave-optics

effects become important away from the regime where the effective description of a

wave in terms of a stream of particles holds.

When choosing the wave-optics definition for the GW, there is no simplifying ansatz

for the waves and one has to attempt solving Eq. (1.82) with the chosen background

configuration (changing gauge for the GW if needed). Recalling that this approach is

also the one used in the context of LSS, whenever we take {ḡµν,ϕ̄} to be compatible

with FLRW and its symmetries, then studying the propagation of GWs and SWs is for-

mally equivalent to doing cosmological perturbation theory, and the only difference

is the name of the actors: α plays the role of ϵ, αhµν the one of ϵδgµν and αδφ the

one of ϵδϕ. Any other situation, must be evaluated case by case. For instance, in the

literature of wave-optics effects in gravitational lensing [179], addressed in General

Relativity (δαΘDE
µν = 0), the chosen background is the one describing a static, Newto-

nian source,

d s̄2 =−
(
1+2ϵU (x)

)
d t 2 +

(
1−2ϵU (x)

)
d x2 , (1.97)

where U represent the gravitational potential well of the lens. In this case, Eq. (1.82)

reduces simply to □̄ĥµν = 0, outside the lens6. Then, usually one proceeds by ne-

glecting polarization effects on the GW [179]. To this end, the GW is decomposed as

hµν = h eµν, where h is the amplitude and eµν the polarization tensor which is con-

sidered constant. This way, the wave equation is transformed into an equation only

for the amplitude: ∂µ(
√−ḡ ḡµν∂νh), where ḡµν is given by Eq. (1.97). Expanding it to

first order in U one finds [179](
∆+ω2

)
h(ω, x) = 4ω2 ϵU (x)h(ω, x) , (1.98)

where h(t , x) = e−iωt h(ω, x) and ∆ is the Laplacian operator in spherical coordi-

nates (r,θ,ϕ) with r ≡
√

x2 + y2 + z2. Without the lens (U = 0), the amplitude of

the wave would fall inversely proportional to the distance as hN L = Ae iωr /r . At this

6The authors also neglect the contribution proportional to the Riemann tensor by assumption.
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point, there are two main strategies to solve Eq. (1.98): the first involving the so-

called Diffraction Integral (see e.g. [179]) while the second using the Green’s function

method (see e.g. [165]). We review only the second one because we will use a simi-

lar method in Chapter 6. In the Green’s function method, one sets up a solution of

Eq. (1.98) by considering that the effect of the gravitational potential must be small,

since ϵ is a small parameter. Therefore, the full solution must be similar to the un-

lensed (U = 0) wave

h(ω, x) = h(0)(ω, x)+ϵh(1)(ω, x) . (1.99)

Then, one plugs this expansion into Eq. (1.98) and matches order by order in ϵ. This

way h(0) is a solution of Eq. (1.98) with U = 0 and h(1) satisfies(
∆+ω2

)
h(1)(ω, x) = 4ω2 U (x)h(0)(ω, x) . (1.100)

As in [165], we solve this equation Using the Green’s function of the Helmholtz equa-

tion, e iω|x−x′|/|x−x′|, and obtain

h(1)(ω, x) =−ω
2

π

∫
d 3x ′ e iω|x−x′|

|x−x′| U (x ′)h(0)(ω, x ′) . (1.101)

The solution of h(1) encodes the diffraction and interference pattern typical of the

wave-optics regime, which are frequency dependent. Moreover, since the frequency

of a GW produced during the inspiral of a compact object binary increases while

going toward the merger, monitoring in time a lensed GW event will allow observing

the change in the diffraction pattern. This frequency dependecy of the observed lens

pattern can be used to break degeneracies between the lens parameters and infer

properties of the lens objects with an increased level of detail and precision [180,

181]. For instance, the so-called mass-sheet degeneracy can be lifted [149].

1.4. GWs in ray-optics limit: relativistic effects
We have seen that the ray-optics definition of a GW allows for a treatment which is

independent of the background spacetime metric. This is clearly visible in Eqs. (1.90)

and (1.91), which are valid for any ḡµν, as long as ω−1 ≪ 1. In this Section, we merge

all the knowledge gained from the three previous ones. First, we generalize Eqs. (1.90)

and (1.91) in the case of the Horndeski theory (1.62), promoting again ϕ to a dynam-

ical variable. Then we choose as background field configuration {ḡµν,ϕ̄} the cosmo-

logical perturbed solution, namely Eq. (1.14) for the metric and Eq. (1.65) for the DE

field. This means that we will have a double parameter expansion: α keeping track

of the GW and SW, as in Eqs. (1.76) and (1.77), and ϵ for the LSS included in the back-

ground field profiles. We will show that GWs propagating on such spacetimes are

damped (their amplitude is inversely proportional to the luminosity distance) and

that LSS source the so-called Relativistic effects, modulating the amplitude of the sig-

nals.
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1.4.1. Ray-optics with a DE field

When considering the Horndeski action (1.62), the linearized gravitational field

equations become (1.82), with δαΘ
DE
µν ̸= 0. If one plugs the geometric optics ansatz

into the equation of motion, then Eqs. (1.90) and (1.91) result modified. Since the

action (1.62) is tailored to have GWs propagating at the speed of light, then the dis-

persion relation remains unchanged, and the wave vector kµ, defined as the gradient

of the phase of the WKB ansatz in Eq. (1.92), satisfies

ḡµνkµkν = 0. (1.102)

In these extended gravitational theories, GWs are still described in terms of gravitons

propagating along null geodesics of ḡµν. It has been shown in [158, 182]7, that the

amplitude of the tensor modes of the GW, AT , satisfies

∇̄ρ
[

kρ (AT )2 ln M 2
P [ϕ̄(x)]

]
= 0, (1.103)

in the Horndeski theory (1.62) and with ϕ̄ the generic, background DE field configu-

ration. Eq. (1.91) follows simply by choosing MP [ϕ̄] = (8πG)−2. The result of having

promoted the cosmological constant to a dynamical scalar field described by the ac-

tion (1.62), is encoded in a modification to the GW tensor modes amplitude’s conser-

vation equation. This is clear from the extra factor ln M 2
P [ϕ̄(x)] in Eq. (1.103).

1.4.2. Standard sirens: the GW luminosity distance

The cosmological background is an expanding spacetime. Because of this, propagat-

ing waves are damped. This is the so-called Hubble friction, encoded in the factor H
of Eq. (1.29) or the modified one H(1−δ(τ)) in Eq. (1.74). Naturally, these considera-

tions are contained also in Eq. (1.103). Indeed, it is easy to check that, if one chooses

{ḡµν,ϕ̄} = {a2(τ)ηµν,ϕ0(τ)}, then Eq. (1.103) is compatible with Eq. (1.74).

In case of a homogeneous and isotropic background, the amplitude evolution

Eq. (1.103) can be integrated [158] to give

AT (z) = QT (1+ z)2

d̄ GW
L (z)

(1.104)

where QT is an integration constant that depends on the properties of the source, z

is the redshift, related to the scale factor as 1+z = a−1. In the solution above, we have

introduced the gravitational wave’s luminosity distance, d̄ GW
L (z), defined as

d̄ GW
L (z) ≡ MP (z)

MP (0)
d̄ EM

L (z) , (1.105)

7The procedure is actually slightly different, and we do not report it here. In particular, it requires decom-
posing the GW on a polarization basis, and focusing only on its tensor modes (in our definition, the GW
αhµν is more similar to the LSS, ϵδgµν, rather than only its tensor modes ϵγi j ). In the equation, AT is
the amplitude of the tensorial part of αhµν.
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where the electromagnetic luminosity distance is

d̄ EM
L (z) = (1+ z)χ̄(z) = (1+ z)

H0

∫ z

0

d z ′

E(z ′)
, (1.106)

with χ̄(z) the comoving distance and E(z) ≡H(z)/(a2H0) =Ωm +ΩΛ+ρDE(a)/ρcr i t

as in Friedmann’s equation (1.69). Eq. (1.104) is a fundamental result in the litera-

ture of GWs in scalar-tensor theories. From it, together with Eq. (1.105), we see that

the effect of the modification to the Hubble friction in the GW’s tensor modes equa-

tion, is to produce a difference between the luminosity distances as inferred from

electromagnetic signals and those from the amplitude of GWs. Since photons are

contained in the universally coupled matter action, SM [g ,χ], they are not directly

affected by the DE field, and the Hubble drag they feel is not modified. The pres-

ence of a dynamical DE field, in this case, enters only implicitly the expansion rate

E(z). This different behavior between the GW and EM sector is a golden resource for

testing scalar-tensor theories aimed at describing the late-time accelerated expan-

sion. It allows to directly investigate the non-minimal coupling between the DE field

and the curvature, also known as running Planck’s mass, MP (ϕ) (see e.g. [183–192]).

Eq. (1.105) is also renowned in literature with different notations, especially in terms

of δ(τ) =−∂ ln MP /∂ ln a, or αM =−δ(τ). In this case

MP (z)

MP (0)
= exp

[∫ z

0
d z ′ δ(z ′)

1+ z ′

]
. (1.107)

This expression has two clear behaviors: when z → 0, the integral becomes trivial

and no modification of the luminosity distance occur. On the other hand, when

z ≫ 1 then, we enter matter domination, and we expect δ(z) → 0 since the DE field

becomes very subdominant, and the results of General Relativity should be recov-

ered. In this case, the ratio MP (z)/MP (0) reaches a constant. Another very common

parametrization for Eq. (1.105), more similar in spirit to the phenomenological ap-

proach, can be found in [122, 183, 184] and sees the introduction of the two parame-

ters Ξ0 and n as
d̄ GW

L (z)

d̄ EM
L (z)

=Ξ0 + 1−Ξ0

(1+ z)n . (1.108)

Such parametrization reproduces the two expected behaviors: when z → 0 the ratio

goes to 1 and when z ≫ 1, the second term can be neglected and the same ratio ap-

proaches the constant value Ξ0. Up to now, we do not have tight constraints on the

value ofΞ0 [193–195] and large deviations are still allowed by the data, possibly mak-

ing its effect dominant over the one due to a modified expansion history [183, 184].

Interestingly, it has been proposed to use strongly lensed GW observations to put

constraints on Ξ0, confirming that we will be able to put constraints at the percent

level with ∼ 4600 events [196].

Before moving on to the relativistic corrections, we wish to stress one last point.

The results of this Section are of utmost importance even when the prefactor
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MP (z)/MP (0) = 1. Eq. (1.104) leads in any case to the important observational fact

that a GW detection provides a direct measurement of the luminosity distance of

their source. These events are, thus, standard distance indicator, dubbed Stan-

dard Sirens [197], similarly to SNe, also known as Standard Candles. Because of

this, one can perform, with GW observations, the same distance-redshift tests which

allowed the discovery of the late time accelerated expansion with SNe observa-

tions [195, 198, 199]. In this type of tests, one uses the knowledge of both the lumi-

nosity distance and redshift to pin down the only unknown left in Eq. (1.106): H0E(z).

Thus, in this way we constrain the expansion history and the Hubble parameter to-

day, H0 [200–202], the latter being one of the two parameters of the standard cos-

mological model under the spotlight. Indeed, there is a discrepancy of about ∼ 5σ

between the measurements of H0 inferred from the CMB anisotropies power spec-

trum (assuming ΛCDM) and the one from SNe (see [15] for a review and references

therein). Standard sirens, thus, provide a third and independent way, affected by en-

tirely different systematics, to constrain such parameter and could prove to be crucial

into breaking the tie between the various determinations of H0 [203]. Unfortunately,

standard sirens come with a catch: GW observations carry information exclusively

about the luminosity distance, and the redshift determination has to be obtained ei-

ther through a direct detection of an electromagnetic counterpart [197, 198, 204], as

it was for GW170817 [205], or via the individualization of the host galaxy of the source

or through statistical methods [188, 206–210].

1.4.3. Relativistic corrections

After having described the solution of Eq. (1.103) on FLRW Universe, we can in-

clude the effect of LSS. We further simplify the situation, considering the so-called

restricted Poisson’s gauge, a subcase of Eq. (1.14) where ϵwi = ϵγi j = 0. This choice

is suitable in the late time Universe if there are no free tensor modes [39] and it is

compatible with having a scalar dynamical DE field: being a scalar, it cannot source

vector and tensor modes at linear order. With this assumption, the background field’s

configurations are

d s̄2 = a2(τ)
[
− (1+2ϵΦ)dτ2 + (1−2ϵΨ)dx2

]
, (1.109)

ϕ̄(x) = ϕ0(τ)+ϵδϕ(x) , (1.110)

where Φ,Ψ are the two gravitational potentials in Poisson’s gauge and δϕ is the DE

field fluctuation.

Before getting into the details of the computation, let us sketch what we expect to

find. On the homogeneous and isotropic background, the luminosity distances de-

pend only on redshift, leading to the standard distance-redshift relation. Because

the LSS break the rotational symmetry in the 3D spatial slices, we expect inhomo-

geneities in the Universe to induce a dependence also on the direction of observa-
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Figure 1.6: From [211]. Determinations of the Hubble constant H0 from local Universe measurements
(blue), and from CMB assuming ΛCDM (red). The green line corresponds to its measurement from the
bright event GW170817 [205].

tion

dL(θ̂, z) = d̄L(z)+ϵ∆dL(n̂, z) . (1.111)

The average luminosity distance, d̄L(z), in the equation above, theoretically corre-

sponds to Eq. (1.106) for photons and Eq (1.105) for GWs, since ϵδgµν has zero mean.

Fluctuations in the electromagnetic luminosity distance ∆dL , which we introduced

in Eq. (1.114), constitute an important probe for linear cosmology and have been

well studied [212–216], while the case of GWs has been addressed in General Relativ-

ity in [217–223]. Relativistic effects, thus, can be used to probe the linear structures of

the Universe. If one is not interested in them, and only wish to use standard distance-

redshift tests, they must still be accounted for as they introduce irreducible errors

in the determinations of the parameters [224–226]. Including relativistic effects can

also have impact in the searches for the electromagnetic counterparts [218].

Mathematically, the problem at hand requires plugging Eqs. (1.109) and (1.110) into

Eq. (1.103) and solve for AT . Naturally, this turns out to be very complicated and

one resorts to perturbative schemes to solve the equations. Such methods were first

developed in the context of photon propagations, and in particular go under the

name of Cosmic Rulers [156, 227, 228] or also line-of-sight approaches [216, 229, 230].

Indeed, starting from Maxwell’s equations, an evolution law identical to (1.91) can

be found also for the amplitude of an electromagnetic signal [149, 212]. These
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types of computations were then generalized to the case of GWs in geometric op-

tics in [157, 217] in General Relativity, and in [158] in the Horndeski theories of the

form (1.62). This is the principal reason why we restrict our studies to scalar-tensor

theories with luminal GWs: the form of the relativistic effects is not known other-

wise. The Cosmic Rulers formalism also accounts for the projections effects induced

by the fact that we observe in the observer-frame, different from the real-frame be-

cause, when observing, we use coordinates that flatten the past light-cone of the GW.

Regardless of the method, the general philosophy is to expand (1.103) up to first or-

der in LSS (ϵ) and define AT = ĀT (1+ ϵ∆ lnAT ), where ĀT satisfies the equations

at order ϵ0, while ∆ lnAT those at order ϵ1 (or equivalently in terms of the luminos-

ity distance knowing that AT ∝ (d GW
L )−1). The logic is very similar to what we have

done to find the wave-optics solution in Eq. (1.101), but starting from (1.103) and us-

ing Eqs. (1.109) and (1.110) instead of a background representing a static Newtonian

lens.

In [158], it can be found that the relativistic effects on GW’s amplitude, induced by

propagation effects through the cosmic web, in the theory (1.62), are

∆d GW
L (n̂, z)

d̄ GW
L (z)

=−κ− (Φ+Ψ)+ 1

χ

∫ χ

0
d χ̃ (Φ+Ψ)+Φ

( 1

Hχ
− M ′

P [ϕ0]

HMP [ϕ0]

)
+

(
1− 1

Hχ
+ M ′

P [ϕ0]

HMP [ϕ0]

)[
v∥−

∫ χ

0
d χ̃ (Φ′+Ψ′)

]
+ MP,ϕ[ϕ0]

MP [ϕ0]
δϕ ,

(1.112)

where a prime indicates differentiation w.r.t. conformal time, κ denotes the weak

lensing convergence, χ the comoving distance to the source, Φ the Newtonian po-

tential, Ψ the intrinsic spatial curvature potential, v∥ the component along the line

of sight of the peculiar velocity of the source, and MP,ϕ is the derivative with respect

to the scalar field: all in the restricted Poisson gauge and following the conventions

of [158]. The physical effects contributing to ∆d GW
L , in order, are: weak lensing con-

vergence, volume dilation and a Shapiro time delay, that are only indirectly influ-

enced by the DE field; Sachs-Wolfe (SW), Doppler shifts, and Integrated Sachs-Wolfe

(ISW), showing an additional explicit decay that depends on the time evolution of

MP [ϕ0(τ)]; damping due to DE field inhomogeneities, ϵδϕ(x). The weak lensing con-

vergence field, namely κ in Eq. (1.112), is given by

κ(n̂) =−1

2
∇2
θΦL(n̂) =−

∫ χ

0

dχ′

χ′

∫ ∞

χ′
dχ∗

(
χ∗−χ′
χ∗

)
∇2
θΨW (χ′n̂, z ′) (1.113)

whereΨW is the Weyl potential and ∇2
θ

indicates the 2D Laplacian with respect to the

angle between the image and optical axis [149, 231]. Note that we are neglecting the

shear deformations of the signal since these are subdominant in linear perturbation

theory where WL mainly affects the magnification of the GWs.
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In presence of the DE field, the GW luminosity distance generally differs from the

one traced by electromagnetic signals. This is clear at the unperturbed level from

Eq. (1.105). Not surprisingly, this is also true for their large-scale fluctuations as GWs

follows Eq. (1.103), where the Horndeski function MP is explicitly present, while pho-

tons are not directly affected by the DE field. As already mentioned, it is possible to

find a WKB solution for Maxwell’s equation, and this would look like Eq. (1.91) also in

the presence of a dynamical DE field. Therefore, the luminosity distance fluctuations

as inferred from an EM detection, in the Horndeski theory (1.62), are given by

∆d EM
L (n̂, z)

d̄ EM
L (z)

=−κ− (Φ+Ψ)+ 1

χ

∫ χ

0
d χ̃ (Φ+Ψ)+ Φ

Hχ
+

(
1− 1

Hχ

)[
v∥−

∫ χ

0
d χ̃ (Φ′+Ψ′)

]
,

(1.114)

as it can be derived also by taking Eq. (1.112) and discarding terms in which MP [ϕ0]

appears explicitly. We clarify that Eqs. (1.114) and (1.112) carry an implicit de-

pendence on all the Horndeski functions MP , K , G , as the expansion history of the

Universe and the growth of cosmic structures obey the modified equations de-

scribed in Section 1.2.2. In a parametrized approach, these would correspond to

Eqs. (1.69), (1.72) and (1.73) (see e.g. [232] for an explicit example). When opting

for this kind of approach, though, one must be careful that the forms chosen for

wDE,µ(a,k) and Σ(a,k) are compatible with having started from the Horndeski the-

ory in action (1.62), namely with luminal tensor modes speed [233].

Therefore, the luminosity distance fluctuations provide direct access to the linear

structures of the Universe. In non-minimally coupled scalar-tensor theories, some

of the effects building these signals are different for distances inferred from GWs or

from electromagnetic signals, offering a new way to directly probe the effects of a dy-

namical DE field. The way that this information can be used is similar to what done

in Section 1.1.3: promoting the field fluctuations to random variables, one computes

their correlation functions. Thanks to Eqs. (1.114) and (1.112), we can relate the

power spectra of the luminosity distance fluctuations, which we can obtain through

GW and SNe observations, to those of the gravitational potentials, Φ and Ψ, and DE

clustering ϵδϕ, and investigate them.

1.5. This Thesis
This dissertation is divided in three parts, each of which tackles a specific aspect of

the main theme: the propagation of GWs through cosmic structures. In the first two

parts, we will use GWs in the ray optics regime to test scalar-tensor models of gravity

aimed at describing the late time cosmic expansion. In the last part, we will demote

the DE field back to a cosmological constant and address the matter of wave-optics

effects. Each Chapter picks up the thread of thoughts from the previous one, investi-

gating the extent of the assumptions made and possibly generalizing them. Keeping
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the detection prospect in high regard, the goal is not only to produce testable predic-

tions, but also to understand various aspects of gravitational wave propagation that

are yet to be fully grasped.

Part I: Ray-optics limit: beyond the homogeneous and isotropic Universe

We dedicate this part to the exploration of the potentialities of the luminosity dis-

tance fluctuations in Eqs. (1.112) and (1.114) in constraining cosmological param-

eters of various scalar-tensor models contained within the action (1.62). This part

aims, therefore, at building tests using the amplitude of the GWs as signal. In partic-

ular,

• Chapter 2: we will investigate the power spectrum of the luminosity distance

fluctuations of GWs observations, in two scalar-tensor models. After a first ex-

ploration, we will build an estimator which combines GWs and SNe observa-

tions with the goal of picking up the dark energy clustering contribution to the

covariance of the observation. In other words, we attempt at singling out the

contribution of ϵδϕ in Eq. (1.112), by comparing GW and electromagnetic ob-

servations. This signal is otherwise buried under the dominant contribution

of the weak lensing convergence κ. We will conclude that, although picking up

the DE clustering signal is very challenging, the estimator we built still provides

a smoking gun proof for theories with a running Planck’s Mass MP [ϕ], which

can be used after gathering enough GWs and SNe data.

Based on: Detecting Dark Energy Fluctuations with Gravitational Waves

A. Garoffolo, M. Raveri, A. Silvestri, G. Tasinato, C. Carbone, D. Bertacca, S.

Matarrese,

Phys.Rev.D 103 (2021) 8, 083506, e-Print: 2007.13722 [astro-ph.CO]

• Chapter 3: considering that weak lensing gives the greatest contribution to

the GW luminosity distance fluctuations, we investigate its role in constraining

cosmological parameters. Hence, in this Chapter we focus on the contribution

from κ in Eq. (1.112), and study its potentialities both alone and in combina-

tion with galaxy surveys (both clustering and weak lensing). Without choosing

a specific GW mission, we assess the number of GW events and the precision

with which the luminosity distance must be determined, in order for GW ob-

servations to become competitive with galaxies in constraining cosmological

parameters.

Based on: Prospects of testing late-time cosmology with weak lensing of gravi-

tational waves and galaxy surveys

A. Balaudo, A. Garoffolo, M. Martinelli, S. Mukherjee, A. Silvestri,

e-Print: 2210.06398 [astro-ph.CO]
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Part II: Ray-optics limit: distance duality relation and polarization tests

After having investigated the potentialities of Eqs. (1.112), in this part we turn to other

possible tests, always in the ray-optics limit. Indeed, from a GW detection, one re-

ceives more information than only its luminosity distance. In particular, we will take

a step back and asks which other quantities related to their amplitude are modified

in scalar-tensor theories, and then we will start looking at the polarization content.

• Chapter 4: distance measures have always played a prime role in building tests

for the cosmological model. The fact that the luminosity distance, as inferred

from a GW detection, can be modified compared to the electromagnetic one,

is a golden opportunity to tests non-minimally coupled scalar-tensor theories.

Nevertheless, in cosmology there are multiple notions of distances which can

play an equivalently important role to d GW
L in producing tests for the gravita-

tional theory. In this Chapter, after deriving the equations of motion of a GW

in a scalar-tensor set-up where these propagate at the speed of light, we take

a proper look at the definition of GW cosmological distances, showing that, in

the ray-optics regime, on top of d GW
L , one can also define an angular diameter

distance, d GW
A (z). To achieve this, we derive from a general principle the GW

stress-energy tensor, under the assumption that the GW and SW propagate at

different speeds. We will prove the validity of the Etherington’s reciprocity law,

namely d GW
L (z) = (1+ z)2d GW

A (z), implying that also the GW angular diameter

distance is modified compared to the electromagnetic one. Finally, we investi-

gate the implications of our findings in the context of strong lensing time de-

lays.

Based on: Gravitational-wave cosmological distances in scalar-tensor theories

of gravity

G. Tasinato, A. Garoffolo, D. Bertacca, S. Matarrese

JCAP 06 (2021) 050, e-Print: 2103.00155 [gr-qc]

• Chapter 5: in order to derive the equations of motion of the GW and SW, in the

previous Chapter we assumed that the amplitude of the SW was a factor ω−1

smaller than the GW. We justified this assumption by asking that at the mo-

ment of emission the SW is not sourced, so that it is produced by propagation

effects only. In this Chapter, we elaborate on this assumption and thoroughly

revisit the two definitions of GW given: as in geometric-optics and in wave-

optics. We will see that, depending on the assumptions, different conclusions

can be drawn about the amplitude of the SW. We investigate, then, whether

the SW can be directly detected in light of screening mechanisms. In the con-

text of two of them, we show that this should not be the case regardless of the

definition used for the GW.

Based on: Unifying gravitational waves and dark energy
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A. Garoffolo, O. Contigiani,

e-Print:2110.14689 [astro-ph.CO]

Part III: Wave-optics limit: the stochastic background and its polarization:

In this last part, we assume that dark energy is described by the cosmological con-

stant, Λ, as in the standard model of cosmology. We also switch the definition of the

GW and opt to investigate the wave-optics limit, showing that the interaction with

matter structures during propagation, in this limit, can produce scalar and vector

polarization modes.

• Chapter 6: we study the propagation of GWs in a perturbed cosmological Uni-

verse without relying on tools typical of ray-optics techniques. This way, we

can easily account for wave-optics effects. Similarly to Eq. (1.101), we obtain

a perturbed solution for the waves, though accounting carefully for their po-

larization content instead of treating them as scalar fields. We work under the

classical matter approximation, namely that the effect of the waves on the mat-

ter inhomogeneities is negligible. Our result shows that the interaction with

matter structures can produce scalar and vector components in the GW, on

top of tensor ones. We build the two point correlation function of the ten-

sor modes, and introduce the Stokes parameters. In the case of an unpolar-

ized, Gaussian, statistically homogeneous and isotropic initial background, we

show that the interaction with matter does not generate a net difference be-

tween left- and right- helicity tensor modes, as expected, but it also does not

produce Q- and U- polarization modes.

Based on: Wave-optics limit of the stochastic gravitational wave background

A. Garoffolo,

e-Print: 2210.05718 [astro-ph.CO]
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Appendices

A. Special functions, Fourier and Harmonic transfor-
mations

In our convention, the 3D Fourier transform and anti-transform are given by

f (τ,x) =
∫

d 3k

(2π)3 e i k·x fk(τ) , (1.115)

f (τ,k) =
∫

d 3x e−i k·x f (τ,x) . (1.116)

Similarly, a function can be expanded on a spherical harmonics basis using

f (τ,χ, n̂) =
+∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓm(τ,χ)Yℓm(n̂) , (1.117)

aℓm(τ,χ) =
∫
S2

d 2n̂ f (τ,χ, n̂)Y ∗
ℓm(n̂) , (1.118)

with x =χn̂, where n̂ is the vector on the unit sphere, i.e. n̂ = (θ,φ) represents the an-

gular coordinates. The spherical harmonics Yℓm(n̂) are eigenfunctions of the angular

part of the Laplacian[
1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+ 1

sin2θ

∂2

∂ϕ2

]
Yℓm(θ,ϕ) = −ℓ(ℓ+1)Yℓm(θ,ϕ) (1.119)

and their explicit expression takes the form

Yℓm(n̂) =
√

2ℓ+1

4π

(ℓ−|m|)!

(ℓ+|m|)!
Pℓm(cosθ) e i mϕ ×

{
(−1)m m ≥ 0

1 m < 0
, (1.120)

where Pℓm(µ) are the associated Legendre functions, satisfying

Pℓm(µ) = (−1)m (1−µ2)m/2 d 2

dµ2 Pℓ(µ) , (1.121)

and Pℓ(µ) is the Legendre polynomial. These are ℓth-order polynomials inµ ∈ [−1,1].

The first polynomials are

P0(µ) = 1, P1(µ) =µ , P2(µ) = 3µ2 −1

2
, (1.122)

while the higher ones can be found by using the recursion relation

(ℓ+1)Pℓ+1(µ) = (2ℓ+1)µPℓ(µ)−ℓPℓ−1(µ) . (1.123)

The spherical harmonics satisfy the orthonormality relations∫
S2

d 2n̂ Y ∗
ℓm(n̂)Yℓ′m′ (n̂) = δℓℓ′ δmm′ (1.124)
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and they are related to Legendre polynomials via

Pℓ(n̂ · n̂′) = 4π

2ℓ+1

ℓ∑
m=−ℓ

Y ∗
ℓm(n̂)Yℓm(n̂′) . (1.125)

Another class of important special functions are the spherical Bessel functions, jℓ(x),

solutions of the differential equation

d 2 jℓ
d x2 + 2

x

d jℓ
d x

+
[

1− ℓ(ℓ+1)

x2

]
jℓ = 0. (1.126)

They cover a relevant role because of the relation

e i k ·x =
∞∑
ℓ=0

iℓ (2ℓ+1) jℓ(kχ) Pℓ(k̂ · n̂) , (1.127)

where we used again x =χn̂ and similarly k = k k̂.




