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1
Introduction

Cosmology is a purely observational science: we cannot put the Universe in a lab-

oratory and reproduce its history at our will, tweaking parameters to see how its

constituents react. It always has to rely on the detection of a signal, whether it is

a photon, or since 2016 [1], a gravitational wave (GW). Basing its hypothesis exclu-

sively on observations, cosmology attempts at providing a single description of the

Universe, from its early stages to the present, in terms of only few parameters. In this

sense, the first GW direct detection marked a breakthrough for the sciences of the

Universe: it opened up a new observational window affected by an entirely differ-

ent set of systematics compared to electromagnetic signals. The observation of the

Cosmic Microwave Background (CMB) by WMAP and Planck [2–4], confirmed that

the photons comprising this signal are described by a black-body spectrum with a

temperature of 2.73 K, up to one part in 105. Since the Universe is expanding, the

temperature of photons increases as we go backward in time so that, at the time of

the CMB emission, it was about 103 K. One can think of extrapolating this increasing

behavior to even earlier times, before the moment when nuclei and free electrons

combined to form neutral atoms and the photon-baryon fluid was kept in thermal

equilibrium by Compton scattering, or even before that, until one reaches the typ-

ical energy scale of the Universe at the moment of the formation of the first nuclei:

∼ 1010 K [5]. So, the ultimate goal of a cosmological model is to build a unique de-

scription of the Universe across (at least) roughly 10 orders of magnitude of different

energy regimes. This heroic effort has successfully produced the standard cosmo-

logical model, ΛCDM: gravity follows the laws of General Relativity, a cosmological

constantΛ embodies the dark energy driving the recent accelerated expansion of the

Universe, and cold dark matter (CDM), an unknown form of matter electromagneti-

1
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cally neutral, is responsible for structure formation. The last two components make

up almost 96% of the current energy budget of the Universe, while the remaining

portion is composed of standard model particles, which in cosmology are divided

into two categories: radiation and baryons, where in the latter leptons are included

as well.

TheΛCDM model’s success, lies in its ability to fit a wide range of observational data,

not only the CMB, but also type Ia Supernovae (SNe) datas [6, 7], and the mapping

of cosmic structures, with the baryon acoustic oscillation (BAO) peak [8]. Yet,ΛCDM

still fosters in its dark components large areas of theoretical uncertainties. Enlarging

the volume of data, with ongoing and upcoming galaxy and weak-lensing surveys [9–

12], will necessarily subject the standard model to a new level of scrutiny. The rise of

precision cosmology, has already seen the emergence of tensions between datasets

when interpreted within the ΛCDM framework [13, 14], which could signal the first

cracks in the model as we achieve a new level of precision in measuring its param-

eters [15]. Since one of the assumptions of ΛCDM is General Relativity, testing this

model also mean testing the theory of gravity on cosmological scales: after passing a

battery of tests in the Solar System and on galactic scales, we can investigate gravity

at work at low energies.

Thanks to the LIGO-Virgo-Kagra (LVK) [16, 17] collaboration, we can now add GW

observations to the pool of different datasets, giving us direct access to the dynam-

ical regime of gravity. The waves observed by these interferometers are produced

during the inspiral of a compact object binary. When two black holes or two neutron

stars, or a black hole and a neutron star, orbit around each other, they emit gravi-

tational waves. The energy lost through this channel makes the orbit of the binary

shrink until the two objects merge into one. In the coming years, the next genera-

tion of ground-based interferometers is expected to provide us with a "dark map"

of the Universe by observing tens of thousands of GW events [18, 19]. Comparing

this map with those compiled by galaxy surveys, will boost our understanding of the

electromagnetically neutral species of the Universe. For example, we may be able to

determine whether all astrophysical GW sources are located inside galaxies. If so, this

would suggest that GWs and galaxies trace the underlying dark matter gravitational

potential wells equivalently, so that these two probes can be used jointly, maximizing

the scientific return from the two missions. Alternatively, if some astrophysical GW

sources are found to be outside of galaxies, it would open up new avenues for scien-

tific inquiry [20]. The observation of exotic compact objects through GWs could have

significant implications for cosmology. A particularly intriguing possibility is the ex-

istence of primordial black holes [21] potentially accounting for part of the Universe’s

dark matter, which might have formed from the collapse of large, small-scale infla-

ton perturbations in the early Universe, or through other exotic channels (see [20]

and references therein).
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The concept that GW observations can enhance our understanding of the early Uni-

verse is not new. The detection of primordial tensor modes, through a B-mode po-

larization pattern of the CMB, would have significant implications for our compre-

hension of the primordial Universe [22–24]. According to the current model, dur-

ing the pre-standard model era, at least two quantum fields existed in the Universe:

the metric and the inflaton, driving a phase of exponentially accelerated expansions.

Their fluctuations were first stretched beyond the Hubble horizon, and then slowly

re-entered during standard cosmic history setting, for instance, the initial seeds for

the development of gravitational potentials, eventually leading to the formation of

cosmic structures. Since the inflationary paradigm treats scalar and tensor pertur-

bations on the same footing, primordial gravitational waves are a key prediction of

it. These types of GWs are substantially different from astrophysical events seen by

LVK. Since their source is a quantum process, they would constitute a stochastic grav-

itational wave background (SGWB), similar in nature to the CMB’s photons. From the

first GW detection, the literature on SGWB has expanded considerably, as there are a

number of mechanisms thought to take place in the early Universe that can produce

a diffuse GW signal. The SGWB can also be of astrophysical origin: if the single GW

events are not distinguishable one from the other, they are expected to form a back-

ground too. Because of the incredible wealth of information, detecting the SGWB is

a key science goal for the future GW missions, target of space-based interferometers

and pulsar-timing arrays [25–31].

The waveform of a GW and the frequency spectrum of the SGWB depend on the

specifics of their sources. Regardless of the generation mechanism, propagation ef-

fects can have a significant impact. For instance, a wave traveling through an ex-

panding Universe is damped faster than one traveling through a static one, or objects

along the way can cause various distortions. As a result, GWs also convey informa-

tion about the dynamics of the Universe, including the late-time cosmic expansion,

so dark energy, and the cosmic structures tracing the gravitational potential wells

of dark matter. Propagation effects introduce an irreducible error, setting an upper

limit on the precision with which we can measure the source parameters. However,

one can turn this around and look at propagation effects as a rich resource of cosmo-

logical information, both at the background and perturbed level.

Photons undergo similar effects during propagation, making it possible to use both

probes jointly. Joint observations of GWs and photons are particularly promising

for testing proposals for dark energy, where the two messengers behave differently.

Such proposals are widespread in the literature and, thanks to the degeneracy break-

ing between the two sectors, they can be thoroughly investigated in the near future.

Despite the similarities, GWs and photons can also exhibit very different behaviors,

especially when comparing them at different frequencies. The typical energy of a

photon, whether it belongs to the CMB or if it was emitted by an astrophysical event,
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is much higher than the energy scale associated to any (known) object it may en-

counter during propagation. In particular, an obstacle can be a large-scale structure,

roughly at the energy scale of 10−17 Hz, or a compact object, ranging from super-

massive to stellar black holes in the ∼ 10−3 −101 Hz band. Even the low-energy CMB

photons have frequencies of approximately 160 GHz. This implies that photons are

always well described by the ray-optics limit. By contrast, there are no limitations for

the wavelengths of GWs and, depending on the situation, wave-optics effects may

arise. The validity of these two regimes, and the kind of description they allow, will

be profusely discussed in this Thesis. However, we can already appreciate the fact

that GWs not only carry new valuable cosmological information, but also they offer

new theoretical challenges.

The main focus of this Thesis is characterizing the propagation effects affecting GWs

in the late time Universe, both in the ray-optics limit and in the wave-optics one. We

use the former to describe resolved astrophysical GWs, with frequencies higher than

the mHz, when these travel through the large-scale structures of the Universe. In this

case, we will explore their potentialities in testing particular models for dark energy

called scalar-tensor theories. Finally, we will give up the high frequency approxima-

tion and, in General Relativity, explore the wave-optics effects, paying particular at-

tention to the polarization content of the gravitational waves. The purpose of this

Introduction is to provide the reader with all the necessary tools to understand the

topics covered in the following Chapters.

1.1. The standard cosmological model
Two very important aspects which any proposed cosmological model has to describe

are the expansion of the homogeneous and isotropic Universe and the growth of lin-

ear perturbations. In the two sections below, we describe their phenomenology in

ΛCDM.

1.1.1. Friedmann equations

Observations suggest that on scales ≳ 100 Mpc, the cosmological principle holds,

namely that the properties of the Universe are the same for all observers comoving

with the expansion. Observations also suggest that the Universe, on large scales, does

not display a preferred direction. These two facts together, fixe the metric describing

the Universe at these scales to

d s2 = gµνd xµd xν = a2(τ)

[
−dτ2 + dχ2

(1−κχ2)
+χ2

(
dθ2 + sin2θdϕ2

)]
, (1.1)

also known as the Friedmann-Lemaître-Robertson-Walker (FLRW) metric [32],

where τ is the conformal time, a(τ) is the scale factor, describing how the Universe
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expands over time, κ is the intrinsic curvature of the 3D spatial hypersurfaces, and

it can take the discrete values κ= 0,+1,−1, representing flat, positively or negatively

curved spatial slices. In the metric above, χ is the comoving distance, related to the

scale factor as in Eq. (1.8). The FLRW metric (1.1) describes a Universe as spatially

homogeneous and isotropic. The cosmological principle also fixes the form of the

possible energy content of the Universe to that of a perfect fluid described by a stress-

energy tensor of the form [32]

Tµν = ρuµuν+PΛµν , (1.2)

here Λµν ≡ gµν+uµuν, is the orthogonal projector to the worldlines of the observers

whose 4-velocity is uµ, while ρ is the energy density and P is the isotropic pressure

of the fluid element. Then, in the standard cosmological model, the FLRW metric is

a solution of Einstein’s equations

Gµν = 8πG
[

Tµν+TΛ
µν

]
, TΛ

µν =− Λ

8πG
gµν (1.3)

where Gµν is the Einstein tensor, Tµν is given by Eq. (1.2). In the expressions above,

we have introduced Λ, the cosmological constant driving the late time cosmic ex-

pansion in the ΛCDM model. To close the system, it is necessary to supplement an

equation of state relating pressure and energy density of the perfect fluid, usually

in the form P = wρ. In the ΛCDM model, the matter species contributing to the

stress-energy tensor are: pressureless non-relativistic matter (CDM and baryons),

described by the equation of state wm = 0 and radiation supported by its pressure

and characterized by wr = 1/3 [32]. Also, TΛ
µν can be written in a similar fashion of

Eq. (1.2), with equation of state wΛ = −1 and ρΛ =Λ/(8πG). The independent con-

servation of their stress-energy tensors, gives the continuity equations

Ω′
i +3HΩi (1+wi ) = 0, with ′ = ∂τ , (1.4)

where we defined the time dependent density parameters

Ωi (τ) ≡ ρi (τ)

ρcr i t
, ρcr i t =

3H 2
0

8πG
(1.5)

with i = r,m,Λ. Note that Ω0
Λ = [Λ/(8πG)]/ρcr i t = Λ/(3H 2

0 ). According to the value

of the equation of state parameters, wi , the continuity equation takes the different

solutions

Ωr (a) =Ω0
r /a4 , and Ωm(a) =Ω0

m/a3 , and ΩΛ(a) =Ω0
Λ , (1.6)

where Ω0
i are the values of the density parameters today, i.e. at a = a0 = 1, choos-

ing the spatial curvature to be zero, κ = 0. The different power laws dictate that the

various species "dilute" at different rates, in such a way that we can consider one



1

6 1. Introduction

χM χΛ χ∗ χMΛ χi[
H0(Ω0

m)1/2
]−1 [

H0(Ω0
Λ)1/2

]−1 [
H0(Ω0

m)1/3(Ω0
Λ)1/6

]−1
χ∗−χΛ 3χ∗−χΛ

0.027 0.017 0.023 0.0054 0.052

Table 1.1: List of special comoving distance values entering in Eq. (1.9). The first row contains their defi-
nition, while the numerical values are computed considering H0 = 67.3,Ω0

m = 0.31 andΩ0
Λ
= 0.69 [4].

element at a time to drive the expansion of the Universe. In order, we will have: radi-

ation first, being the most abundant in the early stages of the Universe, succeeded by

a matter dominated phase and finally the cosmological constant in the very recent

time. Since we are interested in describing the late time Universe, in our discussion

we will always neglect the contribution of radiation to the energy budget. This results

in another simplification: we will treat CDM and baryons in the same way.

From Eq. (1.3), one can find Friedmann’s equation, relating the scale factor to the

energy density of the constituents

H2 = a2H 2
0 (Ωm +ΩΛ) , (1.7)

where H ≡ a′/a is the Hubble parameter in conformal time. We solve analytically

Friedmann’s equation separately in the matter and Λ dominated epochs, and match

the solutions at the moment of their equivalence, aMΛ = 3
√
Ω0

m/Ω0
Λ

. For later conve-

nience, we write the solution in terms of the comoving distance

χ ≡ τ0 −τ=
∫ 1

a

d ã

(ãH(ã))
, (1.8)

where τ0 is the value of conformal time today, i.e. such that a(τ0) = 1. From this def-

inition, it is clear that dχ=−dτ. The scale factor and the comoving distance belong

respectively to the range [0,1] and [0,χi ], where χi is the value of χ corresponding

to a = 0. Such initial value does not have any particular physical meaning, and it is

merely a consequence of having neglected the radiation contribution. We find the

solutions

a(χ) =


[
χ−χi

]2

4χM
χ ∈ [χMΛ,χi ]

χΛ

χΛ+χ χ ∈ [0,χMΛ]

, H(χ) =− 1

a

∂a

∂χ
=


2

χi −χ
χ ∈ [χMΛ,χi ]

1

χ+χΛ
χ ∈ [0,χMΛ]

(1.9)

where all the quantities defined in the equation above can be found in the Table 1.1.

We point out that a solution of Eq. (1.7) interpolating between matter and Λ domi-

nation eras exists [33], however it is quite intricate and impractical, therefore in this

Thesis we will use the explicit expressions given above when needed.
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In the ΛCDM model, dark energy (DE) is modeled with the cosmological constant.

To better understand the character of the accelerated expansion it drives, it is best to

rewrite the scale factor in terms of cosmic time d t ≡ adτ. In this case, and neglecting

the matter contribution in Eq. (1.7), it is easy to find that

∂a

∂t
=

√
Λ

3
a , → a(t ) = e

√
Λ
3 t . (1.10)

Because of this exponential behavior of the scale factor, the cosmological constant

is said to drive the accelerated expansion of the Universe in the very recent epoch,

a phenomenon detected via the observation of Supernovae type Ia (SNe) which was

worth a Nobel Prize [6, 7] .

Another important quantity in background cosmology is the cosmological redshift,

related to the scale factor as

1+ z = 1

a
, (1.11)

determining also the red-shifting of the wavelengths of photons and GWs as they

propagate through the expanding Universe.

1.1.2. Cosmological perturbation theory

Departures from the homogeneous and isotropic configuration characterize large-

scale structures (LSS) of the Universe. On scales between ∼ 100−50 Mpc, these de-

viations are still small in amplitude, and thus can be treated with linear relativistic

perturbation theory.

Prior to the emission of the CMB, photons and electrons were tightly coupled

through Compton scattering, forming a unique photon-baryon fluid. As a result, or-

dinary non-relativistic matter was supported by the radiation pressure of photons,

preventing it from collapsing under gravitational interaction. In contrast, the elec-

tromagnetically neutral and non-relativistic (pressureless) CDM could form clumps,

preparing the gravitational potential wells for the baryons to fall into, after the mo-

ment of recombination, when the Universe became transparent to photons. This

process eventually led to the formation of stars, galaxies, and galaxy clusters inside

the wells and filaments of the dark matter distribution. Therefore, it is often said

that galaxies trace dark matter introducing the concept of galaxy bias, as we will see

later. In the late-time Universe, relativistic species, such as photons, constitute a sub-

dominant part of the total energy density budget as they dilute faster than the other

components (see Eq. (1.6)). Since this is the period we are most interested in, we ne-

glect them when studying LSS and treat baryons and CDM jointly as a non-relativistic

pressureless component.

The equations of motion ruling the growth of LSS can be found by linearizing the
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gravitational field equations around the FLRW background,

gµν = a2(τ)ηµν+ϵδgµν , (1.12)

where ηµν = diag(−1,1,1,1) is the Minkowski metric and ϵ is the expansion parame-

ter tracking the LSS. We expect that CMB temperature anisotropies are of the same

order of magnitude of the metric perturbation, so that ϵ ∼ 10−5. The FLRW back-

ground is symmetric under rotations in the 3D spatial hypersurfaces. One can exploit

this fact and break down the metric perturbation δgµν into irreducible representa-

tions of the Euclidean rotations. This is the so-called scalar-vector-tensor decom-

position. Due to the symmetry of FLRW, each subgroup decouples from the others

to linear order, allowing an independent analysis of each type of modes [5, 34–38]1.

Considering the FLRW background fixed, then under an infinitesimal gauge trans-

formation xµ → xµ+ϵξµ, the metric perturbation transforms as

δg ′
µν = δgµν−

(∇̄µ ξν+∇̄ν ξµ
)

, (1.13)

where ∇̄µ are the covariant derivatives built with the FLRW metric. The metric per-

turbation, δgµν, being a 4 symmetric tensor, has 10 independent components. The

gauge freedom fixes 4 of them, leaving 6 modes to be fixed with Einstein’s equations.

A common gauge choice is the so-called Poisson’s gauge [34, 39], in which the line

element takes the form

d s2 = a2(τ)
[
− (1+2ϵΦ)dτ2 +2ϵωi dτd xi + (1−2ϵΨ)dx2 +2ϵγi j d xi d x j

]
, (1.14)

where

1. Φ andΨ are two scalar gravitational potentials (2 modes),

2. ωi is the vector potential, such that ∂iωi = 0 (2 modes),

3. γi j is the transverse and traceless tensor mode, such that ηi jγi j = ∂iγi j = 0 (2

modes),

with the convention that spatial indices are raised and lowered with the Minkowski

metric, ηi j . In Poisson’s gauge, the two gravitational potentials Φ and Ψ correspond

to the gauge invariant Bardeen’s potentials [40] and they describe the perturbation of

the time direction and of the spatial hypersurfaces’ curvature. Note that the tensor

mode γi j does not coincide with our definition of GWs, which will be given later.

1There are many references for cosmological perturbation theory. This section is based on [34]. However,
we do change notation to be consistent with the rest of this Thesis, e.g. the two scalar gravitational
potentials have exchanged namesΦ→Ψ andΨ→Φ, we call H the conformal Hubble parameter instead
of η.
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Similarly to the metric, also the matter stress-energy tensor is decomposed as T µ
ν =

T̄ µ
ν +ϵδT µ

ν , or expliciting the components out, as

T 0
0 = − ρ̄−ϵδρ (1.15)

T i
0 = −ϵ (ρ̄+ P̄ ) v i (1.16)

T 0
i = +ϵ (ρ̄+ P̄ ) [vi +ωi ] (1.17)

T i
j = +P̄ δi

j +ϵ
(
δP δi

j +Σi
j

)
(1.18)

where ρ̄ = ρ̄(τ) and P̄ = P̄ (τ) are the background energy density and the isotropic

pressure, only time dependent. The anisotropic stress, Σi
j , accounts for velocity gra-

dients related to irreversible processes, and we assume it is traceless by reabsorbing

any bulk contribution in the definition of the pressure. Also, in the expression above,

v i is the peculiar velocity, whose definition is

uµ = 1

a

[
(1−ϵΦ), ϵv i

]
. (1.19)

An important quantity is the energy density contrast

δ ≡ δρ

ρ̄
, (1.20)

sourcing the gravitational potential wells. The peculiar velocity and Σi
j can be de-

composed into irreducible representations with respect to the spatial rotation as well

vi = vT
i +∂i v , Σi j =Di jΣ+∂(i Σ j ) +ΣT T

i j , (1.21)

with ∂i vT
i = 0 and ∂iΣT T

i j = 0 and

Di jΣ≡
(
∂i∂ j − 1

3
δi j∆

)
Σ , ∂(i Σ j ) ≡ 1

2

(
∂i Σ j +∂ j Σi

)
, (1.22)

and we called ∆= ∂k∂
k . In the decomposition of the velocity, v is called velocity gra-

dient, and it will play an important role later. All these expressions are then plugged

in Einstein Eqs. (1.3), yielding the linearized equations[
G0

0

]
: −k2Ψk −3H(Ψ′

k +HΦk ) = 4πGa2 ρ̄ δk , (1.23)[
G0

i

]
∥ : − (

Ψ′
k +HΦk

)= 4πGa2(ρ̄+ P̄ ) vk , (1.24)[
G0

i

]
⊥ : −k2ωk,i = 16πGa2(ρ̄+ P̄ )

[
vT

k,i +ωk,i

]
, (1.25)[

G i
i

]
: Ψ′′

k +H
(
Φ′

k +2Ψ′
k

)+ (2H′+H2)Φk −
k2

3
(Φk −Ψk ) = 4πGa2δPk , (1.26)[

G i
j ̸=i

]
∥ : (Ψk −Φk ) = 8πGa2Σk , (1.27)[

G i
j

]
⊥ : − (∂τ+H)k(i ωk, j ) = 8πGa2k(i Σk, j ) , (1.28)[

G i
j

]
T T

: (∂2
τ+2H∂τ+k2)γi j = 8πGa2ΣT T

k,i j , (1.29)
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in Fourier space (see Eq. (1.115) for notation). Note that k i is a 3D spatial vector and

k2 ≡ ηi j ki k j . The isotropy of the FLRW background guarantees that each perturbed

quantity is exclusively a function of (τ,k) and, in particular, does not depend on the

direction of the wave-vector. This point will become crucial in Chapter 6, and will

come back into the discussion. As usual, using Eq. (1.24) into (1.23), one finds the

Poisson’s equation

Ψk =−3H 2
0Ω

0
m

2ak2 δC
m(a,k) , δC

m(a,k) ≡ δk −3H(ρ̄+ P̄ )vk (1.30)

where we have defined the gauge-invariant density contrast, δC
m(a,k). Eq. (1.30)

clearly shows that Ψk is affected by the instantaneous variations of its source (con-

trary to the retarded time for solutions of wave-like equations). Crucially, some equa-

tions among (1.23) - (1.29) are of first or zero order in time derivative. These are called

constraint equations, and their role is to enforce particular relations between the field

variables, such as the one between the scalar gravitational potential and the density

contrast in Eq. (1.30).

In theΛCDM model and in the late time Universe, we neglect the contribution to the

stress-energy tensor given by radiation and focus only on baryons, cold dark matter

and the cosmological constant. The former two are given in terms of a collision-

less, non-relativistic gas of particles, with null adiabatic sound speed so that δP = 0

and negligible anisotropic stress, Σi j = 0. Not clustering, the cosmological constant

only affects the background dynamics and does not contribute to the perturbation

of stress-energy tensor. In this case, Eq. (1.27) becomes sourceless as the right-hand

side vanishes in absence of anisotropic stress, so that

Ψk (τ) =Φk (τ) . (1.31)

As far as vector modes go, we note that also Eq. (1.25) is a Poisson equation,

like (1.30), and that Eq. (1.28) shows that vector modes are redshifted away by the

Hubble expansion unless supported by the anisotropic stress [37]. Hence, relying

on the assumption Σi j = 0, one can set ωi = vT
i = 0. The matter equations (conti-

nuity and Euler equations) can be found either via the conservation of the stress-

energy tensor δϵ
[∇µT µ

ν = 0
]
, or via suitable combinations of the linearized Einstein

equations (and their time derivatives) and using also the background Friedmann’s

Eq. (1.1.1). Overall, in a ΛCDM late time Universe, the geometry of the spacetime

and of the energy-momentum density, at first order in ϵ, is governed by the set of

equations

δ′k −k2vk = 3Φ′
k , (1.32)

v ′
k +Hvk =−Φk , (1.33)

Φ′
k +HΦk =−3H 2

0 Ω
0
m

2a
vk , (1.34)

Φ′′
k +3HΦ′

k + (H2 +2H′)Φk = 0, (1.35)
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together with Eqs. (1.30), (1.31) and (1.29). An important consequence of these equa-

tions comes from evaluating the last one during matter domination. In this case, we

neglectΩΛ in Friedmann Eq. (1.7), so that

H2 +2H′ =H2 +H 2
0

(
2a2HΩm +a2Ω′

m

)= 3H2 −3H2 = 0, (1.36)

using also Eq. (1.6). Because of this, Eq. (1.35) becomesΦ′′
k +3HΦ′

k = 0, which admits

as a solution

Φk (τ) ∼ Ck

a2 +Φm
k , (1.37)

meaning that the gravitational potential is supported by one decaying and one con-

stant solution in matter domination. Neglecting the decaying branch, this leads to

the important results that Φk (τ) =Φm
k , i.e. the gravitational potential wells are con-

stant and do not grow during matter domination. Since we take δC
m , v and Φ to be

solutions of Einstein’s equation, we can relate them in a more compact form. To this

end, we define the matter transfer function, Tm(k), describing the behavior of the

matter density contrast through the equality between radiation and matter domi-

nated epochs, and the matter growth factor, Dm(a), accounting for its late time evo-

lution [5]. We write the field perturbations in terms of these two as

δC
m(a,k) = − 9

10
Tm(k)Gm(a,k)Ψi n

k , (1.38)

v(a,k) = − 9

10
Tm(k)Gv (a,k)Ψi n

k , (1.39)

Φ(a,k) = 9

10
Tm(k)

GΦ(a,k)

a
Ψi n

k . (1.40)

whereΨi n
k is the primordial value of the gravitational potential and

Gφ = Dm , Gm = 2k2

3H 2
0Ω

0
m

Dm , Gv = f (a)
H
k2 Gm . (1.41)

In the expression above f ≡ dlnDm/dln a is the growth rate. Ideally, one uses these

forms of the density contrast, velocity gradient and gravitational potential into the

linearized Einstein’s equations, to find the evolution equation for Tm(k) and Dm(a).

These are normally integrated numerically with Einstein-Boltzmann solvers codes,

such as CAMB, CLASS (see [41, 42]). This in particular means that the form of

{Gφ,Gm ,Gv } depends on the gravitational theory. Alternatively, one can use suitable

fitting formulas for them [5, 43–45]. Since we are interested in the late time Uni-

verse, well after the end of the radiation epoch, the transfer function is nearly con-

stant [5, 43, 44], while the growth factor for modes inside the horizon (k ≫H) can be

approximated as [5, 35, 46]

Dm(a) = 5H 2
0Ω

0
m

2

H(a)

a

∫ a

0

d a

[H(a)]3 . (1.42)
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Note that in our notations we use H = (a′/a)(τ) as the Hubble parameter in confor-

mal time, while in [5] they use H = (ȧ/a)(τ), and the dot stands for derivative with

respect to the cosmic time d t = adτ. A more handy fitting formula given in [35, 46]

is

Dm(a) = 5Ω0
m

2a2E 2(a)

[(
Ω0

m

a3E 2(a)

)4/7

− Ω0
Λ

E 2(a)
+

(
1+ Ω0

m

2a3E 2(a)

)(
1+ Ω0

Λ

70E 2(a)

)]
, (1.43)

with E 2(a) =H2/(a2H 2
0 ) = (Ω0

m/a3+Ω0
Λ). A quantity that will be used later in the text,

is the gravitational potential transfer function, which is given by

T Φ
k (a) = 9

10
Tm(k)

GΦ(a,k)

a
, (1.44)

as it can be understood from Eq. (1.40).

1.1.3. Statistical description of the large-scale structures

Describing the cosmic web is intrinsically a statistical task: we are interested in de-

scribing its average properties, rather than the exact shape and position of each grav-

itational potential’s well or tensor perturbation.2 Accordingly, we will treat δgµν(x)

and δT µ
ν (x) as random fields with zero mean, and their observed configurations are

a specific realization of the stochastic process, i.e. a particular member of the sta-

tistical ensemble. These random fields inhabit the cosmological Universe which, on

large-scales, is homogeneous and isotropic, suggesting the idea of promoting these

properties to a statistical level for the description of the cosmic inhomogeneities.

Hence, given any cosmological perturbation, δA(τ,x), we will assume that it is sta-

tistically homogeneous, so that its mean and variance are independent of position,

and statistically isotropic, implying that there is no preferred direction. Assuming

also that the fields at large distances are uncorrelated [48], we get that these random

fields are Ergodic, in the sense that we can exchange

ensemble average ←→ volume average

since, in sufficiently far away portions of the Universe, δA(τ,x) and δA(τ′,y) should

be causally disconnected, making them two independent representative realizations

of the stochastic process. In this sense, ensemble expectation values of field depen-

dent observables are well approximated by volume averages, provided that the vol-

ume is large enough. A quantity which plays a major role in the description of LSS, is

the two-point autocorrelation function of the random field

ξA(τ,x;τ′,x′) ≡ 〈
δA(τ,x)δA(τ′,x′)

〉
, (1.45)

2This section takes inspiration form [47].



1.1. The standard cosmological model

1

13

where the average 〈. . .〉 is the ensemble average, or the volume one. For a statistically

homogeneous and isotropic field, the two-point function must be translation and

rotation invariant, therefore

ξA(τ,x;τ′,x′) = ξA(τ,τ′, |x−x′|) . (1.46)

Another important quantity is the power spectrum, namely the autocorrelation func-

tion in Fourier space

P A(τ,k;τ′,k′) ≡ 〈
δA(τ,k)δA(τ′,k′)

〉= ∫
d 3x d 3x ′ ξA(τ,x;τ′,x′)e−i k ·x−i k·x′ . (1.47)

When the real-space 2-point function depends only on |x−x′|, also the power spec-

trum takes a simplified form

P A(τ,k;τ′,k′) =
∫

d 3x d 3x ′ ξA(τ,τ′, |x−x′|)e−i k ·x−i k·x′ =

= (2π)3δ3(k+k′)
∫ +∞

0
dr 4π

sin(kr )

kr
r 2 ξA(τ,τ′,r ) (1.48)

from which we read that, in the case of statistically homogeneous and isotropic ran-

dom fields the power spectrum is such that

P A(τ,k;τ′,k′) = (2π)3δ3(k+k′)P A(k,τ,τ′) . (1.49)

In particular, the assumption of homogeneity results into a diagonal power spec-

trum, so that the different Fourier modes are independent, while isotropy implies

that it depends only on the modulus k = |k|, of the wave-vector.

But what is the physical meaning of these quantities? This is best understood looking

at the case of Gaussian Random Fields : fields whose probability density functional,

dictating the stochastic properties, is given by

P
[
δA(τ,k)

]=∏
k

1p
2πP (k,τ)

exp

[
−|δA(τ,k)|2

2P (k,τ)

]
. (1.50)

Therefore, for a Gaussian random field: each Fourier component is statistically inde-

pendent of the others and follows a Gaussian distribution with variance given by the

power spectrum (at equal time). P
[
δA(τ,k)

]
can then be understood as the joint

probability of having a specific realization for δA(τ,k) at each k. Since the Fourier

mode δA(τ,k) is complex, it is easy to understand that Eq. (1.50) actually implies

that the real amplitudes of each mode are gaussian distributed, while the phases are

drawn from a uniform distribution. Finally, in the case of Gaussian Random fields,

all odd-number correlation functions vanish.

If the random field δA(τ,x) is defined on the sphere, it is convenient to work in har-

monic space, rather than Fourier. This is the typical case, for instance, where we ob-

serve an incoming GW or photon: we are interested in the direction of arrival, while
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its comoving distance and time are related by the geodesic equation. In these cases,

it is more convenient to decompose the field on the spherical harmonics basis, rather

than the Fourier one, as

δA(τ,χ, n̂) =
+∞∑
ℓ=0

ℓ∑
m=−ℓ

a A
ℓm(τ,χ)Yℓm(n̂) , (1.51)

where χ is the comoving distance and n̂ = (θ,ϕ) the coordinates on the unit 2-

sphere, such that x = χn̂. By using the properties of the spherical harmonics (see

Appendix A), we can relate a A
ℓm with the Fourier component of the field as

a A
ℓm(τ,χ) = 4πiℓ

∫
d 3k

(2π)3 δA(τ,k) jℓ(kχ) Y ∗
ℓm(n̂) , (1.52)

[
a A
ℓm(τ,χ)

]∗ = 4π(−i )ℓ
∫

d 3k

(2π)3 [δA(τ,k)]∗ jℓ(kχ) Yℓm(n̂) (1.53)

where k = |k| and jℓ(kχ) is the spherical Bessel function. With these expressions, we

can define the angular power spectrum

C A
ℓm;ℓ′m′ (τ,χ;τ′χ′) = 〈

a A
ℓm(τ,χ) a A

ℓ′m′ (τ
′,χ′)

〉
, (1.54)

and relate it to the power spectrum. In the case of statistically homogeneous and

isotropic fields, it is easy to compute that

C A
ℓm;ℓ′m′ (τ,χ;τ′χ′) = 4πδℓℓ′δmm′

∫ +∞

0

dk

k
jℓ(kχ) jℓ(kχ′)

[
k3P (k,τ,τ′)

2π2

]
, (1.55)

from which we understand that the angular power spectrum, in this case, is given by

C A
ℓm;ℓ′m′ (τ,χ;τ′χ′) = δℓℓ′δmm′ C A

ℓ (τ,χ;τ′χ′) . (1.56)

With these definitions, we can understand the advantage of having introduced the

transfer functions in Eqs. (1.38) - (1.40): they allow describing three random fields

at the price of one. Let’s take the example of the gauge invariant density contrast,

δC
m(a,k). We promote it to a Gaussian random field, and its two point function in

Fourier space will be the matter power spectrum, Pm(k). This quantity is the target

of multiple observational campaigns, ranging from those targeting redshift-space-

distortions and galaxy clustering or weak lensing surveys. Using Eq. (1.38), we can

write it as

Pm(a,k) =
[

9

10
Tm(k)Gm(a,k)

]2

PΨi n(k) , (1.57)

because the transfer functions and growth factor incorporate only deterministic pro-

cesses, and similarly for v(a,k) and Φ(a,k). This means that we can describe the

statistical properties of the three fields characterizing the LSS all in terms of one sin-

gle power spectrum, PΨi n(k). In the expression above, PΨi n(k) is the primordial scalar
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Figure 1.1: The angular power spectrum of the CMB temperature anisotropies, displaying the acoustic
peaks of the photon-baryon fluid, from [4]. On the y-axis Dℓ = ℓ(ℓ+1)Cℓ. The blue line is the prediction
ofΛCDM with the best fit values of its parameters, while the red dots corresponds to data. The lower panel
shows the residuals with respect to this model. For small ℓ, the plateau corresponds to the integrated
Sachs Wolfe effect (ISW), an effect that depends on the integrated time dependence of the gravitational
potentials (see e.g. Eq. (1.114)). Since these are constant during matter domination, the ISW switches on
during dark energy domination. In this region, though, the error is dominated by the irreducible cosmic
variance.

power spectrum: it contains information about the initial conditions of the linear

scalar perturbations. In the standard theory, these are set by the inflaton, a pri-

mordial spin-0 field which guides the Universe through an exponentially accelerated

phase of expansion before the particles of the standard model were produced [5, 47].

The simplest inflationary theory predicts an almost scale-invariant primordial power

spectrum

PΨi n(k) = As

[
k

k∗

]ns−1

, (1.58)

with k∗ a pivot scale, As the amplitude of the scalar power spectrum and ns =
0.9649±0.0042 the spectral index, both measured through observations of the CMB

by the Planck satellite at the % precision [3]. So, from the matter power spectrum, by

knowing the gravitational theory, we can extract information about the initial stages

of the Universe in what would seem a remarkably straightforward way, at least on

linear scales. This seemingly simple task is then complicated by the fact that we do

not directly observe all the matter, as the majority of this is in the form of dark mat-
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ter, which does not emit electromagnetic radiation. This means that we do not have

direct access to the full density contrast δC
m(a,k), but only to galaxies which should

be located in the peaks of the CDM distribution. To account for this, cosmologist

introduce the time-dependent linear galaxy bias as

δg (z,k) = b(z)δC
m(z,k) , (1.59)

where z is the redshift and δg is the galaxy overdensity field, to which we have di-

rect access from a galaxy survey. Therefore, we can measure its power spectrum, and

relate it to the one of matter as Pg (z,k) = [b(z)]2Pm(z,k) [5, 47]. To further compli-

cate the matter, one has to keep into account the so-called Redshift Space distortions

(RSD): the peculiar velocity of the galaxy falling into the gravitational potential well

adds a contribution to the measured redshift [49]. This contribution introduces a

dependence on the cosine of the angle between the line-of-sight and the peculiar

velocity, µ, such that

Pg (z,k) = [
b(z)+bv f (z)µ2

k

]2
Pm(z,k) , (1.60)

where bv is the bias between the galaxy and matter velocity distributions and f the

growth rate already introduced.

Figure 1.2: The galaxy power spectrum from [50]. The solid curve is the best fit linearΛCDM model.
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All of these considerations can be generalized to the case of more random fields. For

instance, with two of them we can consider their correlation matrix

ξAB (τ,x;τ′,x′) ≡ 〈
δA(τ,x)δB(τ′,x′)

〉
, (1.61)

which allows defining the cross power spectrum P AB (k) through its 3D Fourier

transform, or the angular cross correlations C AB (ℓ) through its decomposition on

the spherical harmonics basis. Once again, we can appreciate the great value of

Eqs. (1.38) - (1.40): they clearly show that the different scalar tracers (δC
m , v,Φ) ac-

tually have the same statistical properties, and hence it is worth considering their

correlations. This possibility is very powerful as the measurements of the different

fields are, in general, independent, therefore less subject to systematic errors. Ad-

ditionally, since the growth factors {Gm , Gv , GΦ} in Eq. (1.41) depend differently on

the cosmological model parameters, the mixed estimators ξAB , can feature a greater

constraining power on the cosmological parameters, due to the breaking of degen-

eracies. As we will show in Section 1.4.3, also GWs and SNe can be used to trace

the underlying dark matter distribution, in a way that depends on the background

cosmology too. We will use GWs to build estimators to constrain the parameters of

scalar-tensor theories in Chapter 2 in combination with SNe, and in Chapter 3 in

combination with galaxy and weak lensing surveys.

1.2. Alternative models for the late time Universe
General Relativity is the unique theory for an interacting, massless, spin-2 field in

4 dimensions [51]. It is based on the assumptions of diffeomorphism invariance as

symmetry, the metric being the only field entering the gravitational action and that

the latter must lead to equations of motion at most of second order. Any alterna-

tive to General Relativity, then, will in general introduce new degrees of freedom by

abandoning any of these assumptions. This is true even if no new fields are explic-

itly added to the gravitational action. For example, having higher order equations

of motion leads to more propagating degrees of freedom, requiring additional ini-

tial conditions. In such cases, one constraint equation of General Relativity could

be promoted to a dynamical one [52]. Dropping diffeomorphism invariance also

introduces new degrees of freedom as symmetries can be restored by adding new

fields with suitable transformation laws under the broken generators, the so-called

"Stuckelberg fields" [53]. In the simplest scenario, compatibly also with the broken

time-translation of the expanding homogeneous and isotropic Universe, is to add

one additional degree of freedom. This field can, eventually, drive the late time cos-

mic acceleration on large scales [52, 54]. For this reason, we address it generically as

the "DE field". In order to satisfy some minimal stability requirements, scalar-tensor

theories must lead to second order equations of motion for the propagating degrees

of freedom, one massless tensor and one scalar. Scalar-tensor theories have a long
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history, and many famous gravitational theories belong to this class. Among them,

for instance, we account Quintessence theories [55], Brans-Dicke gravity [56], Co-

variant Galileon cosmologies [57] and K-essence theories [58]. Covariant Galileons

attracted much attention in cosmology because of the existence of a tracking solu-

tion which evolves into a de Sitter fixed point [59]. All of these theories belong to the

so-called Horndeski family [60–62]. Initially considered the most general action of a

scalar-tensor theory leading to a stable dynamics, this class of theories was subse-

quently enlarged in the beyond-Horndeski theories [63, 64], and then DHOST [65–

70]. General Relativity, plusΛ, corresponds to the trivial case in which the DE field is

constant, henceΛCDM is always contained in the class of scalar-tensor gravities.

To be able to source the cosmic exponentially accelerated expansion, the DE field

must have a mass of the order of magnitude of the Hubble scale, i.e. ∼ 10−33 eV. As

a result, its Compton wavelength is large, and the field mediates a long range inter-

action. Because of this extra force, the laws of gravity appear modified above this

scale [71–73]. Typically, this shows into a modification of the Poisson Eq. (1.30). Cos-

mological observables can be altered even below the scale of the Compton wave-

length, since the DE field can still influence the dynamics of the homogeneous and

isotropic Universe [74]. Another characteristic features of all scalar-tensor theo-

ries regards their small-scale behavior. If the DE field exists, it must hide itself in

high-density region environments, such as the Solar System, where General Relativ-

ity has passed all tests performed so far. Thus, viable scalar-tensor theories must

be equipped with a dynamical mechanism that make manifest the presence of the

DE field only on large-scales (low density), such as the linear scales of cosmological

perturbations, and suppresses otherwise. This screening can be achieved through

non-linear interactions, which become prominent at small scales, with the result of

effectively decoupling the DE field from matter (see [51] for a review).

1.2.1. The Horndeski subclass with luminal gravitational waves

The power of scalar-tensor theories, lies in the fact that they are a class. Practi-

cally, this means that one can treat many different alternatives at the same time,

simply by leaving their coupling functions unspecified, rather than going on a one-

to-one basis. Because of this, they are suited to build tests: instead of computing

the phenomenology of each specific theory, we will have a continuous parametrized

class of them, which we can constrain after gathering the necessary data. For in-

stance, we have already commented that surveys mapping the galaxies’ distribution

have access to the growth of the linear gravitational potentials, through Pg (a,k) =
[b(a)]2Pm(a,k), and that how matter inhomogeneities grow depends on the theory

of gravity, as it is shown in Eq. (1.57). In a dynamical dark energy scenario describ-

ing the late-time cosmic expansion, the initial condition set by PΨi n will be the same,

but the transfer function and the growth factor will be changed, Tm → T DE
m and



1.2. Alternative models for the late time Universe

1

19

Gm →GDE
m , in a way that depends on the free coupling functions of the scalar-tensor

theory. Another example comes from the tensor sector, as the amplitude, the propa-

gation speed and the polarization content of the GWs can, in principle, be modified

in a way which depends on the free scalar-tensor couplings.

For simplicity, in this Thesis we restrict our study to Horndeski models in which ten-

sor modes propagate luminally [75–78] at all redshifts, satisfying the bound from

GW170817 [79]. Therefore, we consider the action

S =SG [gµν,ϕ]+SM [gµν,χi ] , (1.62)

with the gravitational part given by

SG =
∫

d 4x
p−g

( M 2
P [ϕ]

2
R +G[ϕ, X ]□ϕ+K [ϕ, X ]

)
, (1.63)

where ϕ is the DE field, X ≡−∂µϕ∂µϕ/2 its kinetic term, and MP , G , K are free func-

tions encoding possible self-couplings of DE field, and interactions with the space-

time metric. We assume that the matter action, SM [gµν,χi ], is universally coupled

with the Jordan frame metric gµν. This means that photons are not directly coupled

to the DE field, and they interact with it only indirectly through gravitational interac-

tion. This observation is crucial as it is the starting point for all the multi - messen-

ger tests: the difference in the couplings between gravitational and electromagnetic

waves to the DE field produced different phenomenologies in these two sectors, even

when these two have similar frequencies. Because of the very different typical wave-

length, though, it could be that photons and GWs are in different optical regimes and

in this case DE effects can be degenerate with wave optics ones [80]. Note that some-

times it is convenient to perform a conformal transformation gµν =Ω2(ϕ)g̃µν, to re-

move the non-minimal coupling between the metric and the DE field. In this frame,

also known as Einstein frame, one fixes Ω2(ϕ) such that M 2
P [ϕ]R[gµν] → m2

0R[g̃µν]

to remove the minimal coupling, and where m2
0 = (8πG)−1 is the Planck’s mass. As a

result SM [gµν,χi ] →SM [Ω2(ϕ)g̃µν,χi ], and the matter action becomes explicitly de-

pendent on the DE field. This kind of description is useful in the context of screening

scenarios (see e.g. [51]) and we use it in Chapter 5.

Starting from (1.62), one can derive the gravitational and scalar field equations by

varying it with respect to gµν and ϕ. Effectively, the former can be recast in the

form (1.3) with a particular stress-energy tensor,

Gµν = 8πG
[

T (DE)
µν

[
gαβ,ϕ

]+Tµν
[
gαβ,χi

]]
, (1.64)

where the explicit form of T (DE)
µν depends on the Horndeski functions: MP ,K ,G .
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1.2.2. Cosmology in alternative scenarios

Starting from Eq. (1.64), one can work out how cosmology is changed in the cho-

sen extended theory. The presence of the DE field does not affect the cosmological

principle, or the fact that the Universe is expanding, nor that matter is in the form

of clumped structures on large scales. The effect of its presence is to, possibly, alter

the dynamics of the scale factor and of the growth of LSS. Therefore, the approach to

tackle the problem is the same as before: we choose the metric as in Eq. (1.12), and

solve Eq. (1.64) perturbatively, instead of Eq. (1.3). The result is a set of equations

similar to Eq. (1.7) and Eqs. (1.23) - (1.29), but with additional terms originating from

T (DE)
µν . The system of equations is also supplemented by the DE field equation of mo-

tion, both at the level of the homogeneous and isotropic configuration and its linear

perturbations. Analogously to the metric and the matter stress-energy tensor, the DE

field is decomposed as

ϕ(x) =ϕ0(τ)+ϵδϕ(x) , (1.65)

where we have chosen as background φ̄ = ϕ0(τ), namely a field configuration com-

patible with the symmetries of FLRW. Although conceptually simple, the exercise of

working out cosmology in these extended theories is rather long and tedious, un-

less one chooses some specific form for the Horndeski functions MP ,K ,G . Instead of

choosing a specific model, one can opt for more agnostic explorations [81]. A pow-

erful approach proposed in literature is the so-called Effective Field Theory of Dark

Energy (EFT) [82–87]: a unifying framework able to give predictions about the ex-

pansion of the Universe and the growth of LSS.

At the center of the EFT approach is the idea that the observed time evolving profile

of the expanding Universe is the result of a spontaneous symmetry breaking of time-

translation. The Goldstone boson of the symmetry breaking, π(x), is identified with

the DE field via π(x) = δϕ(x)/ϕ′
0, since the background expansion assures ϕ′

0 ̸= 0.

Using then techniques of the effective approaches in quantum field theory, one can

then write the most general action for the linear perturbations around the symmetry-

breaking background. The EFT, then, starts by considering the gauge transformation

of the perturbation of the DE field

ϵδϕ′ = ϵδϕ−ξ0ϕ′
0 , (1.66)

since ϕ0 is exclusively time dependent, and choosing the unitary gauge : δϕ′ = 0.

This way, the slices of constant time are identified with the hypersurfaces of uniform

scalar field. As a result, one is left exclusively with the metric perturbation to con-

struct the operators entering the second order action dictating the LSS linear dynam-

ics, and they can be organized in power of derivatives. Since LSS are large-scale fluc-

tuations, the most relevant operators dictating their dynamics contain fewer deriva-

tives. The unitary gauge breaks time translation invariance, so that explicit functions

of time are allowed in the EFT action. Additionally, the normalized vector orthogonal
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to the constant time hypersurfaces, in unitary gauge reads

nµ ≡− ∂µϕ√
−(∂ϕ)2

→ −
δ0
µ√

−g 00
, (1.67)

since ∂µϕ = δ0
µ if ϕ is used as time coordinates. This means that, when building

the EFT action we can contract tensors with nµ, terms with 0 free upper indices are

allowed, such as g 00 or R00. For more details on the construction of the EFT action,

see [82, 85, 86, 88]. Imposing second-order equations of motion, and additionally a

luminal speed of propagation for tensors, the resulting quadratic action reads

S =
∫

d 4x
p−g

{m2
0

2
[1+Ω(τ)] R +Λ(τ)− c(τ)a2δg 00+

+γ1(τ)
m2

0 H 2
0

2
(a2δg 00)2 −γ2(τ)

m2
0 H0

2
(a2δg 00)δK µ

µ

}
+Sm[gµν,χi ].

(1.68)

where m2
0 = (8πG)−1 and δg 00, δK µ

µ are, respectively, the reduced Planck mass, the

perturbations of the time-time component of the inverse metric, and the trace of

the perturbations to the extrinsic curvature of constant-time hypersurfaces. The

free functions of timeΩ(a),Λ(a),c(a) and γ1(a),γ2(a) are the EFT functions; the first

three affect the dynamics both of the background and linear cosmological perturba-

tions, while the latter two affect only perturbations. ΛCDM is included in this frame-

work, and it corresponds to the choice Λ(a) = const , with the rest of EFT functions

being zero. Different EFT functions correspond to different characteristics of the the-

ory: the non-minimal coupling Ω(a), leads to a running Planck mass; the kineticity

γ1(a), quantifies the independent dynamics of the scalar field; the braiding γ2(a),

broadly signals a coupling between the metric and the scalar degree of freedom. No-

tice that we adopt the convention of [89, 90] for the EFT functions. The matter action

is assumed to be universally coupled to the Jordan frame metric, as discussed previ-

ously.

The spirit of the EFT is to assign parametrization for the time dependency of the

EFT functions, without relying on information coming from having chosen a specific

model. Nonetheless, if one is interested in one specific realization of a scalar-tensor

theories, the gravity model included in the EFT approach can be translated into the

EFT language via particular mapping procedures. For reference: non-minimally

coupled quintessence, f(R) gravity and Brans-Dicke theories would be character-

ized by non-trivial background EFT functions, while having γ1 = γ2 = 0; k-essence

would further have γ1 ̸= 0 and k-mouflage correspond to all functions being non-

zero. Alternative conventions are found in the literature, most commonly the so-

called αi parametrization [91, 92] in terms of {αM ,αK ,αB } (while αT = c2
T −1 is zero

for our case) for which there is a simple direct correspondence with {Ω,γ1,γ2} (see

e.g. [90, 93]). A typical feature of EFT of DE is that it allows to formulate a set of con-

ditions that the EFT functions need to satisfy among them in order for the resulting
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theory to be viable and do not develop instabilities [86, 88, 92–95]. These can be quite

powerful in restricting the parameter space of the EFT functions for which it makes

sense to explore the phenomenology [96, 97] purely on theoretical grounds.

The modified equations of motion that follow from the EFT action are implemented

in the code EFTCAMB [89, 90]: the extension of CAMB to scalar-tensor theories based

on the EFT action (1.68). While we use this code to solve such equations numerically,

it is still enlightening to understand how DE field modifies the equations of the cos-

mological model. For a thorough review of the EFT formalism and its applications to

cosmological tests of gravity, we refer the reader to [93] and references therein.

Modifications to the expansion history

From Eq. (1.68), it is clear that only Ω(a),Λ(a),c(a) can affect the expansion history

of the Universe, as their presence in the EFT action results in a modification of Fried-

mann’s equation (1.7). In order to deal with more familiar quantities, one can opt

to work in the designer approach [85, 86, 90], and reverse the problem. In this ap-

proach, the expansion history is a given, and the two Friedmann equations are used

to fix two of three EFT functions, in terms of the third one and H(a). To fix the ex-

pansion H(a), one can choose the equation of state of the DE field, wDE, since the

background metric and DE field equations of motion can be rearranged to obtain

H2 = a2H 2
0

(
Ωm +ΩΛ+ ρDE(a)

ρcr i t

)
, ρ′

DE +3HρDE(1+wDE(a) ) = 0, (1.69)

and also two constraint equations giving Λ and c in terms of H(a) and the non-

minimal coupling, Ω(a). Therefore, a model in the designer approach is fully spec-

ified by a choice Ω(a) and wDE(a). While there is no preferred parametrization for

their time dependency, a very common choice for the DE equation of state is the

so-called "Chevallier-Polarski-Linder" (CPL) [98, 99] parametrization,

wDE(a) = w0 +wa(1−a) , (1.70)

where w0 and wa are two constants. Choosing a parametrization has the effect of

reducing the problem from constraining a time dependent function, throughout the

entire history of the Universe, to constraining just a few constant parameters. Fig-

ure 1.3 shows an example of such constraints coming from the Planck mission [4],

observing CMB temperature and polarization anisotropies, and the galaxy and weak

lensing survey DES [100].

Modifications to the growth of structures

By varying the second order EFT action (1.68) with respect to the metric perturba-

tion, one can find the equations of motion governing the linear growth of the cos-

mic structures. The results are implemented in the code EFTCAMB, which we use
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Figure 1.3: Marginalized constraints on {w0, wa } from CMB observation [4] (left panel) and the galaxy
survey DES [100] (right panel) alone or in combination with other probes. ΛCDM corresponds to w0 =−1
and wa = 0.

to compute the modified transfer functions and growth factors when needed. De-

spite the vast range of possibilities, including the DE field comes with some generic

features, which can help in understanding the modified phenomenology of the lin-

ear scales. Typically, a dynamical dark energy field sources a scalar anisotropic shear

stress, invalidating Eq. (1.31), and modifies the Poisson’s Eq. (1.30). Detecting such

deviations is the goal of galaxy and weak lensing surveys, such as DES [101, 102]

and KiDS [103, 104], already delivering data, or the Stage IV missions: Euclid [105],

the Vera C. Rubin Observatory [12, 106, 107] and Nancy Grace Roman Space Tele-

scope [108]. All of these instruments are able to map LSS by analyzing properties

of some tracers of it: the distribution of galaxies on large scales follows the gravita-

tional potential, and the weak lensing induced distortions of their shapes depend on

the foreground matter distribution (weak lensing is a typical propagation effect, as

we will also see later). If one is not interested in the specific footprint of each oper-

ator in the EFT action (1.68) into the final observable, then it is also possible to opt

to parametrize directly the gravitational field equations. Focusing only on the scalar

sector, we rewrite Eqs. (1.31) and (1.30) as [109–111]

Ψk = η(a,k)Φk (1.71)

Φk = −4πGa2µ(a,k) ρ̄ δC
m(a,k) , (1.72)

Φk +Ψk = −8πGa2Σ(a,k) ρ̄ δC
m(a,k) , (1.73)

and it is easy to prove the relation η = 2Σ/µ−1. These parametrizations are valid in

the absence of shear anisotropic stress, otherwise the left-hand-side of the last two

equations must be generalized [4, 109, 110]. The two functions η(a,k) and Σ(a,k)

have specific physical interpretations3. The factor η(a,k), signifying a difference be-

3We use notations of [4] and call η(a,k) the slip parameters. In other references, such as [110] the slip is
also referred to as γ(a,k).
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tween the two gravitational potential, is called gravitational slip. µ parametrizes

modifications to the Newtonian gravitational potential, while Σ regulates variations

of the Weyl potential, ΨW ≡ (Φ+Ψ)/2, affecting the geodesic equations of photons.

While η is not directly linked to an observable, µ and Σ are, therefore, they can be

probed with future observations [112–114]. A modified growth pattern of LSS, also

causes changes in the velocities at which galaxies fall inside the gravitational po-

tential wells, opening also redshift space distortions as another investigation chan-

nel for µ, to be combined with weak lensing surveys probing Σ [115, 116]. While

the parametrizations in Eqs. (1.72) and (1.73) are incredibly handy to make contact

with observations, their embedding into the theoretically motivated EFT functions

is highly non-trivial. This fact is not to be underestimated: when dealing with the

EFT functions (or equally the Horndeski functions), it is straightforward to formu-

late the stability conditions and explore viable theories, while it is not the case for

µ(a,k),Σ(a,k). It is possible, to some extent, to translate these theoretical priors onto

the phenomenologically motivated µ(a,k),Σ(a,k), and reduce the parameter space

to investigate [95, 97, 117]. The parametrizations Eqs. (1.72) and (1.73) are also em-

ployed in parameterized approaches to cosmological perturbation theories, such as

the Post-Friedmann Framework [52, 118–121].

Figure 1.4: Marginalized posterior distributions of the values of µ and η today from [4], from Planck alone
or in combination with additional external data, neglecting any scale dependence. The CMB photons are
sensitive to modifications of the cosmic structures’ growth both through the integrated Sachs Wolfe effect,
and the lensing inducing secondary anisotropies.

The dynamics of the tensor perturbations is, in general, affected by the DE field as

well. Since we are considering theories where the tensor modes propagate luminally,

Eq. (1.29) can only be modified as (see e.g. [122–124])

γ′′i j +2H (1−δ(τ))γ′i j +k2γi j = 0. (1.74)

One can understand this as follows: being the DE field a scalar, it cannot produce

a source for the linear order tensor modes. Therefore, the only way it can enter in

their equation is through a modification of the time dependent coefficients already

present in Eq. (1.29). Since we are requiring a luminal propagation speed, the ratio
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between the coefficients with the second derivatives must remain 1 (in our units c =
1), so that, effectively, the only term that is allowed to gain extra contribution is the

damping one. For theories described by the action (1.68), it can be checked that

δ(τ) =−∂ log MP [ϕ0]

∂ log a
=− M ′

P [ϕ0]

HMP [ϕ0]
, (1.75)

where M ′
P [ϕ0] is the time derivative of the running Planck’s mass. This factor is com-

monly found in literature also under the name αM [91]. As in the case of the scalar

perturbations, one can opt for a phenomenological approach also in the case of GWs,

instead of relating δ(τ) to a specific theory, similarly to µ and Σ. In this case, devia-

tions from General Relativity are usually parametrized by {Ξ0,n}, as we will show in

Eq. (1.108).

The fact that the DE field affects both scalars and tensors is a reflection of the as-

sumption of having one, unique underlying theory describing the LSS: the same set

of parameters enters the dynamics of all the perturbation modes. For this reason,

it is possible to combine the information coming from scalar sector probes, such as

galaxy clustering and lensing or the CMB angular power spectrum, with those from

tensor sector probes, and exploit their joint power to pin down the effects of the DE

field. GW170817 [125] is an example of such synergy: with one GW detection, the pa-

rameter space of the full Hordenski action has been restricted to three free functions,

MP ,K ,G4, and the EFT functions to four, Ω(a), wDE(a),γ1(a),γ2(a) [76, 127, 128].

This is understandable since the equations of the tensor modes and of the gravita-

tional slip both come from the spatial, traceless part of the gravitational field equa-

tions [124]. This drastic reduction of the parameter space, naturally, has caveats and

loopholes [129, 130]. Other signatures of the DE field which affect both scalar and

tensor modes have been investigated, for instance, in [110] and a more general re-

view can be found in [78].

1.3. Gravitational waves
In Section 1.1.2 we have introduced large-scale structures and decomposed them

into irreducible representations of the Euclidean spatial rotations. Among them,

there was a tensor contribution, γi j , but we claimed that this is not what we iden-

tify as GWs in this Thesis. So what are GWs in our description? We define a GW, hµν,

as a linear perturbation, around a background configuration, ḡµν, of the spacetime

metric

gµν = ḡµν(x)+αhµν , with α≪ 1, (1.76)

where α is the expansion parameter used to keep track of the order of magnitude of

the GW. Naturally, if one is considering scalar-tensor theories, also the DE field must

4See [126] for generalization to beyond Horndeski theories.
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be expanded as

ϕ= ϕ̄(x)+αδφ . (1.77)

In analogy with hµν being called GW, δφ is usually named scalar wave (SW)5. Note

that in Eqs. (1.76) and (1.77), the background configurations are not necessarily

homogeneous and isotropic and, as such, they can depend on the four spacetime

coordinates, as indicated. If one takes a closer look at these two definitions and

Eqs. (1.12) and (1.65) for LSS, it is easy to realize that these are formally the same,

and the only difference is the background spacetime: in the case of LSS {ḡµν,ϕ̄(x)} =
{a2(τ)ηµν,ϕ0(τ)}, while these two can assume different forms in the case of GWs and

SWs. This consideration, which might be argued a subtlety, has substantial conse-

quences, both at the computational and interpretation level. Therefore, according

to our definition, GWs are more similar to the whole LSS, δgµν, rather than just its

tensor subgroup and the study of their propagation is, in some way, similar to the

study of the growth of cosmic structures. Note that we use two different expansion

parameters to count the expansion in powers of the GW and the LSS: in the first case

we use α, while in the second ϵ. This notation will be kept consistent throughout the

entire Thesis, and can always be used as a guideline to understand which quantity is

being used.

The linear dynamics of a GW, in the general theory of Eq. (1.64), can be found by

considering

δα

[
Gµν−8πG T (DE)

µν

[
gαβ,ϕ

]−8πGTµν
[
gαβ,χi

]]
= 0, (1.78)

where δα means linearization to first order inα. The case of General Relativity is con-

tained in these equations if one chooses K =G = 0 and MP (ϕ) = (8πG)−2 as forms of

the Horndeski functions. As in the case of LSS, from the general coordinate covari-

ance of the full theory, the linear metric perturbation inherits the gauge freedom

αh′
µν =αh′

µν−
(∇̄µ ξν+∇̄ν ξµ

)
, (1.79)

with ∇̄µ the covariant derivatives with respect to ḡµν. So, we are free to choose a

gauge for αhµν, in the same way as we choose the Poisson’s one to describe the

cosmic structures in Eq. (1.14). Poisson’s gauge was convenient in the case of LSS,

because the symmetries of the FLRW background guaranteed the decoupling of the

linear scalar, vector and tensor modes, as it can be clearly seen in Eqs. (1.23) - (1.29).

In the case of a GW, where ḡµν is, usually, either treated as unknown, or less sym-

metric than FLRW, the typical gauge choices performed in the context of LSS are not

particularly convenient, and one usually opts for different ones. Nonetheless, one

can already start appreciating the difficulty of the problem at hand: in cosmology it

is clear which part of ϵgµν propagates (ϵγi j in Eq. (1.29)) and which part corresponds

5Note that we are using the symbol αδφ for the scalar wave and ϵδϕ for the DE clustering participating in
the LSS.
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to the gravitational potential (ϵΨ in Eq. (1.30)). What about αhµν? How can we sep-

arate, in the far zone, the static potential from the propagating modes (i.e. those

modes which remain even when setting the sources to zero) when the background

spacetime is highly non-symmetric? Engineering ways to go tackle this problem is

the main focus of Chapter 6. As a general rule, when the background does not dis-

play any particular symmetry, it is convenient to go for a covariant gauge choice, such

as the de-Donder gauge,

∇̄µĥµν = 0, (1.80)

where ĥµν = hµν −hḡµν/2 is the trace-reversed metric perturbation. In this gauge,

the first order Einstein tensor reads

δαGµν =−α
2

[
□̄ĥµν+2R̄λµανhλα−hλν R̄λµ−hλµR̄λν+hµνR̄ − ḡµνhαβR̄αβ

]
, (1.81)

where all the barred quantities are computed with the background metric. Assum-

ing also that the background fields are on-shell, namely satisfying the field equa-

tions (1.64), we rewrite equation (1.78) as

□̄ĥµν+2R̄λµανhλα− ḡµνhαβR̄αβ+8πG
[
δαΘµν+δαΘDE

µν

]
= 0, (1.82)

where

δαΘµν ≡ 1

2α

[
ḡµσ

(
δαTσ

ν

)+ ḡνσ
(
δαTσ

µ

)]
, (1.83)

and δαΘ
DE
µν the same for T (DE)

µν . These equations constitute the starting point for

studying the propagation of GWs through the background spacetime, ḡµν.

1.3.1. Sources and wavelengths of GWs

Although it might look like GWs and electromagnetic waves are similar, there are

some essential differences between the two. For instance, astronomical electromag-

netic signals are usually an incoherent superposition of photons emitted from indi-

vidual sources, while GWs can also be produced by coherent bulk motions of mass-

energy or by nonlinear spacetime curvature features [131]. Moreover, the photon’s

wavelength is usually much smaller than the dimension of the source, allowing us

to make pictures of the source and to treat them in the ray-optics limit. For GWs the

situation is the opposite, and their frequency spectrum ranges from ∼ 103 Hz down-

ward for roughly 20 orders of magnitude, almost complementary to the range typical

of astronomical electromagnetic radiation (from 107 Hz upward) [132]. Even the low

energy CMB photons have frequencies of the order of 160 GHz. Because of the vari-

ety of frequencies that GWs might have, they cannot always be treated in the ray (or

geometrical) optics limit, as often it is necessary to opt for a treatment able to include

wave effects.

Broadly speaking, GWs sources are divided into two main categories: astrophysi-

cal or cosmological. Among the first class, we include: continuous sources (rotating
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pulsars with intrinsic asymmetry from crust deformations), burst events (collapses

of stars) and inspirals of compact objects binaries, by far the most famous as they

are the sources of the GWs detected by LIGO-Virgo. The frequencies of these events

depend on properties of the astrophysical sources, such as the masses of the black

holes and neutron stars composing the binaries, and are typically in the high fre-

quency side of the GW spectrum (>mHz). Belonging to the second class, instead,

we find waves normally generated in the early Universe, such as the inflationary ten-

sor modes [22–24, 133], or by quadrupolar collapse of large cosmic structures [134].

Various mechanisms can source GWs in the primordial Universe: cosmic strings and

phase transitions [135–139], or second order scalar perturbation [140–148] are the

most widely investigated. These waves are spread in a broad band of the frequency

spectrum and are expected to form a stochastic background.

Regardless of the specifics of their source, we want to stress the vast range of frequen-

cies characterizing GWs, contrary to the typical high ones for photons. This unique

feature makes them the perfect test ground to probe some particular assumptions

usually made in the context of wave propagation over curved spacetimes, well jus-

tified for the highly energetic electromagnetic signals but not necessarily for GWs.

These assumptions are necessary in order to solve Maxwell’s equations in curved

spacetime (see e.g. [149]), or Eq. (1.82) in the case of GWs, otherwise too compli-

cated. According to the frequency, different simplifying approaches are more or less

convenient, as we will see.

1.3.2. Definition of a gravitational wave: optical regimes

Assuming that the theory we are working with admits general coordinate invariance,

then its linearized version inherits the invariance under infinitesimal gauge transfor-

mations, such as in Eq. (1.79) for the metric perturbation. In the context of scalar-

tensor theories, one also has the freedom to gauge the DE field according to

αδφ′ =αδφ−ξµ∂µϕ̄(x) . (1.84)

The background ϕ̄(xµ) is generic, and it can depend on all the four spacetime coordi-

nates, in contrast to the LSS expansion and transformation in Eqs. (1.65) and (1.84).

Due to this gauge freedom, it can soon be realized that the expansions in Eqs. (1.76)

and (1.77) are easier said than done, and the problem of the definition of the GW and

SW arises right away. Considering that the numerical components of a tensor can be

made large or small by means of coordinate transformation, using the smallness ofα

as a criterion to distinguish the linear perturbation from the background spacetime,

is not sufficient [150]. In other words, the splittings in Eqs. (1.76) and (1.77) are un-

ambiguous only if supplemented by an additional coordinate independent criterion

to distinguish ḡµν from hµν, and ϕ̄ from δφ. There are two main approaches to tackle

this problem,
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1. linking the additional criterion to properties of the GWs and SWs such as their

frequency: when these are much higher than the typical background time vari-

ation scale, the splitting in Eqs. (1.76) and (1.77) can be achieved by means of

suitable averaging procedures.

2. assigning a priori a background {ḡµν,ϕ̄} and assuming it to be gauge invariant.

Note that the second avenue is the one adopted in standard cosmological perturba-

tion theory for LSS, which suffers from the same problematics. In this case the FLRW

background configuration of the metric, ḡµν = a2(τ)ηµν, and scalar field, ϕ̄ = ϕ0(τ),

are considered fixed and gauge independent.

According to the specific situation, one approach is more suitable than the other. We

take the problem of the definition of the GW and SW at the heart of our discussion,

and use this initial bifurcation to set up the two different optical regimes for GWs and

SWs: ray-optics, where these two are defined according to the first method, and the

wave-optics when using the second criterion. This assumption is going to be ques-

tioned and revisited throughout this entire dissertation, especially in Chapters 4, 5

and 6.

Ray-optics definition

We can separate clearly what is « wave » from what is background when these two

vary on two distinguishable scales. The literature of GWs in ray-optics, alternatively

called geometric optics regime, starts from the pioneering works of Isaacson [151,

152], and then proceeds in many other papers, such as [153–155].

Figure 1.5: GW wavelength λ compared to background curvature radius L. A GW can be distinguished
from an unknown background when λ≪ L.
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In the geometric optics picture, one starts by introducing the parameter

1

ω
≡ λ

L
≪ 1, (1.85)

where λ is the wavelength of the GW and L the typical scale of spatial variation of the

background metric (see Figure 1.5). In the case where the background still varies on

length scales smaller than the GW frequency, but it is practically static, one can use

the different time profiles to separate GW and background, as in

1

ω
≡ fB

fg w
≪ 1, (1.86)

where fg w = c/λ and fB is the frequency of the background. This is the typical situ-

ation in a GW detection through ground-based detectors: the size of their arms are

smaller than the wavelength of the GW itself (λ ≃ 500−50 km corresponding to fre-

quencies of 102−103 Hz for typical waves detected by those interferometers) making

the short-wave expansion as in Eq. (1.85) useless. Moreover, the variations of the

gravitational field around the Earth due to its in-homogeneities are greater than the

amplitude of the wave and occurs on small scales with respect to λ, but it is almost

static [150]. Given this separation of scales (spatial or temporal), one can perform

the splitting in Eq. (1.76) in a coordinate independent fashion, by defining an aver-

age 〈. . .〉 such that the background metric is the "mean" metric: ḡµν ≡
〈

gµν
〉

, and hµν
is defined via

〈
hµν

〉= 0. For scalar-tensor theories, the same goes for the SW and the

background DE field profile. The description is completed by assigning a prescrip-

tion on how to perform the averaging, and this is where the high-frequency nature

of the GWs (and SWs) comes into play. The most widely used technique, also de-

scribed in [151, 152], is the ADM scheme : we perform a space (or temporal) averages

over volumes containing many periods of the GW, so that oscillatory perturbations

average out to zero. Additionally, when the condition (1.85) is met, the background

spacetime is practically constant in a wavelength and an almost plane-wave ansatz

hµν = Re
[
Aµν e i ωθ

]
, (1.87)

δφ = Re
[
Ξe i ωϑ

]
(1.88)

can be chosen. In the expressions above, Re is the real part, Aµν is the amplitude

(tensorial) of the GW and Ξ the one of the SW, θ and ϑ the phases of the waves. Note

that the high frequency character is encoded in the ω≫ 1. The amplitudes and the

phases are assumed to be varying slowly, so they are almost constant within a pe-

riod. Alternative names which can be found in literature for the ansatz above are:

eikonal, geometric optics ansatz or WKB ansatz. The gradients of the metric pertur-

bations chosen as in Eqs. (1.87) and (1.88) are enhanced by a factor ω, coming from

a derivative acting on the exponential: ∂hµν , ∂δφ∼ 1/ω≫ 1.

Given these expressions, one proceeds in plugging them into the differential

Eq. (1.82) which, then, can be organized in powers of ω. Being second order, the
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equation has the schematic form

ω2
[

. . .
]
+ω

[
. . .

]
+

[
. . .

]
= 0, (1.89)

since each derivative acting on the exponential brings down a factor ω. Because

ω≫ 1, in order for this equation to be satisfied, the coefficients of each term in the

ω expansion must vanish independently. From setting the coefficient of ω2 equal to

zero, one finds the dispersion relation of the GW, while the first order gives an evo-

lution equation for the amplitude of the wave. Additionally, it is usually assumed

that the standard matter content does not have high frequency excitations [38]:

δαΘµν[χi ] = 0. This assumption will be widely commented and explored in Chap-

ter 6, where we dubbed it Classical Matter approximation. In theories in which the

DE field is dynamical, the situation is slightly more complicated (one has to decou-

ple the kinetic terms of the degrees of freedom by performing a diagonalization), but

conceptually analogous.

The ray-optics description is well suited to describe GWs in the bands observed

by the ground- and space- based interferometers, considering their propagation

through the large-scale structures of the Universe. These waves have frequencies

≳ 10−3Hz, while the typical frequency associated to the linear matter structures lies

in the CMB band, ∼ 10−16 Hz so that ω≲ 10−13. Nevertheless, the power of the geo-

metric optics approximation is that it allows to draw general conclusions regardless

of the spacetime of propagation, as long as Eq. (1.85) remains valid. Let us make an

example in General Relativity. We plug the WKB ansatz in Eq. (1.87), into Eq.(1.82)

with the choice MP = (8πG)−2 and K =G = 0, and find

ω2 : ḡµνkµkν = 0, (1.90)

ω1 : ∇̄µ
(
A2 kµ

)= 0, (1.91)

where A2 ≡AµνAµν and

kµ ≡ ∂µθ , (1.92)

is the GW wave vector, or equally defined in terms of the covariant derivative. These

equations allow the effective interpretation of a GW as a collection of particles, the

gravitons, propagating with a wave vector kµ, which according to Eq. (1.90) is a null

vector, and the wave’s amplitude satisfies the continuity Eq. (1.91). The wave vec-

tor kµ identifies the rays via kµ = d xµ/dλ, with λ the affine parameter, which are

geodesics of the background spacetime, since

kµ∇̄µkν = kµ∇̄µ(∂νθ) = kµ∇̄ν(∇̄µθ) = 1

2
∇̄ν(kµkµ) = 0. (1.93)

Note that Eqs. (1.90) and (1.91) are valid regardless of the form of ḡµν, as previously

claimed. In this picture, the physical nature of the GW clearly arises (as opposed to
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gauge modes), with the possibility of defining a GW stress-energy tensor [152], ac-

counting for the energy and momentum transport by the waves (more details can

be found in Chapter 4). One can also understand this by making the following con-

sideration: within a wavelength λ, space appears locally flat, and so the Riemann

tensor describing curvature is gauge invariant. As long as 1/ω≪ 1, GWs do not have

long wavelengths modes and the gauge invariant local behavior carries over the en-

tire spacetime. Not only, because of the particle interpretation, one can adopt the

techniques typical of photons, to treat GWs as well. Two relevant examples are: the

Cosmic Rulers formalism [156–158], to describe projection effects induced by cosmic

structures on the propagating GWs, and the Boltzmann equation [159], to describe

the stochastic gravitational wave background (SGWB) similarly to the CMB.

Finally, the parameter ω is sometimes used to set up an expansion of the high-

frequency perturbations’ amplitudes. These additional terms are called the beyond

geometric optics corrections, and they take the form

hµν = Re
[(
Aµν+ω−1A1

µν+ω−2A2
µν+·· ·

)
e i ωθ

]
, (1.94)

δφ = Re
[(
Ξ+ω−1Ξ1 +ω−2Ξ2 +·· ·) e i ωϑ

]
. (1.95)

The beyond geometric optics order can contain valuable information and their role

in lensing of GWs, in General Relativity, has been intensively investigated, e.g. in [154,

155, 160, 161].

Wave-optics definition

Whenever Eq. (1.85) is not satisfied, the eikonal approximation cannot be cho-

sen. This is the case, for instance, of stochastic backgrounds of gravitational waves

(SGWB): it contains arbitrarily low frequencies, so it is preferable to have a descrip-

tion for it valid across its entire spectrum. In this case, we are forced to use the

second approach to define waves: one must specify a fixed background fields con-

figuration, and the field perturbations are simply defined as αhµν = gµν − ḡµν or

αδφ=ϕ− ϕ̄, in every gauge. We will use this approach in Chapter 6, to describe the

SGWB without employing techniques which rely on the eikonal ansatz, typical of the

ray-optics limit. This way, our formalism will be valid in every frequency range and

can accommodate wave optics effects: interference and diffraction of the waves in-

duced by masses situated along the path of the GW. These types of problems have

been addressed for the first time in [162], and proceeded with many subsequent

works [149, 163–166], showing that these become important when the mass of the

lens is such that

ML ≲ 105M⊙
(

f

H z

)−1

, (1.96)

where f is the frequency of the GW. Such papers were then generalized to the case

of multi-lens systems [167], or lenses composed of binary objects [168] and expand-
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ing backgrounds [169], and they are all in General Relativity. Wave-optics phenom-

ena are expected to occur, for instance, in micro-lensing events due to substruc-

tures [170, 171] for GWs in the LIGO-Virgo frequency band [16]. Interestingly, it

was proposed to use such events to discover unknown objects, such as intermedi-

ate mass black holes [172], more exotic forms of compact dark matter [173], or low-

mass dark matter halos [174] and primordial black holes [175]. In the case of resolved

GW events observed by LISA, it has been assessed that over (0.1−1.6)% of massive

black hole binaries in the range of 105 −106.5 solar masses will display wave-optics

effects [176, 177], while, in the frequency band of the ground-based detectors, it is ex-

pected that such events will be visible for sources up to redshift zs = 2−4 with third

generation observatories [178]. The condition in Eq. (1.96) can also be rewritten in

terms of λ, the GW wavelength, and L, the background variation scale, as λ≳ L: it is

the opposite regime compared to the one of Eq. (1.85). Not surprisingly, wave-optics

effects become important away from the regime where the effective description of a

wave in terms of a stream of particles holds.

When choosing the wave-optics definition for the GW, there is no simplifying ansatz

for the waves and one has to attempt solving Eq. (1.82) with the chosen background

configuration (changing gauge for the GW if needed). Recalling that this approach is

also the one used in the context of LSS, whenever we take {ḡµν,ϕ̄} to be compatible

with FLRW and its symmetries, then studying the propagation of GWs and SWs is for-

mally equivalent to doing cosmological perturbation theory, and the only difference

is the name of the actors: α plays the role of ϵ, αhµν the one of ϵδgµν and αδφ the

one of ϵδϕ. Any other situation, must be evaluated case by case. For instance, in the

literature of wave-optics effects in gravitational lensing [179], addressed in General

Relativity (δαΘDE
µν = 0), the chosen background is the one describing a static, Newto-

nian source,

d s̄2 =−
(
1+2ϵU (x)

)
d t 2 +

(
1−2ϵU (x)

)
d x2 , (1.97)

where U represent the gravitational potential well of the lens. In this case, Eq. (1.82)

reduces simply to □̄ĥµν = 0, outside the lens6. Then, usually one proceeds by ne-

glecting polarization effects on the GW [179]. To this end, the GW is decomposed as

hµν = h eµν, where h is the amplitude and eµν the polarization tensor which is con-

sidered constant. This way, the wave equation is transformed into an equation only

for the amplitude: ∂µ(
√−ḡ ḡµν∂νh), where ḡµν is given by Eq. (1.97). Expanding it to

first order in U one finds [179](
∆+ω2

)
h(ω, x) = 4ω2 ϵU (x)h(ω, x) , (1.98)

where h(t , x) = e−iωt h(ω, x) and ∆ is the Laplacian operator in spherical coordi-

nates (r,θ,ϕ) with r ≡
√

x2 + y2 + z2. Without the lens (U = 0), the amplitude of

the wave would fall inversely proportional to the distance as hN L = Ae iωr /r . At this

6The authors also neglect the contribution proportional to the Riemann tensor by assumption.
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point, there are two main strategies to solve Eq. (1.98): the first involving the so-

called Diffraction Integral (see e.g. [179]) while the second using the Green’s function

method (see e.g. [165]). We review only the second one because we will use a simi-

lar method in Chapter 6. In the Green’s function method, one sets up a solution of

Eq. (1.98) by considering that the effect of the gravitational potential must be small,

since ϵ is a small parameter. Therefore, the full solution must be similar to the un-

lensed (U = 0) wave

h(ω, x) = h(0)(ω, x)+ϵh(1)(ω, x) . (1.99)

Then, one plugs this expansion into Eq. (1.98) and matches order by order in ϵ. This

way h(0) is a solution of Eq. (1.98) with U = 0 and h(1) satisfies(
∆+ω2

)
h(1)(ω, x) = 4ω2 U (x)h(0)(ω, x) . (1.100)

As in [165], we solve this equation Using the Green’s function of the Helmholtz equa-

tion, e iω|x−x′|/|x−x′|, and obtain

h(1)(ω, x) =−ω
2

π

∫
d 3x ′ e iω|x−x′|

|x−x′| U (x ′)h(0)(ω, x ′) . (1.101)

The solution of h(1) encodes the diffraction and interference pattern typical of the

wave-optics regime, which are frequency dependent. Moreover, since the frequency

of a GW produced during the inspiral of a compact object binary increases while

going toward the merger, monitoring in time a lensed GW event will allow observing

the change in the diffraction pattern. This frequency dependecy of the observed lens

pattern can be used to break degeneracies between the lens parameters and infer

properties of the lens objects with an increased level of detail and precision [180,

181]. For instance, the so-called mass-sheet degeneracy can be lifted [149].

1.4. GWs in ray-optics limit: relativistic effects
We have seen that the ray-optics definition of a GW allows for a treatment which is

independent of the background spacetime metric. This is clearly visible in Eqs. (1.90)

and (1.91), which are valid for any ḡµν, as long as ω−1 ≪ 1. In this Section, we merge

all the knowledge gained from the three previous ones. First, we generalize Eqs. (1.90)

and (1.91) in the case of the Horndeski theory (1.62), promoting again ϕ to a dynam-

ical variable. Then we choose as background field configuration {ḡµν,ϕ̄} the cosmo-

logical perturbed solution, namely Eq. (1.14) for the metric and Eq. (1.65) for the DE

field. This means that we will have a double parameter expansion: α keeping track

of the GW and SW, as in Eqs. (1.76) and (1.77), and ϵ for the LSS included in the back-

ground field profiles. We will show that GWs propagating on such spacetimes are

damped (their amplitude is inversely proportional to the luminosity distance) and

that LSS source the so-called Relativistic effects, modulating the amplitude of the sig-

nals.
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1.4.1. Ray-optics with a DE field

When considering the Horndeski action (1.62), the linearized gravitational field

equations become (1.82), with δαΘ
DE
µν ̸= 0. If one plugs the geometric optics ansatz

into the equation of motion, then Eqs. (1.90) and (1.91) result modified. Since the

action (1.62) is tailored to have GWs propagating at the speed of light, then the dis-

persion relation remains unchanged, and the wave vector kµ, defined as the gradient

of the phase of the WKB ansatz in Eq. (1.92), satisfies

ḡµνkµkν = 0. (1.102)

In these extended gravitational theories, GWs are still described in terms of gravitons

propagating along null geodesics of ḡµν. It has been shown in [158, 182]7, that the

amplitude of the tensor modes of the GW, AT , satisfies

∇̄ρ
[

kρ (AT )2 ln M 2
P [ϕ̄(x)]

]
= 0, (1.103)

in the Horndeski theory (1.62) and with ϕ̄ the generic, background DE field configu-

ration. Eq. (1.91) follows simply by choosing MP [ϕ̄] = (8πG)−2. The result of having

promoted the cosmological constant to a dynamical scalar field described by the ac-

tion (1.62), is encoded in a modification to the GW tensor modes amplitude’s conser-

vation equation. This is clear from the extra factor ln M 2
P [ϕ̄(x)] in Eq. (1.103).

1.4.2. Standard sirens: the GW luminosity distance

The cosmological background is an expanding spacetime. Because of this, propagat-

ing waves are damped. This is the so-called Hubble friction, encoded in the factor H
of Eq. (1.29) or the modified one H(1−δ(τ)) in Eq. (1.74). Naturally, these considera-

tions are contained also in Eq. (1.103). Indeed, it is easy to check that, if one chooses

{ḡµν,ϕ̄} = {a2(τ)ηµν,ϕ0(τ)}, then Eq. (1.103) is compatible with Eq. (1.74).

In case of a homogeneous and isotropic background, the amplitude evolution

Eq. (1.103) can be integrated [158] to give

AT (z) = QT (1+ z)2

d̄ GW
L (z)

(1.104)

where QT is an integration constant that depends on the properties of the source, z

is the redshift, related to the scale factor as 1+z = a−1. In the solution above, we have

introduced the gravitational wave’s luminosity distance, d̄ GW
L (z), defined as

d̄ GW
L (z) ≡ MP (z)

MP (0)
d̄ EM

L (z) , (1.105)

7The procedure is actually slightly different, and we do not report it here. In particular, it requires decom-
posing the GW on a polarization basis, and focusing only on its tensor modes (in our definition, the GW
αhµν is more similar to the LSS, ϵδgµν, rather than only its tensor modes ϵγi j ). In the equation, AT is
the amplitude of the tensorial part of αhµν.
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where the electromagnetic luminosity distance is

d̄ EM
L (z) = (1+ z)χ̄(z) = (1+ z)

H0

∫ z

0

d z ′

E(z ′)
, (1.106)

with χ̄(z) the comoving distance and E(z) ≡H(z)/(a2H0) =Ωm +ΩΛ+ρDE(a)/ρcr i t

as in Friedmann’s equation (1.69). Eq. (1.104) is a fundamental result in the litera-

ture of GWs in scalar-tensor theories. From it, together with Eq. (1.105), we see that

the effect of the modification to the Hubble friction in the GW’s tensor modes equa-

tion, is to produce a difference between the luminosity distances as inferred from

electromagnetic signals and those from the amplitude of GWs. Since photons are

contained in the universally coupled matter action, SM [g ,χ], they are not directly

affected by the DE field, and the Hubble drag they feel is not modified. The pres-

ence of a dynamical DE field, in this case, enters only implicitly the expansion rate

E(z). This different behavior between the GW and EM sector is a golden resource for

testing scalar-tensor theories aimed at describing the late-time accelerated expan-

sion. It allows to directly investigate the non-minimal coupling between the DE field

and the curvature, also known as running Planck’s mass, MP (ϕ) (see e.g. [183–192]).

Eq. (1.105) is also renowned in literature with different notations, especially in terms

of δ(τ) =−∂ ln MP /∂ ln a, or αM =−δ(τ). In this case

MP (z)

MP (0)
= exp

[∫ z

0
d z ′ δ(z ′)

1+ z ′

]
. (1.107)

This expression has two clear behaviors: when z → 0, the integral becomes trivial

and no modification of the luminosity distance occur. On the other hand, when

z ≫ 1 then, we enter matter domination, and we expect δ(z) → 0 since the DE field

becomes very subdominant, and the results of General Relativity should be recov-

ered. In this case, the ratio MP (z)/MP (0) reaches a constant. Another very common

parametrization for Eq. (1.105), more similar in spirit to the phenomenological ap-

proach, can be found in [122, 183, 184] and sees the introduction of the two parame-

ters Ξ0 and n as
d̄ GW

L (z)

d̄ EM
L (z)

=Ξ0 + 1−Ξ0

(1+ z)n . (1.108)

Such parametrization reproduces the two expected behaviors: when z → 0 the ratio

goes to 1 and when z ≫ 1, the second term can be neglected and the same ratio ap-

proaches the constant value Ξ0. Up to now, we do not have tight constraints on the

value ofΞ0 [193–195] and large deviations are still allowed by the data, possibly mak-

ing its effect dominant over the one due to a modified expansion history [183, 184].

Interestingly, it has been proposed to use strongly lensed GW observations to put

constraints on Ξ0, confirming that we will be able to put constraints at the percent

level with ∼ 4600 events [196].

Before moving on to the relativistic corrections, we wish to stress one last point.

The results of this Section are of utmost importance even when the prefactor
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MP (z)/MP (0) = 1. Eq. (1.104) leads in any case to the important observational fact

that a GW detection provides a direct measurement of the luminosity distance of

their source. These events are, thus, standard distance indicator, dubbed Stan-

dard Sirens [197], similarly to SNe, also known as Standard Candles. Because of

this, one can perform, with GW observations, the same distance-redshift tests which

allowed the discovery of the late time accelerated expansion with SNe observa-

tions [195, 198, 199]. In this type of tests, one uses the knowledge of both the lumi-

nosity distance and redshift to pin down the only unknown left in Eq. (1.106): H0E(z).

Thus, in this way we constrain the expansion history and the Hubble parameter to-

day, H0 [200–202], the latter being one of the two parameters of the standard cos-

mological model under the spotlight. Indeed, there is a discrepancy of about ∼ 5σ

between the measurements of H0 inferred from the CMB anisotropies power spec-

trum (assuming ΛCDM) and the one from SNe (see [15] for a review and references

therein). Standard sirens, thus, provide a third and independent way, affected by en-

tirely different systematics, to constrain such parameter and could prove to be crucial

into breaking the tie between the various determinations of H0 [203]. Unfortunately,

standard sirens come with a catch: GW observations carry information exclusively

about the luminosity distance, and the redshift determination has to be obtained ei-

ther through a direct detection of an electromagnetic counterpart [197, 198, 204], as

it was for GW170817 [205], or via the individualization of the host galaxy of the source

or through statistical methods [188, 206–210].

1.4.3. Relativistic corrections

After having described the solution of Eq. (1.103) on FLRW Universe, we can in-

clude the effect of LSS. We further simplify the situation, considering the so-called

restricted Poisson’s gauge, a subcase of Eq. (1.14) where ϵwi = ϵγi j = 0. This choice

is suitable in the late time Universe if there are no free tensor modes [39] and it is

compatible with having a scalar dynamical DE field: being a scalar, it cannot source

vector and tensor modes at linear order. With this assumption, the background field’s

configurations are

d s̄2 = a2(τ)
[
− (1+2ϵΦ)dτ2 + (1−2ϵΨ)dx2

]
, (1.109)

ϕ̄(x) = ϕ0(τ)+ϵδϕ(x) , (1.110)

where Φ,Ψ are the two gravitational potentials in Poisson’s gauge and δϕ is the DE

field fluctuation.

Before getting into the details of the computation, let us sketch what we expect to

find. On the homogeneous and isotropic background, the luminosity distances de-

pend only on redshift, leading to the standard distance-redshift relation. Because

the LSS break the rotational symmetry in the 3D spatial slices, we expect inhomo-

geneities in the Universe to induce a dependence also on the direction of observa-
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Figure 1.6: From [211]. Determinations of the Hubble constant H0 from local Universe measurements
(blue), and from CMB assuming ΛCDM (red). The green line corresponds to its measurement from the
bright event GW170817 [205].

tion

dL(θ̂, z) = d̄L(z)+ϵ∆dL(n̂, z) . (1.111)

The average luminosity distance, d̄L(z), in the equation above, theoretically corre-

sponds to Eq. (1.106) for photons and Eq (1.105) for GWs, since ϵδgµν has zero mean.

Fluctuations in the electromagnetic luminosity distance ∆dL , which we introduced

in Eq. (1.114), constitute an important probe for linear cosmology and have been

well studied [212–216], while the case of GWs has been addressed in General Relativ-

ity in [217–223]. Relativistic effects, thus, can be used to probe the linear structures of

the Universe. If one is not interested in them, and only wish to use standard distance-

redshift tests, they must still be accounted for as they introduce irreducible errors

in the determinations of the parameters [224–226]. Including relativistic effects can

also have impact in the searches for the electromagnetic counterparts [218].

Mathematically, the problem at hand requires plugging Eqs. (1.109) and (1.110) into

Eq. (1.103) and solve for AT . Naturally, this turns out to be very complicated and

one resorts to perturbative schemes to solve the equations. Such methods were first

developed in the context of photon propagations, and in particular go under the

name of Cosmic Rulers [156, 227, 228] or also line-of-sight approaches [216, 229, 230].

Indeed, starting from Maxwell’s equations, an evolution law identical to (1.91) can

be found also for the amplitude of an electromagnetic signal [149, 212]. These
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types of computations were then generalized to the case of GWs in geometric op-

tics in [157, 217] in General Relativity, and in [158] in the Horndeski theories of the

form (1.62). This is the principal reason why we restrict our studies to scalar-tensor

theories with luminal GWs: the form of the relativistic effects is not known other-

wise. The Cosmic Rulers formalism also accounts for the projections effects induced

by the fact that we observe in the observer-frame, different from the real-frame be-

cause, when observing, we use coordinates that flatten the past light-cone of the GW.

Regardless of the method, the general philosophy is to expand (1.103) up to first or-

der in LSS (ϵ) and define AT = ĀT (1+ ϵ∆ lnAT ), where ĀT satisfies the equations

at order ϵ0, while ∆ lnAT those at order ϵ1 (or equivalently in terms of the luminos-

ity distance knowing that AT ∝ (d GW
L )−1). The logic is very similar to what we have

done to find the wave-optics solution in Eq. (1.101), but starting from (1.103) and us-

ing Eqs. (1.109) and (1.110) instead of a background representing a static Newtonian

lens.

In [158], it can be found that the relativistic effects on GW’s amplitude, induced by

propagation effects through the cosmic web, in the theory (1.62), are

∆d GW
L (n̂, z)

d̄ GW
L (z)

=−κ− (Φ+Ψ)+ 1

χ

∫ χ

0
d χ̃ (Φ+Ψ)+Φ

( 1

Hχ
− M ′

P [ϕ0]

HMP [ϕ0]

)
+

(
1− 1

Hχ
+ M ′

P [ϕ0]

HMP [ϕ0]

)[
v∥−

∫ χ

0
d χ̃ (Φ′+Ψ′)

]
+ MP,ϕ[ϕ0]

MP [ϕ0]
δϕ ,

(1.112)

where a prime indicates differentiation w.r.t. conformal time, κ denotes the weak

lensing convergence, χ the comoving distance to the source, Φ the Newtonian po-

tential, Ψ the intrinsic spatial curvature potential, v∥ the component along the line

of sight of the peculiar velocity of the source, and MP,ϕ is the derivative with respect

to the scalar field: all in the restricted Poisson gauge and following the conventions

of [158]. The physical effects contributing to ∆d GW
L , in order, are: weak lensing con-

vergence, volume dilation and a Shapiro time delay, that are only indirectly influ-

enced by the DE field; Sachs-Wolfe (SW), Doppler shifts, and Integrated Sachs-Wolfe

(ISW), showing an additional explicit decay that depends on the time evolution of

MP [ϕ0(τ)]; damping due to DE field inhomogeneities, ϵδϕ(x). The weak lensing con-

vergence field, namely κ in Eq. (1.112), is given by

κ(n̂) =−1

2
∇2
θΦL(n̂) =−

∫ χ

0

dχ′

χ′

∫ ∞

χ′
dχ∗

(
χ∗−χ′
χ∗

)
∇2
θΨW (χ′n̂, z ′) (1.113)

whereΨW is the Weyl potential and ∇2
θ

indicates the 2D Laplacian with respect to the

angle between the image and optical axis [149, 231]. Note that we are neglecting the

shear deformations of the signal since these are subdominant in linear perturbation

theory where WL mainly affects the magnification of the GWs.
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In presence of the DE field, the GW luminosity distance generally differs from the

one traced by electromagnetic signals. This is clear at the unperturbed level from

Eq. (1.105). Not surprisingly, this is also true for their large-scale fluctuations as GWs

follows Eq. (1.103), where the Horndeski function MP is explicitly present, while pho-

tons are not directly affected by the DE field. As already mentioned, it is possible to

find a WKB solution for Maxwell’s equation, and this would look like Eq. (1.91) also in

the presence of a dynamical DE field. Therefore, the luminosity distance fluctuations

as inferred from an EM detection, in the Horndeski theory (1.62), are given by

∆d EM
L (n̂, z)

d̄ EM
L (z)

=−κ− (Φ+Ψ)+ 1

χ

∫ χ

0
d χ̃ (Φ+Ψ)+ Φ

Hχ
+

(
1− 1

Hχ

)[
v∥−

∫ χ

0
d χ̃ (Φ′+Ψ′)

]
,

(1.114)

as it can be derived also by taking Eq. (1.112) and discarding terms in which MP [ϕ0]

appears explicitly. We clarify that Eqs. (1.114) and (1.112) carry an implicit de-

pendence on all the Horndeski functions MP , K , G , as the expansion history of the

Universe and the growth of cosmic structures obey the modified equations de-

scribed in Section 1.2.2. In a parametrized approach, these would correspond to

Eqs. (1.69), (1.72) and (1.73) (see e.g. [232] for an explicit example). When opting

for this kind of approach, though, one must be careful that the forms chosen for

wDE,µ(a,k) and Σ(a,k) are compatible with having started from the Horndeski the-

ory in action (1.62), namely with luminal tensor modes speed [233].

Therefore, the luminosity distance fluctuations provide direct access to the linear

structures of the Universe. In non-minimally coupled scalar-tensor theories, some

of the effects building these signals are different for distances inferred from GWs or

from electromagnetic signals, offering a new way to directly probe the effects of a dy-

namical DE field. The way that this information can be used is similar to what done

in Section 1.1.3: promoting the field fluctuations to random variables, one computes

their correlation functions. Thanks to Eqs. (1.114) and (1.112), we can relate the

power spectra of the luminosity distance fluctuations, which we can obtain through

GW and SNe observations, to those of the gravitational potentials, Φ and Ψ, and DE

clustering ϵδϕ, and investigate them.

1.5. This Thesis
This dissertation is divided in three parts, each of which tackles a specific aspect of

the main theme: the propagation of GWs through cosmic structures. In the first two

parts, we will use GWs in the ray optics regime to test scalar-tensor models of gravity

aimed at describing the late time cosmic expansion. In the last part, we will demote

the DE field back to a cosmological constant and address the matter of wave-optics

effects. Each Chapter picks up the thread of thoughts from the previous one, investi-

gating the extent of the assumptions made and possibly generalizing them. Keeping
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the detection prospect in high regard, the goal is not only to produce testable predic-

tions, but also to understand various aspects of gravitational wave propagation that

are yet to be fully grasped.

Part I: Ray-optics limit: beyond the homogeneous and isotropic Universe

We dedicate this part to the exploration of the potentialities of the luminosity dis-

tance fluctuations in Eqs. (1.112) and (1.114) in constraining cosmological param-

eters of various scalar-tensor models contained within the action (1.62). This part

aims, therefore, at building tests using the amplitude of the GWs as signal. In partic-

ular,

• Chapter 2: we will investigate the power spectrum of the luminosity distance

fluctuations of GWs observations, in two scalar-tensor models. After a first ex-

ploration, we will build an estimator which combines GWs and SNe observa-

tions with the goal of picking up the dark energy clustering contribution to the

covariance of the observation. In other words, we attempt at singling out the

contribution of ϵδϕ in Eq. (1.112), by comparing GW and electromagnetic ob-

servations. This signal is otherwise buried under the dominant contribution

of the weak lensing convergence κ. We will conclude that, although picking up

the DE clustering signal is very challenging, the estimator we built still provides

a smoking gun proof for theories with a running Planck’s Mass MP [ϕ], which

can be used after gathering enough GWs and SNe data.

Based on: Detecting Dark Energy Fluctuations with Gravitational Waves

A. Garoffolo, M. Raveri, A. Silvestri, G. Tasinato, C. Carbone, D. Bertacca, S.

Matarrese,

Phys.Rev.D 103 (2021) 8, 083506, e-Print: 2007.13722 [astro-ph.CO]

• Chapter 3: considering that weak lensing gives the greatest contribution to

the GW luminosity distance fluctuations, we investigate its role in constraining

cosmological parameters. Hence, in this Chapter we focus on the contribution

from κ in Eq. (1.112), and study its potentialities both alone and in combina-

tion with galaxy surveys (both clustering and weak lensing). Without choosing

a specific GW mission, we assess the number of GW events and the precision

with which the luminosity distance must be determined, in order for GW ob-

servations to become competitive with galaxies in constraining cosmological

parameters.

Based on: Prospects of testing late-time cosmology with weak lensing of gravi-

tational waves and galaxy surveys

A. Balaudo, A. Garoffolo, M. Martinelli, S. Mukherjee, A. Silvestri,

e-Print: 2210.06398 [astro-ph.CO]
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Part II: Ray-optics limit: distance duality relation and polarization tests

After having investigated the potentialities of Eqs. (1.112), in this part we turn to other

possible tests, always in the ray-optics limit. Indeed, from a GW detection, one re-

ceives more information than only its luminosity distance. In particular, we will take

a step back and asks which other quantities related to their amplitude are modified

in scalar-tensor theories, and then we will start looking at the polarization content.

• Chapter 4: distance measures have always played a prime role in building tests

for the cosmological model. The fact that the luminosity distance, as inferred

from a GW detection, can be modified compared to the electromagnetic one,

is a golden opportunity to tests non-minimally coupled scalar-tensor theories.

Nevertheless, in cosmology there are multiple notions of distances which can

play an equivalently important role to d GW
L in producing tests for the gravita-

tional theory. In this Chapter, after deriving the equations of motion of a GW

in a scalar-tensor set-up where these propagate at the speed of light, we take

a proper look at the definition of GW cosmological distances, showing that, in

the ray-optics regime, on top of d GW
L , one can also define an angular diameter

distance, d GW
A (z). To achieve this, we derive from a general principle the GW

stress-energy tensor, under the assumption that the GW and SW propagate at

different speeds. We will prove the validity of the Etherington’s reciprocity law,

namely d GW
L (z) = (1+ z)2d GW

A (z), implying that also the GW angular diameter

distance is modified compared to the electromagnetic one. Finally, we investi-

gate the implications of our findings in the context of strong lensing time de-

lays.

Based on: Gravitational-wave cosmological distances in scalar-tensor theories

of gravity

G. Tasinato, A. Garoffolo, D. Bertacca, S. Matarrese

JCAP 06 (2021) 050, e-Print: 2103.00155 [gr-qc]

• Chapter 5: in order to derive the equations of motion of the GW and SW, in the

previous Chapter we assumed that the amplitude of the SW was a factor ω−1

smaller than the GW. We justified this assumption by asking that at the mo-

ment of emission the SW is not sourced, so that it is produced by propagation

effects only. In this Chapter, we elaborate on this assumption and thoroughly

revisit the two definitions of GW given: as in geometric-optics and in wave-

optics. We will see that, depending on the assumptions, different conclusions

can be drawn about the amplitude of the SW. We investigate, then, whether

the SW can be directly detected in light of screening mechanisms. In the con-

text of two of them, we show that this should not be the case regardless of the

definition used for the GW.

Based on: Unifying gravitational waves and dark energy
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A. Garoffolo, O. Contigiani,

e-Print:2110.14689 [astro-ph.CO]

Part III: Wave-optics limit: the stochastic background and its polarization:

In this last part, we assume that dark energy is described by the cosmological con-

stant, Λ, as in the standard model of cosmology. We also switch the definition of the

GW and opt to investigate the wave-optics limit, showing that the interaction with

matter structures during propagation, in this limit, can produce scalar and vector

polarization modes.

• Chapter 6: we study the propagation of GWs in a perturbed cosmological Uni-

verse without relying on tools typical of ray-optics techniques. This way, we

can easily account for wave-optics effects. Similarly to Eq. (1.101), we obtain

a perturbed solution for the waves, though accounting carefully for their po-

larization content instead of treating them as scalar fields. We work under the

classical matter approximation, namely that the effect of the waves on the mat-

ter inhomogeneities is negligible. Our result shows that the interaction with

matter structures can produce scalar and vector components in the GW, on

top of tensor ones. We build the two point correlation function of the ten-

sor modes, and introduce the Stokes parameters. In the case of an unpolar-

ized, Gaussian, statistically homogeneous and isotropic initial background, we

show that the interaction with matter does not generate a net difference be-

tween left- and right- helicity tensor modes, as expected, but it also does not

produce Q- and U- polarization modes.

Based on: Wave-optics limit of the stochastic gravitational wave background

A. Garoffolo,

e-Print: 2210.05718 [astro-ph.CO]
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Appendices

A. Special functions, Fourier and Harmonic transfor-
mations

In our convention, the 3D Fourier transform and anti-transform are given by

f (τ,x) =
∫

d 3k

(2π)3 e i k·x fk(τ) , (1.115)

f (τ,k) =
∫

d 3x e−i k·x f (τ,x) . (1.116)

Similarly, a function can be expanded on a spherical harmonics basis using

f (τ,χ, n̂) =
+∞∑
ℓ=0

ℓ∑
m=−ℓ

aℓm(τ,χ)Yℓm(n̂) , (1.117)

aℓm(τ,χ) =
∫
S2

d 2n̂ f (τ,χ, n̂)Y ∗
ℓm(n̂) , (1.118)

with x =χn̂, where n̂ is the vector on the unit sphere, i.e. n̂ = (θ,φ) represents the an-

gular coordinates. The spherical harmonics Yℓm(n̂) are eigenfunctions of the angular

part of the Laplacian[
1

sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+ 1

sin2θ

∂2

∂ϕ2

]
Yℓm(θ,ϕ) = −ℓ(ℓ+1)Yℓm(θ,ϕ) (1.119)

and their explicit expression takes the form

Yℓm(n̂) =
√

2ℓ+1

4π

(ℓ−|m|)!

(ℓ+|m|)!
Pℓm(cosθ) e i mϕ ×

{
(−1)m m ≥ 0

1 m < 0
, (1.120)

where Pℓm(µ) are the associated Legendre functions, satisfying

Pℓm(µ) = (−1)m (1−µ2)m/2 d 2

dµ2 Pℓ(µ) , (1.121)

and Pℓ(µ) is the Legendre polynomial. These are ℓth-order polynomials inµ ∈ [−1,1].

The first polynomials are

P0(µ) = 1, P1(µ) =µ , P2(µ) = 3µ2 −1

2
, (1.122)

while the higher ones can be found by using the recursion relation

(ℓ+1)Pℓ+1(µ) = (2ℓ+1)µPℓ(µ)−ℓPℓ−1(µ) . (1.123)

The spherical harmonics satisfy the orthonormality relations∫
S2

d 2n̂ Y ∗
ℓm(n̂)Yℓ′m′ (n̂) = δℓℓ′ δmm′ (1.124)
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and they are related to Legendre polynomials via

Pℓ(n̂ · n̂′) = 4π

2ℓ+1

ℓ∑
m=−ℓ

Y ∗
ℓm(n̂)Yℓm(n̂′) . (1.125)

Another class of important special functions are the spherical Bessel functions, jℓ(x),

solutions of the differential equation

d 2 jℓ
d x2 + 2

x

d jℓ
d x

+
[

1− ℓ(ℓ+1)

x2

]
jℓ = 0. (1.126)

They cover a relevant role because of the relation

e i k ·x =
∞∑
ℓ=0

iℓ (2ℓ+1) jℓ(kχ) Pℓ(k̂ · n̂) , (1.127)

where we used again x =χn̂ and similarly k = k k̂.
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2
Detecting the clustering of

Dark Energy

Luminosity distance estimates from electromagnetic and gravitational wave sources

are generally different in models of gravity where dark energy is a dynamical field be-

yond the standard cosmological scenario. This leaves a unique imprint on the angu-

lar power-spectrum of fluctuations of the luminosity distance of gravitational-wave

observations, which tracks inhomogeneities in the dark energy field. Exploiting the

synergy between supernovae and gravitational wave distance measurements, in this

Chapter we build a joint estimator that directly probes dark energy fluctuations, pro-

viding a conclusive evidence for their existence in case of detection. Moreover, such

measurement would also allow probing the running of the Planck mass. We discuss

experimental requirements to detect these signals.

Keywords: Gravitational waves, DE clustering, luminosity distance fluctuations,

number of sources

Based on: Detecting Dark Energy Fluctuations with Gravitational Waves

A. Garoffolo, M. Raveri, A. Silvestri, G. Tasinato, C. Carbone, D. Bertacca,

S. Matarrese,

Phys.Rev.D 103 (2021) 8, 083506, e-Print: 2007.13722 [astro-ph.CO]
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2.1. Introduction
Any theory attempting at providing a cosmological model must include predictions

for the large-scale structures’ dynamics. As a result, the dispositions of galaxies and

the one of other tracers of the cosmic web, should contain footprints of any modifica-

tion of the standard pictures. Scientific missions trying to characterize the spacetime

always rely on the detection of a messenger: whether an electromagnetic (EMW) or

a gravitational wave (GW). Therefore, the first detection of GWs has guaranteed a

new observational window onto our Universe, promising to offer complementary

probes to shed light on the dynamics of the Universe on cosmological scales. As

described in Section 1.4.2, GW events at cosmological distances, in the geometric

optics regime, can be used as Standard Sirens [197, 225, 234] for measuring the ex-

pansion rate of the Universe. This recent approach is complementary to measuring

the luminosity distance of Standard Candles, like Type-Ia Supernovae (SNe): one of

the two principal probes for the recent exponential expansion of the Universe [6, 7].

On the homogeneous and isotropic background, the luminosity distances depend

only on redshift, leading to the standard distance-redshift relation tests as described

in Section 1.4.2. After their emission, photons and gravitons travel through the dark

matter gravitational potential wells, with the effect of spoiling the FLRW results re-

garding their luminosity distances to the sources. Inhomogeneities in the Universe

induce a dependence of the distances also on the direction of observation in ad-

dition to redshift, ∆dL(z, n̂), as described in Section 1.4.3. This additional depen-

dence must be kept into account to perform accurate tests: distance measurements

are reaching an unprecedented the level of precision, such that neglecting relativis-

tic effects can bias our cosmological parameter inference. However, fluctuations in

the luminosity distance do not only constitute a source of error: they give us direct

access to the LSS. The possibility of having multi-messenger observations opened

the powerful possibility of testing theoretical proposals which break the degeneracy

between the GW and the electromagnetic sector. This is exactly the case for scalar-

tensor theories of gravity described in Section 1.2, where photons, contrary to GWs,

are not coupled directly to the DE scalar field. In presence of a dynamical DE field,

the GW luminosity distance generally differs from the one traced by electromagnetic

signals, both at the unperturbed, background level [183–190] and in its large-scale

fluctuations [158, 235]. Importantly, fluctuations in the electromagnetic luminos-

ity distance, ∆d EM
L , are affected by the DE field only indirectly, as it can be seen in

Eq (1.114), while the GW one, ∆d GW
L , contains contributions directly proportional to

the running Planck’s mass, MP and the clustering of the DE field, δϕ, as it can be

seen in Eq. (1.112). In this Chapter, we combine two standard distance indicators,

SNe and GWs, and combine their luminosity distance fluctuations into a novel esti-

mator to directly detect the signal of DE clustering. This signal can not be mimicked

by other effects and would provide convincing evidence for the existence of the DE

field. If DE does not directly couple to known particles through non-gravitational
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interactions, the one proposed here is a promising method to pursue its direct de-

tection, on cosmological scales, far from sources that can hide its presence by means

of screening mechanisms (see e.g. [51, 236, 237]).

2.2. The GW luminosity distance power-spectrum
The luminosity distance, as inferred by an EM or GW signal propagating through a

Universe with structures, depends on the observed redshift, z, and on the direction

of arrival in the sky, θ̂. We decompose the observed luminosity distance of a source

as a sum of its background and fluctuation components, as in Eq. (1.111). We use

Eq. (1.112) to build the angular power-spectrum of GW luminosity distance fluctua-

tions averaged over a given redshift distribution of the sources

C GW
ℓ = 4π

∫
dlnk

(
∆d GW

L

d̄ GW
L

)W

k ℓ

(
∆d GW

L

d̄ GW
L

)W

k ℓ

, (2.1)

where we work in Fourier space for the perturbations, k being the momentum, and(
∆d GW

L

d̄ GW
L

)W

k ℓ

=
∫ ∞

0
d z jℓ(kχ)W (z)

(
∆d GW

L

d̄ GW
L

)
, (2.2)

and jℓ(x) is the spherical Bessel function and W (z) is the source window func-

tion, normalized to 1. The effect of each term in Eq. (1.112) on the angular power-

spectrum can be studied independently in terms of the different sources, highlight-

ing each relativistic or modified gravity effect,(
∆d GW

L

d̄ GW
L

)W

k ℓ

=
∫ τA

0
dτ jℓ(kχ)

{
SGW
κ +SGW

vol +SGW
Sh +SGW

SW +SGW
Dop +SGW

I SW +SGW
δϕ

}
, (2.3)

with τA is the conformal time corresponding to z =+∞ and

SGW
κ (τ) = (Φk +Ψk )

∫ τ

0
dτ̃

ℓ(ℓ+1)

2

(χ̃−χ)

χ̃χ
W (τ̃) (2.4)

SGW
vol (τ) = −W (τ)(Φk +Ψk ) , (2.5)

SGW
Sh (τ) = (Φk +Ψk )

∫ τ

0
dτ̃

W (τ̃)

χ̃
(2.6)

SGW
SW (τ) = W (τ)

( 1

χH − M ′
P

HMP

)
Ψk , (2.7)

SGW
Dop (τ) = −∂τ

[
W (τ)

(
1− 1

Hχ
+ M ′

P

HMP

)
v

]
(2.8)

SGW
I SW (τ) = (Φ′

k +Ψ′
k )

∫ τ

0
dτ̃W (τ̃)

(
1+ M ′

P

HMP
− 1

χH

)
, (2.9)

SGW
δϕ (τ) = W (τ)

MP,ϕ

MP
δϕ (2.10)
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where W (τ) = (1+ z)HW (z). In (2.4) we assumed v i (k,τ) = i k i v(τ), namely that

the peculiar velocity field is irrotational. The reason why we introduced this nota-

tion is that it is more suitable for direct implementation of the calculation of C GW
ℓ

in

EFTCAMB [90]: the Einstein-Boltzmann solver code, described in Section 1.2.2, allow-

ing us to study this quantity for a broad host of DE models. Note also that EFTCAMB
evolves the perturbed gravitational field equations in terms of the rescaled DE field

π(x) = δϕ(x)
ϕ′

0(τ)
, assuming thatϕ′

0(τ) ̸= 0, as it is in a cosmological setting. Therefore, the

last source among the ones above can be rewritten as

SGW
δϕ (τ) =W (τ)

MP,ϕ

MP
ϕ′

0(τ)π(x) =W (τ)
M ′

P

MP
π(x) . (2.11)

In order to explore in detail the impact of the DE field on C GW
ℓ

we focus for a
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Figure 2.1: Angular power-spectrum of gravitational-wave luminosity distance fluctuations. Solid lines
show the total power-spectrum, dashed lines the scalar field clustering component.
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tance fluctuations according to Eqs. (2.4)-(2.10). Solid, dashed and dotted contributions stand for in-
creasing redshifts bins.

moment on two representative models. First, a designer f (R) model on a ΛCDM
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background [238], with the only model parameter set to B0 = 10−4 which is com-

patible with current constraints [239]. Second, an agnostic parametrization of MP ,

such that the ratio (M ′
P /MP ) is a linear function of the scale-factor, a(z), M ′

P /MP ≡
(M ′

P /MP )|o a, where (M ′
P /MP )|o is the value of the ratio today, which we set to 0.05.

This minimal parametrization, implemented on aΛCDM background, is representa-

tive of the Generalized Brans-Dicke (GBD) [240–242] family of theories. In both these

models, the Planck mass MP depends on the scalar field value alone, ϕ0(τ).

Figures 2.1 and 2.2 show the angular power-spectrum, C GW
ℓ

, for the two scenarios

described above. To highlight redshift dependencies, we choose a Gaussian distri-

bution for the GW sources centered in various redshifts zi , with width ∆z = 0.01, i.e.

W (z) = N exp[−(z − zi )2/(2∆z2)] where N is the normalization constant. The to-

tal signal significantly changes shape with increasing redshift. At low redshifts and

large scales, the signal is dominated by the Doppler effect, encoded in SGW
Dop (τ), due

to the bulk-flow of the environment in which the GW sources are embedded. The

Doppler contribution then decays for growing ℓ, and the angular power-spectrum at

small scales is dominated by lensing convergence, described in SGW
κ (τ); the Doppler

term also decays in redshift, while lensing grows and eventually dominates the high-

redshift part of the signal. This is a standard behavior: as lensing is an integrated

effect, it accumulates throughout the propagation. These behaviors can be observed

in Figure 2.2. For both models considered, the relative behavior between Doppler

and lensing convergence is qualitatively unaltered with respect to the General Rela-

tivistic results [157]. Figure 2.1 also shows the direct contribution of δϕ to the total

signal, i.e. SGW
δϕ

of Eq. (2.10). This is of the same order of magnitude in both sce-

narios, and results largely subdominant compared to the total signal. For the f (R)

model, the scalar field contribution has a noticeable scale-dependent feature that

evolves in time as the Compton wavelength of the model. At higher redshift, the

Compton scale of the scalar field is smaller and, correspondingly, the feature in the

power-spectrum moves to smaller scales. In the GBD case, on the other hand, any

feature in the shape of the power-spectrum is less pronounced, as it only leads to the

decay of DE fluctuations below the horizon.

2.3. The joint SNe/GW estimator
The direct contributions of DE fluctuations to C GW

ℓ
are very small compared to other

effects, making it impossible to detect their presence in the angular correlations us-

ing GW data only. Interestingly, since photons are not affected directly by DE or MG,

∆d EM
L is structurally unchanged w.r.t. the results of General Relativity, hence is ob-

tained by neglecting all the explicit DE terms present in Eq. (1.112). The EM lumi-

nosity distance fluctuations, then, formally follow Eq. (1.114), with the gravitational

potentials following the modified laws as described in Sections 1.2.2. We can single
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out the distinctive DE field contributions, by combining standard sirens and stan-

dard candles: assuming that we have measurements of both SN and GW at the same

redshifts and positions and subtract the two luminosity distances fluctuations as

∆ϕ(n̂, z) ≡ ∆d EM
L (n̂, z)

d̄ EM
L

− ∆d GW
L (n̂, z)

d̄ GW
L

, (2.12)

where the average luminosity distances are given in Eqs. (1.106) and (1.105). In what

follows, we will use the estimator above in a statistical fashion. For this, we will need

populations of GW and SN in overlapping regions of the sky and redshift bin, instead

of having both events exactly in the same position and at the same redshift. For the

theories considered here, Eq. (2.12) takes the form

∆ϕ(θ̂, z) = M ′
P

HMP

(
Φ− v∥+

∫ χ

0
d χ̃ (Φ′+Ψ′)

)
− MP,ϕ

MP
δϕ , (2.13)

where only the explicit DE-dependent effects are present. In addition to the DE clus-

tering contribution, only three effects contribute to ∆ϕ: a residual Doppler, SW and

ISW effects. Most importantly, lensing convergence, which is the dominant contri-

bution to luminosity distance anisotropies, cancels out. Similarly as before, for the

joint estimator ∆ϕ we find the set of sources

S
∆ϕ
SW (τ) = W (τ)

M ′
P

HMP
Ψ

S
∆ϕ
Dop (τ) = ∂τ

[
W (τ)

M ′
P

HMP
v

]
S
∆ϕ
I SW (τ) = −

(
Φ′

k +Ψ′
k

)∫ τ

0
dτ̃W (τ̃)

(
M ′

P

HMP

)
,

S
∆ϕ
δϕ

(τ) = −W (τ)
MP,ϕ

MP
δϕ (2.14)

For particular classes of events, Eq. (2.12) could be directly evaluated for pairs of

sources at the same position and redshift. In our analysis we require this to hold only

statistically, by integrating Eq. (2.12) over a joint redshift distribution and computing

its angular power-spectrum:

C
∆ϕ
ℓ

=C SN
ℓ +C GW

ℓ −2C SN−GW
ℓ , (2.15)

where C SN
ℓ

(C GW
ℓ

) are the SN (GW) luminosity distance angular power-spectra, and

C SN−GW
ℓ

the cross-spectrum between the two. In this form we need the redshift and

position of GW/SNe sources to be the same only on average, i.e. same redshift dis-

tributions and overlapping regions in the sky. In Fig. 2.3 we show C
∆ϕ
ℓ

as a function

of the source redshift for the two representative DE models. We consider the case of

localized SN/GWs sources to study the redshift dependence of C
∆ϕ
ℓ

. In f (R), the DE

clustering component is dominating the total angular power-spectrum, making its
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Figure 2.3: The angular power-spectrum of the difference between GW and SN luminosity distance fluc-
tuations. Solid lines show the total power-spectrum, dashed lines the scalar field clustering component.

features manifest. In the GBD model, instead, the total signal is dominated by the

Doppler effect. Nevertheless, a detection of this signal still constitutes a direct proof

of the DE field’s presence.

2.4. Observational prospects
We next investigate the detection prospects for the fluctuations of the GW luminosity

distance via C GW
ℓ

, and DE clustering via C
∆ϕ
ℓ

. We consider the noise power-spectrum

for both SN and GW, as given by only a shot-noise contribution [243, 244]:

N i
ℓ =

4π fsky

Ni

(
σi

dL

d i
L

)2

≡ 4π fsky

N eff
i

, (2.16)

where i = {SN,GW} and fsky is the sky fraction covered by observations, which we

assume to be fsky = 1 for simplicity. We also define the effective number of sources,

N eff
i , as the product of the number of events, Ni , in a given redshift bin and the ratio

σi
dL

/d i
L related to the relative uncertainty on the luminosity distance which is pro-

portional to the magnitude uncertainty. In this way N eff
i , which sets the overall noise

levels, takes into account the number of events detected and the precision of each

measurement. As the signal decays in scale faster than ∝ ℓ−2, we expect to have the

best chance of measuring it from large-scale observations. For this reason we assume

that future localization uncertainties can be neglected [245].

The noise for the joint estimator of Eq. (2.15) is given by the sum of the two noise

power-spectra for GW and SN, since we assume that any stochastic contribution is

uncorrelated. Consequently, the number of effective events needed for a detection
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of C
∆ϕ
ℓ

is given by the harmonic mean of the two single ones

N eff
∆ϕ

=
[

1

N eff
SN

+ 1

N eff
GW

]−1

. (2.17)

The error on a power-spectrum measurement is given by

σ(Cℓ) =
√

2/(2ℓ+1) fsky [Cℓ+Nℓ ] , (2.18)

and the corresponding signal-to-noise ratio is

S

N
=

√√√√∑
ℓ

(
Cℓ

σ(Cℓ)

)2

. (2.19)

In the case of C GW
ℓ

this applies directly, while for C∆ϕ

ℓ
one needs to do full error

propagation on Eq. (2.15): the final result is the same, provided one uses for N eff
∆ϕ

the harmonic mean given above. The noise power-spectrum in Eq. (2.16) is scale-

independent so we can solve the inverse problem of determining the number of ef-

fective events needed to measure the power-spectra with a desired statistical signif-

icance. In practice, we fix a target S/N = 5, and solve the equation of S/N for N eff

both in the case of GW sources alone and ∆ϕ. Finally, we investigate the scenario

where the GW source redshift is unknown. In this case we assume the shape of the

GW redshift distribution as given in [220], while the SN one as in [246]. Since the SN

and GW redshift distributions need to match for our estimator to work, we take the

product of the two and build the joint probability of measuring both SN and GW at

the same redshift. In particular, we consider

d N GW(z)

d z
=NGW

χ2(z)

(1+ z)2H ,
d N SN(z)

d z
=NSN ×


2.5

χ3(z)

(1+ z)1.5 z < 1

9.7
χ3(z)

(1+ z)3.5 z ≥ 1

,

(2.20)

where NGW and NSN are suitable normalization. Even if such redshift distributions

depend on the cosmological model (for instance through H(z)), we use theirΛCDM

expressions, as we have checked that this dependency is negligible. Intermediate

cases in which the EM counterpart is not available, but estimates of the redshift dis-

tributions are obtained via statistical methods [207, 209, 247, 248], would fall in be-

tween the two extreme cases examined here.

Table 2.1 summarizes the results reporting the number of effective sources for a 5σ

detection of the angular power-spectra C GW
ℓ

and C
∆ϕ
ℓ

, both in the case of GW events

with known as well as unknown redshifts (the latter designated as “w/o z”). We

also indicate the value of N eff
GW in General Relativity, for comparison. The detection

threshold for GW luminosity distance fluctuations, N eff
GW, does not change apprecia-

bly for the different scenarios, since we selected representative models sufficiently
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GR f (R) GBD

N eff
GW N eff

GW N eff
∆ϕ

N eff
GW N eff

∆ϕ

z = 0.1 107 107 1014 107 1012

z = 0.3 108 108 1015 108 1011

z = 0.7 108 108 1016 108 1012

z = 1.5 107 107 1017 107 1012

w/o z 107 107 1019 107 1014

Table 2.1: Effective number of events for a 5-σ detection of C GW
ℓ

and C
∆ϕ
ℓ

.

close to ΛCDM to satisfy current constraints. In fact, as shown in Fig. 2.1, C GW
ℓ

is

dominated by lensing convergence at high redshifts and by Doppler shift at low red-

shifts. The former is indirectly modified by DE, while the latter is also sensitive to the

background configuration of the DE field: both these effects are small in the consid-

ered models. Since lensing convergence and Doppler effect dominate the angular

correlations of GW sources, it is not possible to distinguish the DE clustering contri-

bution in C GW
ℓ

within the total signal.

As far as N eff
∆ϕ

is concerned, the results show that it is possible to detect the signal of

the joint estimator in both cases of known and unknown redshifts. In f (R), this sig-

nal is dominated by the DE field fluctuations, as shown in Fig. 2.3, hence allowing for

its direct detection. In the GBD model, the signal of the joint estimator is dominated

by Doppler shift, easier to detect, explaining the lower number of effective events

compared to f (R). In this case, one would not be able to distinguish directly the DE

field inhomogeneities, but its detection is still a proof of a time-dependent Planck

mass. Comparing the two scenarios of known and unknown GW source’s redshift, we

see that the number of effective events is larger in the latter case because a broader

redshift range weakens the signal. However, in this situation the events are not re-

stricted to a redshift bin, hence one can use the whole population of SN/GW sources

provided that they are both present. Nonetheless, the number of effective events re-

quired is very high, suggesting that the detection precision per source has to improve

to eventually measure such signal. In fact, we remark that N eff
i is the effective num-

ber of sources, the real number of events can be lowered by having smaller statistical

errors on the single detection. As an example, in order to measure the DE signal, the

detection of a population of about 106 GW sources and about the same number of

SN events in a redshift bin at z > 1, would require a precision, per event, of about

σdL /dL ∼ 10−6 in the case of f (R), and ∼ 10−3 for the GBD model. Since the required

effective number of events scales quadratically with per-event precision,σdL /dL , but
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only linearly with number of events, increasing precision is likely a better strategy.

2.5. Discussion and Conclusions
Fluctuations in the DE field can distinctively alter the propagation of GWs with re-

spect to light. In this Chapter, by combining the luminosity distance measurements

from GW and SN sources, we proposed the new estimator∆ϕ for the direct detection

of the imprint of the DE fluctuations, that does not rely on non-gravitational interac-

tions between DE and known particles. This signal cannot be mimicked by other ef-

fects and, as such, it provides a distinctive evidence for a dynamical DE model. Even

in the case of a DE clustering signal below cosmic variance, any detection of our joint

estimator would be a convincing proof of a running Planck mass, as we showed for

two specific models. Reversely, it can be used to place complementary bounds on

theories of dynamical dark energy non-minimally coupled to gravity, along similar

lines of recent forecasts as in [161, 249] for the case of standard sirens. Since we ex-

ploit angular correlations at large scales, we expect our method not to be affected by

screening mechanisms nearby sources.

Since the required effective number of source is quite large, one should leverage as

much as possible on the precision of the measurement; for instance, given the num-

ber of SN/GW events (of order 106, at least in the higher redshift bins) that can be ob-

served with future SN surveys [12, 250] and space-based interferometers [251, 252],

a detection would be possible, if one decreases the statistical error on each mea-

sure according to table 2.1. Notice also that for our estimates we considered an ideal

case: the number of events needed for a detection might be higher to deal with possi-

ble systematic effects. This suggests that future facilities might have to develop new

technologies and observational strategies to meet these detection goals. We leave

it to future work to determine whether a detection of the signal we propose can be

aided by studying additional DE models, synergies with large scale structure surveys

or considering different sources of GW/EM signals. For example, future experiments

will detect large numbers of binary white dwarfs [253] on galactic scales and much

beyond [254, 255]. These events are supposed to be progenitors of Type-Ia SN in

the so-called double degenerate scenario [256], offering a common source for GW

and SN signals (see e.g. [257]). In this case, Eq. (2.12) holds locally and ∆ϕ could be

directly reconstructed in configuration space, provided that non-linearities and DE

screening effects can be properly taken into account.

Note: My contribution to the paper this Chapter is based on regards all the scientific

aspects, both theoretical and numerical, and the writing.
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Synergies with galaxy surveys

We investigate the synergy of upcoming galaxy surveys and gravitational wave (GW)

experiments in constraining late-time cosmology, examining the cross-correlations be-

tween the weak lensing of gravitational waves (GW-WL) and the galaxy fields. Without

focusing on any specific GW detector configuration, we benchmark the requirements

for the high precision measurement of cosmological parameters by considering several

scenarios, both in ΛCDM and alternative DE theories. We find that, in some of the

explored setups, GW-WL contributes to the galaxy signal by doubling the accuracy on

non-ΛCDM parameters. Though the most extreme cases presented here are likely be-

yond the observational capabilities, we show nonetheless that – provided that enough

statistics of events can be accumulated – GW-WL offers the potential to become a cos-

mological probe complementary to large-scale structure surveys.

Keywords: Gravitational waves, weak lensing, dark energy, cross-correlations

Based on: Prospects of testing late-time cosmology with weak lensing of gravitational

waves and galaxy surveys

A. Balaudo, A. Garoffolo, M. Martinelli, S. Mukherjee, A. Silvestri,
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3.1. Introduction
The historical direct detection of a gravitational wave (GW) by the LIGO-Virgo col-

laboration in 2015 [1], marked the beginning of a series of observing campaigns that

led to the detection of around one hundred sources [16, 258, 259]. In the near fu-

ture, the KAGRA interferometer [260] will join LIGO-Virgo in their observing runs,

while the space-based interferometer LISA [25] is expected to launch in the late ’30s.

The third generation of ground-based GW detectors will see light with the network

of Einstein Telescope (ET) [18] and Cosmic Explorer (CE) [19], drastically improving

the sensitivity to GW signals and measure hundreds of thousands of events over 10

years of observations. While GW170817 led the way, allowing the first GW measure-

ment of the Hubble constant [205], multi-band GW observations will open a new

promising window in observational cosmology, which can be used both to trace dif-

ferent GW sources populations, and to investigate the matter structures along the

line of sight. Meanwhile, the intense worldwide effort towards mapping the Universe

via galaxy and weak lensing surveys has started to deliver large-scale structure (LSS)

data of unprecedented precision, such as those provided by KiDS [103, 104] and DES

[101, 102] collaborations. With Stage IV missions (Euclid [105], the Vera C. Rubin Ob-

servatory [12, 106, 107] and Nancy Grace Roman Space Telescope [108]) we will see a

paradigm shift in the volume of data available. This will lead to a new level of scrutiny

of the standard model of cosmology: ΛCDM, introduced in Section 1.1. This model

successfully describes the Universe in terms of few parameters, yet the rise of pre-

cision cosmology has seen the emergence of some tensions between datasets when

interpreted within it [13, 14], which could signal the first cracks in ΛCDM as we are

achieving a new level of precision in the measurement of its parameters [15].

With the ongoing/upcoming cosmological surveys, we have the opportunity to probe

gravity on cosmological scales, and shed light, for instance, on the nature of dark en-

ergy. We focus on extensions of ΛCDM that address the phenomenon of cosmic ac-

celeration by means of a scalar dynamical dark energy component or modifying the

laws of gravity on large scales [52, 54], as in Section 1.2. In order to further tighten the

constraints coming from wide surveys that combine galaxy clustering (GC) and weak

lensing (WL) on the cosmological parameters, it will be crucial to bring in new probes

able to provide independent measurements and also break degeneracies between

the various effects participating in the growth of cosmic structures. Multi-band GW

observations are very interesting to this extent, as they offer complementary probes,

characterized by a different set of systematics with respect to galaxy surveys.

The dynamics of GWs depends on the extended parameters on two level: explicitly,

if they enter directly their propagation equation (e.g. Eq. (1.103)), and implicitly, via

a different expansion rate of the Universe and growth of gravitational potentials (see

discussion after Eq. (1.114)). On the contrary, the dynamics of photons is not explic-

itly modified in DE theories such as (1.62), opening the possibility of gaining con-
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straining power through probes that combine electromagnetic and GW signals. One

example of such degeneracy breaking is the cosmological friction term, the Hubble

drag, which gets modified for GWs (see, e.g. Eqs. (1.74) or (1.103)) when the theory

displays a running Planck’s Mass, but not for photons. This results in a difference

between the luminosity distance inferred from electromagnetic sources and the one

inferred from the amplitude of GWs, as stated in Eq. (1.105), and widely addressed in

literature as a mean to test the theory of gravity [122, 123, 183–191].

In this Chapter, we focus on the weak lensing (GW-WL) contribution to the GW’s

luminosity distance fluctuations (Eq. (1.112)) and explore its potentialities in con-

straining cosmological parameters. For high enough redshift sources (z ≳ 1.5), GW-

WL can cause up to ∼ 5% distortion in the GW strain, posing a serious limitation

to the precision with which the true luminosity distance of the sources is mea-

sured [157, 225, 261]. More interestingly, and similarly to what done in Chapter 2,

it can also be exploited as signal [262], especially when cross-correlated with galax-

ies [177, 223, 263], CMB lensing [222], HI intensity mapping [264, 265] and other GW

probes [266, 267], since both messengers span the same large-scale structures when

propagating. We introduce a lensing convergence estimator for GWs, which con-

tains explicitly a contribution from the conformal coupling, MP [ϕ], characteristic of

scalar-tensor theories, thus maximizing the constraining power on cosmological pa-

rameters when cross correlating GW-WL with the galaxy fields (GC and WL). Without

focusing on a specific GW detector, with its noise and sensitivity, we investigate the

requirements, in terms of number of sources and detection precision, for GW-WL to

contribute significantly to the GC+WL signal of galaxies.

3.2. Gravitational waves observation
As already discussed in Section 1.4.2, in the DE theories described by the ac-

tion (1.62), the non-minimal coupling MP [ϕ] induces an additional dissipation term

in the equation for propagation of GWs on the cosmological background [91, 122,

183]. Because of this reason, the amplitude of a GW can be damped differently

compared to the one of an electromagnetic wave, leading to the relation Eq. (1.105),

for the two luminosity distances. For later convenience, we rewrite such relation in

terms of the EFT functionΩ(a), as

d̄ GW
L (z) =

√
1+Ω(z) d̄ EM

L (z) , (3.1)

since, comparing the actions (1.62) and (1.68), it is clear that MP [ϕ0(τ)] =
m0

p
1+Ω(τ).

As the GW strain can be parameterized in terms of the redshifted masses of the binary

objects, GW sources cannot probe independently the redshift of the source unless

there is a known mass-scale or physical scale which can be used to break the degener-
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acy between mass and redshift [206, 268–271]. For some GW sources, such as binary

neutron stars (NS) [200, 203, 204, 272, 273], NS-BH [274, 275], stellar and intermedi-

ate mass binary black holes (BH) [276] and massive binary BHs [277–279] embedded

in accretion disks, a detectable electromagnetic counterpart can potentially be ob-

served and used to measure its redshift directly with a spectroscopic (or photomet-

ric) follow-up of the host galaxy. These sources are typically dubbed ’bright’ sirens

and are the ones we consider here.

3.2.1. Convergence estimators for Gravitational Waves

On their journey through the expanding Universe, photons and GWs encounter

clumped matter structures which induces scale-dependent corrections to their lu-

minosity distance,∆d GW
L in Eq. (1.112). Depending on the angular scale and redshift,

some of the relativistic effects can be dominant. For instance, in [280] it was shown

that for GW sources at redshifts higher than ∼ 0.5 WL convergence is the dominant

correction, that can reach ∼ 5% of the measured strain. This qualitative result was

then confirmed in [281], as discussed in Chapter 2 (see Figure 2.1). Given its sub-

stantial magnitude, WL is also a valuable signal to be exploited, rather than only a

source of error, to probe the growth history and pattern of the LSS in the Universe.

As it can be observed from Eq. (1.113), WL convergence is an integrated effect, it

builds up during the propagation. For this reason, we focus on GW sources at high

redshift, reaching up to z ≃ 2.5, for which we approximate Eq. (1.112) to

∆d GW
L

d̄ GW
L

≃−κGW , (3.2)

where κGW is the lensing convergence field of GWs, that for a population of sources

reads

κGW(n̂) =−1

2
∇2
θφL(n̂) =−

∫ χ

0

dχ′

χ′

∫ ∞

χ′
dχ∗

(
χ∗−χ′
χ∗

)
dnGW

dχ∗
∇2
θΨW (χ′n̂, z ′) , (3.3)

where dnGW/dχ∗ is the distribution of the GW sources, ΨW is the Weyl potential,

related to the matter overdensity as in Eq. (1.73), and ∇2
θ

indicates the 2D Laplacian

with respect to the angle between the image and optical axis. Note that we are ne-

glecting the shear deformations of the signal since these are subdominant in linear

perturbation theory where WL mainly affects the magnification of the GWs. In the

case of bright events, we construct an estimator to extract the WL convergence from

GW data as follows

κ̂GW(z, n̂) ≡ 1− d GW
L (z, n̂)

d̄ EM
L (z)

, (3.4)

namely as the fractional difference between the GW luminosity distance d GW
L (z, n̂),

inferred from the measurement of the GW strain, and the electromagnetic back-

ground luminosity distance d̄ EM
L (z). Here, we take the latter as defined via Eq. (1.106)
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by choosing a fiducial cosmological model for E(z). Such an estimator can be biased

in three ways: the experimental error on the d GW
L (z, n̂) measurement, the error on

the source redshift, or by a wrong choice of the cosmological model (i.e. biased val-

ues of the parameters in E(z)). To account for all the effects above we introduce three

parameters ϵGW, ϵz and ϵc , and modify the convergence estimator as

κ̂GW = 1−
p

1+Ω(z) (1−κGW +ϵGW)

(1+ϵz +ϵc )

∼ 1−
√

1+Ω(z) (1−κGW +ϵGW −ϵz −ϵc +κGW ϵz +κGW ϵc ) ,

(3.5)

where we linearized to first order in ϵGW, ϵz , and ϵc assuming they are all small. The

estimator in (3.4) relies on the availability of source’s redshift information, reason

why we are limiting this analysis to bright GW events.

3.3. Tomographic Observables
We consider cross-correlations between the density field of galaxies, δg, the weak

lensing convergence fields as measured by galaxies, κg, and the weak lensing con-

vergence field as measured by GW, κGW. The angular power spectrum for the cross-

correlations is (see Section 1.1.3)

C
Xi Y j

ℓ
=

∫ zmax

0

dz

χ2(z)H(z)
WXi (k(ℓ, z), z)WY j (k(ℓ, z), z)PP (k(ℓ, z), z) , (3.6)

where Xi ,Y j = [δg,κg,κGW] at the i th and j -th tomographic bin, Pp(k) ∝
As(k/k∗)ns−1 is the primordial power spectrum, with As and ns its amplitude and

spectral index and k∗ a pivot scale [3, 4]. We applied the Limber and flat-sky approx-

imations [282–287], which sets k(ℓ, z) = (ℓ+1)/χ(z), which we call simply k. WXi (k, z)

is the window function for the observable X in the i -th tomographic bin. For galax-

ies, the window function can be written as

W i
δg

(k, z) = Tδ(k, z)bi
g(z)ni

g(z)H(z) , (3.7)

where Tδ(k, z) is the matter transfer function, evolving the primordial power spec-

trum such that Pδ(k, z) = T 2
δ

(k, z)Pp(k). In Eq. (3.7), ni
g(z) and bi

g(z) are, respec-

tively, the galaxy redshift distribution and the linear galaxy bias in the i -th redshift

bin which we model following [288]. The window function of the GW lensing conver-

gence is

W i
κGW

(k, z) = TΨW (k, z)
∫ ∞

z
dz ′ χ(z ′)−χ(z)

χ(z ′)
ni

GW(z ′) , (3.8)

where ni
GW(z) is the redshift distribution of GW sources in the i -th bin, and TΨW (k, z)

is the Weyl potential transfer function, which allows to get its power spectrum
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PΨW (k, z) = T 2
ΨW

(k, z)Pp(k). The galaxy WL convergence window function is

W i
κg

(k, z) = TΨW (k, z)
∫ ∞

z
dz ′ χ(z ′)−χ(z)

χ(z ′)
ni

g(z ′)+W i
IA(k, z) , (3.9)

where, with respect to Eq. (3.8) we introduce an extra term W i
IA(k, z) to include the

Intrinsic Alignment (IA) systematic effect that we model following [288], i .e.

W i
IA(k, z) =−Tδ(k, z)

AIACIAΩm,0FIA(z)

D(z)
ni

g(z)H(z) , (3.10)

where D(z) is the growth factor,Ωm,0 the current matter density, and the subscript IA

highlights the terms including the nuisance parameters AIA, βIA and ηIA, the last two

being contained in the FIA function, while CIA = 0.0134 is a fixed constant.

Scalar-tensor theories modify the growth pattern of perturbations, affecting differ-

ently the different observables. The window functions just described will be corre-

spondingly modified, mainly through the transfer functions Tδ(k, z) and TΨW (k, z),

which encode the evolution of density perturbation and lensing potential, respec-

tively. Modifications of the growth also affect the growth factor D(z) entering the IA

contribution to the power spectra. As discussed in Section 1.2.2, their analytic forms

are too complicated to give explicitly, so that they are computed, once again, through

the Einstein-Boltzmann solver code EFTCAMB [89, 90]. We also use the same code to

produce the angular power spectra described in this section.

Finally, we model the distribution of sources (src) in each redshift bin as

ni
src(z) = dnsrc

d z

[
Erf

(
z − zi−p
2σsrc

z (z)

)
−Erf

(
z − zi+p
2σsrc

z (z)

)]
, (3.11)

with src = [
g,GW

]
, zi− and zi+ the lower and upper limits of the i -th bin, σsrc

z (z) the

error on the redshift measurement for the considered source, and dnsrc/d z is param-

eterised as
dnsrc

d z
∝

(
z

z0

)2

exp

[
−

(
z

z0

)3/2]
. (3.12)

The parameter z0 entering Eq. (3.12), as well as the redshift errorσsrc
z of Eq. (3.11), are

survey dependent and we will specify them in the following Section (Sec. 3.4) where

we introduce the surveys considered in this study.

In this Chapter, we focus on the GW lensing auto-correlation, CκGWκGW
ℓ

, and its cross-

correlations with galaxies, CκGWδ
ℓ

and C
κGWκg

ℓ
. Using the estimator in Eq. (3.5), we can

see that

〈κ̂GWδg〉 ≃
p

1+Ω〈κGWδg〉 , (3.13)

〈κ̂GWκg〉 ≃
p

1+Ω〈κGWκg〉 , (3.14)

〈κ̂GW κ̂GW〉 ≃ (1+Ω)〈κGWκGW〉 +NGW +Nz , (3.15)
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where we have considered that the three sources of error {ϵGW,ϵz ,ϵc } are not cor-

related between themselves or with either the convergence or the contrast density

field. To derive the equations above, we have neglected terms of third order or

higher in the perturbations, introduced the noise’s power spectra NGW = 〈ϵGWϵGW〉
and Nz = 〈ϵzϵz〉, and used that 〈ϵGW〉 = 〈ϵz〉 = 0 when the average is performed over

large volumes. Contrary, in general 〈ϵc〉 ̸= 0, hence in a complete analysis the term

should be included. However, this correction is typically small, and we will assume

the noise to be dominated by other terms, that we model in Sec. 3.4.

3.4. Models, methodology and surveys specifications
This section provides details of the gravitational models on which we forecast con-

straints, as well as the details on the analysis we performed to obtain them.

3.4.1. Models

We forecast the constraining power of GW-WL, alone and in combination with galaxy

clustering and WL, on the cosmological parameters. We investigate gravitational

models belonging to the Horndeski class of theories and described by the action

of Eq. (1.68). We work in the designer approach [90], by fixing the background ex-

pansion history to a choice for the DE equation of state wDE as explained in Sec-

tion 1.2.2, so that any EFT model is fully specified after assigning the EFT func-

tions
{

wDE,Ω,γ1,γ2
}
. We model the dark energy equation of state using the CPL

parametrization [98, 99]

wDE(a) = w0 +wa(1−a) (3.16)

as in Eq. (1.70). With this prescription, the continuity equation in Eq. (1.69), dictates

that the background DE density evolves as

ρDE(a) = ρ0
DEa−3(1+w0+wa )e−3wa (1−a) , (3.17)

with ρ0
DE = ρDE(a = 1) its value today.

Then, we choose to parameterize the time dependencies ofΩ(a) and γ2(a) as

Ω(a) =Ω0
ρDE

ρ0
DE

, γ2(a) = γ0
2
ρDE

ρ0
DE

, (3.18)

linking the modifications to ΛCDM to the DE energy density. This way, the effects

of having Ω(a),γ2(a) ̸= 0 become small in the early Universe, when matter or radia-

tion are driving its expansion. Additionally, we set γ1 = 0 for all models, given that

it affects only negligibly linear perturbations in the range of our observables (see

e.g. [289]). Based on these assumptions, we consider three scenarios:
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Figure 3.1: Relative deviations of the angular power spectrum, as a function of multipole ℓ for model M2.
We plot in the left (right) panel how Cℓ vary for different values of Ω0 (γ0

2), while keeping the remaining
parameters fixed to their fiducial values in Table 3.1). The solid lines correspond to auto-correlations of
GW-WL (X = κGW), while the dashed lines is the cross-correlations of GW-WL with galaxy WL (X = κg ).

• ΛCDM: we consider the EFT parameters fixed to reproduce the standard

model, i.e. w0 =−1 and wa =Ω0 = γ0
2 = 0. Consequently, the set of free param-

eters consists of
{
Ω0

CDM,Ω0
b,h,ns,σ8

}
: the CDM and baryonic relative energy

densities at present time, the reduced Hubble constant h = H0/100, the spec-

tral index of the primordial power spectrum, and the amplitude of the linear

matter power spectrum measured at 8/h Mpc, respectively.

• Model I (M1): we fix γ0
2 = 0; thus, the cosmology is specified by the parameters

of ΛCDM plus
{

w0, wa ,Ω0
}
. This model is representative of the Generalized

Brans-Dicke class: with a non-minimal coupling, but no derivative interaction

(γ0
2 = 0).

• Model II (M2): we fix w0 =−1.05 and wa = 0; thus, the cosmology is specified

by the parameters of ΛCDM and
{
Ω0,γ0

2

}
. This model is representative of the

class of kinetic gravity braiding models [290], where the conformal coupling

and the derivative coupling are both allowed (Ω ̸= 0, γ2 ̸= 0).

We sketch the impact of the EFT parameters on the C X Y (ℓ) in Figure 3.1, where we

plot the relative difference (CκGW X
ℓ

−CκGW X
ℓ,fid )/CκGW X

ℓ,fid adopting model M2 and choos-

ing as baseline the cross-correlation computed in the fiducial cosmology. We plot

curves for X = κGW (solid lines) and X = κg (dashed lines) varying the value of Ω0

in the left panel and γ0
2 in the right panel, while all other parameters are kept fixed

at the fiducial value (see Tab. 3.1). We observe that taking Ω0 lower than the fidu-

cial value acts to strengthen the signal, while values closer to zero (and hence, to the

LCDM value for Ω0) diminish the signal. On the contrary, higher values of γ0
2 tend

to dampen the signal, while values closer to 0 enhance it. We notice, however, that

the correlations react more strongly to small variations in Ω0 than to changes in γ0
2.

Indeed, the values chosen for the right panel of Figure 3.1 span the full range avail-

able to γ0
2 in this model to ensure a stable theory, while causing only variations in the
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cross-correlations of, at most, 5%.

3.4.2. Analysis method

To compute forecasts, we adopt the Fisher matrix formalism [288, 291], which allows

us to obtain bounds on the free parameters of the analysis from the information ma-

trix Fαβ. Following [288], we define the Fisher matrix as

Fαβ =
ℓmax∑
ℓ=ℓmin

2ℓ+1

2

∑
i , j ,m,n

∑
A,B ,C ,D

∂C AB
i j (ℓ)

∂θα

[
K −1(ℓ)

]BC
j m

∂CC D
mn

∂θβ

[
K −1(ℓ)

]D A
ni , (3.19)

where α and β run over the set of free cosmological parameters θ, while A, B , C and

D run over the density and convergence fields [δg,κg, κ̂GW] and finally i , j , m and

n run over all unique pairs of tomographic bins. By the Cramer-Rao inequality, the

lower bound on the standard deviation for the parameter θα is

σα =
√
Σαα with Σαα ≡ [F−1]αα . (3.20)

To compute our matrices we use CosmicFish [292, 293]1, that we extended to in-

clude GW weak lensing. The covariance matrix K is defined as

K Ai B j (ℓ) = C Ai B j (ℓ)+N Ai B j (ℓ)

4
√

f A
sky f B

sky

, (3.21)

where f A
sk y is the sky fraction covered by the detector measuring the observable A,

and N AB
i j the noise of the correlation considered, which we model as

Nδiδ j (ℓ) = 1

n̄i
g

δi j , (3.22)

Nκi
gκ

j
g (ℓ) = σ2

ϵ

n̄i
κg

δi j , (3.23)

Nκi
GWκ

j
GW (ℓ) = 1

n̄i
GW

(σ2
dL

d 2
L

+ σ2
s

d 2
L

)
e
ℓ2θ2

min
8ln2 δi j , (3.24)

where δi j is the Kronecker delta and n̄i
A is the number of sources in the i -th red-

shift bin for the probe A. We assume also that the noises of different probes are un-

correlated. In the equations above, σϵ represents the intrinsic ellipticity affecting

shear measurements,σdL represents the average experimental error on the luminos-

ity distance of the GW sources, while σs = (∂dL/∂z)σGW
z is the contribution to the

luminosity distance error brought by the uncertainty on the merger redshift σGW
z ,

where the propagation is obtained assuming a fiducial cosmology. Lastly, θmin is the

sky-localization area of the GW event, which also dictates the maximum available

multipole for the analysis.

1CosmicFish is publicly available at https://cosmicfish.github.io/.

https://cosmicfish.github.io/
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Model h Ωm,0 Ωb,0 ns σ8 w0 wa Ω0 γ0
2

ΛCDM 0.6774 0.31 0.05 0.9667 0.8159 (-1.0) (0.0) (0.0) (0.0)

Model I 0.6774 0.31 0.05 0.9667 0.8159 -1.1 -0.05 -0.1 (0.0)

Model II 0.6774 0.31 0.05 0.9667 0.8159 (-1.05) (0.0) -0.1 0.1

Table 3.1: Fiducial values for the parameters of the cosmological models considered. Round brackets
around a value mean that the corresponding parameter is kept fixed during the Fisher analysis, while the
remaining are constrained simultaneously. In addition, we also let the galaxy bias in each bin and the IA
parameters free to vary, for which we use the same fiducial values as [288].
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Figure 3.2: Normalized redshift distribution of galaxies and bright GW sources (left and right panel respec-
tively). The dashed lines illustrate the redshift binning applied in our analysis.

3.4.3. Galaxy and GW surveys

We use the specifications of [288], as representative of a Stage IV galaxy survey, for

the galaxy distribution in Eq. (3.12), and the fraction of sky observed. We instead

take a simpler approach for the photometric redshift error, using Eq. (3.11) withσg
z =

0.03(1+ z), from which we obtain the distribution of sources in ten equipopulated

redshift bins with z ∈ [0,2.5]. We use a minimum multipole ℓmin = 10 for both galaxy

clustering and weak lensing, while fix the maximum multipole to ℓGC
max = 750 for the

former and ℓWL
max = 1000 for the latter, in line with the "pessimistic" scenario of [288],

but with the further limitation in the weak lensing multipoles because of the lack of

a consolidated recipe to deal with non-linearities in the Horndeski theory (1.62).

Concerning the GW survey, we opt for z0 = 1.5 for the GW source distribution in

Eq. (3.12): this way Eq. (3.12) is compatible with both the forecasts of [277] for LISA

luminous massive black hole binaries, and of [273] for the binary neutron stars ob-

served by a network of ET in combination with two CE detectors. The reason for

choosing this parametrization is the attempt of remaining as detector a-specific as

possible, while still modeling the sources’ distribution to mimic forecasted future

observations. As we match it to distributions of mock observed events, our source

distribution automatically accounts for possible selection effects of both GW and EM

detectors. As in the case of galaxies, we consider z ∈ [0,2.5] and bin the GW sources
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in ten equipopulated redshift bins. We also explore different binning choices: we

consider the cases with only eight and six equipopulated bins. We observe a very

small deterioration in the cosmological constraints when decreasing the number of

tomographic bins, as larger bins tend to smooth out the lensing signal, as we show in

Section 3.5.3. However, our conclusions on the impact of GW-WL on the constrain-

ing power remains the same regardless of binning, thus in what follows we will report

results only for the most favorable choice of 10 bins.

The main quantities that can impact the weak lensing estimation from bright GW

sources are the uncertainty on the luminosity distance, the error on the source red-

shift and the total number of bright GW events. The peculiar velocity correction for

sources at high redshift are going to be a less significant contamination [224]. We

consider several possibilities for the total number of detected GW events, NGW, rang-

ing from 103 to 106, while we vary the average precision on the luminosity distance,

σdL /dL , from 10% down to 0.5%. We assume that the GW sources have an electro-

magnetic counterpart (or an identifiable host galaxy), whose redshift is measured

either photometrically, with error σGW
z = 0.03(1+ z), or spectroscopically, with error

σGW
z = 0.0005(1+ z) [79, 125]. In Figure 3.2 we show the normalized source distribu-

tion of galaxies (left panel) and bright GW events (right panel) adopted in this anal-

ysis, together with a representation of the redshift binning that is applied, and we

summarize the specifications considered for galaxy and GW surveys in Table 3.2.

Since we are focusing on bright sirens, in Eq. (3.24) we set θmin = 0, thus implying that

the event is perfectly localized by identifying the EM counterpart. On the other hand,

in our analysis we truncate the summation in Eq. (3.19) at ℓmax = 1000 to match the

limiting multipoles of the galaxy survey, which is equivalent to limit angular scales

to θmin ∼ 11arcmin. Going up to larger ℓmax would result in an enhancement of the

signal-to-noise ratio. This on one hand would imply tighter constraints on cosmo-

logical parameters when all sources are combined. At the same time, though, the GC

and WL signal themselves would benefit from the accessibility of higher multipoles,

resulting in tighter galaxy-only constraints to begin with. Thus, we can expect that,

qualitatively, the impact of GW on the galaxy bounds remains similar even if higher

multipoles are accessible.

3.5. Results
Using the specifications, models and methodology described in Sec. 3.4, we in-

clude in the Fisher matrix the contributions from all correlators C X Y
ℓ

with X and Y

in [δg,κg , κ̂GW], to explore the joint constraining power of GW-WL and galaxy sur-

veys over cosmological parameters. We collect the fiducial values chosen for the

parameters of the different models in Tab. 3.1, which are compatible with current

bounds [4, 289]. Additionally, we choose the fiducial cosmology in such a way that
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Galaxy Clustering

f g

sky σ
g
z

-
z0 n̄g [arcmin−2] ℓmin ℓmax

0.35 0.03(1+ z) 0.9/
p

2 30 10 750

Galaxy Weak Lensing

f
κg

sky σ
g
z σϵ z0 n̄κg [arcmin−2] ℓmin ℓmax

0.35 0.03(1+ z) 0.3 0.9/
p

2 30 10 1000

Bright GW Weak Lensing

f κGW
sky σGW

z σdL /dL(%) z0 NGW ℓmin ℓmax

1
0.03(1+ z) ∈ [0.5,10] 1.5 ∈ [102,106] 10 1000

0.0005(1+ z)

Table 3.2: Parameters of the noises (Eqs. (3.22), (3.23) and (3.24)) and binned source distributions
(Eq. (3.11)) of the probes considered.

the parameters’ values fall within the stable region of the models considered (identi-

fied via the stability sampler of EFTCAMB) and that the numerical derivatives, needed

to obtain the Fisher matrices (3.19), can be performed without exiting this region.

To account for degeneracies, we vary all together the highest number of parameters

possible, in each model, as described in Table 3.1. If a probe is not particularly sen-

sitive to a certain parameter, if it is let free to vary, we marginalize over it instead of

considering it fixed to its fiducial value. This is the case, for instance, of weak lensing:

it is mostly sensitive toΩCDM andσ8, and doesn’t depend much on other parameters

such as the baryons’ abundance. In addition, we always let free to vary the galaxy

bias in each bin bi
g and the IA parameters AIA, βIA and ηIA, for which we use the same

fiducial values as [288].

3.5.1. Lambda CDM

Let us start with the ΛCDM scenario. In Figure 3.3 we show the marginalized 1σ

relative bounds obtained on Ω0
CDM and σ8 varying the total number of GW obser-

vations, NGW, and the luminosity distance precision σdL /dL . The first row shows

the results considering photometric observations of the electromagnetic counter-

parts or of the GW host galaxy, while the second row assumes spectroscopic obser-

vations. For photometric observations, we notice that the bounds on both Ω0
CDM

and σ8 do not change for about half of the configurations considered (yellow regions

in the plots), regardless of the choices made for the GW sector. In these regions,

the bounds on cosmological parameters are strongly dominated by galaxies, con-

tributing almost entirely to the constraining power. The black line marks the point
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Figure 3.3: Marginalized 1σ relative confidence bounds for Ω0
CDM (left panel) and σ8 (right panel) in

ΛCDM. Top row: bright sirens with photometric redshift determination. Bottom row: similar with spec-
troscopic error. In all tables, bounds are derived from the combination of GW weak lensing, galaxies weak
lensing and galaxy clustering, for different values of NGW and σ

dGW
L

/dGW
L .

at which GW events start to weight in significantly: about 5 × 105 bright sources

with luminosity distance determined at least at 1% precision, or 106 sources with

luminosity distance determined at 5% precision, or better, are necessary to witness

a significant impact of GW-WL on the constraints already placed by galaxy probes.

Similar considerations can be drawn for the spectroscopic case: GW becomes com-

petitive with galaxies only for NGW ≥ 105 for σd GW
L

/d GW
L ≤ 1% (or NGW ≥ 106 for

σd GW
L

/d GW
L ≤ 5%). We can though recognize the reduced noise affecting GW lens-

ing in the overall better performance of the spectroscopic sirens: for all configura-

tions in which GW contributes significantly to the constraining power, spectroscopic

sources always provide bounds up to 0.1% tighter than the photometric ones. For

example, the 0.7% (∼ 0.4%) bound placed on Ω0
CDM (σ8) by galaxies can be reduced

to 0.45% (0.2%) by factoring in the contribution of 106 photometric sirens measured

with σd GW
L

/d GW
L = 1%, and further shrinked to ∼ 0.3% (0.15%) considering instead

the same number of spectroscopic events. Although we do not reproduce them here,

we have performed the same analysis for the other freeΛCDM parameters, finding a

similar behavior regarding the constraints on ns (see also Figure 3.4). However, the

impact of GW-WL on the constraints of h andΩb , remains mild for all configurations

explored, since GW-WL is not particularly sensitive to those parameters.
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Figure 3.4: Marginalized forecasts forΛCDM parameters. We fix NGW = 5 ·105, σ
dGW

L
/dGW

L = 1% and red-

shift information with spectroscopic error. Constraints come from GW weak lensing only (grey), galaxies
WL and clustering (blue), and their combination (dark red).

In Figure 3.4 we show the triangular plots for three free parameters of ΛCDM, after

having marginalized over h and Ωb . In order to understand the extent of the impact

of GW-WL, we opt for the scenario in which NGW = 5 ·105 are detected with a preci-

sion of 1% on their luminosity distance measure and with a spectroscopic determi-

nation of the redshift. We plot bounds obtained considering GW-WL only, GC and

galaxies WL, and the joint contribution of galaxy surveys and GW-WL. In the spec-

troscopic case, the GW-WL constraints on Ωm,0 and σ8 are comparable with those

coming from galaxies, and they halve when all probes are combined, also thanks to

the reduced impact of nuisance parameters. On the contrary, GW-WL alone is not

able to constrain ns . When considering the probes all together, the bounds on σ8

and Ω0
CDM shrink, breaking also the mild degeneracy that exists in the galaxy-only

constraints between the couple of parameters (ns ,Ω0
CDM) and (ns ,σ8). The net result

is a strong reduction also of the bound on ns . The analysis performed above shows

that GWs, valuable because they provide independent measurements of the cosmo-

logical parameters, can improve the constraints induced by the other galaxy-related

probes only if their statistical power (in terms of number of events and detection

precision), is comparable with those of a galaxy survey. Indeed, in ΛCDM where the

non-minimal coupling Ω(a) = 0, the estimator in Eq. (3.4) corresponds to the same

convergence measured by galaxy surveys. Hence, GW-WL and its cross-correlations

with galaxies contributes to the constraining power only by effectively strengthening

the WL statistics, in the case of the standard cosmological model.
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Figure 3.5: Marginalized 1σ confidence bounds onΩ0 and w0 parameters of Model I, obtained from com-
bining GW weak lensing with galaxy weak lensing and clustering. We assume that all GW sources have a
photometric (top panels) or spectroscopic (bottom panels) redshift determination.

3.5.2. Dark Energy models

We not turn our attention to Model I and Model II. In both cases, the estimator (3.4)

receives explicit contributions from the conformal coupling Ω(a), making GW-WL

effectively different from the corresponding galaxy probe. As before, we vary NGW,

σd GW
L

/d GW
L and the error on the sources’ redshift determination σz . For each combi-

nation, we compute the Fisher forecasts on the cosmological parameters, including

all options of the kind C X Y
ℓ

, X ,Y ∈ [δg ,κg , κ̂GW].

In Figure 3.5 we show the marginalized 1σ bounds onΩ0 and w0 in M1, for the case

of photometric (top row) and spectroscopic (bottom row) redshifts. Similarly to Fig-

ure 3.3, in the regions below the black line, the constraining power is mainly due to

galaxy-probes. Contrary to ΛCDM, because of the definition of κ̂GW in Eq. (3.4), GW

become more impactful for less daring configurations of NGW and σd GW
L

/d GW
L . In the

case of photometric redshift, 5×104 GW sources determined with σd GW
L

/d GW
L ≤ 1%

are already sufficient to detect a tightening of the constraints on w0 and Ω0. In the

case of spectroscopic redshift information, for every value of NGW, there is at least

one setup in which GWs improve the constraining power.

Figure 3.6 shows analogous tables for Ω0 and γ0
2 in the M2 case. Here, galaxy-



3

74 3. Synergies with galaxy surveys

5 · 103 104 5 · 104 105 5 · 105 106

Ngw

0.
5%

1%
5%

10
%

σ
d

g
w
L
/
d

g
w
L

1.4 % 1.4 % 1.3 % 1.2 % 0.93 % 0.81 %

1.4 % 1.4 % 1.3 % 1.3 % 0.97 % 0.84 %

1.4 % 1.4 % 1.4 % 1.4 % 1.3 % 1.2 %

1.4 % 1.4 % 1.4 % 1.4 % 1.4 % 1.3 %

Ω0 - photometric

5 · 103 104 5 · 104 105 5 · 105 106

Ngw

0.
5%

1%
5%

10
%

σ
d

g
w
L
/
d

g
w
L

1.6 % 1.6 % 1.5 % 1.5 % 1.2 % 1 %

1.6 % 1.6 % 1.5 % 1.5 % 1.2 % 1.1 %

1.7 % 1.7 % 1.6 % 1.6 % 1.5 % 1.4 %

1.7 % 1.7 % 1.7 % 1.7 % 1.6 % 1.6 %

γ0
2  - photometric

5 · 103 104 5 · 104 105 5 · 105 106

Ngw

0.
5%

1%
5%

10
%

σ
d

gw L
/d

g
w
L

1.3 % 1.2 % 0.84 % 0.71 % 0.46 % 0.34 %

1.4 % 1.3 % 1.1 % 0.98 % 0.66 % 0.55 %

1.4 % 1.4 % 1.4 % 1.3 % 1.3 % 1.2 %

1.4 % 1.4 % 1.4 % 1.4 % 1.4 % 1.3 %

Ω0 - spectroscopic

5 · 103 104 5 · 104 105 5 · 105 106

Ngw

0.
5%

1%
5%

10
%

σ
d

gw L
/d

g
w
L

1.5 % 1.4 % 1.1 % 0.91 % 0.59 % 0.44 %

1.6 % 1.5 % 1.4 % 1.2 % 0.85 % 0.71 %

1.7 % 1.7 % 1.6 % 1.5 % 1.5 % 1.4 %

1.7 % 1.7 % 1.7 % 1.7 % 1.6 % 1.6 %

γ0
2  - spectroscopic

Figure 3.6: Marginalized 1σ confidence bounds on MG parameters obtained from combining GW weak
lensing with galaxy weak lensing and clustering. We consider bright sirens and vary the number of GW
detections NGW and the precision on the luminosity distance determinationσdL

. Bounds are reported for
the parametersΩ0 and γ0

2 in our M2 model in the assumption that all GW sources will have a photometric
(top panels) or spectroscopic (bottom panels) counterpart.

dominated constraints are tighter on the parameters than in the M1 case as {w0, wa},

affecting the background, are kept fixed. This allows for an overall easier determi-

nation of the value of the EFT functions today, which in turn requires higher NGW

for GW-WL to have an impact on cosmological bounds. In the photometric scenario,

about 105 − 106 sources are required to reach % and sub-% level precision on Ω0,

while the number drops to NGW ∼ 104 − 105 in the spectroscopic case. In the pho-

tometric and spectroscopic cases, large enough statistics allows determining both

parameters at the % and ∼ 0.4% level.

In Figure 3.7 we report the triangular plots with marginalized constraints for some

of the parameters of M1 (left panel) and M2 (right panel). We opt for the scenario

in which 5 ·105 GW events are detected with a spectroscopic bright counterpart and

their luminosity distance is determined at 1% accuracy. The left panel of Figure 3.7

highlights that the GW-only contours are still remarkably wide with respect to the

galaxy ones. We show this more evidently in the left panel of Figure 3.8, where we

plot the GW-WL only constraints in gray compared to the GC+WL constraints in blue.

The reason behind this, that GW-WL alone is not a good probe to constrain the DE
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Figure 3.7: Marginalized forecasts for the MG parameters of model M1 (left panel) and M2 (right panel)
in an idealistic scenario where 5 ·105 GWs events are detected with a bright counterpart measured spec-
troscopically, and luminosity distance measured with 1% precision. Constraints come from GW weak
lensing only (gray), galaxies WL and clustering (blue), and GW and galaxy probes combined, including
cross-correlations between the probes (purple).

equation of state, and the poor determination of wDE leaves the coupling evolution

unconstrained ( see Eq. (3.18)), resulting in very loose bounds on Ω0. Regardless of

this, the combined GW+galaxy constraints (dark red contours in Figure 3.7) on the

EFT parameters of M1 are narrower than the galaxy-only bounds. This increase of

constraining power must come from the cross-correlations CκGWδ
ℓ

and C
κGWκg

ℓ
, as it

can be seen in the right panel of Figure 3.8, where we compare the marginalized

bounds of the galaxies with the contours obtained including only GW-WL and its

two cross-correlations with the galaxy fields (GW-WL+XC, brown contours). The joint

power of GW-WL with, in particular, GC is breaking (or mitigating) the degeneracies

in the DE parameters sector, shrinking the constraints. This confirms the essential

role that GW-WL cross-correlations can have in impacting cosmological bounds.

As for model M2 (right panel in Figure 3.7) we see that constraints from GW-WL alone

are much tighter than in M1: here w0 and wa are fixed so that their degeneracies

with others EFT parameters are canceled. As the bounds are comparable with those

coming from galaxies, we conclude that the role of GW-WL cross-correlations in this

case is less significant, and the GW-WL auto-correlation already concurs to the over-

all constraining power. GW-WL intervenes, though, to break the mild degeneracies

present in the GC+WL bounds between (Ω0,γ0
2) and σ8. Accordingly, bounds on σ8

are narrowed thanks to the GW contribution.

Note that in model I and II, the ΛCDM parameters {h,Ωm,0,Ωb,0,ns ,σ8} are still

present. In both cases we find similar results to those of Section 3.5.1, i .e. O(105)
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Figure 3.8: Comparison of the marginalized 1σ bounds on the MG parameters of M1. We consider the
same setup of Figure 3.7, i.e. NGW = 5 · 105, σdL

= 1% and spectroscopic counterparts. In both panels,
the blue contours represent bounds placed through GC+WL only, matching the same blue contours of the
left panel of Figure 3.7. In the left panel, these are compared with GW-WL-only bounds, zooming out with
respect to Figure 3.7 to include the full extent of the grey contours. In the right panel instead, the blue
contours are confronted with bounds obtained considering only the auto-correlation of GW-WL and its
cross-correlations with galaxies (brown regions), while not including GC+WL auto and cross-correlations.

or more GW sources are needed to even to impact significantly the bounds placed

on those by galaxies alone, O(106) in the case of h and Ωb . For a better comparison

of the results obtained with different setups, we consider a Figure of Merit (FoM)

FoM = det(Fα,β)
1

2N , (3.25)

where Fα,β is the Fisher matrix of Eq. (3.19) marginalized over the bias and IA noise

parameters, and N is the total number of parameters of the model [294]. The FoM

is the 2N-th root of the product of the Fisher matrix eigenvalues, so it is inversely

proportional to the volume of the N-dimensional ellipsoid delimiting the 1σ con-

fidence region in the parameter space. The FoM thus allows us to investigate and

quantify how the volume of the bounds in the parameter space is reduced when,

for example, the statistics of the GW’s event is increased. We compute the FoM (see

Figure 3.9) for the Fisher matrices (3.19) of models M1 and M2, including all auto

and cross-correlations of GW-WL, GC and galaxy WL and for all scenarios explored

above in terms of NGW and σdl . We also considered separately the cases in which

GW events redshifts are determined photometrically or spectroscopically. From Fig-

ure 3.9, considering the photometric cases (top row), we see that FoM start increas-

ing significantly from NGW = 5×104 for all choices of σdL , though it performs signif-

icantly better for σdL ≤ 1%. The small difference between the curves for σdL ≤ 1%

and σdL ≤ 0.5% suggests that the photometric redshift error is starting to dominate

the correlation noise in Eq. (3.24): improving the dL measurement of photometric
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Figure 3.9: Figures of merit for different numbers of total detected events NGW and several choices of
σ

dGW
L

/dGW
L . The top row displays results considering a spectroscopic redshift determination, while the

bottom row those in case of photometric error. The left panels refer to M1, while the right panels to M2.

events beyond the 1% accuracy level only implies a minor increase in the GW-WL

constraining power, and one should opt in maximizing the number of detections. On

the contrary, because the redshift error is lower, for spectroscopic events the correla-

tion noise remains dominated by σdL , and improvements to the FoM happen for ev-

ery choice of the latter. The FoM for model M1 are, in general, much lower than those

of M2. This reflects our previous considerations on how placing tight constraints on

model M1 is more difficult, because the EFT functions on M1 have higher freedom as

their time evolution is not fixed, and there are higher degeneracies between the EFT

parameters.

3.5.3. Impact of GW binning

To investigate the role of binning, we compare the FoM also for different configura-

tions of their choice, for different values of NGW and relative error on the luminosity

distance measure. More in details, we consider 6, 8 and 10 equipopulated tomo-

graphic bins as described in Section 3.4.3. The results are reported in Figure 3.10,

where we plot the ration of the FoM for all observational scenarios in the case of 6
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bins (left panel), and 8 bins (right panel), over the configuration with 10 bins, i.e.

FoMn/FoM10. Reducing the number of bins, in all cases, implies a lower FoM so a

deterioration of the constraints on the cosmological parameters: decreasing the bins

number, and thus increasing the bins size, has the effect of smoothing out the cor-

relation signal in any given bin. This effect is compensated by a greater number of

events falling in each bin, that attenuates the correlation noise of Eq. (3.24). In gen-

eral, the FoM depends mildly on the number of bins. Higher deviations occur for

higher numbers of detected events and better accuracy on the luminosity distance

measurement, though we notice that even in the most extreme case of 6 tomographic

bins and 106 GW events with dL detected at 1% accuracy, FoM6 is lower than FoM10

only of ∼ 1%. Therefore, our choice of 10 bins for the GW sources does not affect

significantly the results presented previously.
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Figure 3.10: Ratio FoM[6,8]/FoM10 of the FoM computed binning the GW sources in 10 equipopulated
tomographic bins and the FoM obtained for the same configurations in terms of number of GW sources
NGW and percentage uncertainty on the luminosity distance σdL

, but with a different number of bins (6
and 8 in the left and right panel respectively). The results regard the model M1.

3.6. Discussion and Conclusions
In this Chapter, we focused our attention to the weak-lensing signature on the esti-

mates of the GW luminosity distances in Eq. (1.112), using it as a signal to investigate

gravity on cosmological scales. We built the estimator κ̂GW in Eq. (3.4), as a proxy

for the GW-WL field, which we will be able to extract from detections of sources at

high-enough redshift (z ≥ 0.5), where WL is the main relativist effect. This estima-

tor, in the case of DE theories with a running Planck’s mass, receives a contribution

from the conformal coupling, making it even more interesting in the context of tests

of the standard cosmological model. When focusing exclusively on ΛCDM, GW-WL

can still provide an important information channel to constrain the cosmological

parameters, as the contribution of GW increases the WL statistics. We have explored

extensively the cross-correlations between κ̂GW and standard galaxy density fields

δg and galaxy weak lensing κg , providing the observational requirements, in terms
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of number of detected events and precision of each measurement, for future GW

detectors to make stringent constraints on late time cosmological models, reaching

beyond the limits that will be placed by the next generation of galaxy surveys. Focus-

ing only on observations with a redshift information, we also distinguished the cases

for which this is known with a photometric or spectroscopic measure.

We find that in theΛCDM case, GW-WL starts to improve on galaxy-only constraints

onσ8 andΩ0
CDM if at least O(105) events are detected. When the DE parameter space

is included, the situation becomes model dependent, as different EFT parameters

can break (or not) different degeneracies. This is the main difference between Model

I and Model II: WL alone is not particularly sensitive to the late time expansion his-

tory, so that whenever wDE is left free to vary (as in M1 compared to M2), the bounds

on the conformal coupling today Ω0 are very large, given also its parametrization in

Eq. (3.18). Nevertheless, the degeneracy between {wDE,Ω0} in WL is broken when

introducing the cross-correlations with also galaxy WL and galaxy clustering. This

means that the constraining power of M1 are boosted when considering these probes

together, and more reasonable values of NGW and σd GW
L

are needed, while those of

M2 scale down in a less pronounced way only because of the increased statistics.

The specific numbers of NGW and σd GW
L

needed in order for the GWs to actively par-

ticipate in the constraining power can be found in Tables 3.3, 3.5 and 3.6, forΛCDM,

M1 and M2 respectively. The forecasts presented in this Chapter can be improved,

for instance, by considering the cross-correlation signal up to higher ℓmax, provided

that a solid method to treat non-linearities is available.

To put the presented numbers in perspective, the network detector network of Ein-

stein Telescope and (one or two) Cosmic Explorer place the number of observed

bright binary neutron stars at few thousands of events per year [18, 273, 295], with

forecasted error on luminosity distance of about 10% [273, 295]. We must however

remark that, according to the cited estimates, ET is not expected to reach the aver-

age ∼ 1% accuracy on the luminosity distance determination required by our more

promising setups (see e.g. Figs. 3.5 and 3.6), likely not even in combination with 2

CE detectors. An average accuracy over dL of ∼ 10% could still lead to improvements

on the galaxy-only cosmological constraints, but in that case we found that, for this

to happen, O(106) GW sources are required. Stacking a large statistics of highly accu-

rate GW events will be possible with proposed far future observatories like the space-

based Big Bang Observer [26] and Advanced Laser Interferometer Antenna [245], ex-

pected to reach sub-percent precision in the determination of the luminosity dis-

tance and with a total number of detected events of several hundreds of thousands.

These detectors are also expected to have a high angular resolution [26, 245], facili-

tating the task of finding an electromagnetic counterpart or the host galaxy, needed

for the redshift.

In conclusion, we find that the cross-correlations of galaxies and GW-WL have the
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potential to become, with time, crucial probes of cosmology, complementary to

galaxy surveys and other cosmological observables. Where sufficient statistics is

available, this new probe can both help tighten constraints and strongly reduce ex-

isting degeneracies between the EFT parameters.

Note: My scientific contribution to the work presented in this Chapter regards the

theoretical aspects. I’ve also had a mentoring role, introducing the first author to

EFTCAMB and writing the scripts employed in the first explorations of the work. In

particular, we used the version of the code we updated for Detecting Dark Energy

Fluctuations with Gravitational Waves, namely Chapter 2. I also contributed in

writing the paper.
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4
The gravitational waves’

angular diameter distance

We analyze the propagation of high-frequency gravitational waves in scalar-tensor

theories of gravity, with the aim of examining properties of cosmological distances as

inferred from their measurements. By using symmetry principles, we first determine

the most general structure of the GW linearized equations and of the GW energy mo-

mentum tensor, assuming that GW propagate at the speed of light. We then specialize

to the case of GW propagating through a perturbed cosmological spacetime, deriving

the expressions for the GW luminosity and angular diameters distances, proving the

validity of the Etherington reciprocity law d GW
L = (1+ z)2d GW

A . We find that, as in the

case of the luminosity distance, also the GW angular diameter distance is explicitly

modified compared to the electromagnetic one. We discuss implications of this re-

sult in the context of strong lensing time delay, showing that the effects of the scalar

field representing dark energy compensate: lensed GW arrive at the same time as their

lensed electromagnetic counterparts.

Keywords: Gravitational waves, dark energy, geometric optics, angular diameter dis-

tance, distance duality relation, strong lensing

Based on: Gravitational-wave cosmological distances in scalar-tensor theories of

gravity

G. Tasinato, A. Garoffolo, D. Bertacca, S. Matarrese

JCAP 06 (2021) 050, e-Print: 2103.00155 [gr-qc]
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4.1. Introduction
Cosmologists use various different definitions of distance depending on the con-

text and the observables they are interested in [296, 297]. While usually definitions

make use of light detected from distant sources, GW offer new tools for measuring

cosmological distances. We have already seen an example of GW distance in Sec-

tion 1.4.2: using Eq. (1.104) one can infer the GW luminosity distance. This defini-

tion of d̄ GW
L (z) is simply given in analogy to the General Relativistic result (the GW’s

amplitude is inversely proportional to the luminosity distance), and it doesn’t fol-

low from rigorous definitions. The purpose of this Chapter is to formally derive the

gravitational waves cosmological distances, in particular the luminosity distance in

Section 4.5.2 and the angular diameter distance in Section 4.5.3, in a gravitational

theory where dark energy is represented by a scalar field. Following early important

works [197, 198, 204, 225, 234, 247], d (GW)
L is being recognized as a key observable to

independently measure cosmological parameters by means of GW, as well as testing

scalar-tensor theories of gravity, as we have seen in Chapters 2 and 3. Here, we wish

to draw some more general statements about GWs in scalar-tensor gravity models,

relaxing also the cosmological background assumption, namely that the background

metric is Eq. (1.14). To this extent, the high-frequency approximation is rather useful:

as discussed in Section 1.3.2, we can define GWs without specifying the background

line element. We use symmetries as a guiding principle, in particular generalized

coordinate invariance, for characterizing the scalar-tensor system and the behavior

of propagating degrees of freedom, without choosing a specific model. To disentan-

gle tensor and scalar waves, generically coupled when the propagation is considered

over arbitrary spacetimes, we assume that the properties of the GW at emission are

identical to those of General Relativity, and we identify physically reasonable con-

ditions to decouple the evolution equations of these different sectors. Focusing on

the propagation of tensor modes, we work out their stress-energy tensor at second

order, and define a covariant conservation of the graviton number density current,

which we use to formally define the Gravitational wave distances, d GW
L and d GW

A , in

scalar-tensor theories. The effects of a dynamical dark energy factorize into an over-

all multiplication factor.

Only after this general results, we focus on the case of cosmological perturbed space-

times, and we prove the validity of the Etherington’s reciprocity law

d GW
L = (1+ z)2 d GW

A , (4.1)

within a scalar-tensor framework considered. Since this relation is at the basis for

relating angular and luminosity distances in GW measurements, it is of crucial im-

portance to understand whether it is valid or not in a general theory of gravity, for

GW propagation on a general space-time. The definitions given in this Chapter

are, of course, compatible with Eq. (1.104). Considering that d GW
L can be modified
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with respect to the distance inferred through an electromagnetic signal, as shown in

Eq. (1.105), then the validity of Eq. (4.1) implies that also angular diameter distances

are rescaled by the same factor, i.e.

d GW
A = MP (z)

MP (0)
d EM

A . (4.2)

Finally, we investigate our results about d (GW)
A in the context of strong lensing of

GWs and their time delay, which depends on a combination of angular diameter

distances [149]. Strong lensing of GW can be important in the future for providing

alternative ways for determining cosmological parameters (see e.g. [298]). Since we

are considering theories where GWs travel at the speed of light, these follow null-

geodesics as photons, and we do not expect any different time delay between GW

and EM signals. We show explicitly that this is the case in Section 4.5.5, where we

rewrite the time delay formula, which is given in terms of the modified d (GW)
A , all in

terms of the geometrical comoving distances.

4.2. Tensor and scalar waves
Even though we do not restrict ourselves to a specific Horndeski theory, we assume

that the physical system under consideration derives from an action of the form

S =
∫

d 4x
p−g

(
M 2

p

2
R −L(gµν,ϕ)

)
, (4.3)

where ϕ is the DE field. In Section 1.3.2, we addressed the subtle issue of defining

the metric perturbation. In scalar-tensor theories, this problematic extends similarly

also to the definition of the scalar field fluctuations, which we address here. The

approach taken in this Chapter follows the definition of the field fluctuations typical

of geometric optics techniques.

We base our considerations on a double perturbative expansion for the metric and

the scalar field around quantities solving the background equations, as in [151, 152].

We expand metric and scalar fields as1

gµν(t ,x) = ḡµν(t ,x)+αhµν(t ,x) , (4.4)

φ(t ,x) = ϕ̄(t ,x)+αδφ(t ,x) , (4.5)

and we are interested to study the dynamics of the metric and scalar perturbations

hµν and δϕ. We adopt the geometric optics arguments to define the field fluctu-

ations: hµν and ϕ are small high-frequency fluctuations whose gradients are en-

hanced by a factor of ω with respect to the background. This parameter, defined

1Please note the notation: δφ corresponds to the scalar wave, while δϕ in, e.g., Eq. (1.110) is the large scale
structure contribution of the DE clustering. To make this difference more apparent, we use two different
expansion parameters: α and ϵ.
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for the first time in Eq. (1.85), is given by

1

ω
= λ

L
≪ 1, (4.6)

controlling the ratio among the typical (small) wavelength λ of the high-frequency

fields versus the (large) scale L of spatial variation of slowly-varying background

quantities.

The general topic of identifying the propagating scalar and tensor degrees of free-

dom in theories such as (4.3) started in the classic papers [299, 300], considering

a Minkowski background. It was then reconsidered, using a variety of methods,

in [158, 182, 235, 281, 301] attempting to go beyond the flat hypothesis. The problem,

technically speaking, arises because the generic background configuration {ḡµν,ϕ̄}

allows for coupling between tensor and scalar modes and, thus, correctly identify

their roles in the evolution equations can be subtle. The issue can be even more sub-

tle in theories where scalar and metric fluctuations propagate with different speed,

a phenomenon associated with spontaneous breaking of global Lorentz invariance

by means, for instance, of a non-vanishing time-like or space-like gradient of the DE

field. Note that these situations are the most interesting: they include cosmological

and screenings settings. Here we develop a covariant approach to address the prob-

lem, more similar in spirit to the original works of Isaacson [151, 152], and to the

effective field theory of inflation [82] and dark energy [86] (see e.g. [87] for a compre-

hensive review).

In our set-up, we assume to have an action in Eq. (4.3), invariant under generalized

coordinate transformations, and that the background fields profile break sponta-

neously Lorentz symmetry, providing the preferred vector

vµ ≡ ∂µϕ̄ . (4.7)

Under an infinitesimal spacetime translation, xµ → xµ + ξµ, the linearized fluctua-

tions transform as

h′
µν = hµν− (∇̄µξν+∇̄νξµ) , (4.8)

δφ′ = δφ− vµ ξµ , (4.9)

for infinitesimal vector ξµ and where ∇̄µ is the covariant derivative associated to ḡµν.

In order to actively apply the transformation in Eq. (4.8) and have that h′
µν, is still a

small (first order in α) and high-frequency (its gradient of order ω), we assume that

ξµ is a high-frequency field too and that its size is reduced by a factor of ω−1 with

respect to hµν [150],

O
(
ξµ

) ∼ 1

ω
O

(
hµν

) ∼ α

ω
. (4.10)

The gradients acting on the high-frequency ξµ in Eq. (4.8), enhance their contribu-

tions by a factor O(ω), so that the result is of order α×O(ω−1)×O(ω) = α×O(ω0),

i.e. of the same order of hµν.
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We note that, because of the spontaneously broken background, i.e. vµ ̸= 0, the gauge

transformations in Eqs. (4.8) and (4.9) mix the metric and scalar perturbations, in the

sense that a gauge fixing on one will affect also the other and vice-versa. Even if DE

fluctuations are not produced at the source as we are assuming here (for example

thanks to some screening mechanism), they can be generated by metric fluctuations

that are travelling from source to detection. We then expect that propagation effects

are able to excite scalar modes with an amplitude suppressed by a factor of O(ϵ) with

respect to metric fluctuations:

O(ϕ) ∼ω−1 O(hµν) . (4.11)

This assumption makes compatible Eqs. (4.10) and (4.9) (vµ ξµ is of order α/ω). In

any case, understanding the extent of the implications of such assumption, and pro-

viding more formal arguments for all the considerations just illustrated, is the topic

of Chapter 5.

4.2.1. Decomposing the metric fluctuation

Assuming a time-like vµ, we introduce the vector

Xµ ≡
vµp
2X

, such that X µXµ =−1, (4.12)

where X ≡ −(vµvµ)/2. We decompose the gauge vector ξµ into its orthogonal and

parallel components with respect to vµ,

ξµ = ξ(T )
µ +Xµ ξ

(S) , with X µ ξ(T )
µ = 0. (4.13)

From this definition, and Eq. (4.9), it is clear that δφ transforms only under transfor-

mations generated by ξ(S). We also introduce the quantity

h̃µν ≡ hµν+∇̄µHν+∇̄νHµ , with Hµ ≡
Xµp
2X

δφ . (4.14)

Because of Eq. (4.11), the contributions to h̃µν are of the same order in the gradient

expansion ω−1, and it is easy to show that h̃µν, transforms only under transforma-

tions generated by ξ(T )
µ as

h̃′
µν = h̃µν−∇̄µ ξ(T )

ν −∇̄ν ξ(T )
µ , (4.15)

so that we can choose gauges for h̃µν and δφ independently. This procedure is equiv-

alent to performing a Stuckelberg trick [53]. We define the orthogonal projection op-

erator relative to the vector X µ,

Λµν ≡ ḡµν+XµXν , (4.16)
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and decompose h̃µν as,

h̃µν = XµXνh(S) −
(

Xµh(V )
ν +Xνh(V )

µ

)
+h(T )

µν , (4.17)

with h(S) ≡ X ρ Xσ h̃ρσ, h(V )
µ ≡ X ρΛσµ h̃ρσ and h(T )

µν ≡ΛρµΛσν h̃ρσUnder a T -type trans-

formation they transform as

h
′(S) = h(S) , (4.18)

h
′(V )
µ = h(V )

µ −X ρ ∇̄ρ ξ(T )
µ , (4.19)

h
′(T )
µν = h(T )

µν −
(
∇̄µξ(T )

ν +∇̄νξ(T )
µ

)
−X ρ

(
Xµ ∇̄ρ ξ(T )

ν +Xν ∇̄ρ ξ(T )
µ

)
, (4.20)

up to order O(ω0). Indeed, the gauge transformation in Eq. (4.15), produces also

terms at orders O(ω−1), which we do not consider here as we focus only on the geo-

metric optics orders O(ω) and O(ω2) (see discussion about geometric optics in Sec-

tion 1.3.2). We note that h(S) is both S− and T -gauge invariant at order O(ω0). For

later purposes, we further decompose h(T )
µν as

h(T )
µν = γµν+ 1

3
Λµνh(tr) (4.21)

with h(tr) ≡Λµνh(T )
µν andΛµνγµν = ḡµνγµν = 0, and whose transformation laws are,

h
′(tr) = h(tr) −2Λµν∇̄ν ξ(T )

µ , (4.22)

γ′µν = γµν−
(
∇̄µξ(T )

ν +∇̄νξ(T )
µ

)
+ 2

3
Λµν ∇̄ρ ξ(T )

ρ −X ρ
(

Xµ ∇̄ρ ξ(T )
ν +Xν ∇̄ρ ξ(T )

µ

)
.

(4.23)

4.2.2. Gauge fixing

We first choose ξ(S) and ξ(T )
µ such that

δφ+
p

2X ξ(S) = 0, → δφ′ = 0, (4.24)

h(V )
µ −X ρ∇̄ρ ξ(T )

µ = 0 → h
′(V )
µ = 0. (4.25)

The last condition is compatible, at order O(ω0), with the orthogonality requirement

X µh(V )
µ = 0 as it can be checked by contracting with X µ both sides. Eq. (4.25) leaves

the residual T -gauge freedom X ρ∇ρ ζ(T )
µ = 0, which we use to fix

∇̄µγ′µν = 0, (4.26)

at order O(ω0), using Eq. (4.23). After such gauge choices, the quantity γ′µν is trans-

verse and traceless; we identify it as the high-frequency GW and dub it

γ′µν ≡ h(T T )
µν . (4.27)
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We point out that is not possible to choose h(tr) = 0, using the residual gauge freedom,

left after the last transformation, if h(tr) depends on the coordinate in the direction of

Xµ. For simplicity, we can exhaust the gauge freedom imposing ∇µξ(T )
µ = 0, such that

the trace h(tr) is gauge-invariant, while the transverse-traceless GW excitations h(T T )
µν

are invariant under the residual transformation that can be read from Eq. (4.23):

h(T T )
µν → h(T T )

µν −∇̄µξ(T )
ν −∇̄νξ(T )

µ . (4.28)

After the gauge fixing procedure described, the metric perturbation reads

h̃µν = Xµ Xνh(S) + 1

3
Λµνh(tr) +h(T T )

µν . (4.29)

The quantity h̃µν, before we make any gauge choice, has 10 non-vanishing compo-

nents. Making gauge fixings as explained above, we imposed 6 conditions, since both

h(V )
µ and h(T T )

µν are by construction orthogonal to the vector X µ. Hence, we are left

with 4 independent metric components. In Section 4.3.1 we show that only 3 out of

these 4 are independent propagating degree of freedom, while h(S) is a constrained

field. We will decouple the evolution equations of The evolution equations of h(tr)

and h(T T )
µν under physical assumptions on the velocities of the fields involved.

4.3. Equations of motion
Isaacson, working in the context of the geometric optics limit of General Relativity,

showed that the original diffeomorphism invariance is preserved order-by-order in

the gradient expansion [151, 152] in the equations of motion. In our scalar-tensor

framework, we change perspective and impose the symmetry invariance at each or-

der in the ω-expansion. This viewpoint allows us to write the most general structure

for the equations governing the GW dynamics, and to encode the effects of the DE

field in few physically transparent parameters.

4.3.1. Separating the evolution equations

We consider that the equations of motion of h̃µν in Eq. (4.29), can be obtained from

the action (4.3). As usual in the context of geometric optics, we neglect the contribu-

tion of standard matter, considering that it does not have high-frequency excitations.

The gravitational field equations can be expressed in terms of h̃µν as

G (1)
µν

[
h̃ρσ

]= T (1)
µν

[
h̃ρσ

]
, (4.30)

where G (1)
µν

[
h̃ρσ

]
is the linearized Einstein tensor, written in terms of h̃ρσ, and T (1)

µν

represent any other contribution to the field equations. Note that we are choosing

the gauge δφ= 0, hence it does not appear in the equations above. Taking the trace
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of Eq. (4.30), we find that the left-hand-side is given by (minus) the first order Ricci

scalar

R(1) = −□̄h(tr) +Λαβ ∇̄α∇̄β
(
h(S) + 1

3
h(tr)

)
, (4.31)

from which we see that, while the trace scalar h(tr) receives a kinetic contribution

controlled by the d’Alembert operator □̄, second derivatives acting on the scalar h(S)

are weighted by the projector operator Λµν. Let us consider, as an example, the

case of a background field configuration which is homogeneous and isotropic. In

this case, ḡµν is the FLRW metric and vµ ∝ δµ0ϕ
′
0 so that Λαβ ∇̄α∇̄βh(S) ∝ ∂i∂i h(S).

As a result, one finds that the kinetic contributions of h(S) coming from the Ricci

scalar, are not sufficient for propagating this field. Indeed, h(S) plays a role analo-

gous to the lapse function N in the ADM formalism (see e.g. [160]): not dynamical

and whose equation of motion serves as a constraint equation. We also discuss in

Appendix B an explicit, simple example where h(S) is manifestly non-dynamical. To

proceed further, one has to understand whether the energy-momentum tensor in the

right-hand-side of Eq. (4.30), can make h(S) dynamical by, for instance, containing a

term such ∼ □̄h(S). If in the action (4.3), the couplings of dark energy scalar to the

metric are expressed in a covariant form in terms of the metric, Riemann, and Ricci

tensors, we claim this is not possible. Indeed, if this is the case, their contribution

will have a form similar to the one of the Ricci in Eq. (4.31) and, consequently, the

same considerations as above apply. We conclude that the role of h(S) is to fix certain

conditions on the high-frequency modes.

Assuming that we have solved the equation of h(S), we are left with h(T T )
µν and h(tr) as

potentially propagating high-frequency degrees of freedom. The linearized gravita-

tional field equations, can be decomposed as

G (1)
µν

[
h(T T )
ρσ

]
+G (1)

µν

[
h(tr)] = T (T )

µν

[
h(T T )
ρσ

]
+T (tr)

µν

[
h(tr)] . (4.32)

We expect that second derivatives contributions to the scalar sector have a rich struc-

ture, due to the presence of vµ ̸= 0. As a consequence, tensor and scalar fluctuations

normally propagate with different velocities. We set the speed of GW to the one of

light, given the strong experimental bounds on the GW velocity associated with the

GW170817 event [302], and make the ansatzs

h(T T )
µν = A(T )

µν exp
[
i ωψ(T T )] , (4.33)

h(tr) = A(tr) exp
[
i ωψ(tr)] . (4.34)

The amplitudes of both modes are slowly varying, while the phases are rapidly vary-

ing thanks to the factors of ω in the exponent. When plugging Eqs. (4.33) and (4.34)

into Eq. (4.32), one gets a linear combination of terms with rapidly oscillating phases

and slowly varying overall coefficients, with structure(
. . . ]|ω2,ω1

)
exp

[
i ωψ(T T )]+ (

. . . ]|ω2,ω1

)
exp

[
i ωψ(tr)] = 0 (4.35)
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where within the parenthesis we collect slowly varying contributions at orderω2 and

ω1 in a gradient expansion. The ω2 contributions depend on the derivative of the

phases ψ(T T ) and ψ(tr): they control the dispersion relations for the two species of

excitations, scalar and GW. Since in general h(T T )
µν and h(tr) propagate with differ-

ent speed, they are characterized by distinct dispersion relations, hence the phases

ψ(T T ) and ψ(tr) are different. Eq. (4.35) is a linear combination of two contributions

weighted by two distinct phases which rapidly oscillate over space and time: in or-

der to satisfy it, we need to impose that the coefficients of each of these two terms

separately vanish. Within the geometric optics limit, this procedure effectively sepa-

rates the evolution of scalar modes (characterized by the phaseψ(tr)) and GW modes

(characterized by the phase ψ(T T )). Under all these assumptions illustrated, we con-

sider Eq. (4.32) satisfied if

G (1)
µν

[
h(tr)] = T (tr)

µν

[
h(tr)] , (4.36)

G (1)
µν

[
h(T T )
ρσ

]
= T (T )

µν

[
h(T T )
ρσ

]
, (4.37)

namely the two sectors solve individually their respective equations. As a result, the

GW sector is decoupled from the scalar one at the linearized level.

4.3.2. The tensor mode equation

We now investigate the tensor mode equation in Eq. (4.37). The left-hand-side corre-

sponds to the linearized Einstein tensor, evaluated in h(T T )
ρσ . Since the latter is trans-

verse and traceless, we have that

G (1)
µν

[
h(T T )
ρσ

]
]|ω2,ω1 = −1

2
□̄h(T T )

µν ]|ω2,ω1 . (4.38)

The right-hand-side of Eq. (4.37) is theory dependent, nevertheless, symmetry con-

siderations allow us to determine the general structure of T (1)
µν [h(T T )

ρσ ], without relying

on specific models. Considering Eq. (4.38) as left-hand-side of Eq. (4.37), and the in-

variance under residual T− types gauge transformations, we see that the right-hand-

side should be:

1. transverse and traceless,

2. orthogonal to vµ at orders ω2 and ω1,

3. invariant under the transformation (4.28),

4. conserved at order ω2:
[
∇µT (T )

µν

]
ω2

= 0,

5. containing at most second derivatives of h(T T )
ρσ : since we are considering an

action of the form (4.3), stability requires that the corresponding equations of
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motion are at most second order2.

Additionally, we demand that it ensures that GW propagate at the speed of light, to

be compatible with GW170817 [125]. The only allowed structure of the linearized

T (T )
µν (hρσ) that satisfies all of these requirements at orders ω2, ω is

T (T )
µν = τA □̄h(T T )

µν +τB vρ ∇̄ρh(T T )
µν , (4.39)

where τA,B depend only on slowly varying fields. Calling the combination

T = − 2τB

1+2τA
, (4.40)

we can rewrite the GW evolution equation as(
□̄h(T T )

µν

)
]|ω2,ω1 = T ×

(
vρ∇̄ρ h(T T )

µν

)
]|ω1 . (4.41)

The deviations from GR on the propagation of high-frequency GW only appear as

a first-order gradient of the GW high-frequency fluctuation, proportional to the pa-

rameter T depending on slowly-varying fields. Such contribution can be thought

as a ‘friction term’ for the GW, and is common in scalar-tensor theories with non-

minimal couplings between scalar and metric degrees of freedom. In the context

of gravitational wave cosmology, several groups explored the consequences of such

term in specific cosmological models [114, 123, 124, 161, 183, 184, 186, 191, 211, 222,

223, 303–308], as we did in Chapters 2 and 3.

4.3.3. Amplitude evolution equation

We consider the eikonal anstaz in Eq. (4.34) where the gradient of the phase defines

the GW 4-momentum as

kµ = ∇̄µψ(T T ) , (4.42)

and plug it into the equation of motion (4.41). As usual in the context of geometric

optics, we organize the equation obtained in this way in power of ω[
. . .

]
ω2 +

[
. . .

]
ω+·· · = 0, (4.43)

and, since ω≫ 1, we require that the coefficient of each order vanishes, in order to

satisfy the equation. At order ω2 we obtain,

kµkµ = 0, kρ∇̄ρkµ = 0, (4.44)

2It could be possible that the equations of motion become second order only after having used specific
constraint relations. This should be the case of DHOST theories, for instance.
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which states that the GW 4-momentum is a null vector, propagating along null

geodesics. Calling λ the affine parameter of the geodesics, we have that for any func-

tion f , the derivative along the geodesics is d f /dλ= kρ∇̄ρ f . At order ω, we find the

evolution equation for the amplitude[
2kρ∇̄ρA(T ) + (∇̄ρkρ)A(T )] = T kρvρA(T ) , (4.45)

where we defined A(T ) as A(T ) =
√
A(T )
µν (A(T ))µν. Recalling that vµ = ∇̄µϕ̄, the pre-

vious equation can be ‘integrated’ to

∇̄ρ
(
e−

∫
T kρ

[
A(T )]2

)
= 0, (4.46)

where the schematic expression
∫
T denotes the following integral∫
T ≡

∫ λ

λs

T dϕ̄

dλ′ dλ′ . (4.47)

In the equation above, λs corresponds to the value of the affine parameter at the

source position. The quantity in Eq. (4.47) represents a cumulative integration of the

friction term in Eq. (4.41) over the GW geodesic’s affine parameter. In integrating

Eq. (4.45) we have chosen boundary conditions such that there are no scalar field

effects at the source position λ = λs , as assumed throughout the work. Importantly,

we do not need to demand that T is ‘small’ for writing Eq. (4.46).

4.4. Conservation laws
Eq. (4.45) shows that the DE field can introduce an additional damping term. How-

ever, the fact that this can be integrated, lead us to Eq. (4.46), giving us reasons to

believe that we can actually still formulate a conservation law.

4.4.1. The energy momentum of GW

The presence of GWs can back-react on the background curvature. These effects

were quantified, in the geometric optics limit and in General Relativity, by Isaac-

son [152], introducing the GW stress-energy tensor, which is at second order in the

amplitude expansion regulated by α. Focusing only on the tensor modes h(T T )
µν , we

derive their associated stress-energy tensor in the generalized gravitational set-up

outlined in the previous Sections. Again, we do so by changing perspective: we build

the stress tensor bottom-up by using symmetry arguments, namely finding the only

possible second-order tensor which is gauge invariant under the residual transfor-

mation in Eq. (4.28). Indeed, also Isaacson in [152] showed that the GW stress tensor

in General Relativity is gauge invariant, at the geometric optics order, and here we

use this symmetry property as a guiding principle to build T (2),ST
µν .
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We start by that the stress-energy tensor must be quadratic in h(T T )
µν , and contain

two derivatives acting on the transverse-traceless GW excitations (by ‘integration by

parts’, we can place one derivative per field). Given this information, the most gen-

eral structure that T (2)
µν can have is

T (2),ST
µν = 1

32πω2 〈∇̄µh(T T )
αβ

∇̄νh(T T )
γδ

〉Cαβγδ , (4.48)

where Cαβγδ depends on slowly-varying fields and the symbol 〈. . .〉 denotes the so-

called Brill-Hartle spatial average [152, 160]. Being h(T T )
γδ

traceless, we have that

Cαβγδ ̸∝ ḡγδ, otherwise the stress-energy tensor would vanish. Also, because T (2),ST
µν

is conserved at order ω2 and h(T T )
γδ

is transverse and traceless, the only way to ar-

range the free indices µ,ν is the one in Eq. (4.48). After fixing the gauge as discussed

in Section 4.2.2, we are left with invariance under the transformation in Eq. (4.28).

We select Cαβγδ in Eq. (4.48) such that the stress-energy tensor is invariant under the

same gauge transformations. Using Eq. (4.28), we see that the latter transforms as

T (2),ST
µν → T (2),ST

µν +δT (2),ST
µν where

δT (2),ST
µν = − 1

16πω2 〈∇̄µ∇̄αξ(T )
β

∇̄νh(T T )
γδ

〉Cαβγδ , (4.49)

= 1

16πω2 〈∇̄µξ(T )
β

∇̄ν∇̄αh(T T )
γδ

〉Cαβγδ , (4.50)

which must vanish for any ξ(T )
β

, and for any choice of µ, ν. This can be achieved by

choosing Cαβγδ = C δαγCβδ, for some function C and tensor Cβδ and upon using the

transversality of the GW. Plugging this result in Eq. (4.48) we obtain

T (2),ST
µν = C

32πω2 〈∇̄µh(T T ),α
β

∇̄νh(T T )
αδ

〉Cβδ . (4.51)

Since the EMT is symmetric in the indexes, the quantity Cβδ is symmetric. Applying

again the transformation (4.28), and integrating by parts, we find that the invariance

of the stress-energy tensor also imposes Cβδ∝ δβδ. Therefore, symmetry arguments

fixed the form of the GW stress-energy tensor, up to a multiplicative function, to

T (2),ST
µν = C

32πω2 〈∇̄µh(T T )
αβ

∇̄νh(T T )αβ〉 . (4.52)

This result would be identical to the General Relativistic one in [152], is the function

C of the slowly varying fields was = 1. In our case, we fix it by using the conservation

equation3.

∇µT (2),ST
µν = 0, (4.53)

3The GW stress-energy tensor enters the background gravitational field equations, of the form G(0)
µν =

T (2),ST
µν [h(T T )] + T (2),ST

µν [h(tr )]. Bianchi’s identities guarantee the conservation of the right-hand-side
of the latter equations. The assumption of having independent scalar and tensor sector guarantees that
the two stress-energy tensors are conserved separately.
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which, together with Eqs. (4.46) and (4.44) for the amplitude of the tensor modes,

fixes C to the value e−
∫
T . Hence, we find that the second order GW energy-

momentum tensor, in the geometric optics limit and at leading order, reads

T (2),ST
µν = e−

∫
T

32π

[
A(T )]2

kµkν . (4.54)

4.4.2. Conservation of the graviton number density current

The results of geometric optics of Section 4.3.3, allow us to interpret the GW stress-

energy tensor in Eq. (4.54) and its conservation in terms of a graviton number density

4-current. We identify the quantity

Nµ ≡ kµ
[
A(T )]2

e−
∫
T → ∇̄µN µ = 0, (4.55)

as the graviton number density 4-current, which is conserved by virtue of Eq. (4.46),

and all the assumptions it is based on. We can express the GW stress-energy tensor

in terms of the graviton number density as,

T (2),ST
µν = 1

16π
k(νNµ) , (4.56)

where the parenthesis stands for the symmetrization in the µ,ν indices. Being able

to express the GW stress-energy tensor as in Eq. (4.56), supports its definition found

through only symmetry arguments: it’s tensor whose components are related to the

flux of the µ− th component of the energy-momentum density through a surface

with xν constant coordinate (the vector kν is the wave-vector of the GW). This inter-

pretation relies on the possibility of defining the rays, identified by the wave-vector

kµ, which make clear the concept of a trajectory for a gravitational wave.

We can give a further interpretation of these results in terms of the geometry of the

cross-sectional area of the GW’s ray bundle, S(λ) in Figure 4.1, to further support the

identification of N µ as the graviton number density 4-current. If λ is the affine pa-

rameter associated to the GW rays with 4-momentum kµ, a geometric optics theorem

(see [160], exercise 22.13) states that,

d S(λ)

dλ
−∇̄µkµ S(λ) = 0, (4.57)

which combined with Eq. (4.55) implies

d

dλ

{
e−

∫
T [

A(T )]2
S(λ)

}
= 0, (4.58)

clearly showing that the combination e−
∫
T [

A(T )
]2

is inversely proportional to the

bundle’s cross-sectional area, rather than only
[
A(T )

]2
as in General Relativity.
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Figure 4.1: Geometric optics representation of graviton number conservation. The flux of a stream of gravi-
tons crossing the S-areas is conserved along the GW affine parameter. See Eq. (4.58).

4.5. Gravitational wave distances and duality relation
In this Section we give the definitions of the gravitational waves distances by general-

izing to the case of GWs in scalar-tensor theories the works [157, 213–217, 309] about

fluctuations of the luminosity and angular diameter distances, both of photons and

GWs. All of these works descend from the one done by Sasaki in [212] regarding pho-

tons, which we follow very closely in this Section. After giving these definitions, we

prove the validity of Etherington’s reciprocity law, also known as distance duality re-

lation, between GW luminosity and angular distances, also in the scalar-tensor the-

ories considered in this Chapter4. This law states that, in General Relativity, between

the electromagnetic luminosity and angular diameter distance the following relation

holds

dL = (1+ z)2 dA , (4.59)

if: the spacetime is described by a pseudo-Riemannian manifold, photons prop-

agate along null geodesics of the spacetime and their number density is con-

served [149, 310, 311]. Such relation has been tested from several electromagnetic

observations [312–316] and its role in the context of multi-messenger observation

was explored as well in [185]. Etherington’s reciprocity law, because it relies on very

minimal assumptions, it provides a perfect playground to test the theory of gravity

or the cosmological model [317], so one might wonder if we should expect a similar

relation also for the GWs distances

d (GW)
L = (1+ z)2 d (GW)

A , (4.60)

in light of the results obtained in Sections 4.3.3 and 4.4.1.

4We study the propagation of GW over a perturbed cosmological background and prove its validity up to
first order in the perturbations



4.5. Gravitational wave distances and duality relation

4

97

4.5.1. Raychaudhuri equation

Before giving the definitions of the GW distances, we perform some preliminary steps

into further characterizing the GW’s rays, which will become useful later. Our start-

ing equations are the GW stress-energy tensor of Eq. (4.54), the amplitude evolution

equation in Eq. (4.46) and the geodesic equation (4.44).

We perform a conformal transformation, defining the metric ĝµν ≡ ḡµν/a2 and

ĝµν ≡ ḡµν/a−2 5, mapping a null GW geodesics in ḡµν into null geodesics in ĝµν with

rescaled affine parameter [32]

d λ̂ = a−2 dλ . (4.61)

The amplitude evolution equation in the comoving frame then results

d

d λ̂

(
e−

1
2

∫
T A(T ) a

)
+ 1

2

(
e−

1
2

∫
T A(T ) a

)
θ̂ = 0 with ∇̂µk̂µ = θ̂ , (4.62)

where ∇̂µ is the covariant derivative associated to the conformal metric and k̂µ ≡ kµ,

while k̂µ ≡ ĝµν k̂ν. The expansion parameter θ, satisfies the Raychaudhuri equation,

which can be determined from Eq. (4.44), is

d θ̂

d λ̂
= −R̂µνk̂µk̂ν− θ̂2

2
−2σ̂2 , (4.63)

where σ̂2 ≡ k̂(α;β) k̂(α;β)/2 − θ̂2/4 is the shear of the GW ray’s bundle, and R̂µν the

conformal spacetime Ricci tensor [212]. The graviton number conservation (4.58)

remains unchanged and reads

d

d λ̂

{
e−

∫
T A(T )2

S(λ̂)
}
= 0. (4.64)

4.5.2. Gravitational wave luminosity distance

In the physical frame, we introduce an observer the 4-velocity uµ, which measures

the GW’s energy flux given by

Fα = −[
T (2),ST]µ

νP
α
µuν , (4.65)

= F nα , (4.66)

with the GW flux amplitude and frequency measured by the observer are

F = e−
∫
T

32π

[
A(T )]2

ν2 , ν = −kµuµ , (4.67)

and also

Pα
µ = δαµ+uαuµ , nα = 1

ν

(
kα−νuα

)
. (4.68)

5From now onward, quantities in conformal frame are denoted with a hat
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The notion of GW frequency allows us to define the redshift z at the value λ̂ of the

comoving GW geodesics affine parameter as

1+ z(λ̂) = ν(λ̂)

ν(0)
. (4.69)

We assume that GW are emitted by an approximately spherically symmetric system,

with characteristic radius Rs , see left panel of Figure 4.2, which we will → 0 at the end

of the computation. The flux amplitude F measured at the source position is related

with the intrinsic source luminosity by the relation

F (λ̂s ) = LGW

4πR2
s

, (4.70)

with λ̂s the conformal affine parameter at the source. We define GW luminosity dis-

tance d (GW)
L as the ratio of GW power emitted at source position (intrinsic GW lumi-

nosity), versus the GW flux at detector location [212]

d (GW)
L ≡

[
LGW

4πF (0)

] 1
2 =

√
F (λ̂s )

F (0)
Rs . (4.71)

Substituting relation (4.67), we find the following expression

d (GW)
L = exp

[
−1

2

∫ λ̂s

0
T

]
× A(T )(λ̂s )

A(T )(0)
× [

1+ z(λ̂s )
] × Rs . (4.72)

Note the role of the scalar field-induced friction term in the overall exponential fac-

tor, that encodes the interesting phenomenology of these theories, providing inter-

esting observation prospects in case of multi-messenger events. By taking the defini-

tion of EM luminosity distance in [212], we find the ration between the two distances

d (GW)
L

d (EM)
L

= exp

[
−1

2

∫ λ̂s

0
T dφ̄

dλ′ dλ′
]

, (4.73)

singling out the modified gravity contribution as an integral from λ= 0 (the position

of the observer) to the source at λ̂ = λ̂S . This factor reduces to the effective Planck’s

mass of Eq. (1.105) for specific choices of T , as we show explicitly in Appendix A.

4.5.3. Gravitational wave angular distance

The GW angular distance d (GW)
A is defined in terms of the ratio between the angular

diameter ds of the source located at conformal affine parameter λ̂s , and the source

apparent angular size ∆φ as measured by an observer at λ̂= 0,

d (GW)
A ≡ ds

∆Ω
. (4.74)
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Figure 4.2: Representative plot of the GW/photon rays from source to detector position. The path of the ray
bundle in blue is parameterized by the affine parameter λ̂. Left panel: quantities entering the luminosity
distance are associated with a bundle diverging from source to detector. Right panel: quantities entering the
angular distance are associated with a bundle converging from source to detector. See text for definitions.

Following [212], it is convenient to reexpress d (GW)
A as

d (GW)
A =

(
S(λ̂s )

S(∆λ̂o)

)1/2
d(∆λ̂o)

∆Ω
, (4.75)

with S(λ̂) and d(λ̂) the cross-section area and the diameter of the GW’s ray bundle at

λ̂, and ∆λ̂o is the affine parameter in proximity of the observer (see Figure 4.2, right

panel). In [212], it is shown that

d(∆λ̂o)

∆Ω
= a2[τ(0)]∆λ̂o

(1+ z(λ̂s )) a[τ(λ̂s )]
, (4.76)

connecting the ratio d(∆λ̂)/∆Ω with ∆λ̂o . Thanks to Eq. (4.64), relating the ampli-

tude of the GW with the area of the cross-section of the ray bundle, we can rewrite

Eq. (4.75) as

d (GW)
A = exp

[
1

2

∫ λ̂s

∆λ̂o

T
]
×

(
A(T )(∆λ̂o)

A(T )(λ̂s )

)
× d(∆λ̂o)

∆Ω
. (4.77)

4.5.4. Etherington’s reciprocity law

We now prove the validity of Etherington’s reciprocity law, connecting luminosity and

angular GW distances. In the case of photons, the Etherington reciprocity law takes

the form in Eq. (4.59) and it descends from very generic hypothesis: the spacetime

is described by a Riemannian manifold, photons propagate along null geodesics of

the spacetime and their number density is conserved [149, 310]. Among them, and

in the case of GWs in geometric optics, our scalar-tensor scenario only affects the

conservation of the graviton number density, via the e−
∫
T in Eq. (4.64), standing
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for the friction induced by the DE scalar field. Nonetheless, we derived a modified

conservation law, namely Eq. (4.55), hence there are good reasons to believe that the

reciprocity law still holds for the GW distances, as defined in Sections 4.5.2 and 4.5.3.

Our findings and definitions so far are valid in any background spacetime, provided

that the background scalar field assumes a non-trivial profile and vµ ̸= 0. Here we

choose a perturbed cosmological background

ḡµν = a2(τ)
[
ηµν+ϵδĝµν

]
, (4.78)

ϕ̄ = ϕ0(τ)+ϵδϕ(x) , (4.79)

and derive the Etherington’s relation up to first order in cosmological perturbations

as in [212]. In the expressions above, ηµν is the Minkowski metric, and we have intro-

duced again ϵ as the parameter keeping track of the order of magnitude of the long

wavelength metric and scalar field perturbations, describing the large-scale struc-

tures, opposed to α for the high-frequency fluctuations. Therefore, even if we chose

the unitary gauge for the high-frequency scalar field αδφ(x), the long wavelength

DE field perturbation, ϵδϕ(x), is still present. Recalling that we defined the comov-

ing wave-vector as k̂µ ≡ ĝµνkν, we introduce a null vector

K̂ µ ≡ − k̂µ

ν(λ̂s )a[τ(λ̂s )]
, (4.80)

and, from now onward, λ̂ will be the affine parameter associated to it. This vector

is normalized such that
(
ĝµνK̂ µûν

)
λ̂s

= 1, where ûµ is the observer 4-velocity in the

conformal frame. The introduction of the vector K̂ µ is convenient to easily relate the

physical size of the source with the affine parameter along the GW geodesics. In fact,

as shown in [212], the characteristic size Rs of the source can be expressed as

Rs = a(τ(λs ))∆λ̂s , (4.81)

with ∆λ̂s the infinitesimal affine parameter associated with the source size (see Fig-

ure 4.2, left panel).

We prove the distance duality relation by taking the following steps:

i. We use Raychaudhuri equation (4.63), to relate the expansion parameter, θ̂,

to the comoving affine parameter, λ̂. The integration in λ̂ requires the choice

of boundary conditions; these will be different between luminosity and angu-

lar diameter distance because of the different geometry of the ray’s bundle, as

shown in Figure 4.2.

ii. We use Eq. (4.62) to relate the GW’s amplitude to θ̂ and, using the result of the

previous step, to the comoving affine parameter. We plug these relations in
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Eqs. (4.72) and (4.77), written in terms of the GW’s amplitude, to have d (GW)
L

and d (GW)
A in terms of the comoving affine parameter (and the perturbation of

the expansion rate).

iii. We combined the expressions obtained and arrive to Eq. (4.60).

Step i.

We solve Raychaudhuri equation (4.63) perturbatively in ϵ, the expansion parame-

ter which tracks the large-scale structures in Eq. (4.78). We expand the expansion

parameter as

θ̂(λ̂) = θ̂0(λ̂)+ϵδθ̂(λ̂) , (4.82)

so that θ̂0(λ̂) would represent its value on a Minkowski spacetime (remember we

have performed a conformal transformation). The affine parameter λ̂ still has con-

tributions at linear order in ϵ [156, 157]. By expanding Eq. (4.63) in ϵ, and solving it at

each order (see also [212, 318] for details), it can be checked that θ̂0 and δθ̂ are given

by,

θ̂0(λ̂)− θ̂0(λ̂b) = 2

λ̂− λ̂b

, (4.83)

δθ̂(λ̂)−δθ̂(λ̂b) = −[
θ̂0(λ̂)

]2
∫ λ̂

λ̂b

dλ′ 1[
θ̂0(λ′)

]2 × δ(R̂µνK̂ µK̂ ν)(λ′) , (4.84)

where θ̂0(λ̂b), δθ̂(λ̂b) are boundary conditions to be fixed at λ̂b . We choose different

boundary conditions in the case of the luminosity or the angular diameter distance.

Looking at the left panel of Figure 4.2, it is clear that, in the first case, the expansion

parameter θ̂ is zero at the source position λ̂s +∆λ̂s , while from the right panel of

Figure 4.2, we see that θ̂ = 0 at λ̂=∆λ̂o , namely the observer position, in the case of

angular distances. The main difference between the two situations is the direction

the GW ray’s bundle is diverging: toward or away from the observer. Therefore, for

the luminosity distance boundary conditions we have

θ̂L
0 (λ̂) = 2

λ̂− λ̂s −∆λ̂s
, (4.85)

δθ̂L(λ̂) = 1[
λ̂− λ̂s −∆λ̂s

]2

∫ λ̂s

λ̂
dλ′ [λ′− λ̂s −∆λ̂s

]2 × δ(R̂µνK̂ µK̂ ν) , (4.86)

while for the angular diameter distance boundary conditions

θ̂A
0 (λ̂) = 2

λ̂−∆λ̂o
, (4.87)

δθ̂A(λ̂) = − 1[
λ̂−∆λ̂o

]2

∫ λ̂

∆λ̂o

dλ′ [λ′−∆λ̂o
]2 × δ(R̂µνK̂ µK̂ ν) . (4.88)
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Step ii.

As in [212], we can use the results above to integrate Eq. (4.62) and obtain the relation

exp

[
−1

2

∫ λ̂s

0
T

]
× A(T )(λs ) a(τ(λs ))

A(T )(0) a(τ(0))
= λs +∆λ̂s

∆λ̂s
exp

[
−1

2

∫ λ̂s

0
dλ δθL(λ)

]
. (4.89)

in the case of the luminosity distance boundary conditions, while

exp

[
−1

2

∫ λ̂s

0
T

]
× A(T )(λs ) a(τ(λs ))

A(T )(0) a(τ(0))
= ∆λo

λ̂s
exp

[
−1

2

∫ λ̂s

∆λo

dλ δθA(λ)

]
(4.90)

in the case of the angular diameter distance ones. We plug these two results into

Eqs. (4.72) for d GW
L and (4.77) for d GW

A , and obtain

d (GW)
L (λ̂s ) = a[τ(0)]

[
1+ z(λ̂s )

]
λ̂s × exp

[
−1

2

∫ λ̂s

0
dλ δθL(λ)

]
, (4.91)

d (GW)
A (λ̂s ) = a[τ(0)]

1+ z(λ̂s )
λ̂s × exp

[
1

2

∫ λ̂s

0
dλ δθA(λ)

]
, (4.92)

where we have used also the relation in Eq. (4.76) and sent ∆λ̂s ,∆λ̂o → 0.

Notice that all the effects of scalar field-induced friction, are implicitly included in

the expressions (4.89) and (4.90), which relate the affine parameter at the source po-

sition, λ̂s , with the remaining quantities. The compact expressions in Eqs. (4.91)

and (4.92) (accompanied by relations (4.89) and (4.90)) include the effects of cos-

mological fluctuations implicitly. These can be made explicit by following the same

procedure of [212]. Another possible approach is to use the Cosmic Rulers formalism,

first developed in the context of photon propagation [156], then for GWs in General

Relativity [157] and eventually in a scalar-tensor theory set up in [158]. This approach

explicitly identifies contributions from peculiar velocities, weak lensing, Sachs-Wolfe

effects, volume effects, and Shapiro time delay, and allows appreciating the contri-

butions due to presence of the DE field, as in Eq. (1.112) of the Introduction. For the

purpose of proving the validity of Etherington reciprocity law, Eqs. (4.91) and (4.92)

are sufficient.

Step iii.

Combine Eqs. (4.91) and (4.92), we get

d̃ (GW)
A = d̃ (GW)

L

(1+ z̃)2 exp

[
1

2

∫ λ̂s

0
(δθA(λ)+δθL(λ))dλ

]
, (4.93)

= d̃ (GW)
L

(1+ z̃)2 . (4.94)
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The explicit computational steps between Eqs. (4.93) and (4.94) can be found

in [212]: since Eqs. (4.86) and (4.88) do not contain explicit DE-modifications, they

are the same of the analogous computation for photons in General Relativity. The

second line, Eq. (4.94), is the desired Etherington’s relation, valid including first or-

der perturbations.

Hence, we have proved that in the scalar-tensor framework discussed in this work,

with the modified conservation of graviton number density in Eq. (4.55), luminosity

and angular distances for GW are connected by the classic Etherington’s law (4.94).

A straightforward consequence of this result is that also the GW angular diameter

distance satisfies an analogous relation to Eq. (4.73), namely

d (GW)
A

d (EM)
A

= exp

[
−1

2

∫ λ̂s

0
T dφ̄

dλ
dλ

]
. (4.95)

Given the relevance of Eq. (4.73) in the context of multi-messenger events to test DE,

Eq. (4.95) states that the same important role can be played by the angular diameter

distances.

4.5.5. Implications for GW lensing

We discuss the implications of our findings for GW strong lensing: when a massive

object is located between a source, emitting photon or GWs, and the observer, its

gravitational field bends the messenger’s path, resulting in a remapping of the source

into multiple images. By comparing the arrival time between the images, it is pos-

sible to derive another distance measure, the so-called time delay distance, defined

as

D∆t = (1+ zl )
d A

OLd A
SO

d A
SL

, (4.96)

where zl is the lens redshift and d A
OL , d A

SO d A
SL are the angular diameter distances

between observer-lens, source-observer and source-lens [149]. The time delay dis-

tance can be used to trace the distance-redshift relation and infer cosmological pa-

rameters [319, 320], similarly to what is done with the luminosity and angular di-

ameter distances, or test the GW propagation properties [190]. Determining the

value of the Hubble parameter today, H0, through the observations of multi-lens

system is a very promising avenue, and a great effort is being dedicated into mak-

ing this tool more efficient and competitive [321]. Strong lensing of GWs hasn’t been

observed yet, however future interferometers such as LISA will likely detect lensed

events [322], since it is able to probe high redshifts, so the literature of this topic is

quite broad [164, 171, 178, 179, 226, 301, 322, 322–349]. One very promising appli-

cation of these types of events is exactly that they can be used to test the distance

duality relation: strong lensing events of standard distance indicators (SN [350] or
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GWs [351]) can give us access both to luminosity distance and angular diameter dis-

tance.

We consider strong GW lensing from point-like lens in the geometric optics limit,

valid when the GW wavelength is well shorter than the Schwarzschild radius of the

lens. In this limit, we do not need to discuss interference effects, that will be the topic

of Chapter 6. The goal of this section is to understand whether, in the scalar-tensor

theory of gravity considered in this Chapter, the time delay between "light images"

can differ from the time delay between "GW images", in a multi-messenger detec-

tion. Indeed, multi-messenger time delay can prove to be a powerful test for cos-

mology [333, 347]. The works [346, 348] show conclusively that GW and EM lensed

signals arrive at the same time at the detector, provided that both waves propagate at

the same speed and are emitted at the same time. In the geometric optics limit, this

is expected when photons and GW travel through null geodesics, since by definition

both sectors cover the minimal possible distance from source to detector. Causal-

ity arguments based on Fermat principle allow one to prove this statement in full

generality and [348] also argues that the same result should be valid in any theory of

gravity.

As for photons, the GW time delay ∆t (GW) can be expressed as [149]

∆t (GW) = (1+ zl )
d (GW)

OL d (GW)
SO

2d (GW)
SL

|θ−θS |2 + t (GW)
Φ

, (4.97)

where z is the lens’s redshift, d (GW)
OL the GW angular distance as measured from the

observer to the lens, d (GW)
SO the one from source to the observer, and d (GW)

SL from

source to lens. In Eq. (4.97), θ is the observed angular position of the source, θS

the would-be angular position of the source in absence of the lens. The first con-

tribution in Eq. (4.97) is the geometrical time delay, and its derivation can be found

in Appendix C, while the second contribution, tΦ, is the Shapiro time delay, due to

the due to the gravitational field of the lens. This contribution is similar to the one

found in Eq. (1.112), and it is the same for GW and EM observations in a scalar-tensor

framework, as it can be checked by also considering the same term in Eq. (1.114). In

other words t (GW)
Φ

= t (EM)
Φ

. The geometrical contribution to Eq. (4.97), though, de-

pends on the GW angular diameter distance, which can be modified compared to

the EM ones, as Eq. (4.95) states. The corresponding EM-time delay, ∆t (EM), can be

found by substituting d (EM)
A in the same time delay expression [149]. Hence, even

if apparently ∆t (GW) ̸= ∆t (EM), because of the different angular diameter distances,

we will prove that the two time delay coincides, in line with the causality arguments
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previously mentioned. Using Eq. (4.95), we can write

∆t (GW)
geo = (1+ z)

d (GW)
OL d (GW)

SO

2d (GW)
SL

|θ−θS |2 ,

=
(

d (GW)
OL

d (EM)
OL

)(
d (GW)

SO

d (EM)
SO

)(
d (EM)

SL

d (GW)
SL

)
∆t (EM)

geo ,

=
(
exp

[
−1

2

∫ λL

λO

T dφ̄

dλ
dλ− 1

2

∫ λO

λS

T dφ̄

dλ
dλ+ 1

2

∫ λL

λS

T dφ̄

dλ
dλ

])
∆t (EM)

geo ,

= ∆t (EM)
geo . (4.98)

We can see that integrals in the exponential carefully compensate, so that the geo-

metric part of the time delays are equal, ∆t (GW)
geo = ∆t (EM)

geo . Together with the fact that

the Shapiro contribution is the same for photons and GWs, the result extends to the

full time delay, as in Eq. (4.97).

4.6. Discussion and Conclusions
In this Chapter, we studied the propagation of high-frequency gravitational waves in

scalar-tensor theories of gravity, with the aim of examining properties of cosmolog-

ical distances as inferred from GW measurements. We first developed a bottom-up,

covariant approach to describe the dynamics of the high-frequency perturbations,

based on the principle of coordinate invariance. Symmetry considerations allowed

us to extract transverse-traceless components of the high-frequency scalar-tensor

fluctuations, identified with GW. In scenarios where scalar and tensor components

propagate at different speeds, we argued that the two sectors decouple at the lin-

earized level around an arbitrary background, and the evolution of high-frequency

GW and scalar modes can be studied independently. We then determined the most

general structure of the GW linearized equations, namely Eq. (4.41) and of the GW

energy momentum tensor in Eq. (4.48), where the presence of a dynamical DE scalar

field is encoded in the slowly varying factor
∫
T . Following the guide of [212], we de-

fined the gravitational waves distances, d GW
L and d GW

A , which descend from the GW’s

stress-energy tensor, obtainable exclusively because of the geometric optics assump-

tion which allows for a simultaneous definition of wave-vector, kµ, and trajectory via

kµ = d xµ/dλ. Both GW luminosity and angular distances can be modified with re-

spect to General Relativity, as shown in Eqs. (4.73) and (4.95), in a way that Ether-

ington’s reciprocity law (4.60) still holds, in a perturbed universe and within a scalar-

tensor framework. We discussed implications of this result for gravitational lensing,

focussing on time-delays of lensed GW. Compatibly with causality arguments, we

showed that the time delay between EM images, ∆t (EM), corresponds to the same in

terms of GW images, ∆t (GW), because we assumed that these were traveling on null

geodesics.
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Appendices

A. Comparison with the literature
To make contact with literature, here we show that Eq. (4.73), when specialized

for a FLRW Universe, coincides with the standard expression. We choose d s2 =
a2(τ)ηµνd xµd xν and ϕ̄=ϕ0(τ), so that vµ = (ϕ̄′

0, 0, 0, 0). For definiteness, we com-

pare our results with the notation of [249], in which the evolution of the amplitude of

high-frequency tensor modes is given by

h′′+2H (1−δ(τ)) h′−∇2h = 0, (4.99)

where ∇2 = ∂i∂i and the ratio of the luminosity distances is written as

d (GW)
L

d (EM)
L

= exp

[
−

∫ z

0

δ(z ′)
1+ z ′ d z ′

]
. (4.100)

Evaluating Eq. (4.41) on the homogeneous and isotropic gives

h′′+2H
(
1− T ϕ′

0

2H

)
h′−∇2h = 0. (4.101)

Comparing this equation with Eq. (4.99), we identify

δ(τ) = T ϕ′
0

2H , (4.102)

so that

d (GW)
L

d (EM)
L

= exp

[
−

∫ zs

0

δ(z)

1+ z
d z

]
= exp

[
−

∫ ts

t0

δ(t ) H d t

]
= exp

[
−

∫ τs

τ0

δ(τ)Hdτ

]

= exp

[
−

∫ τs

τ0

T φ̄′

2H Hdτ

]
= exp

[
− 1

2

∫ τs

τ0

T φ̄′ dτ

]
= exp

[
− 1

2

∫ λs

0
T dφ̄

dλ
dλ

]
, (4.103)

which is Eq. (4.73). In the derivation above, we also used dτ/d t = 1/a, H = H/a, 1+
z = a(0)/a(t ). Using the relation between δ(τ) and the running Planck’s mass [122]

δ(τ) = ∂ ln MP [ϕ0(τ)]

∂ ln a
(4.104)

it is also straightforward to check that

d (GW)
L

d (EM)
L

= exp

[
− 1

2

∫ λs

0
T dφ̄

dλ
dλ

]
= exp

[
−

∫ zs

0

δ(z)

1+ z
d z

]
= MP (z)

MP (0)
, (4.105)

recovering Eq. (1.105).
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B. A simple example: F (ϕ)R

Let us make a specific, simple example of the friction-term contributions found in

our general formula of Eq. (4.41), which arises in models characterized by a time-

varying Planck mass controlled by the dark energy scalar field ϕ. We consider the

following non-minimal kinetic coupling between scalar ϕ and metric

L = F (ϕ)R , (4.106)

which can be considered a part of the classic Brans-Dicke action [56]. We linearize

the gravitational field equations following this action and decompose them in terms

of the high-energy fluctuations, focusing on orders ω2 and ω1 in the gradient expan-

sion, as described in Section 4.3.1. We find that GW modes, as defined in Eq. (4.27),

obey the equation

□h(T T )
µν = 2F,ϕ

F
vλ ∇̄λh(T T )

µν , (4.107)

where F,ϕ = ∂F /∂ϕ. An evolution equation governing scalar modes can be deter-

mined by taking the trace of the Einstein equations

□̄h(tr) −Λαβ ∇̄α∇̄β
(
h(S) + 1

3
h(tr)

)
= − 3

p
2X F,ϕ

F
X λ∇̄λ

(
h(S) +h(tr)) , (4.108)

where the vector Xµ is defined in Eq. (4.12), and the projectorΛµν in Eq. (4.16). These

equations have the structure described in Section 4.3.1. Comparing the GW evolu-

tion equation (4.107), with the general expression in Eq. (4.41), we notice that the

former has a friction term T = 2F,φ/F . Upon renaming F [ϕ] = M 2
P [ϕ]/2, one can

realize that this is the usual friction term. Using the results of section 4.4.1, we find

that the stress-energy tensor at second order in the transverse-traceless fluctuations

reads

T (2),ST
µν = ϵ2 e−

∫
T

32π
〈∇µh(T T )

ρσ ∇νh(T T ) ρσ〉

= ϵ2 1

32π
exp

[∫ ϕ

ϕin

d lnF

dϕ̃
dϕ̃

]
〈∇µh(T T )

ρσ ∇νh(T T ) ρσ〉

= ϵ2 F (ϕ)

32π
〈∇µh(T T )

ρσ ∇νh(T T ) ρσ〉 , (4.109)

where we chose the extreme of integration ϕin such that F (ϕin) = 1. This tensor has

the expected structure associated with the Lagrangian density of Eq. (4.106). We

can apply these findings to cosmology, and consider the case of GW propagating

through a FLRW Universe, with metric d s2 = a2(τ)ηµνd xµd xν, and for a homoge-

neous scalar field ϕ̄ = ϕ0(τ). Then Eq (4.107) turns into

h(T T )′′
µν +2H

(
1− F,ϕϕ

′
0

F H

)
h(T T )′
µν −∇2h(T T )

µν = 0, (4.110)
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where H is the conformal Hubble parameter. The effect of the friction term due to

the non-minimal scalar-tensor couplings has the expected structure and is manifest

within the parenthesis of the previous expression.

C. The geometric time-delay

Figure C.3: The configuration we consider.

We derive the expression for the geometric time delay, i.e. the first term in Eq. (4.97).

Since we are considering GWs propagating at the speed of light, these follow null

geodesics whose affine parameter is the comoving distance, which we denote ℓ. For

example, ℓAL is the length of the line that joins point A with point L in Figure C.3. An-

gular distances are defined as ratios between lengths and angles they subtend with

respect to who observes them (which we write as the first letter, remember the defi-

nition of d A using Figure 4.2, right panel). We will have

DOL = ℓAL/θs , DSL = ℓLB /γ , DSO = ℓOC /γ . (4.111)

We work in the limit of infinitesimal angles, so that

ℓOL sinθs = ℓAL ⇒ ℓOL ∼ DOL , (4.112)

ℓOB cosθ = ℓOL cosθs ⇒ ℓOB ∼ ℓOL ∼ DOL (4.113)

Considering GWs traveling at the speed of light, the geometrical time delay can be

computed as

∆t = ℓSB +ℓOB −ℓSO . (4.114)

Since the triangles LSB and OSC are similar, we can write the equality

ℓLS

ℓOS
= ℓLB

ℓOC
= DSL

DSO
, (4.115)
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so that

ℓOS = ℓOL +ℓLS = ℓOL +ℓOS
DSL

DSO
. (4.116)

implying

ℓOS = DOL

(
1− DSL

DSO

)−1

= DOLDSO

DSO −DSL
. (4.117)

Moreover, the law of cosines ensures that

ℓ2
SB = ℓ2

OB +ℓ2
OS −2ℓOBℓOS cos(θ−θs ) . (4.118)

Expanding the cosine for small angles, we can reassemble the previous formula as

ℓSB ≃ (ℓOS −ℓOB )

√
1+ ℓOBℓOS

(ℓOB −ℓOS )2 |θ−θs |2 , (4.119)

≃ (ℓOS −ℓOB )

(
1+ ℓOBℓOS

2(ℓOB −ℓOS )2 |θ−θs |2
)

. (4.120)

Then the time delay reads

∆t = ℓOBℓOS

2(ℓOS −ℓOB )
|θ−θs |2 = DOL

2

DOLDSO

DSO −DSL

1
DOL DSO

DSO−DSL
−DOL

|θ−θs |2 ,

= DOLDSO

2DSL
|θ−θs |2 , (4.121)

which is the formula used in Eq.(4.97) of the main text, with the GW angular diameter

distance.

Note: My contribution to the paper this Chapter is based on regards all the scientific

aspects, especially, but not only, the theoretical computations of the first part. I also

had an active role in writing.





5
Polarization tests: direct

detection of the scalar wave

In scalar-tensor theory of gravity, gravitational waves can have a modified dynamics

and an enriched polarization content, supported by the dark energy scalar field. In

this Chapter, we address the possibility of a direct detection of the extra scalar polar-

ization, as a new probe to test the theory of gravity. We do so in light of two screening

mechanisms, chameleon and symmetron, showing that the scalar waves, in every fre-

quency range, are not directly detectable. This implies that a detection of the scalar

polarization in the gravitational wave sector would disprove the scalar-tensor theo-

ries considered, rather than be a smoking gun for.

Keywords: Gravitational waves, dark energy, screening, scalar polarization
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polarization tests
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5.1. Introduction
Since the discovery of the late time accelerated expansion of the Universe, an in-

credible effort has been dedicated into understanding the nature of its origin. The

simplest extension to the cosmological constant consists of a scalar field, ϕ, cou-

pled to the metric, gµν, in various ways, provided that some stability and symme-

try requirements are met. Because of this additional gravitational force, in these

scalar-tensor theories both the growth of matter perturbations and the propagation

of GWs are modified. Detecting φ via the former is a key goal of the next galaxy sur-

veys [9, 11, 352, 353] while the observation of GWs by LIGO-Virgo [1] has opened

the possibility of using the latter. The evolution of matter perturbations is mainly

studied at large scales and low energies, where linear perturbation theory holds.

One can therefore investigate the modification of the growth of structures by per-

forming a study of the linear perturbation around the homogeneous and isotropic

cosmological background, which is given a priori. Another powerful alternative in

this regard is the Effective Field Theory of Dark Energy (EFT) [86, 88, 354], which

allows a joint treatment of all scalar-tensor with second order equations of motion

and which is implemented in Einstein-Boltzmann solver codes to produce predic-

tions for the modified observables and produce constraints [89, 96, 186, 355]. In

both of these descriptions, since the background configuration is assumed as the

starting point, perturbations are defined as the difference between the full fields and

their background counterparts. On the other hand, GWs in scalar-tensor theories

are addressed in the high energy limit [158, 182], since this is the regime correspond-

ing to the observed waves so far. The sources of these waves are also located close

enough to the observer for the spacetime geometry not to be homogeneous and

isotropic in the region of propagation. If this was the case, then one cannot start

with the assumption of a cosmological background. The strategy in this case is to

exploit the wave’s highly oscillatory behavior by introducing an expansion in deriva-

tives of high-frequency perturbations [151, 152]. This way it is possible to study the

propagation of GWs over slowly-varying, but otherwise unknown, backgrounds. In

these approaches, field perturbations are then defined through particular averaging

schemes. The separation of variation scales between perturbation and background

can be regarded as a symmetry breaking, and helps identify the true degrees of free-

dom of the theory [150, 356]. In scalar-tensor theories, on top of the standard two

tensor modes composing a GW, there is also a propagating scalar wave [300, 357],

representing the dark energy scalar field. As seen in the previous Chapters, the ten-

sor modes dynamics can be altered with extra damping terms [122, 183, 184] or dif-

ferent propagation speed [358]. Assuming that the same theory is responsible for the

modifications in both the tensor and scalar sector, combining the information ob-

tained via these two independent probes is a compelling task in light of the future

scientific missions, though non-trivial because of the differences in energy scales

and formalism used to describe them [359]. For instance, the combined detection
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of GW170817 and GRB170817A [125] set the speed of GW to the one of light. How-

ever, its source was located at very low redshift, z ≲ 0.001, and it frequency very

close to the EFT cutoff, so that using the information gathered from its detection

to reduce the EFT parameter spaces is dubious [129]. Therefore, in the first part of

this Chapter we further elaborate on the definitions of metric perturbation à la ray-

optics versus the wave-optics one, given in Section 1.3.2, to fully understand how

deep their differences can make the two descriptions diverge. We will show that

these two definitions restrict the allowed class of diffeomorphisms, characterizing

the linear gauge transformations, in two different ways. The arguments presented

in this first part of the Chapter, place themselves in the middle of the existing litera-

ture of GWs in the high-frequency regime: the geometric optics limit of GWs is well

understood in General Relativity [150–152, 155], while the propagation of tensor and

scalar linear perturbations in scalar-tensor theories is historically addressed on a flat

background [299, 300] or a FLRW one, under the mask of cosmological perturbation

theory and the EFT. Initial efforts to merge these two sectors can be found in more

recent works [158, 182, 301, 360].

These initial results, set up the stage for the discussion about the detection prospects

of the dark energy scalar wave as a test for the gravitational theory. We study this in

light of the so-called screening mechanism: a feature of all viable scalar-tensor the-

ories aimed at suppressing the force carried by scalar field in high density regions

such as the Solar System, where all the tests performed exclude its presence [361].

The role of screening in shaping the distribution of matter in the Universe has been

studied extensively [51, 362–364], but such mechanisms have never been discussed

in the context of GWs and in light of the high-frequency expansion. Indeed, it is still

not understood whether a scalar wave would be able to pass through a screened re-

gion and be detectable on Earth, nor if GWs in these extended theories are affected by

it. We address such question by studying the geodesic deviation equation and con-

clude that the scalar wave, in every frequency range and in the theories considered

here, should be screened and, consequently, not detectable.

5.2. Origin of differences: definition of the field’s per-
turbations

We consider those scalar-tensor theories for which the action in Einstein frame can

be written as the canonical action for a scalar field, ϕ, coupled to the matter fields,

Ψi , through a conformal transformation:

S =
∫

d4x
p−g

[
M 2

p

2
R − 1

2
gµν∇µϕ∇νϕ−V (ϕ)

]
+Sm(Ω2(ϕ)gµν,Ψi ), (5.1)
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where gµν is the metric, R is the Ricci scalar and V (ϕ),Ω(ϕ) two arbitrary functions

modelling the field potential and the conformal coupling. Because matter couples

to the Jordan frame metric, g̃µν =Ω2(ϕ)gµν, this theory is sometimes studied by per-

forming a conformal transformation, where it takes the form of a Generalized Brans-

Dicke theory. In this case, the scalar field action of Eq. (5.1) loses its canonical form

and a modified Planck mass appears in front of R. We study the dynamics of pertur-

bations in vacuum. This assumption is justified in cosmological settings when the

scalar field drives the expansion of the Universe and in screening scenarios outside

the localized matter sources.

Once an action is given, one is interested in studying the dynamics of the field or of

their linear perturbations. To be able to study the latter, one has to decide how to

distinguish the field perturbations from their respective background configurations.

As discussed in Section 1.3.2 of the Introduction, a notation as

gµν = ḡµν+αhµν , ϕ= ϕ̄+ αδφ , (5.2)

is rather uninformative unless a criterion to distinguish {hµν,δϕ} from {ḡµν, φ̄} is

given. Here we revisit again the two main approaches, which in Section 1.3.2 we

used to define the GW in the ray-optics regime versus the one in wave-optics limit,

and extend the discussion also to the scalar wave (SW), represented by αδφ. We al-

ready gave a taste of the line of thoughts which we will follow in Eqs. (4.10) and (4.11)

of Chapter 4. Here we pick it up again, and try to understand it even further. We as-

sume that the amplitude of the perturbations is smaller than their background coun-

terparts. This is quantified by the parameterα such that |hµν|/|ḡµν|, |δϕ|/|φ̄| ∼α≪ 1.

• Approach 1: The first approach is the one adopted by standard perturbation theory.

In this case, the splitting between background and perturbation is done by choos-

ing a priori a background configuration. For instance, in a cosmological setting the

quantities {ḡµν, φ̄} are fixed to the homogeneous and isotropic Universe and conse-

quently, perturbations are uniquely defined as hµν = gµν−ḡµν and δϕ=φ−φ̄. An ad-

ditional assumption is that {ḡµν, φ̄} are considered gauge invariant. Taking again the

example of the unperturbed cosmological background, after performing this proce-

dure one usually separates the field perturbations in scalar-vector and tensor modes

and identifies GWs as the latter. We point out that a similar approach is adopted in

the EFT though the assigned action is built from symmetry arguments, rather than

given as Eq. (5.1). This approach is also the one opted for in the literature of wave-

optics limit for gravitational waves and photons [149, 179].

• Approach 2: In the second approach, typical of the high-frequency expansion,

one assumes that the field perturbations can be separated from the background by

means of suitable averaging procedures. In this case, the field background configu-
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rations are the smooth mean quantities

〈gµν〉 = ḡµν , 〈ϕ〉 = ϕ̄ , (5.3)

and the perturbations are defined implicitly via 〈hµν〉 = 〈δϕ〉 = 0 . We require φ̄ to be

a function of the spacetime coordinates, so that

vµ ≡ ∂µϕ̄ ̸= 0 (5.4)

and we introduce the parameter L, measuring the variation length scale of ϕ̄, so that

|vµ| ∼ ϕ̄/L . (5.5)

We also assume that {ḡµν,ϕ̄} vary on the same length scale. The excluded case in

which ϕ̄ = const is trivial, because in this case the background is known. Indeed,

ϕ̄ = const contains the maximally symmetric Minkowski, de Sitter and anti-de Sit-

ter solutions. Then, one needs to give prescriptions on how to perform the aver-

ages in Eq. (5.3). One of the most widely used, which also justifies the name high-

frequency expansion, is the ADM averaging scheme [151, 152]. In this case, assuming

that the field perturbations {hµν,δφ} have shorter variation scales compared to their

background counterpart, the averages in Eq. (5.3) can be taken as an average over a

spacetime volume containing many periods of the high-frequency perturbations. As

done before in the Introduction and Chapter 4, in this approach, one also defines the

quantity
1

ω
≡ λ

L
≪ 1, (5.6)

where λ is the order of magnitude of the derivatives of the perturbations: |∂hµν| ∼
h/λ and |∂δφ| ∼ δφ/λ. This parameter allows us to formally evaluate the 〈. . .〉: os-

cillatory perturbations average out to zero after integrating over volumes larger than

λ but small enough to be independent of ω. As already mentioned in the Introduc-

tion, the parameter ω can also be defined through the frequencies of the wave and

the background, i.e. 1/ω= fB / fg w and the averages become time averages over mul-

tiple periods of the wave, rather than spatial ones. In practice, ω is used to sepa-

rate between the so-called low-frequency modes, i.e. the background, and the high-

frequency modes, i.e. the oscillatory perturbations.

5.2.1. Consequences on the gauge transformation

As discussed in Section 1.3.2, in order to make Eq. (5.2), we need to assign an extra

criterion to uniquely distinguish {ḡµν,ϕ̄} from {hµν,δϕ}, otherwise they can be mixed

via the linearized gauge transformation. Under the transformation

xµ→ xµ+ξµ (5.7)
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because of the symmetries of the action (5.1), the fields transform as

g ′
µν(x ′) = gρσ(x)

∂xρ

∂x ′µ
∂xσ

∂x ′ν . (5.8)

ϕ′(x ′) = ϕ(x) . (5.9)

Considering now an infinitesimal generator, ξµ =αδξµ, we can straightforwardly find

the linearized versions of the symmetry transformations

ḡ ′
µν(x)+αh′

µν(x) = ḡµν(x)+αhµν(x)−α (∇̄µδξν+∇̄νδξµ) , (5.10)

ϕ̄′(x)+αδφ′(x) = ϕ̄(x)+αδφ(x)−αvµδξµ , (5.11)

where ∇̄µ is the covariant derivative associated to ḡµν. From the expressions above

we understand that the requirementα≪ 1 is not enough to define the GW and SW, as

nothing forbids the background field’s configurations, {ḡ ′
µν(x),ϕ̄′(x)} to acquire also

a small (order α) part. In order to have a well-defined h′
µν(x) and δφ′(x) after the

transformation, one must also decide how to assign the extra terms coming from the

part in the transformation’s laws which depend on δξ. Moreover, even if we required

ξ to be infinitesimal, its derivative could be large. This more transparent way of stat-

ing the problem at hand, makes clear how the two approaches solve it in different

ways.

• Approach 1: In this case, one simply opt to have a fixed background. So that, by

definition

ḡ ′
µν(x) = ḡµν(x) , and ϕ̄′(x) = ϕ̄(x) . (5.12)

Indeed, in standard cosmological perturbation theory, as the one presented in Sec-

tions 1.1.2 and 1.2.2, the FLRW metric is considered fixed [37]. Upon using Eq. (5.12)

into the linearized gauge transformation, we find the standard transformation laws

h′
µν(x) = hµν(x)− (∇̄µδξν+∇̄νδξµ), (5.13)

δϕ′(x) = δϕ(x)− vµδξµ, . (5.14)

• Approach 2: In this approach, one assumes that the field perturbations vary on a

smaller length-scale compared to that one of their background counterparts. An-

other way of stating this is that the GW and SW only contain frequency modes above

a certain value, decided by ω (if it was possible to decouple the modes in Fourier

space, the waves would contain modes only from a certain k onward). The linearized

symmetry generator, αδξµ, while it might be infinitesimal, in general it contains in

principle every frequency mode. Using the averaging 〈 . . .〉, we split it as

δξµ = δξµlow +δξµhigh , with δξ
µ

low ≡ 〈δξµ 〉 . (5.15)

This way we are assuming that δξµhigh varies on the same scales of the high-frequency

GW and SW, namely {hµν,δφ}, and its gradients are enhanced by a factor ω as well.
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By averaging, then, Eqs. (5.10) and (5.11), one would find that

h′
µν(x) = hµν(x)− (∇̄µδξhigh

ν +∇̄νδξhigh
µ ), (5.16)

δϕ′(x) = δϕ(x)− vµδξhigh
µ , . (5.17)

while δξlow would transform ḡµν(x) into ḡ ′
µν(x). In other words, if we want the high-

frequency behavior of the metric perturbation to be preserved by the gauge trans-

formation (i.e. |∂h′
µν(x)| ∼ α/λ), we need to restrict the class of allowed infinitesi-

mal diffeomorphisms (αδξ) to those which have a highly oscillatory character as well

(αδξµhigh). However, this is not enough. From Eq. (5.16) we see that ∇̄µδξhigh
ν ∼ωα, so

that, in order to have h′
µν(x) still a small perturbation, we need to lower its amplitude.

We impose the condition

|∇̄µδξhigh
ν | ≲ α , (5.18)

which leads to

|∂µδξhigh
ν | ∼ |δξhigh|

λ
≲α → |δξhigh|≲ αL

ω
. (5.19)

Eq. (5.19) shows that, according to the value of ω, not every linearized diffeomor-

phism is allowed [150, 356]. Note that this requirement, based on the separation

of ξµ of Eq. (5.15), is not imposed in Approach 1 leading to subtleties in the gauge

choices, as it will be shown later, which must be understood in order to relate GWs

described in the two formalisms.

5.2.2. High-frequency expansion and gauge subtleties

In this section, we investigate the consequences of assuming Eq. (5.19) in Approach

2. We start by using ω to set up the expansions

hµν = h0
µν+ω−1 bµν , bµν = h1

µν+ω−1h2
µν+ . . . (5.20)

δϕ = δϕ0 +ω−1δψ , δψ= δϕ1 +ω−1δϕ2 + . . . (5.21)

δξ
high
µ = δξ0

µ+ω−1δζµ , δζµ = δξ1
µ+ω−1δξ2

µ+ . . . , (5.22)

as when studying beyond geometric optics corrections. When ω−1 ≪ 1, these are

meaningful perturbative expansions, and Eqs. (5.19) and (5.22) lead to

δξ0
µ = 0. (5.23)

This implies that the generator of linear, high-frequency diffeomorphisms vanishes

in its geometric optics order. We can then reorganize the gauge transformations in

Eqs. (5.16) and (5.17) in powers of ω as

h′
µν = hµν−ω−1(∇̄µδζν+∇̄νδζµ) , (5.24)

(δϕ0)′ = δϕ0 , (5.25)

δψ′ = δψ− vµδζµ , (5.26)
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from which we see that δϕ0 is gauge invariant and that whenever vµ ̸= 0, the trans-

formation above mixes hµν and δψ, in the sense that gauge fixing one field modifies

also the other and vice-versa. Moreover, the leading order terms transform as

(h0
µν)′ = (h0

µν)−ω−1(∂µδξ
1
ν+∂νδξ1

µ) , (δϕ0)′ = δϕ0 , (5.27)

i.e., as if they lived on a flat background. This is not surprising, since covariant

derivatives commute when acting on perturbations approximated at leading order

inω [151]. To arrive to the first equation above, one can expand the covariant deriva-

tives in Eq. (5.24) and neglect the terms proportional to the Christoffel symbols: they

are of orderω−1 since no derivative act on a highly oscillating field. From Eq. (5.25), it

is clear that δϕ0 cannot be gauged away, and one must invoke other reasoning to, in

case, discard it. For instance, in Chapter 4, we assumed that, at the source location,

General Relativity holds. What we implicitly did, was to assume that δϕ0 is the part

of the scalar wave generated by, e.g., an astrophysical source, while δψ the one re-

lated to propagation effects. With this notion in mind, assuming that the generation

mechanisms does not produce the scalar field, means that δϕ0 is not sourced, hence

we set it to zero in Chapter 4. Here we try to relax this assumption in what follows

and investigate the complementary situation: instead of the production moment,

the detection one. We will also show that regardless of this different interpretation of

δϕ0 and δψ, the number of degrees of freedom is still, in total, three.

Our discussion shows that there are gauges choices that are not suitable to describe

perturbations across different energy scales, i.e. values of ω. For instance, unitary

gauge, δφ= 0, is not allowed in the language of the high-frequency expansion when

ω−1 ≪ 1. This is not the case in Approach 1, that does not impose the condition in

Eq. (5.18). We comment that, these subtleties in the gauge choices are not a problem

per se, but one must be aware of them.

5.3. Gauge fixing and equations of motion
In this Section, we derive the equations of motion of the field perturbations. To ob-

tain equations which are valid according to both definitions for them, we opt for

gauge fixings that can be performed in both cases. In particular, we will avoid choos-

ing the unitary gauge (δφ= 0). Assuming vµvµ > 0 we define the orthogonal projec-

tor

Λµν ≡ ḡµν−nµnν , nµ ≡
vµ
L

, (5.28)

and decompose the metric perturbation as

hµν = nµnνA+ (nµBν+nνBµ)+Cµν , (5.29)

with A ≡ nρnσhρσ, Bµ ≡ nρΛσµhρσ and Cµν ≡ ΛρµΛσνhρσ [365]. The choice vµvµ > 0

is suitable to investigate screening scenarios where the spacetime assumes a radial
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profile, and in the last Section we address the detectability of the waves. In cosmo-

logical settings, on the other hand, vµvµ < 0 and consequently one should construct

the projector asΛµν ≡ ḡµν+nµnν. We impose the conditions

A = 0, Bµ = 0. (5.30)

Then, using the residual gauge freedom, we also fix:

C = ḡµνCµν = 0, ∇̄µCµν = 0. (5.31)

Note that we have exhausted the gauge freedom since Eqs. (5.30) and (5.31) amount

to 4 conditions each. Bµ only has 3 independent components because it is orthogo-

nal to nµ and the condition C = 0 implies nµ∇̄νCµν = 0, in fact

nµ∇̄νCµν =−Cµν(K µν−nµaν) =−CµνK µν∝C , (5.32)

where Kµν ≡ Λρµ∇̄ρnν is the extrinsic curvature of the hypersurfaces orthogonal to

n, and aµ ≡ nρ∇̄ρnµ the acceleration vector. In the last step, we used the fact that

scalars can be computed in any coordinate system and that choosing φ̄ as a coordi-

nate implies Kµν∝Λµν. Using the background equations of motion,

R̄µν = 1

2

(
vµvν+ ḡµνV̄

)
, □̄ϕ̄= V̄ ′ , (5.33)

where V̄ =V (ϕ̄) and V̄ ′ = (∂V /∂ϕ)|ϕ̄, one can show that the combination

(
□̄δφ−δφV̄ ′′)+∇̄µ [vνhµν]− 1

2
vµ∇̄µh , (5.34)

is gauge invariant, where V̄ ′′ = (∂2V /∂2φ)|φ̄, and h is the trace of hµν. The last two

quantities in the equation above vanish in the chosen gauge, hence δϕ is invariant

under the residual gauge freedom and different from zero. In the high-frequency

limit, being δϕ0 invariant, this result would regard δψ.

To find the evolution equations of the field perturbations can be found by lineariz-

ing the equations of motion which descend from the action (5.1). Regardless of the

choice for their definition, whether Approach 1 or Approach 2, these are

□̄γµν+2R̄λµανγ
λα = 0, (5.35)

□̄δφ−δφV̄ ′′ = 0, (5.36)

where we renamed the metric perturbation, after the gauge fixings, γµν. As usual, the

system of equations represents a spin 2 wave, γµν, and a spin 0 wave, δϕ. If δφ is a

high-frequency field, then δϕ = δϕ0 +ω−1δψ and Eq. (5.36) clearly shows that δϕ0

and δψ are not independent degrees of freedom. These equations do not display

the additional damping term, typical of non-minimally coupled scalar-tensor theo-

ries [122], because they describe the perturbation in Einstein’s frame. This factor can
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be recovered by going to Jordan Frame through a conformal transformation, where

matter is coupled to the metric g̃µν ≡ Ω2(ϕ) gµν. We also point out that we do not

find modifications in the propagation speed of these modes because this effect is not

predicted in scalar-tensor theories considered.

5.4. Observables in the high frequency limit
We study the ω−1 ≪ 1 limit of the evolution equations. Hence, we assume that we

have derived Eqs. (5.35) and (5.36) by choosing the definition of the field’s perturba-

tion as in Approach 2. Since all the ingredients satisfy a wave equation, we make the

following WKB ansatz

γµν =Υµν e i ωθ , δφ0 = δΦe i ωθ , δψ= δΨe i ωθ , (5.37)

where Υµν,Φ,Ψ are complex, θ is real, and they are all slowly varying functions of

the spacetime coordinates. In the expressions above, it is also understood that the

fields corresponds to the Real Parts of the ansatzs, since {γµν,δφ} are real. We in-

sert Eq. (5.37) into Eqs. (5.35), (5.36). Because a derivative acting on the exponential

brings down a ω factor, we can separate the equations of motion into their ω2, ω1

and ω0 orders. The leading order gives

ḡµνkνkµ = 0, (5.38)

where kµ ≡ ∂µθ is the wave vector and kµ ≡ ḡµνkν. Therefore, kµ is a null vector tan-

gent to a null geodesic, kµ∇̄µkν = 0 which are interpreted as the rays of the graviton

and scalar bundles [151, 152]. At orders ω1 and ω0 we find

2kρ ∇̄ρΥµν+Υµν∇̄ρkρ = 0, (5.39)

2kρ ∇̄ρδΦ+δΦ∇̄ρkρ = 0, (5.40)

2kρ ∇̄ρδΨ+δΨ∇̄ρkρ = i (□̄Φ−ΦV̄ ′′). (5.41)

The equations above imply that the squared amplitudes of (Υµν,δΦ) scale with the

inverse cross-sectional area of the particle’s bundle (see Eqs. (4.57) and (4.58) of

Chapter 4), while δΨ has an additional source/sink term.

5.4.1. Geodesic Deviation equation: polarization content

We can understand the effect of the gravitational and scalar waves on test particles

by looking at the geodesic deviation equation in Jordan frame, namely in the frame

where matter is exclusively coupled to the metric g̃µν1. Since this equation describes

the relative acceleration of two nearby geodesics, we can use them to describe the

1We use a tilde to denote a quantity in Jordan frame
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polarization content of the GWs, and we will show that this is composed by both the

tensor and scalar modes. In literature, these polarization modes are commonly clas-

sified via the Newmann-Penrose scalars [300]. However, this classification relies on

the local Lorentz symmetry of the theory, which is spontaneously broken in our set-

ting (we assumed vµ ̸= 0), questioning its applicability. Indeed, the freedom of gaug-

ing away δΨ, in favor of new components of Υµν, is the manifestation of this fact.

Even if this classification isn’t suitable anymore, the relative acceleration between

observers is related to the whole Riemann tensor perturbation, gauge invariant up

O(ω1), and not its individual components.

From its definition, namely g̃µν =Ω2(ϕ)gµν, we can find the perturbation of the Jor-

dan frame metric

δg̃µν =Ω2(ϕ̄)

[
hµν+2ḡµν

Ω′(ϕ̄)

Ω(ϕ̄)
δϕ

]
. (5.42)

We note that the Eq. (5.42) is often used as a field redefinition aimed at decoupling

the kinetic terms of the tensor and scalar perturbations in Jordan frame [300, 357].

As shown in Eqs (5.35) and (5.36), in Einstein frame the kinetic terms are indeed de-

coupled. In the ω−1 ≪ 1 limit, we write the WKB ansatz δg̃µν ≡ H̃µνe i ωθ so that,

combining Eqs. (5.42) and (5.37) yields

H̃µν =Ω2(ϕ̄)

[
Υµν+2ḡµν

Ω′(ϕ̄)

Ω(ϕ̄)
(δΦ+ω−1δΨ)

]
. (5.43)

The factor Ω2(ϕ̄) in front of the parenthesis of Eq. (5.42) encodes the extra damping

term of GW and scalar wave found typically in Jordan frame (related to the factor
∫
T

of Chapter 4, for instance). Using the result above, one can show that the perturbed

Riemann tensor in Jordan frame is given by

δR̃µνρσ =−2ω2 k[ρk[νH̃µ]σ] e i ωθ+
+2i ω

[
k[ρ∇̃[νH̃µ]σ] +k[ν∇̃[ρ H̃σ]µ] + H̃[µ[σ∇̃ρ]kν]

]
e i ωθ, (5.44)

where square brackets stand for antisymmetrization and ∇̃µ is the covariant deriva-

tive associated to the background Jordan frame metric, namely ¯̃gµν =Ω2(ϕ̄)ḡµν. By

looking at Eq. (5.43), we see that Eq. (5.44) receives contributions from both the ten-

sor and the scalar modes, hence test particles responds also to the presence of the

scalar field, though the strength of this interaction is modulated by the prefactor

Ω′/Ω.

We point out that δR̃µνρσ is gauge invariant under gauge transformation in both Jor-

dan and Einstein frames up to order O(ω). Indeed, the transformations in Eqs. (5.16)

and (5.17) are frame dependent: covariant derivatives and indices contractions are

performed with the use of the Einstein frame metric. By using g̃µν =Ω2(ϕ)gµν in the

gauge transformation laws, it can be shown that a diffeomorphism with generator
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ξµ, acting on a quantity defined in Einstein frame, corresponds to the same transfor-

mation in Jordan frame with the new generator ξ̃µ =Ω2(ϕ̄)ξµ. As a consequence, the

Riemann tensor perturbation in Jordan frame transforms as

δR̃ ′
µνρσ = δR̃µνρσ−Lξ̃R̃µνρσ , (5.45)

under a gauge transformation in Einstein frame, which are the ones we performed

in the beginning of this work. The last term in the equation above is of order O(ω0)

since it does not contain derivatives of the high-frequency fields. This way we have

proved the gauge invariance of the Jordan frame Riemann tensor, under gauge trans-

formations in Einstein frame, up to order O(ω).

Note that all {Υµν,δΦ,δΨ} enter the perturbed Riemann tensor in Eq. (5.44). From

the equation above and Eq. (5.42) it is clear that the geometric optics orders Υµν
and δΦ contribute up to O(ω2) in Eq. (5.44), while δΨ contributes at best at O(ω)

order. It is easy to check that, even when choosing the gauge δΨ′ = 0, the additional

components whichΥ′
µν picks up via the gauge transformation contribute at the same

order of δΦ in the geodesic deviation equation, namely O(ω), rather than O(ω2) as

Υµν. Indeed, we can gauge away δψ using Eq. (5.26) by choosing

δζµ = vµ
L2 δψ = vµ

L2 δΨe i ωθ (5.46)

where we also used the geometric optics ansatz in Eq. (5.37). Using this into Eq. (5.24)

gives

[
Υµν e i ωθ

]′ =Υµν e i ωθ− i
δΨe i ωθ

L2

[
kµvν+kνvµ

]−
−ω−1

[
∇̄µ

(
vνδΨ

L2

)
+∇̄ν

(
vµδΨ

L2

)]
e i ωθ (5.47)

where we have used kµ = ∂µθ. By plugging this expression in Eq. (5.44), it is easy to

realize that its contribution at order ω2 vanishes, which would come from plugging

the term at order ω0 of the equation above, into the term at order ω2 in Eq. (5.44).

Using also Eq. (5.43), we find that

2ω2 k[ρk[νH̃ ′
µ]σ] e i ωθ =2ω2 k[ρk[νH̃µ]σ] e i ωθ−

−2ω2 i
δΨe i ωθ

L2

[
k[ρk[νkµ]vσ] +k[ρk[νkσ]vµ]

]
e i ωθ+O(ω) =

=2ω2 k[ρk[νH̃µ]σ] e i ωθ (5.48)

because the antisymmetrization of three copies of the same vector is null.

Therefore, we conclude that, regardless of the gauge choice, {Υµν,δΦ} contribute to

the highest order in the geodesics deviation equation, which drives the acceleration

between tests particles, while the effects of δΨ are subdominant and suppressed by
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a factor ω−1 ≪ 1. Moreover, the contribution of {δΦ,δΨ} depends on the profile of

the background scalar field and the conformal coupling, through the multiplicative

factorΩ′(ϕ̄)/Ω(ϕ̄) in Eq. (5.43).

Finally, we also comment that the acceleration between two nearby geodesics is

given by the contraction of Eq. (5.44) with ũµũρ , the four-velocity of a Jordan frame

observer. Being Υµν orthogonal to vµ and not ũµ, it could be that the polarization

content seen by the observer is different from the standard case. Investigating this

possibility will be the topic of further works.

5.5. Screening: implications for polarization tests
We investigate the role of screening in the possibility of detecting directly the DE

scalar field, in the theories considered in this Chapter. We consider two types of

such mechanisms, compatibly with the choice of the action (5.1), namely chama-

leon and symmetron. The term V ′′ in Eq. (5.36) represents the mass squared of the

background scalar field. In the presence of matter, the scalar field is governed instead

by an effective potential given by

V ′
eff(ϕ̄) =V ′(ϕ̄)−Ω3(ϕ̄)Ω′(ϕ̄)T̃ , (5.49)

where T̃ is the trace of the matter energy momentum tensor in Jordan frame. For a

pressureless fluid, this corresponds to the matter density ρ. The interplay between

the two terms in Veff leads to the realization of a particular screening mechanism.

For a spherical matter density, both exhibit the following behaviors:

• V ′′
eff increases: the field becomes more massive and the coupling to matter

dominates over the vacuum mass.

• ϕ̄→ 0: the field relaxes into the minimum of the effective potential, which is

pushed towards 0. If the spherical distribution is massive enough, the field

might satisfy ϕ̄≡ 0 inside the source.

• ∂ϕ̄= 0 at the center, this is simply a spherical boundary condition required for

continuity.

These conditions apply only inside the region dominated by matter, but their trends

are also valid in the empty area surrounding a spherically symmetric object because

the outside profile is smoothly joined to the constant low-value of the field inside

the dense region [51, 366]. Therefore, we assume that these behaviors are valid also

in our treatment, where we neglected the matter content. Broadly speaking, the

chameleon mechanism relies on the larger mass to cancel the effect of a force by
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reducing its range of action, while the symemtron relies on the suppression of the

scalar field to cancel the conformal couplingΩ(ϕ).

In the low-frequency regime (ω2 ≪V ′′), Eq. (5.36) describes a damped wave [367].

This suppression is similar to the background result ϕ̄→ 0 inside screened regions.

This is not surprising, as the low-frequency limit corresponds to a breakdown of

the background-perturbation dichotomy. Hence, waves in this energy range are

screened.

More interesting is the high-frequency case. As shown in Eqs. (5.39) and (5.40), the

amplitude of the waves at leading order, namely Υµν and δΦ, are not affected by the

field’s background configurations, therefore one would expect to be able to detect a

scalar wave. More specifically, neither of these equations do not show a sink term on

their left-hand-sides, so one expects that if it is possible to detect the tensor mode,

Υµν, then the same conclusion holds also for, at least the leading order, scalar mode,

δΦ. In Jordan frame, however, it is clear that the detectability of the waves through

the motion of test particles is a local effect that depends on the form of Ω(ϕ̄) eval-

uated on the background solution, see Eqs. (5.42) and (5.44). Therefore, even if the

scalar wave amplitude is not suppressed, its coupling to matter might be. Looking at

specific realizations of the theory, in the case of chameleon screening [368] we have

Ω′/Ω∼ 1/M in high-density regions,

Ω′(ϕ̄)

Ω(ϕ̄)
∼ 1

M
(5.50)

where M is the large mass scale of the coupling, constrained by laboratory experi-

ments to be M ≳ 10−5 Mpl, where Mpl is the Planck mass [237]. In the case of sym-

metron gravity [369], we haveΩ′/Ω∼ 0,

Ω′(ϕ̄)

Ω(ϕ̄)
∼ 0, (5.51)

implying that the effects of a high-frequency scalar wave are not visible on test parti-

cles.

5.6. Discussion and Conclusions
The growth of matter perturbations and the propagation of GWs are two key probes

of the source of the late time cosmic accelerated expansion. With the current and

future galaxy surveys and gravitational waves observatories, we will be able to use

jointly the information coming from these two observationally independent sectors.

However, the theoretical tools employed to describe their phenomenology are not

always compatible as the assumptions they rely on are, in general, different. The first

goal of this Chapter, was to show that their difference arise already at the level of the
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definition of the field’s perturbations: in the former as the difference between the

fields and an assigned background as in Approach 1, in the latter via suitable averag-

ing procedures as in Approach 2. We illustrated the consequence of the assumptions

of Approach 2 on the allowed gauge transformations, which are essentially summa-

rized in Eq. (5.19), and we claimed that the gauge transformations couples the lead-

ing order GW, h0
µν, with the next-to-leading order scalar field, δψ.

Taking the theory in Eq. (5.1) as a working example, we derived the equations of

motion of the field perturbations, namely Eqs. (5.35) and (5.36), opting a gauge

choice which is allowed in both approaches. We then moved to the discussion of

the detectability of the additional scalar wave in light of two screening mechanisms,

chameleon and symmetron, and concluded that scalar waves are not detectable no

matter their wavelength. In the low-frequency limit, when ω2 ≪V ′′, the scalar wave

is damped when approaching a screened region because the amplitude of the scalar

wave is affected by the non-trivial background profile. Rhis is not true whenω−1 ≪ 1,

as the geometric optics leading order δΦ doesn’t feel the features of ϕ̄. Nevertheless,

we showed that in this case screening suppresses the interactions between the scalar

wave and matter via the multiplicative factor Ω′(φ̄)/Ω(φ̄) in Eq. (5.44), making the

scalar wave undetectable.

Note: I actively worked on every aspect of the paper this Chapter is based on. Note

that this work is still under review, reason why the topics presented in this Chapter

do not exactly overlap with the version of the paper on arXiv.
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Gravitational waves in the

wave-optics limit

The stochastic gravitational wave background is a rich resource of cosmological in-

formation, encoded in its source statistics and anisotropies induced by propagation

effects. We provide a theoretical description of it, without employing theoretical tools

relying on the geometric-optics assumption. The formalism is based on the classical

matter approximation, and it is able to capture wave-optics effects, such as interfer-

ence and diffraction. We show that the interaction between the gravitational waves

and the cosmic structures along the line-of-sight produce observable scalar and vector

polarization modes. We build the two point correlation function of the tensor modes,

and introduce the Stokes parameters. In the case of an unpolarized, Gaussian, statis-

tically homogeneous and isotropic initial background, we show that the interaction

with matter does not generate a net difference between left- and right- helicity tensor

modes, as expected, but it also does not produce Q- and U- polarization modes

Keywords: stochastic gravitational waves background, wave-optics, Gauss’ law,

scalar and vector polarization, Stokes parameters
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6.1. Introduction
The incoherent superposition of many gravitational waves builds up the so-called

stochastic gravitational wave background (SGWB). The stochastic nature of the back-

ground can be traced back to its source (e.g. inflationary tensor modes [22–24, 133],

cosmic strings and phase transitions [135–139], scalar induced GW [140–148]) or to

limitations of specific instruments employed to detect GWs (e.g. cumulative signal

from unresolved astrophysical sources as: compact objects binaries [370–373], stel-

lar core collapse events [374]). The search for the stochastic background [375, 376] is

already ongoing with the online GW observatories [377–379]. Exactly as the Cosmic

Microwave Background (CMB), the SGWB contains a formidable amount of cosmo-

logical information, both in its frequency profile and in the angular power spectrum

describing its anisotropies [177], justifying the importance of having different tech-

nologies to probe it [370, 380–382]. As the GW spectrum spans more than 20 orders of

magnitude in frequency, multi-band GW observations will start a new observational

phase for cosmology: the different behaviors in each energy regime can be used to

break degeneracies between intrinsic and induced properties of the SGWB [383], or

track different source populations [20, 384–391] or investigate dark energy [392]. The

SGWB carries cosmological information on two levels: in its sources and through

propagation effects, deforming the observed signal as the GWs travel through the

inhomogeneous matter distribution. In case of the astrophysical background, the

sources are additionally tracers of the underlying dark matter distribution, while

large primordial non-Gaussianities in the squeezed limit can imprint anisotropies

in the primordial SGWB [393–395].

The main goal of this Chapter, is to describe the interactions between the propagat-

ing GWs and the matter structures present in the Universe, going beyond the stan-

dard treatments and, hence, providing a novel and interesting cosmological probe.

The current state of the art, describes the SGWB through the characterization of the

GW energy density spectrum, ΩGW( f ), which can either be directly related to prop-

erties of the GW’s sources [396–398], or computed through a Boltzmann equation

approaches [159, 399, 400]. Line-of-sight effects are then accounted for by analyz-

ing the propagation of GWs through the cosmic web. These include, e.g. Doppler,

volume and weak gravitational lensing [136, 386, 396–403], and numerical tools to

compute them are already being developed [404]. These effects are the same as

those described in Section 1.4.3 generating the luminosity distance fluctuations.

Both the Boltzmann equation and the line-of-sight treatments, rely on the possi-

bility of describing effectively the GWs as particles, with a well-defined momen-

tum and position at each time, a condition which is met only in the high-frequency

limit [151, 152, 155]. As a drawback, the wave nature of the GWs is neglected and no

polarization effects can be included. Additionally, in this regime, the frequency de-

pendence of the interaction of the SGWB and the cosmological structures is washed
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away. When addressing the opposite situation, namely the wave-optics limit, the

oscillatory nature of the GWs is fully taken into account and frequency dependent

interference or diffraction effects may arise. The possibility of capturing these ef-

fects is interesting for two main reasons: a resonantly positive interference can boost

the GW signal, making the detection possibly more feasible, and the interaction be-

tween the waves and the matter structures, in this limit, can polarize the stochastic

background.

The literature of wave-optics effects in gravitational lensing of gravitational waves

started to flourish after their first detection, and it is starting to draw much attention.

The interference and diffraction induced by a static lens has been addressed starting

from the pioneering work [162], and proceeding with [149, 163–166], showing that

these become important when the mass of the lens is such that

ML ≲ 108M⊙
(

f

mH z

)−1

, (6.1)

where f is the frequency of the GW, as described in Section 1.3.2 of the Introduc-

tion. In the case of resolved GW events observed by LISA, it has been assessed

that over (0.1− 1.6)% of massive black hole binaries in the range of 105 − 106.5 so-

lar masses will display wave-optics effects [176, 177], while, in the frequency band of

the ground-based detectors, it is expected that such events will be visible for sources

up to redshift zs = 2− 4 with third generation observatories [178]. Since the SGWB

contains all the possible frequencies, the probability of having a wave-optics event

is 1. Contrary to lensing in geometric optics, wave-optics effects are frequency de-

pendent and induce non-trivial deformation in the GWs amplitude, making these

events very promising candidates to infer properties of lenses [180]. Despite the ex-

citing prospects, all of these works rely on the major assumption of treating the GWs

as scalar waves, hence neglecting their tensorial nature, as shown explicitely in Sec-

tion 1.3.2.

Leveraging on a parallelism with the CMB, we expect secondary effects to introduce a

polarization pattern on the SGWB, tracking the profile of the gravitational potential

wells along the line-of-sight [231, 405–407]. Similar effects have been investigated

in the case of high-frequency GWs [408], where the authors claim that, already at

the first order away from the geometric optics limit, new components in the GWs

content arise. Following this logic, we expect that in the wave-optics regime, the

polarization content of the SGWB should become a powerful resource of cosmo-

logical information, already in General Relativity. Still, it is generally believed that

the detection of a non-trivial GW’s polarization content is a sign of breaking of the

standard gravitational theory; either because of the presence of parity violating GW

sources [409–412] or of extra propagating degrees of freedom [413–415]. However,

the direct detectability of the additional mediator has already been questioned in

light of the screening mechanisms characterizing these theories, as we have shown
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in Chapter 5. It then becomes imperative to disentangle the polarization content

arising from new physics from the one simply due to secondary anisotropies, espe-

cially because efforts in extracting physics from the SGWB polarization content [416]

and in characterizing its detection prospects [409, 417, 418] are already taking place.

Given all of these considerations, the aim of this Chapter is to provide a formalism

describing the SGWB across the entire frequency spectrum, thus without relying on

the geometric optics approximation. Attempts to go in this direction can be found

in [419, 420], though the authors still employ a Boltzmann equation formalism and

account for the wave effects by introducing suitable collision terms [421–425]. On

the contrary, here we follow closely the logic of [165], and work directly at the level of

the linearized Einstein’s equations, finding an explicit solution for the GWs. In order

to do so, we introduce the so-called classical matter approximation, which consist

in neglecting the response of matter to the presence of the SGWB. The GW solution

found this way contains scalar and vector modes, on top of the tensor ones, incorpo-

rating the induced polarization content of the SGWB. From this result, we build the

two point function for the GW’s tensor modes and draw conclusions on the statistics

of the intensity and polarization of the SGWB.

6.2. Equations of motion of the metric perturbation
We consider a Universe whose geometry is described by the metric ḡµν, and the prop-

agation of GWs on top of it. For our purposes, we assume that the background geom-

etry entirely fixed by the matter content of the Universe. Eventually, we will choose

ḡµν to represent a perturbed cosmological background, therefore including also mat-

ter structures. These structures are not necessarily on large-scales, such as the LSS

previously investigated, as our formalism is also able to account for gravitational po-

tential wells generated by compact lenses. As in the rest of the Thesis, we work in

a two parameter expansion: α, tracking the perturbation order of the gravitational

wave around ḡµν, and ϵ, accounting for the matter structures around the homoge-

neous and isotropic spacetime. We will make use of ϵ only from Section 6.3 onward.

6.2.1. Perturbed Einstein’s equations

As done in the Introduction, we start by the metric expansion in Eq. (1.76), namely

gµν = ḡµν+αhµν, (6.2)

and find the linearized gravitational field Eq. (1.64). Since we work in General Rela-

tivity in this Chapter, we only consider the standard matter content and write

δα

[
Gµν−8πG Tµν

]
= 0. (6.3)
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In (6.3), Tµν is the matter stress-energy tensor and δα means linearization to first

order in α. Choosing the de-Donder gauge (1.80), namely

∇̄µh̃µν = 0, (6.4)

where h̃µν = hµν−hḡµν/2, the perturbation of the Einstein tensor reads

δαGµν =−α
2

[
□̄h̃µν+2R̄λµανhλα−hλν R̄λµ−hλµR̄λν+hµνR̄ − ḡµνhαβR̄αβ

]
. (6.5)

Assuming that the background fields are on-shell, Ḡµν = 8πG T̄µν, we rewrite Eq. (6.3)

as

□̄h̃µν+2R̄λµανhλα− ḡµνhαβR̄αβ+8πG δαΘµν = 0, (6.6)

where δαΘµν, defined in Eq. (1.83), is

δαΘµν ≡ 1

2α

[
ḡµσ

(
δαTσ

ν

)+ ḡνσ
(
δαTσ

µ

)]
. (6.7)

6.2.2. Classical matter approximation

We regard matter as an external field whose role is exclusively to curve the back-

ground spacetime and unresponsive to the passage of the GWs. Indeed, we are in-

terested in describing the propagation effects on the GW properties (such as strain,

polarization and frequency) due to the structures in the Universe, and not how cos-

mic structures are affected by them. This assumption, which we dub the classical

matter approximation (CM), explicitly consists of choosing,

δαΘµν = 0, (6.8)

so that Einstein’s equations (6.6) become sourceless. If one thinks of ḡµν as a per-

turbed FLRW spacetime, Eq. (6.8) can be also understood as assuming that the fluc-

tuations in the matter sector induced by the GWs are negligible compared to the

already present matter structures. Under this light, it becomes clear that the clas-

sical matter approximation is well suited to describe the late time Universe where

relativistic species, which might have a non-negligible anisotropic shear stress, are

subdominant. Compatibly with Eq. (6.8), we also expand the observer’s 4-velocity to

liner order in α as

uµ = ūµ+δαuµ (6.9)

and require

δαuµ = 0. (6.10)

This approximation implies immediately that the contraction of hµν with the unper-

turbed velocity vanishes. This can be checked using

uµuµ =−1 → hµνūµūν = 0, (6.11)
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which we interpret as a compatibility condition of our approximation scheme. Note

that Eq. (6.8) is not equivalent to neglecting the back-reaction of the waves on the

spacetime, which is a second order contributions (∼ h2 ) to the equations of motion

of the background ḡµν. Rather, it means neglecting the interaction between the GWs

and the matter species: the term δαΘµν in Eq. (6.6) descends from quadratic terms

of the form ∝ hµνδαΘµν in the second order action.

6.2.3. Physical meaning of the CM approximation

In this Section, we illustrate the meaning of the assumption in Eq. (6.8) by consider-

ing the simplified case where ḡµν is a homogeneous and isotropic spacetime.

Since we haven’t characterized the metric perturbation as a gravitational wave yet, at

this stage hµν includes also scalar and vector modes. Indeed, one of the main themes

of this entire Thesis is: there is no formal difference between a GW defined in the

wave-optics limit, as described in Section 1.3.2, and doing cosmological perturbation

theory as in Section 1.1.2, apart from the choice of the background. In this Section,

we choose ḡµν = a2(τ)ηµν, so there is really no formal difference between what we

are about to present and what done and Section 1.1.2, except for the name of the

players. Having said this, in the previous Section we opted for the de-Donder gauge

choice, but in principle we could change it, decompose hµν into scalars - vectors -

tensors subgroups and opt for Poisson’s gauge, as we did for δgµν in Section 1.1.2.

By choosing hµν in Poisson’s gauge, the perturbed line element takes the form

ds2 = (ḡµν+αhµν)dxµdxν =
= a2(η)

{
−(1+2αH00)dη2 +2αH0i dηd xi + [(1−2αH)δi j +αγi j ]d xi d x j

}
,

(6.12)

where we have factored out an a2(η), so that h00 =−2a2H00, h0i =−2a2H0i and simi-

larly for the spatial trace, ḡ i j hi j =−2a2H . It is known that in Eq. (6.12) there are: two

scalar potentials, H00 and H , one transverse vector potential, H0i such that ∂i H0i = 0,

and one transverse-traceless tensor potential, γi j such that ∂iγi j = 0 and γi
i = 01.

These potentials are decoupled at linear order, and they satisfy [34]

∇2H = 4πGa2(δαT 0
0 +3HH f ) , −∂i H f = [δαT 0

i ]∥ , (6.13)

∇2H0i = 16πGa2[δαT 0
i ]⊥ , (6.14)

(∂2
τ+2H∂τ−∆)γi j = 8πGa2δi k (δαT k

j )T , (6.15)

where δαT 0
i = (ρ̄ + P̄ )(δαui + H0i ) and with (δαT k

j )T we mean the tensor part of

δαT i
j . By imposing Eqs. (6.8) and (6.10), the system of equations above admits as

1For the metric perturbation, one can use the following dictionary between our notation and those of [34]:
H00 → Ψ, H → Φ and H0i → wi to write the system of equations above.
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consistent solution H = H0i = 0, and also H00 = 0, using the remaining perturbed

Einstein’s equations. Indeed, these become sourceless Poisson’s equation. Contrary,

being Eq. (6.15) a wave equation, it admits non-trivial solutions even if sourceless.

Furthermore, one can compute the conservation equations for the stress-energy ten-

sor, δα
[∇µT µ

ν

]= 0. Using the line element in Eq. (6.12) it is easy to find

∂τ
[
δαT 0

0

]−3Ḣ(ρ̄+ P̄ )+∂i

[
δαT i

0

]
= 0, (6.16)

∂τ
[
δαT 0

i
]+4H

[
δαT 0

i
]+∂ j

[
δαT j

i

]
+ (ρ̄+ P̄ )∂i H00 = 0, (6.17)

where H ≡ a′/a is the comoving Hubble parameter. From the equations above,

it is clear that the tensor modes γi j don’t contribute to δα
[∇µT µ

ν

] = 0. Indeed,

the linearized Einstein’s equations, because of the Bianchi identities, develop non-

trivial scalar and vector potentials designed exactly to achieve the conservation of

the stress-energy tensor, covariantly and at first order in α. The tensor modes have

a different role and are not uniquely fixed by Einstein’s equation (one always has the

freedom to add a freely propagating wave, satisfying the same equation of motion

but sourceless). This is a usual result, considering that the latter do not fix the Rie-

mann tensor, Rµνρσ, but only its trace and GWs are contained in the Weyl part of

it [32]. We point out that the existence/absence of the scalar and vector potentials

is not a gauge artifact. To illustrate this point we make the case of electromagnetism

where Maxwell’s equations are,

∇∇∇·E =∇∇∇·E∥ = 4πρ , −∂τE∥ = 4πJ∥ , ∇∇∇×B −∂τE⊥ = 4πJ⊥ , (6.18)

from which it is clear that E , the electric field, develops a longitudinal component

which guarantees charge conservation

∂τρ+∇∇∇· J = ∂τρ+∇∇∇· J∥ = 4π
(
∂τ∇∇∇·E∥−∂τ∇∇∇·E∥

)= 0. (6.19)

Since the longitudinal component is present at the level of the observable electric

field, it is not a gauge artifact [426], rather Maxwell’s equations contain a redun-

dant scalar equation so that charge conservation is directly built into them. Simi-

lar reasoning can be done about General Relativity, where it can be shown that the

scalar and vector cosmological potentials contribute to the Riemann tensor, thus to

the geodesic deviation equation, which is a physical observable [131]. Therefore,

the classical matter approximation is designed to remove the conserved symmetry

charges at first order in α, i.e. δαT µ
ν , so that the equations of motion do not need to

develop extra components of hµν in order to guarantee their conservation. Indeed,

when assuming Eqs. (6.8) and (6.10), Eqs. (6.13)- (6.17) admit as consistent solution

H = H0i = H00 = 0 and the only non-null part of hµν are the tensor modes. All of

the above can be simply restated as: every gauge symmetry comes with a Gauss’ law,

whose role is to conserve the charge.

The discussion above holds regardless of the choice of background, ḡµν. However, for

less symmetric spacetimes scalar, vector and tensor modes couple at leading order,
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making the derivation above less clear and reason why in the main text we opted for

the covariant de-Donder gauge choice. Upon using Eq. (6.8) in Eq. (6.6), we find

□̄h̃µν+2R̄λµανhλα− ḡµνhαβR̄αβ = 0, (6.20)

which will be the starting point of the next Sections. Note that in this gauge choice,

the constraint equations (time-time and time-space components of Eq. (6.20)) are

not implemented through first order differential equations as usual, they are wave

equations too. This is a consequence the gauge choice: the system of perturbed

equations implements causality automatically because the gauge choice is covari-

ant. Poisson’s gauge, which relies on the slicing of the spacetime, leads indeed to

a-causal Poisson’s equations [34]. Therefore, looking for components of the met-

ric perturbation satisfying first order differential equations is not a good strategy to

isolate GWs from scalar and vector potentials because it is a gauge dependent state-

ment. Nevertheless, observables do not depend on the gauge choice, and an explicit

computation of the equivalence between a covariant versus a non-covariant gauge

choice can be found in [427] for the electromagnetic field.

Given all of these considerations, we conclude that the role of the classical matter ap-

proximation is to isolate the freely propagating modes when the background space-

time is highly non-symmetric, and one cannot rely on the scalar-vector-tensor de-

composition. It achieves so by setting to zero the sources of Gauss’ laws (if we opted

for a gauge which explicitly breaks covariance).

6.3. Linearization and perturbative scheme
The literature of wave-optics for gravitational waves is very extended. All the papers

build up on the pioneering work [162] where the authors solve the gravitational wave

equation propagating in a static background containing a single lens, and obtaining

the solution in Eq. (1.101) for the perturbed gravitational wave. A number of sim-

plifying assumptions have been made to arrive to this form of the GW, as discussed

in Section 1.3.2 of the Introduction. The computation which we set up here, is very

similar in spirit to the procedure that lead to Eq. (1.101), but without the assumption

that the GW is a scalar wave and in an expanding Universe. So, the first step is to

make explicit the form of the background metric, ḡµν, which follows from a choice of

the matter content curving it.

6.3.1. Matter stress energy tensor and background metric

Since our goal is to describe wave-optics effects, we include in the matter content:

an almost perfect fluid, accounting for the cosmological background and large-scale

structures of the Universe, plus a pressureless perfect fluid of lenses tracing the dark
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matter distribution,

T̄µν = ρ̄ ūµūν+ (P I +P B )Λ̄µν+ Σ̄µν , ρ̄ = ρF LRW +ϵρLSS +ρL (6.21)

where Λ̄µν ≡ ḡµν+ ūµūν is the orthogonal projector to ūµ, P I and P B are respectively

the isotropic and bulk pressure contributions and Σ̄µν represents the shear stresses

which we take traceless and flow-orthogonal, i.e. ūµΣ̄µν = 0 [34]. Note that we are

introducing again the expansion parameter ϵ, keeping track of the cosmic structures,

and that we are neglecting any velocity bias between the lenses and the large-sale

structure. Compatibly with this definition of T̄µν, we choose as background metric

ds̄2 = ḡµνdxµdxν = a2(τ)
[−(1+2ϵΦ(x))dη2 + (1−2ϵΨ(x))dx2] , (6.22)

following the notation of Section 1.1.2. Note that we are choosing the so-called re-

stricted Poisson’s gauge, where we are neglecting the vector and tensor perturbations

in Eq. (1.14). This is a good approximation in the late time Universe, where vectors

have had time to dilute out, and the relativistic species possibly carrying anisotropic

shear stress are subdominant. In this case, Eq. (1.31) of Section 1.1.2 holds, and we

can setΨ=Φ. Assuming to be in the late time Universe, is a good representation for

astrophysical GWs, whose sources were not present during the radiation dominated

epoch, and for the cosmological ones, because tensor modes that enter the horizon

at early time are greatly damped. Moreover, the last primordial modes to reenter the

horizon are those characterized by longer wavelength and hence could be the more

suited to study wave-optics effects. We stress that Ψ = Φ holds only for the first or-

ders gravitational potentials, as the second orders ones would be different from each

other regardless of the shear viscosity being zero. We also point out that our for-

malism is able to accommodate various perturbative approaches for the background

metric, such as the standard weak field limit, or the post-Newtonian [37, 39], the pa-

rameterized Post-Friedmann [118, 119] or hybrids ones [134]. Neglecting the radi-

ation contribution make the classical matter approximation even more solid, since

tensor modes interact with matter via quadrupole anisotropies.

6.3.2. Linearization of GW equations of motion

The equations obtained by plugging Eq. (6.22) into Eq. (6.20), are linear in α, but

not in ϵ. Given how complicated these are, and in the same spirit of the wave-optics

literature (see e.g. [149, 162, 165, 169]), we expand Eq. (6.20) up to linear order in ϵ.

Before doing so, it is convenient to perform a conformal transformation, defining the

metric ĝµν as

ḡµν = a2 ĝµν , ḡµν = ĝµν/a2 , (6.23)

this way the background spacetime at order ϵ0 is flat. We also introduce Hµν

Hµ
ν ≡ hµν , Hµν ≡ ĝρνHµ

ρ = a2 hµν , Hµν ≡ ĝµρ Hρ
ν = 1

a2 hµν , (6.24)
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so that its indices are raised and lowered with the conformal metric, and

ûµ ≡ a ūµ , ûµ ≡ ĝµν ûν = ūµ
a

, (6.25)

such that ûµ is normalized to −1 with ĝµν. The system of equations describing the

GWs is composed of: the gauge condition in Eq. (6.4), the compatibility condition

in Eq. (6.11) and the equation of motion in Eq. (6.20), and we rewrite all of them in

the conformal frame. After some manipulations, the de-Donder gauge condition in

conformal frame reads

∇̂µH̃µ
ν −4H n̂µ Hµν+HH n̂ν = 0, (6.26)

where ∇̂µ is the covariant derivative associated to ĝµν, n̂µ = (1,0,0,0) and H̃µν = Hµν−
1
2 ĝµνH with H ≡ ĝµνHµν. Condition (6.11) is mapped into

ûµûνHµν = 0. (6.27)

Similarly, the GW equation of motion (6.20) becomes

□̂H̃µν−2Hn̂λ ∇̂λ H̃µν+2R̂µανβHαβ−ĝµν Hαβ R̂αβ+2ĝµνH2(n̂αn̂βH̃αβ)+4H2Hn̂µn̂ν+

+ 2

a

[
H̃α
µ ∇̂α∇̂νa + H̃α

ν ∇̂α∇̂µa
]
−2Hn̂α

[∇̂µH̃να+∇̂νH̃µα

]+ ĝµνH
□̂a

a
= 0, (6.28)

with Λ̂µν ≡ ηµν+ n̂µn̂ν, and ηµν the Minkwoski metric.

The next step is to linearize to first order in ϵ Eqs. (6.26), (6.27) and (6.28), similarly to

what is done in, e.g., [165]. To do so, we introduce also the perturbation of the fluid

4-velocity

ûµ = n̂µ+ϵδûµ = (1−ϵΦ , ϵv i ) = (1−ϵΦ , ϵ∂i v) , (6.29)

where, compatibly with the background metric in Eq. (6.22), we kept only the irrota-

tional part of the peculiar velocity. This quantity can be obtained via Eq. (1.19) and

ûµ ≡ a ūµ. The expansion of Eq. (6.26) up to order O(ϵ) leads to[
∂µ

(
Hµν− 1

2
ηµν(ηαβHαβ)

)
−4H n̂µHµν+H H n̂ν

]
+ϵ

[
2Φ∂µH̃µν+8HΦ n̂µHµν+

+2HΦH n̂ν+4HΦ n̂ν(n̂αn̂βHαβ)+4Φ′ n̂µ Hµν+4Φ n̂µ H ′
µν−2Φ n̂αn̂β∂νHαβ

]
= 0,

(6.30)

while the one of Eq. (6.27) gives

Hµνn̂µn̂µ+2ϵHµνn̂µδûν = 0. (6.31)

The first order expansion of Eq. (6.28) is, on the other hand, very complicated, and

we report explicitly in the Appendix in Eqs. (6.147) and (6.148). Here, we write it

schematically as:

[O0 H ]µν+ϵ [O1 H ]µν = 0. (6.32)
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6.3.3. Perturbative scheme

Given the complexity of Eq. (6.32), we have no other choice than to solve it introduc-

ing an approximation scheme. As in [165] and in the Section 1.3.2, we expand also

the gravitational wave in powers of ϵ

Hµν = H (0)
µν +ϵH (1)

µν +ϵ2H (2)
µν + . . . (6.33)

and solve the system of equations iteratively. The meaning of such decomposition

is that the i − th order GW is a solution of a particular equation at i − th order in ϵ.

The expansion in Eq. (6.33) allows accounting for the effects of the matter inhomo-

geneities on the propagating GWs perturbatively. More in details, we will show that

H (0)
µν constitutes GW propagating on a FRLW Universe, H (1)

µν accounts for the first or-

der corrections induced by cosmic structures, and so on. Looking at the equations of

motion in Eq. (6.32) we find that each i − th modes satisfy[
O0 H (i )

]
µν

+
[
O1 H (i−1)

]
µν

= 0, (6.34)

where i = 0,1,2, . . . and with the convention H (−1)
µν = 0 and we apply the same pro-

cedure to Eqs. (6.30) and (6.31). Since we neglected terms of order ≥ ϵ2 to find

Eqs. (6.31), (6.30) and (6.32), we consider only Hµν = H (0)
µν + ϵH (1)

µν . Considering only

terms at first order in ϵ is equivalent to performing a Born approximation [165, 169].

6.4. The zero-th order gravitational wave
In this Section, we derive the equation of motion for the zeroth order GW, namely

H (0)
µν , and solve it introducing its transfer function and the polarization basis.

6.4.1. Equation of motion

The equations that H (0)
µν satisfies can be found by setting Hµν = H (0)

µν and taking the ϵ0

order of Eqs. (6.32), (6.30) and (6.31). From the last two we find

n̂µn̂νH (0)
µν = 0, ∂µH̃ (0)

µν −4HnµH (0)
µν +H (0)H n̂ν = 0, (6.35)

where H̃ (0)
µν is the zeroth order trace reversed metric perturbation, H̃ (0)

µν = H (0)
µν −

1
2ηµνH (0) with H (0) = ηαβH (0)

αβ
. We use these conditions in the equations of motion of

H (0)
µν , and find[
O0 H (0)

]
µν

= □ηH̃ (0)
µν −2H(H̃ (0)

µν )′+H
(
n̂ν∂µH (0) + n̂µ∂νH (0)

)
− (n̂µn̂ν+ Λ̂µν)H′H (0)−

−2H
(
n̂α∂µH (0)

αν + n̂α∂νH (0)
αµ

)
+2(H′+H2)n̂α

(
n̂µH (0)

αν + n̂νH (0)
αµ

)
. (6.36)
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The details of the computations can be found in Appendix A and B, especially

Eqs. (6.147), (6.148) and (6.154). From Eq. (6.36) we extract the time-time and time-

space components

1

2
□ηH (0) −3H(H (0))′−H′H (0) = 0 Time-Time (6.37)

□ηH (0)
0i −4H(H (0)

0i )′+H (0)
0i (6H2 −2H′)−H∂i H (0) = 0 Space-Time (6.38)

where □η = ηµν∂µ∂ν =−∂2
τ+∂i∂i is the wave-operator on flat spacetimes and H (0)

0i ≡
n̂µH (0)

µi . The two equations above admit as consistent solution

H (0) = H (0)
0i = 0, (6.39)

which we choose also invoking the fact that in General Relativity there are no scalar

sources, not even far away. In this case, Eq. (6.35) tells us that the zeroth order GW is

transverse and traceless, namely

∂µH (0)
µν = 0, and ηµνH (0)

µν = 0. (6.40)

Using all of these results, the zeroth order GW equation is

□ηH (0)
i j −2H(H (0)

i j )′ = 0, (6.41)

as it is shown in Appendix B. As expected, we have found that on FLRW H (0)
µν is purely

spatial, traceless, transverse, and it satisfies the standard damped wave equation.

This result is not surprising, but it is instructive to see an explicit example of how

the classical matter approximation works in a gauge different than Poisson’s, as we

did in Section 6.2.3. Indeed, at order ϵ0, we are simply studying the propagation of a

metric perturbation on the FLRW Universe, and we shouldn’t exect to find anything

different than the standard propagation equation for tensor modes.

6.4.2. Solution

We look for an explicit solution of Eq. (6.41). In Fourier space, each k mode of H (0)
µν

satisfies

ηµνH (0)
µν,k = 0, H (0)

0ν,k = 0, k i H (0)
iν,k = 0, (H (0)

i j ,k)′′+2H(H (0)
i j ,k)′+k2H (0)

i j ,k = 0. (6.42)

where k2 ≡ δi j k i k j and H (0)
0ν,k ≡ n̂µH (0)

µν,k. At this order, the GW depends only on the

modulus of k, hence we shall write H (0)
µν,k . We define the 4-vector kµ ≡ {k0,k i } such

that k0 ≡−n̂µkµ. We point out that this vector is not necessarily null because the zero

component is not fixed by a dispersion relation. However, since the 0ν components

of the GW vanish, the GW is orthogonal to the entire 4-vector kµ.
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We introduce an almost null tetrad basis [413, 428–430] {êµâ } = {eµ
0̂

, mµ, m̄µ, eµ
3̂

} such

that

êµ
0̂
= n̂µ , êµ

3̂
=

[
kµ−k0n̂µ

]
k

=
[

0

k̂ i

]
, (6.43)

with k i = kk̂ i . The scalar products between the elements of {êµâ } are summarized in

ηâb̂ =


−1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 . (6.44)

It is important to keep in mind that, since mµ, m̄µ are orthogonal to êµ
3̂

, they im-

plicitely depend on the direction of the propagating wave, k̂ i . Additionally, these two

vectors are related to the two legs of an orthonormal tetrad {eµ
0̂

, eµ
1̂

, eµ
2̂

, eµ
3̂

} as

mµ ≡
êµ

1̂
+ i êµ

2̂p
2

, m̄µ ≡
êµ

1̂
− i êµ

2̂p
2

. (6.45)

Using all of these geometrical objects, we build a basis for rank-2 symmetric tensors

as

Θ
µν

âb̂
(k̂) ≡ 1

4

(
êµâ êν

b̂
+ êνâ êµ

b̂

)
with {eµâ ,eµ

b̂
} ∈ {eµ

0̂
, mµ, m̄µ, eµ

3̂
} , (6.46)

and decompose each k of the GW mode as

H (0)
µν,k (τ) = ∑

â,b̂

H (0)
âb̂,k

(τ)Θâb̂
µν(k̂) , with H (0)

âb̂,k
= H (0)

b̂â,k
. (6.47)

Because the basis elements in Eq. (6.46) depends on the direction of propagation,

then also the coefficients H (0)
âb̂,k

must depend on k̂ as well, in a way that precisely

balances every contribution so that the left-hand side of Eq. (6.47) is direction-

independent. This subtlety is a key point in our discussion, and it will be at the core

of the study of the polarization content of H (1)
i j .

We plug the decomposition in Eq. (6.47) into Eqs. (6.42) and, using the scalar product

rules in Eq. (6.44), we find

n̂µH (0)
µν,k = 0 → H (0)

0̂â,k
= 0, kµH (0)

µν,k = 0 → H (0)
3̂â,k

= 0, (6.48)

amounting to seven conditions. The eighth one is fixed by the tracelessness of the

GW,

ηµνH (0)
µν,k = ηµν

[
H (0)

mm,kΘ
mm
µν +H (0)

m̄m̄,kΘ
m̄m̄
µν +H (0)

mm̄,kΘ
mm̄
µν

]
= H (0)

mm̄,k = 0. (6.49)

To sum up, the decomposition of the GW on the polarization basis is made of exluc-

sively two contributions

H (0)
µν,k = H (0)

mm,kΘ
mm
µν (k̂)+H (0)

m̄m̄,kΘ
m̄m̄
µν (k̂) , (6.50)
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which is the standard expression in terms of left (H (0)
mm,k) and right (H (0)

m̄m̄,k) helicity

modes. In fact, under a rotation of angle ϕ about the k̂ i axis, we have that[
ê ′

1̂
ê ′

2̂

]
=

[
cosϕ −sinϕ

sinϕ cosϕ

][
ê1̂

ê2̂

]
→

[
Θ′

mm

Θ′
m̄m̄

]
=

[
e2iϕ 0

0 e−2iϕ

][
Θmm

Θm̄m̄

]
, (6.51)

using Eq. (6.45) and the definition of Θµνmm and Θµνm̄m̄ . Since H (0)
µν,k must be a scalar

under the same transformation, we have that[
H (0)′

mm,k

H (0)′
m̄m̄,k

]
=

[
e−2iϕ 0

0 e2iϕ

][
H (0)

mm,k

H (0)
m̄m̄,k

]
, (6.52)

under the same transformation, as expected for the left and right helicity modes. By

contracting the equation of motion of H (0)
i j in Fourier space with the polarization

basis elements, and using the decomposition in Eq. (6.50), we find that each polar-

ization mode satisfies

(H (0)
å,k)′′+2H(H (0)

å,k)′+k2H (0)
å,k = 0, (6.53)

where we introduce the index notation å = {mm,m̄m̄}. This standard result allows

us to introduce gravitational waves transfer function T H as

H (0)
å (τ,k) ≡ Hå(τs ,k) T H (τ,k) (6.54)

where H (0)
å (τs ,k) is the amplitude of the wave’s k mode at the source conformal time.

The transfer function is normalized to

T H (τs ,k) = 1, (6.55)

and satisfies the same differential equation of H (0)
å,k, namely Eq. (6.53), but with the

different boundary conditions. We absorbed the dependence on the direction k̂, en-

tirely due to the choice of elements in the tetrad, in the initial condition H (0)
å,k(τs ). In

fact, once the choice is made, the way in which GWs propagate is independent of the

spatial direction. Since the two polarization modes evolve identically, the transfer

function T H (τ,k) doesn’t depend on the polarization state.

Gravitational wave transfer functions

We solve Eq. (6.53) in two epochs: matter and Λ domination eras. To do so, we need

the explicit solutions of the Hubble function, H, which can be found in Eq. (1.9) of

Section 1.1.1, in terms of the comoving distance. The generic solution of Eq. (6.53),

then, is given by

T H
MD(χ,k) =

√
2k

π

1

χi −χ
[

A j1[k(χi −χ)]+B y1[k(χi −χ)]
]

, (6.56)
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during matter domination, while when dark energy is the main driver for the Uni-

verse’s expansion we have

T H
ΛD(χ,k) =

√
2k

π
(χ+χΛ)2

[
C j1[k(χ+χΛ)]+D y1[k(χ+χΛ)]

]
. (6.57)

In the two previous equations, j1(x) and y1(x) are the spherical Bessel functions of

order one and of type one and two respectively, given by

j1(x) = sin x

x2 − cos x

x
, y1(x) =−cos x

x2 − sin x

x
. (6.58)

The two solutions presented here for T H , are well known in literature (see e.g. [160,

431] for matter dominated Universe and for solutions in de Sitter Universe [22, 23])

and the values of χi and χΛ can be found in Table 1.1.

The integration constants A,B ,C ,D are fixed imposing suitable boundary condi-

tions. To this end, we distinguish two cases according to the epoch in which the GW

source is located. In the case of the GW source located after the moment of matter-Λ

equality, i.e. χs < χMΛ, where χs is the comoving distance of the wave’s source, we

impose

T H
ΛD(χs ) = 1,

∂T H
ΛD

∂χ
(χs ) = 0, (6.59)

assuming that the amplitude of the emitted GWs is maximum at the source position.

With these prescription we find

CΛD =−
√
πk

2

cos[k(χs +χΛ)]

(χs +χΛ)
, DΛD =−

√
πk

2

sin[k(χs +χΛ)]

(χs +χΛ)
. (6.60)

If the GW source is located prior to the equivalence, i.e. χs > χMΛ, we also perform a

matching of the solutions and require

T H
ΛD = T H

MD

∣∣∣
χMΛ

,
∂T H

ΛD

∂χ
= ∂T H

MD

∂χ

∣∣∣
χMΛ

, T H
MD(χs ) = 1,

∂T H
MD

∂χ
(χs ) = 0,

(6.61)

with the resulting boundary conditions

AMD =−
√
πk

2
(χs −χi )2

[
3y1[k(χs −χi )]+cos[k(χs −χi )]

]
, (6.62)

BMD =−
√
πk

2
(χs −χi )2

[
sin(k(χs −χi ))−3 j1[k(χs −χi )]

]
, (6.63)

CMD =
[
Ξ1 cos(kχ∗)+Ξ2 sin(kχ∗)+Ξ3 cos(3kχ∗)+Ξ4 sin(3kχ∗)

]
32k3χ6∗

, (6.64)

DMD =
[
Ξ2 cos(kχ∗)−Ξ1 sin(kχ∗)−Ξ4 cos(3kχ∗)+Ξ3 sin(3kχ∗)

]
32k3χ6∗

, (6.65)
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and where χ∗ can be found in Table 1.1 and the coefficients Ξi are

Ξ1 = 3(BMD − AMD kχ∗) , Ξ3 = 3BMD −9AMD (kχ∗)−12BMD(kχ∗)2 +8AMD(kχ∗)3

(6.66)

Ξ2 = 3(AMD +BMD kχ∗) , Ξ4 = 3AMD +9BMD (kχ∗)−12AMD(kχ∗)2 −8BMD(kχ∗)3 .

(6.67)

A plot of these transfer functions for different values of k can be found in Fig. 6.1.
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Figure 6.1: GW transfer functions for different values of k. In the left panel the source is located in matter
domination, at a comoving distance of χs = 0.04, while in the right panel it is in Λ domination, at χs =
0.004. Solid versus dashed-dot lines, in the left panel, stands for the transfer function in the two epochs of
the Universe, showing their matching at the moment of equivalence.

6.5. The first order gravitational wave

In this Section, we derive the equation of motion for H (1)
µν , following the procedure

outlined in Section 6.3.3. We will see that the GW at this order develops additional

polarization components on top of the standard transverse and traceless modes.

Then, we find a decoupled equation for the first order tensor modes, which we solve

using a Green’s function.

6.5.1. First order equation

We start by working out the gauge and compatibility conditions. Inserting Eq. (6.33)

into Eqs. (6.30) and (6.31), and extracting the ϵ1 order, we find that H (1)
µν satisfies

n̂µn̂νH (1)
µν = 0, ∂µH̃ (1)

µν −4H n̂µH (1)
µν +H (1)H n̂ν = 0, (6.68)

where we have used also Eq. (6.39). Notice that the trace is defined as H (1) ≡ ηµνH (1)
µν

and also H̃ (1)
µν = H (1)

µν − 1
2ηµνH (1). From the first condition, we conclude that the time-

time component of the first order GW is null, even at this order of perturbation.
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The structure of the equation of motion of H (1)
µν has the form[

O0 H (1)
]
µν

=−
[
O1 H (0)

]
µν

, (6.69)

from which we see that the adopted perturbation scheme generated, effectively a

source, as the right-hand-side of doesn’t depend on H (1)
µν . This suorce describres the

interaction between the freely propagating waves and the gravitational potentials

describing the matter inhomogeneities. In light of what discussed in Section 6.2.3,

we expect that H (1)
µν , then, develops additional components whose role is to enforce

the conservation of such source. Indeed, the left-hand-side of Eq. (6.69) is nothing

but the first order Einstein tensor, evaluated in H (1)
µν , which satisfies the linearized

Bianchi identities. Therefore, H (1)
µν will contain scalar - vector and tensors modes,

exactly as it was for δgµν in Section 1.1.2, generated through the interaction of the

waves and the matter overdensities.

By plugging the solution of H (0)
µν in the first order Eq. (6.69), after a short manipula-

tion, we find[
O0 H (1)

]
µν

= □ηH̃ (1)
µν −2H(H̃ (1)

µν )′+H
(
n̂ν∂µH (1) + n̂µ∂νH (1)

)
−

−2H
(
n̂α∂µH (1)

αν + n̂α∂νH (1)
αµ

)
+2(H′+H2)n̂α

(
n̂µH (1)

αν + n̂νH (1)
αµ

)
−

− (n̂µn̂ν+ Λ̂µν)H′H (1) (6.70)

[
O1 H (0)]

µν = 4Φ∆H (0)
µν +2H (0)

µν

[
□ηΦ−2HΦ′

]
+4∂kΦ∂k H (0)

µν+
−2n̂µDαΦ

(
H (0)′

να+HH (0)
να

)
−2n̂νDαΦ

(
H (0)′

µα+HH (0)
µα

)
−2Dµ

(
H (0)
αν DαΦ

)
−2Dν

(
H (0)
αµDαΦ

)
+

+2(ηµν+2n̂µn̂ν) H (0)
αβ

DαDβΦ (6.71)

where Dµ ≡ Λ̂νµ∂ν. The details of this computations are in Appendix A and B.

6.5.2. Scalar and vector modes

As previously done, we look at the constraint equations, namely the time-time and

the time-space components of Eq. (6.69). Using its explicit expression in Eqs. (6.70)

and (6.71), we find

1

2
□ηH (1) −3H(H (1))′−H′H (1) = −2H (0)

i j ∂
i∂ j Φ , Time-Time

(6.72)

□ηH (1)
0i −4H(H (1)

0i )′−H∂i H (1) −2(H2 +H′)H (1)
0i = − 2

a
∂kΦ (aH (0)

ki )′ . Space-Time

(6.73)
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Extracting also the space component of gauge condition in Eq. (6.68), we find

∂ j H (1)
i j = (H (1)

0i )′+4HH (1)
0i + ∂i H (1)

2
. (6.74)

The constraint equations and the gauge conditions relate the trace, the time-space

component and the spatial divergence of H (1)
µν , to (functions of) the projection of the

zero-order gravitational wave along the gradient of the scalar gravitational poten-

tial. As already explained, such equations are second order in time derivatives, rather

than first, because we are imposing a covariant gauge choice. The only components

of H (1)
µν that do not take part to the constraint equations, are the transverse-traceless

and spatial ones.

We explicitly decompose H (1)
µν as

H (1)
µν =

 0 H (1)
0i

H (1)
i 0 γ(1)

i j +E (1)
i j + 1

3
δi j H (1)

 (6.75)

so that γ(1)
i j is the tensor mode: it is spatial, traceless δi jγ(1)

i j = 0 and transverse

∂iγ(1)
i j = 0. We introduce a projector operator P̂ab

i j , whose expression will be given

later, with the aim of extracting these components of H (1)
µν . With all these new ingre-

dients, Eq. (6.74) reads

∂ j E (1)
i j = (H (1)

0i )′+4HH (1)
0i + ∂i H (1)

6
. (6.76)

The main equations of this part are Eqs. (6.72), (6.73) and (6.76) which relate the first

order trace H (1) and the components H (1)
0i ,E (1)

i j to products of the form ∼ H (0)
i j ∂

iΦ.

Since Eqs. (6.72), (6.73) are sourced wave equations, we cannot set H (1) and H (1)
0i to

zero, contrary to what done for the zero-th order GW in the previous Section, and

neither E (1)
i j because this has to satisfy Eq. (6.76). Since the presence or absence of

H (1), H (1)
0i ,E (1)

i j depends entirely on the zeroth order GW, we claim that they do not

represent any new degree of freedom as no new initial condition is needed to solve

the system of equations. Nevertheless, if one was to look at the geoedisc deviation

equation to understand the polarization content of the GW, as we did in Chapter 5,

it would be easy to realize that these modes participate to it, and therefore they are

physical and not gauge artifacts (a similar computation can be done also for δgµν
see [131]).
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6.5.3. Tensor modes

To finish characterizing the first order GW, H (1)
µν , we need to find the evolution equa-

tion of γ(1)
i j . This can be obtained by projecting Eq. (6.69) as

P̂ab
i j

[
O0 H (1)

]
ab

= −P̂ab
i j

[
O1 H (0)

]
ab

. (6.77)

In the expression above, a,b are spacetime spatial indices, not to be confused with

the polarization ones â, b̂ or å, b̊. As in [140, 141], the projector operator is most easily

defined in Fourier space and using the polarization basis. Its action on a generic

spacetime tensor, Ai j (x), is given by

P̂ab
i j Aab(x) ≡

∫
d 3k

(2π)3 e i k·x
[
Θmm

i j (k̂)Θab
m̄m̄(k̂)+Θm̄m̄

i j (k̂)Θab
mm(k̂)

]
Aab(k,τ) (6.78)

where Ai j (k,τ) is the Fourier transform of Ai j (x).

We start by working out the left-hand side of Eq. (6.77). By taking the space-space

components of Eq. (6.70) and applying the projector operator, we find

P̂ab
i j

[
O0 H (1)

]
ab

= P̂ab
i j

[
□ηH̃ (1)

ab −2H(H̃ (1)
ab )′−δabH′H (1) −2H

(
∂a H (1)

0b +∂b H (1)
0a

)]
= □ηγ

(1)
i j −2H(γ(1)

i j )′ , (6.79)

where we have used that γ(1)
i j = P̂ab

i j H (1)
ab by definition, and the orthogonality prop-

erties of the polarization basis elements (see Eqs. (6.46) and (6.44)).

Working out the right-hand side of Eq. (6.77) is more tricky as the source is non-linear

in the fields (it is quadratic inΦ and H (0)
i j ). We will proceed with the following steps:

1. select the space-space components of Eq. (6.71) and perform a 3D Fourier

transform,

2. apply the projector operator,

3. use the decomposition of H (0)
µν on the polarization basis, i.e. Eq. (6.50) and

rotate such basis to compute the scalar products.

Step i.

We start by taking the space-space components of Eq. (6.71) and go in Fourier space.

Since
[
O1 H (0)

]
i j is quadratic in the fields, its 3D Fourier transform will be given by

the convolution [
O1 H (0)]

i j (k,τ) =
∫

d 3p

(2π)3 fi j (p,k−p,τ) (6.80)
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with fi j defined as

fi j (p,k−p,τ) = −2H (0)
i j ,p

[
Φ′′

|k−p|+2HΦ′
|k−p|+Φ|k−p|(p2 +k2)

]
+

+2Φ|k−p|
[

H (0)
mi ,pkmk j +H (0)

m j ,pkmki −δi j H (0)
lm,pk l km

]
(6.81)

where all the fields are evaluated at same confomal time τ. The integral over all pos-

sible momenta implies that multiple p modes contribute to a single k mode in γ(1)
i j .

This mixing is going to modulate the properties of the final wave, such as intensity

and polarization, and accounts for the wave-optics effects.

Step ii.

We can understand already that the second line of Eq. (6.81) won’t contribute to the

final tensor modes equation. This is easy to see by considering that it is composed

by vectors (∝ ki ) or scalar (∝ δi j ) type of terms which will vanish when using the

projector operator P̂ab
i j . We can show this explicitely by considering the right-hand-

side of Eq. (6.77)

P̂ab
ab

[
O1 H (0)]

ab =
∫

d 3k

(2π)3 e i k·x
[
Θmm

i j (k̂)Θab
m̄m̄(k̂)+Θm̄m̄

i j (k̂)Θab
mm(k̂)

][
O1 H (0)]

ab(k,τ)

=
∫

d 3k d 3p

(2π)6 e i k·x
[
Θmm

i j (k̂)Θab
m̄m̄(k̂)+Θm̄m̄

i j (k̂)Θab
mm(k̂)

]
fab(p,k−p,τ)

=
∫

d 3k d 3p

(2π)6 e i k·x
[
Θmm

i j (k̂)Θab
m̄m̄(k̂)+Θm̄m̄

i j (k̂)Θab
mm(k̂)

]
×

×
{
−2H (0)

ab,p

[
Φ′′

|k−p|+2HΦ′
|k−p|+Φ|k−p|(p2 +k2)

]
+

+2Φ|k−p|
[

H (0)
ma,p kmkb +H (0)

mb,p kmka −δab H (0)
l m,pk l km

]}

=
∫

d 3k d 3p

(2π)6 e i k·x
[
Θmm

i j (k̂)Θab
m̄m̄(k̂)+Θm̄m̄

i j (k̂)Θab
mm(k̂)

]
×

×
{
−2H (0)

ab,p

[
Φ′′

|k−p|+2HΦ′
|k−p|+Φ|k−p|(p2 +k2)

]}
(6.82)

where in the last line we used that Θab
mm(k̂)kb = Θab

m̄m̄(k̂)kb = 0 and Θab
mm(k̂)δab =

Θab
m̄m̄(k̂)δab = 0, since mk and m̄k 2 are orthogonal to k̂ and traceless, to eliminate

the third raw of the intermediate step in the computation above.

2mk = m(k̂) and m̄k = m̄(k̂), to clarify that these vectors are built orthogonal to k̂.
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Figure 6.2: Representation of {êi
1̂

(p̂), êi
2̂

(p̂), p̂i } in the basis relative to k̂.

Step iii.

To complete the computation, we must perform the scalar products between the po-

larization basis elements and H (0)
ab,p. In order to do so, we use the decomposition of

H (0)
µν on the polarization basis, i.e. Eq. (6.50), which we can rewrite in compact form

as

H (0)
ab,p = H (0)

å (p,τ)Θå
ab(p̂) (6.83)

since å = {mm,m̄m̄}, while a,b are spatial indices, and where the polarization basis

is built with respect to p. Looking at Eq. (6.82), it is easy to realize that we have to

compute scalar products of the form ∼ Θ
i j
å (k̂)Θb̊

i j (p̂), namely products of basis ele-

ments bult with respect to two different directions: k̂ and p̂. These products do not

follow the rules in Eq. (6.44), so first we have to express Θâb̂
i j (p̂) in terms of Θâb̂

i j (k̂).

This can be achieved by a rotation of the tetrad basis elemets {êµâ (p̂)}. Once this rota-

tion is performed, we can make use of the scalar products in Eq. (6.44).

Choosing k̂ i along the z-axis and ê i
1̂

(k̂) = (1,0,0) and ê i
2̂

(k̂) = (0,1,0), we can express

{ê i
1̂

(p̂), ê i
2̂

(p̂), p̂ i } as [5, 407]

p̂ i =

sinθcosϕ

sinθ sinϕ

cosθ

 , ê i
1̂

(p̂) =

cosθcosϕ

cosθ sinϕ

−sinθ

 , ê i
2̂

(p̂) =

−sinϕ

cosϕ

0

 , (6.84)

where θ is the angle between k̂ and p̂, namely cosθ = k̂ · p̂, and it can be checked

that these vectors satisfy the proper orthogonality relations (see Figure 6.2). Conse-
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quently, we have thatmp

m̄p

p̂

=


1p
2

ip
2

0
1p
2

−ip
2

0

0 0 1


cosθcosϕ cosθ sinϕ −sinθ

−sinϕ cosϕ 0

sinθcosϕ sinθ sinϕ cosθ




1p
2

1p
2

0
−ip

2
ip
2

0

0 0 1


mk

m̄k

k̂

=

=


cos2

(
θ
2

)
e−iϕ −sin2

(
θ
2

)
e iϕ − sinθp

2

−sin2
(
θ
2

)
e−iϕ cos2

(
θ
2

)
e iϕ − sinθp

2
1p
2

e−iϕ sinθ 1p
2

e iϕ sinθ cosθ


mk

m̄k

k̂

 . (6.85)

From the matrix above, one can read mp and m̄p in terms of {mk ,m̄k , k̂} and write

{Θmm
i j (p̂),Θm̄m̄

i j (p̂)} in terms of the basis Θâb̂
i j (k̂) following its definition in Eq. (6.46).

We find

Θm̄m̄
i j (p̂) = sin2θ

2
Θs

i j (k̂)+2
p

2sinθ

[
sin2

(
θ

2

)
e−iϕΘkm

i j (k̂)−cos2
(
θ

2

)
e iϕΘkm̄

i j (k̂)

]
+

[
sin4

(
θ

2

)
e−2iϕΘmm

i j (k̂)+cos4
(
θ

2

)
e2iϕΘm̄m̄

i j (k̂)

]
, (6.86)

Θmm
i j (p̂) = sin2θ

2
Θs

i j (k̂)+2
p

2sinθ

[
sin2

(
θ

2

)
e iϕΘkm̄

i j (k̂)−cos2
(
θ

2

)
e−iϕΘkm

i j (k̂)

]
+

[
cos4

(
θ

2

)
e−2iϕΘmm

i j (k̂)+ sin4
(
θ

2

)
e2iϕΘm̄m̄

i j (k̂)

]
, (6.87)

where we have called Θs
i j (k̂) ≡Θkk

i j (k̂)−Θmm̄
i j (k̂). The trigonometric functions in the

last equation are actually spin 2 spherical harmonics, namely

±2Y 2
0(θ,ϕ) = 1

4

√
15

2π
sin2θ , (6.88)

±2Y 2
±1(θ,ϕ) =∓ 1

2

√
5

π
sinθ sin2

(
θ

2

)
e±iϕ (6.89)

∓2Y 2
±1(θ,ϕ) =± 1

2

√
5

π
sinθ cos2

(
θ

2

)
e±iϕ (6.90)

±2Y 2
±2(θ,ϕ) = 1

2

√
5

π
sin4

(
θ

2

)
e±2iϕ (6.91)

∓2Y 2
±2(θ,ϕ) = 1

2

√
5

π
cos4

(
θ

2

)
e±2iϕ , (6.92)

whose definition can be found in Appendix C along with more details. We introduce

the compact notation and rewrite

Θå
i j (p̂) = [R(p̂, k̂)]å

b̂ Θ
b̂
i j (k̂) (6.93)
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with the rotation matrix defined by

[R(p̂, k̂)]å
b̂ =

√
4π

5

[√
2
3

[
−2Y 2

0(θ,ϕ)
] −2

p
2
[
−2Y 2

1(θ,ϕ)
]

2
p

2
[
−2Y 2

−1(θ,ϕ)
] [

−2Y 2
2(θ,ϕ)

] [
−2Y 2

−2(θ,ϕ)
]√

2
3

[
2Y 2

0(θ,ϕ)
] −2

p
2
[

2Y 2
1(θ,ϕ)

]
2
p

2
[

2Y 2
−1(θ,ϕ)

] [
2Y 2

2(θ,ϕ)
] [

2Y 2
−2(θ,ϕ)

]
]

(6.94)

where å ∈ {mm,m̄m̄} and, with an abuse of notation, we indicate from here onward

â ∈ {s,km̄,km,m̄m̄,mm}. The rotation matrix in Eq. (6.94), is such that when cosθ =
1, so parallel k and p, it reduces to

[R(p̂, k̂)]å
b̂ =

[
0 0 0 e2iϕ 0

0 0 0 0 e−2iϕ

]
, (6.95)

as expected, as the two polarization basis, Θâb̂
i j (p̂) and Θâb̂

i j (k̂), can, in principle, be

the same. We note that there is still the possibility of rotating the basis vectors in

the orthogonal plane to the direction of propagation, justifying the factors e±2iϕ in

the equation above and reflecting the spin-2 nature of the tensor modes. We point

out that similar rotation matrices appear also in the treatment of CMB polarization

[407, 432, 433]. Given all of these tools, we finish up the computation of the first order

gravitational wave equation by performing the contractions

Θab
m̄m̄(k̂) H (0)

ab,p =∑
c̊

H (0)
c̊,pΘ

ab
m̄m̄(k̂)Θc̊

ab(p̂) =∑
c̊ b̂

H (0)
c̊,p [R(p̂, k̂)]c̊

b̂Θ
ab
m̄m̄(k̂)Θb̂

ab(k̂) =

= 1

4

∑
c̊

H (0)
c̊,p [R(p̂, k̂)]c̊

mm , (6.96)

Θab
mm(k̂) H (0)

ab,p =∑
c̊

H (0)
c̊,pΘ

ab
mm(k̂)Θc̊

ab(p̂) =∑
c̊ b̂

H (0)
c̊,p [R(p̂, k̂)]c̊

b̂Θ
ab
mm(k̂)Θb̂

ab(k̂) =

= 1

4

∑
c̊

H (0)
c̊,p [R(p̂, k̂)]c̊

m̄m̄ , (6.97)

where we used Eq. (6.50), the definition of the polarization basis elements Eq. (6.46),

and the orthogonality relations of the tetrad legs Eq. (6.44). Plugging these results

into Eq. (6.82) we find

P̂ab
i j

[
O1 H (0)]

ab = −1

2

∫
d 3k d 3p

(2π)6 e i k·x
[
Φ′′

k−p +2HΦ′
k−p +Φk−p(p2 +k2)

]
×

×∑
c̊

H (0)
c̊,p

[
Θmm

i j (k̂) [R(p̂, k̂)]c̊
mm +Θm̄m̄

i j (k̂) [R(p̂, k̂)]c̊
m̄m̄

]
,

(6.98)

from which, together with Eq. (6.79), we can read off the equation of motion of the

two spin-2 modes of the first order gravitational wave, namely

(γ(1)
å,k)′′+2H(γ(1)

å,k)′+k2γ(1)
å,k = Så,k (6.99)

with

Så,k = −1

2

∑
c̊

∫
d 3p

(2π)3

[
Φ′′

|k−p|+2HΦ′
|k−p|+Φ|k−p|(p2+k2)

]
H (0)

c̊,p [R(p̂, k̂)]c̊
å , (6.100)
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where [R(p̂, k̂)]c̊
å is the 2× 2 sub-matrix of the rotation matrix in Eq. (6.94) corre-

sponding to the å = {mm,m̄m̄} indices. Eq. (6.100) is the first main result of this

Chapter, and it displays many interesting features:

• Using Eqs. (6.91) and (6.92) we rewrite

[R(p̂, k̂)]c̊
å =

cos4
(
θ
2

)
e2iϕ sin4

(
θ
2

)
e−2iϕ

sin4
(
θ
2

)
e2iϕ cos4

(
θ
2

)
e−2iϕ

 (6.101)

where we can see the standard e±2iϕ exponential factors stemming for the

spin-2 nature of these polarization modes and reflecting their dependence on

the choice of {ê1̂, ê2̂}. This matrix is diagonal exclusively when cosθ = 1. There-

fore, unless in the very specific case of k̂∥p̂, each polarization mode of γ(1)
å , is

sourced by a linear combination of the two helicity eigenstates of the zero-

order GW. Only in the symmetric scenario of the two wave-vectors aligned,

a left- mode of H (0)
å,p, sources a left- mode of γ(1)

å , and similarly for the right-

ones. Among the classical relativistic effects, the one that is responsible for

orthogonal changes in direction of the GW’s trajectory is gravitational lens-

ing [156, 157, 228, 230]. Even though in the context of wave-optics the concept

of geodesics is not well-defined, our result suggests that a similar effect to the

lensing on CMB polarization [231, 405, 406] is taking place here.

• The integral over all possible 3-momenta accounts for the interference be-

tween GW and gravitational potential modes. For a monochromatic source,

H (0)
c̊,p is peaked on a certain wave vector, making the integral over d 3p trivial.

This problem doesn’t occur in a stochastic background, being a superposition

of many different waves by definition.

It is convenient to introduce the transfer function of the gravitational potential and

of the gravitational wave (see Section 1.1.2) and rewrite the source Så,k as

Så,k(τ) =∑
c̊

∫
d 3p

(2π)3 F (p,k−p,τ) T H
p (τ) [R(p̂, k̂)]c̊

å H (0)
c̊,p(τs )Φτi n

|k−p| (6.102)

whereΦτi n
|k−p| is the initial value of the gravitational potential and

F (p,k−p,τ) ≡− 9Tm(|k−p|)
20

[(
Dm(a)

a

)′′
+2H

(
Dm(a)

a

)′
+

(
Dm(a)

a

)
(p2 +k2)

]
,

(6.103)

where we used

Φ(a,k) = 9

10
Tm(k)

Dm(a)

a
Φi n

k . (6.104)

In the expressions above, Dm(a) is the matter growth factor and Tm(k) its transfer

function, usually evaluated numerically by Einstein-Boltzmann solvers codes such
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as CAMB [41], CLASS [42]. Since the gravitational potential is constant in matter

domination (see Section 1.1.2), in Eq. (6.103) the first two terms are negligible for

a < aMΛ, while in the late universe the term proportional to the second derivative of

the growth factor dominates. Of course this also depends on the scale considered:

our background includes also the lenses, however one can consider their gravita-

tional potentials constant in time as in Eq. (1.97), for instance. Figure 6.3 shows the

behavior of F (p,k−p,τ)/Tm(|k−p|) as a function of the scale factor, which we plot-

ted using the fitting formula in Eq. (1.43) [35, 46]. In the late time Universe, after the

end of the radiation dominated epoch, the transfer function is constant [5], meaning

that F (p,k−p,τ)/Tm(|k−p|) ∼ F (p,k−p,τ) and it becomes a function of only k, p

and τ.

0.0 0.2 0.4 0.6 0.8 1.0
a

104

500

0

500

F(
p,

|k
p|

,a
)/T

M
(|k

p|
)

k2 + p2 = 500 k2 + p2 = 200 k2 + p2 = 150 k2 + p2 = 100 k2 + p2 = 50

Figure 6.3: Plot of F (p,k−p,τ)/Tm (|k−p|) for different values of k2 + p2 as a function of the scale fac-
tor. During the matter dominated epoch, the last term of Eq. (6.103) dominates, making the difference
between various values of k2 +p2 more marked, while in the late universe such term is overpowered by
the second derivative of the growth factor.

Finally, we recall that the first order gravitational wave components H (1), H (1)
0i and

E (1)
i j are different from zero, satisfying their respective equation given previously. We

expect all of these modes to contribute to observables, for instance to the geodesic

deviation equation through the first order Riemann tensor [131]. They contain valu-

able information as well, and solving their equations of motion and assessing their

order of magnitude will be the object of future works. However, we can already make

the following remark. In Eqs. (6.99) and (6.100) there are three direction dependen-

cies: the wave-vector of the perturbed GW k, the one of the unperturbed wave p and

the gravitational potential mode k−p. We already claimed that when p and k are

aligned, the rotation matrix in Eq. (6.101) becomes diagonal, leading to a more triv-

ial sourcing of the polarization modes of γå . Not only, when these two vectods are

parallel, we also have that

H (0)
i j ∂

iΦ∼ H (0)
i j ,pΦk−p (k−p)i = 0, (6.105)

using the transversality of H (0)
i j , implying that the sources of trace and time-space
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components of the first order GW in Eqs. (6.72) and (6.73) vanish. In this case, the

system of equations admits as solution H (1) = H (1)
0i = 0, and similarly for E (1)

i j via

Eq. (6.76). This would mean that, in the case where all the 3D Fourier vectors are

aligned, not only there is no mixing between the tensor modes, but also no scalar

or vector polarization is generated. In practice, this results states that H (1)
µν doesn’t

develop extra components only when the free GW, H (0)
µν , falls straight inside the grav-

itational potential well, toward its center. In less symmetric situation, non-trivial

mixing of the polarization modes of H (0)
µν arise, and H (1)

µν gains extra components in

order for the gauge conditions to be satisfied and its source (i.e.
[
O1 H (0)

]
µν) to be

conserved.

6.5.4. Contact with literature

To make contact with the literature of wave-optics effects, we write Eq. (6.99) in coor-

dinate basis. By considering Si j (k) = ∑
å SåΘ

å
i j (k̂), starting from Eq.(6.100) we have

that

Si j (k) =−1

2

∫
d 3p

(2π)3

[
Φ′′

|k−p|+2HΦ′
|k−p|+Φ|k−p|(p2 +k2)

]∑
åc̊

H (0)
c̊,p [R(p̂, k̂)]c̊

å(k̂)Θå
i j (k̂)

=−1

2

∫
d 3p

(2π)3

[
Φ′′

|k−p|+2HΦ′
|k−p|+Φ|k−p|(p2 +k2)

]
H (0)

i j ,p . (6.106)

Similarly γ(1)
i j (k) =∑

å γ
(1)
å Θå

i j (k̂), so that Eq. (6.99) in coordinate basis and real space

is

□ηγ
(1)
i j −2H(γ(1)

i j )′ =−4Φ∆H (0)
i j −2H (0)

i j

[
□ηΦ−2HΦ′

]
−4∂kΦ∂k H (0)

i j . (6.107)

The equation above can be rewritten as

□η
⌣
γ

(1)
i j −2H(

⌣
γ

(1)
i j )′ =−4Φ∆H (0)

i j . (6.108)

where
⌣
γ

(1)
i j = γ(1)

i j +2H (0)
i j Φ , in the same way as done in [434], which is the standard

starting point of all the works treating wave-optics effects. We point out that in [434]

a different gauge choice is made and, thus, while the equations for
⌣
γ

(1)
i j coincide,

those for H (1), H (1)
0i and E (1)

i j are different. This is not a problem, since observables

are gauge independent and will not be affected by the different choice.

Note that in [435] the authors study the evolution equation for second order tensor

modes on a perturbed Universe which includes both scalar and tensor perturbations.

Even though the settings of the two works are different, effectively the methodologies

employed in this Chapter and in [435] shares some similarities. In our case, H (1)
µν is

only sourced by second order combinations built from one scalar and one tensor

mode, while [435] also considers the possibility of having scalar-scalar and tensor-

tensor sources. Our formalism doesn’t include these cases by construction, how-

ever tensor-tensor sources could be included by adding a background tensor mode
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to Eq. (6.22). Additionally, the authors of [435] consider only second order tensor

modes, hence they cannot account for the scalar and vector polarization which we

find at the perturbed level, namely H (1), H (1)
0i ,E (1)

i j . Regardless of these differences and

similarities, the scalar-tensor source Si j (k), show some different numerical factors.

6.5.5. Solution via the Green’s function

In Section 6.4.2 we found the solutions to the propagation equations of a GW trav-

elling freely in an isotropic and homogeneous background. In this Section, we solve

Eq. (6.99) introducing the Green’s function

(∂2
τ+2H∂τ+k2) gk (τ,τ′) = δ(τ−τ′) , (6.109)

in such a way that the first order tensor mode is given by

γ(1)
å,k(τ) =

∫ τ

τs

dτ′ gk (τ,τ′)Så,k(τ′) , (6.110)

where the integral runs from the conformal time of the GW source, up to τ, so that

γ(1)
å (τs ,k) = 0. Indeed, we are choosing the first order GW to satisfy the boundary

condition, H (1)
µν (τs ,x) = 0 since iin Eq. (6.54) we have normalized the zero-th order

GW to the total emitted amplitude. This is also in line with our previous statement

about the degrees of freedom: the number of initial conditions needed to solve the

problem doesn’t increase when considering the first order GW as its source is the

unperturbed wave.

We can build the Green’s function gk (τ,τ′) out of two solutions, u(τ) and v(τ), of the

homogeneous associated problem as [140], as

gk (τ, τ̃) = vk (τ)uk (τ̃)−uk (τ)vk (τ̃)

v ′
k (τ̃)uk (τ̃)−u′

k (τ̃)vk (τ̃)
. (6.111)

In the case analyzed here, the homogeneous solutions are

uMD
k = j1[k(τ+τi )]

(τ+τi )
, uΛD

k = (τΛ−τ)2 j1[k(τΛ−τ)] (6.112)

vMD
k = y1[k(τ+τi )]

(τ+τi )
, vΛD

k = (τΛ−τ)2 y1[k(τΛ−τ)] , (6.113)

where τi = χi −τ0 and τΛ = τ0 +χΛ with τ0 today’s conformal time and the values of

the comoving distance can be found in Table 1.1. Combining all of this information,

we find

gk (τ, τ̃) =


k(τ̃+τi )3

(τ+τi )

[
j1[k(τ+τi )]y1[k(τ̃+τi )]− y1[k(τ+τi )] j1[k(τ̃+τi )]

]
MD

k(τΛ−τ)2
[

j1[k(τΛ−τ)]y1[k(τΛ− τ̃)]− y1[k(τΛ−τ)] j1[k(τΛ− τ̃)]
]
ΛD

.

(6.114)
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6.6. Polarization tensor and density matrix
The formalism developed so far describes the propagation of GWs through the large

scale structures of the Universe without relying on assumptions typical of geomet-

ric optics. In this Section, we consider the stochastic gravitational wave background

(SGWB), namely the incoherent superposition of many GW signals, by promoting

the amplitude of the GW to a random variable characterized by its n-point func-

tions. In order to have more handy results, we slowly introduce different assump-

tions, e.g. gaussianity, statistical homogeneity and isotropy or an unpolarized zeroth

order background. Such hypotheses are more or less accurate according to the type

of SGWB taken into consideration. For instance, primordial gravitational waves gen-

erated in standard inflationary scenarios are expected to be well described by them.

For gravitational waves of astrophysical origin, on the other hand, this hypothesis

might break down depending on the type of sources. Nonetheless, the central limit

theorem ensures that the statistics will approach that of a Gaussian random field if

the SGWB is sourced by a sufficiently large number of independent events and any

high-signal-to-noise outliers have been subtracted from the detector time streams

[371, 436]. A detail characterization of each background type is beyond the scope

of this Chapter and will be the subject of further investigations, here we are mainly

interested in laying out the general formalism and we do so in the simplest possible

scenario. The goal of this Chapter is to produce a description of the polarization of

the SGWB analogous to the one of the CMB.

Even though the full solution of the first order gravitational wave includes also the

scalar and vector modes, encoded in H (1), H (1)
0i and E (1)

i j , in this Section we focus in

building the polarization tensor for the transverse and traceless modes, which in the

polarization basis corresponds to the å = {mm,m̄m̄} indices. Therefore, we consider

Hå(k,τ) = H (0)
å (k,τ)+ϵγ(1)

å (k,τ) . (6.115)

We build the polarization matrix as in [407] 3

ρåb̊(k1,τ1;k2,τ2) = H∗
å (k1,τ1) Hb̊(k2,τ2) , (6.116)

and the polarization tensor will be given by

Påb̊(k1,τ1;k2,τ2) = 〈
ρåb̊(k1,τ1;k2,τ2)

〉
, (6.117)

where the average is an ensemble average or a volume one upon invoking statistical

homogeneity and isotropy [22, 380, 436]. If one wants to compute the properties of

the SGWB generated by astrophysical sources, then a summation over all possible

unresolved sources is also understood [400]. We can look at the different orders in ϵ

3Note that ρ(i j )(ab)(k1,τ1;k2,τ2) =∑
åb̊ ρåb̊ (k1,τ1;k2,τ2)Θå

i j (k̂1)Θb̊
ab (k̂2).
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of the polarization tensor and divide them into

P (0)

åb̊
(k1,τ1;k2,τ2) =

〈
H (0)∗

å(k1,τ1) H (0)

b̊
(k2,τ2)

〉
, (6.118)

P (1)

åb̊
(k1,τ1;k2,τ2) =

〈
H (0)∗

å(k1,τ1)γ(1)

b̊
(k2,τ2)

〉
+

〈
γ(1)∗

å(k1,τ1) H (0)

b̊
(k2,τ2)

〉
, (6.119)

P (2)

åb̊
(k1,τ1;k2,τ2) =

〈
γ(1)∗

å(k1,τ1)γ(1)

b̊
(k2,τ2)

〉
, (6.120)

which we analyze one at the time in the next Sections. Before doing so, we introduce

the Stokes parameters, which are defined through particular linear combinations of

the matrix elements of the polarization tensor. In particular, since this is a 2×2 tensor,

we can decompose it over the Pauli matrices, plus the Identity, basis as

Påb̊ =1

2

(
I σ0

åb̊
+Q σ1

åb̊
+U σ2

åb̊
+V σ3

åb̊

)
= 1

2

[
I +V Q − iU

Q + iU I −V

]
, (6.121)

where σi are the Pauli matrices

σ0 =
[

1 0

0 1

]
, σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i

i 0

]
, σ3 =

[
1 0

0 −1

]
, (6.122)

and I , U , V , Q the Stokes parameters. Using the Pauli matrices property Tr(σiσ j ) =
2δi j , we can extract the various Stokes parameters as

I =σ0 ·P , Q =σ1 ·P , U =σ2 ·P , V =σ3 ·P . (6.123)

As discussed in [153, 437], the different parameters can be related to the amplitudes

of the left and right polarization modes as

I = |HR |2 + |HL |2 , (6.124)

V = |HR |2 − |HL |2 , (6.125)

Q = 2 Re (H∗
R HL) , (6.126)

U = 2 Im (H∗
R HL) , (6.127)

from which we can easily make the following interpretations: I represents the in-

tensity of the SGWB, namely the average power per unit area, V the net difference

between the right- and left- helicity modes, and hence it is related to parity break-

ing processes, and it represents the amount of circular polarization, while Q and U

represents the linear polarization of the SGWB due to a difference of the phases of

the two polarizations, and they are related by a 45◦ angle rotation of the orthonormal

basis used to decompose the wave. Together, the four Stokes parameters provide a

complete description of the polarization state of the SGWB, since any polarization

state can be represented as a linear combination of them.
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6.6.1. Zeroth order polarization tensor

Now we evaluate the lowest order polarization tensor, namely the one at O(ϵ0). This

is given by

P (0)

åb̊
(k1,τ1;k2,τ2) = ∑

τs
1,τs

2

〈
H (0)∗

å(k1,τ1) H (0)

b̊
(k2,τ2)

〉
=

= ∑
τs

1,τs
2

〈
H (0)∗

m̄m̄ (k1,τ1)H (0)
m̄m̄(k2,τ2)

〉 〈
H (0)∗

m̄m̄ (k1,τ1)H (0)
mm(k2,τ2)

〉〈
H (0)∗

mm (k1,τ1)H (0)
m̄m̄(k2,τ2)

〉 〈
H (0)∗

mm (k1,τ1)H (0)
mm(k2,τ2)

〉 ,

(6.128)

where we introduced the sum over the sources, to be consistent with other works

in literature about the astrophysical SGWB. Unless the GWs production mechanism

prefers one polarization mode over the other, as it could be the case in parity vio-

lating theories [438], one should expect to observe an unpolarized SGWB [371] at

O(ϵ0). Indeed, in the standard gravitational theory, the propagation of the two helic-

ity modes is independent of their polarization state (the transfer function in Eq. (6.54)

is shared between the two modes), and an unpolarized background at the source, re-

mains unpolarized after the propagation process. We take this case and write the

zeroth order polarization tensor as

P (0)

åβ̊
(k1,τ1;k2,τ2) = I(0)(k1,τ1;k2,τ2)

δåβ̊

2
. (6.129)

The intensity I(0)(k1,τ1;k2,τ2) is the usual tensor mode’s power spectrum [22].

6.6.2. First order polarization tensor

We now turn to Eq. (6.119) and work it out one part at the time. Using Eq. (6.102), we

can write〈
H (0)∗

å(k1,τ1)γ(1)

b̊
(k2,τ2)

〉
=

= ∑
τs

1,τs
2

∫ τ2

τs
2

dτ′2 T H
k1

(τ1) gk2 (τ2,τ′2)
〈

H (0)∗
å(k1,τs

1)Sb̊(k2,τ2)
〉
=

= ∑
τs

1,τs
2

∑
c̊

∫ τ2

τs
2

dτ′2 T H
k1

(τ1) gk2 (τ2,τ′2)
∫

d 3p

(2π)3 T
H

p (τ′2)F (p,k2 −p,τ′2)×

×
[
R(p̂, k̂2)

]c̊

b̊

〈
Φ
τi n
k2−p H (0)∗

α̂(k1,τs
1) H (0)

c̊ (p,τs
2)

〉
. (6.130)

According to the type of situation taken in consideration the three point function

may or may not vanish. In the case in which the fields involved are uncorrelated

Gaussian random fields, as it is usually the case for a SGWB of primordial origin,

then the three point function above would be equal to zero, but more complicated
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situations could give different results. For the astrophysical background, gaussianity

follows from the emission from many uncorrelated regions, a condition which might

not represent the case of sources tracing the underlying dark matter distribution [22].

Modeling properly the statistics of astrophysical GW sources can be a highly non-

trivial task, and it requires introducing the concept of GW bias [439], a topic which

is beyond the scope of this Chapter. Additionally, if the GW’s sources follow the dis-

tribution of the dark matter potential wells, it is not necessarily longer true that the

fields are uncorrelated. However, we take this opportunity to clarify that possible

dark matter tracers, both playing the role of source or of lens, can be accommodated

in our formalism at the level of transfer functions relating the specific tracer and the

gravitational potential. Similar considerations are also valid for the second term in

Eq. (6.119).

6.6.3. Second order polarization tensor

Now we work out the second order polarization tensor of Eq. (6.120). This tensor rep-

resents the power spectrum of the anisotropies of the SGWB. Using again Eq. (6.110)

we have that

P (2)

åb̊
(k1,τ1;k2,τ2) =

〈
γ(1)∗

å(k1,τ1)γ(1)

b̊
(k2,τ2)

〉
=

= ∑
τs

1,τs
2

∫ τ1

τs
1

dτ′1
∫ τ2

τs
2

dτ′2 g∗
k1

(τ1,τ′1) gk2 (τ2,τ′2)
〈
S∗

å (k1,τ′1)Sb̊(k2,τ′2)
〉

(6.131)

with the source correlation function given by〈
S∗

å (k1,τ′1)Sb̊(k2,τ′2)
〉
=

=∑
c̊ d̊

∫
d 3p1d 3p2

(2π)6 T H
p1

(τ′1)T H
p2

(τ′2)F∗(p1,k1 −p1,τ′1)F (p2,k2 −p2,τ′2)×

×
[
R∗(p̂1, k̂1)

]c̊

å

[
R(p̂2, k̂2)

]d̊

b̊

〈
Φ
τi n∗
k1−p1

Φ
τi n
k2−p2

H (0)∗
c̊ (p1,τs

1) H (0)

d̊
(p2,τs

2)
〉

,

(6.132)

where we used Eq. (6.102). To proceed further, we slowly add assumptions. First, we

choose the case where Φτi n
k and H (0)

c̊ (p,τs ) are both Gaussian random fields so that

we can evaluate the expectation value in the last line value using Wick’s theorem〈
Φ
τi n∗
k1−p1

Φ
τi n
k2−p2

H (0)∗
c̊,p1

(τs
1) H (0)

d̊ ,p2
(τs

2)
〉
=

=
〈
Φ
τi n∗
k1−p1

Φ
τi n
k2−p2

〉〈
H (0)∗

c̊,p1
(τs

1) H (0)

d̊ ,p2
(τs

2)
〉
+

+
〈
Φ
τi n∗
k1−p1

H (0)∗
c̊,p1

(τs
1)

〉〈
Φ
τi n
k2−p2

H (0)

d̊ ,p2
(τs

2)
〉
+

+
〈
Φ
τi n
k2−p2

H (0)∗
c̊,p1

(τs
1)

〉〈
Φ
τi n∗
k1−p1

H (0)

d̊ ,p2
(τs

2)
〉

. (6.133)
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Secondly, we assume that the initial gravitational scalar potential and the GW’s am-

plitude at the source position are uncorrelated, that the 0th order SGWB is unpolar-

ized and that both of the random fields are statistically homogeneous and isotropic.

This situation can represent a SGWB of cosmological origins, for instance. Introduc-

ing also the scalar potential power spectrum, we consider the following expectation

values

〈
Φ
τi n∗
k Φ

τi n
p

〉
= (2π)3δ3(k−p)

PΦi n(k)

k3 , (6.134)〈
H (0)∗

c̊,p1
(τs

1) H (0)

d̊ ,p2
(τs

2)
〉

= (2π)3δc̊ d̊ δ
3(p1 −p2)

I(0)(p1,τs
1,τs

2)

2
(6.135)〈

Φ
τi n
k2−p2

H (0)

d̊ ,p2
(τs

2)
〉

= 0. (6.136)

Assuming for simplicity a standard inflationary model, write PΦi n(k) = As (k/k∗)ns−1.

The constraints on ns by the Planck [3] indicate that PΦi n(k) is almost scale invariant,

hence PΦi n(k)/k3 ∼ 1/k3. With these results, the source two point function reads〈
S∗

å (k1,τ′1)Sb̊(k2,τ′2)
〉
=

=δ3(k1 −k2)
∫

d 3p T H
p (τ′1)T H

p (τ′2)F∗(p,k1 −p,τ′1)F (p,k1 −p,τ′2)×

× PΦi n(|k1 −p|)
|k1 −p|3

I(0)(p,τs
1,τs

2)

2

∑
c̊

[
R∗(p̂, k̂1)

]c̊

å

[
R(p̂, k̂1)

]c̊

b̊
, (6.137)

where we notice the interesting divergence when |k1 −p1| → 0. This effect, which is

also found in the context of scalar induced gravitational waves [140, 143], encodes

the constructive interference of modes which is able, possibly, to enhance the signal.

We can evaluate the product of the two rotation matrices with the aid of Eq. (6.94)

and the properties of spin weighted spherical harmonics and their product rules in

terms of the Clebsch - Gordan coefficients (see Appendix C). In particular, we have

that

∑
c̊

[R∗(θ,ϕ)]c̊
å[R(θ,ϕ)]c̊

b̊ = 8
p
π

21


(

21Y 0
0

2 +3
p

5Y 2
0 + Y 4

0
4

) √
35
8 Y 4

−4√
35
8 Y 4

4

(
21Y 0

0
2 +3

p
5Y 2

0 + Y 4
0
4

)
 ,

(6.138)

where all the functions in the matrix above are spin-0 spherical harmonics evalu-

ated in (θ,ϕ). Combining Eqs. (6.131), (6.137) and (6.138), and their definitions in

Eq. (6.123), allow us to write the Stokes parameters at O(ϵ2). For the V one, related

to a net circular polarization of the SGWB, we find

V (1)(k1,τ1;k2,τ2) = 0, (6.139)
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while the expressions of the intensity and the linear polarizations are more compli-

cated, and they read

I (1)(k1,τ1;k2,τ2) =p
πδ3(k1 −k2)

∑
τs

1,τs
2

∫ τ1

τs
1

dτ′1
∫ τ2

τs
2

dτ′2 g∗
k1

(τ1,τ′1) gk1 (τ2,τ′2)×

×
∫

d 3p T H
p (τ′1)T H

p (τ′2) F∗(p,k1 −p,τ′1) F (p,k1 −p,τ′2)×

× PΦi n(|k1 −p|)
|k1 −p|3 × I(0)(p,τs

1,τs
2)×

(
4Y 0

0 (θ,ϕ)+ 8
p

5

7
Y 2

0 (θ,ϕ)+ 2

21
Y 4

0 (θ,ϕ)

)
,

(6.140)

and

(Q(1) ± iU (1))(k1,τ1;k2,τ2) =p
πδ3(k1 −k2)

∑
τs

1,τs
2

∫ τ1

τs
1

dτ′1
∫ τ2

τs
2

dτ′2 g∗
k1

(τ1,τ′1) gk1 (τ2,τ′2)×

×
∫

d 3p T H
p (τ′1)T H

p (τ′2) F∗(p,k1 −p,τ′1) F (p,k1 −p,τ′2)×

× PΦi n(|k1 −p|)
|k1 −p|3 × I(0)(p,τs

1,τs
2)×

(√
40

63
Y 4
∓4(θ,ϕ)

)
. (6.141)

Eqs. (6.140), (6.139) and (6.141) constitute another of the key results of this Chapter.

The information that they encode is

• Eq. (6.139) clearly states that the Stokes parameter V is null also at order O(ϵ2).

Hence, our result implies that the interaction with structures doesn’t violate

parity creating a net difference in the amounts of left- and right- helicity states.

This result was expected for two reasons: we assumed a GW generation mech-

anism that doesn’t prefer one state over the other, and in our analysis the two

tensor modes propagate in the same fashion.

• Because of the orthogonality properties of the spherical harmonics, the angu-

lar integrals in Eqs. (6.140) and (6.141) select specific multipoles of their in-

tegrands. The dependence on the angle θ, namely the angle between k1 and

p shows both in the spherical harmonics and in the functions of the variable

|k1 − p|, since this is equal to
√

k2
1 +p2 −2 p k cosθ. Among these, we have

F (p,k1 −p,τ) and the scalar power spectrum. One can look at the expression

of F in Eq. (6.103) and realize that only Tm(|k1 −p|) is angle dependent, as the

rest of the expression contains only the modulus of k1 and p, and the matter

growth factor. However, the matter transfer function is essentially constant in

the late time Universe, since its role is mainly to diversify the modes entering

the horizon in radiation domination, versus those in matter domination (see

discussion in Section 1.1.2). Overall, this means that the main dependence on

the angle θ in Eqs. (6.140) and (6.141) is in the scalar potential power spectrum,

PΦi n(|k1 −p|)/|k1 −p|3, and in the spherical harmonics.
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• An interesting feature of Eq. (6.140) is that all values of ℓ from 0 to 4 contribute

to the intensity I (1). This result is also found in [419], where they claim that this

fact is due to the long range interaction nature of gravity, and also for the CMB,

with the due differences, in [433].

• The spherical harmonics in Eq. (6.141) are such that

Y 4
±4(θ,ϕ) ∝ e±4 iϕ , (6.142)

reflecting the spin-4 nature of these Stokes parameters, and the spin-2 one of

the GWs vicariously. The angle ϕ depends on the choice of the tetrad’s ele-

ments {ê1̂(k̂), ê2̂(k̂)} made to construct the polarization basis for Håb̊,k(τ). To

get rid of this arbitrariness, in parallel with CMB computations [407, 432], one

could define E and B modes for the SGWB as

E ± i B ≡ e∓4 iϕ [Q ± iU ] . (6.143)

Note also that we are considering the combination Q(1) ± iU (1), instead of Q(1)

and U (1) separately, to deal with an object with a well-defined character under

parity transformations. However, their individual expressions can be readily

found from Eq. (6.141).

• Note that the integral in Eq. (6.141) is actually zero, because the integral over

the angle ϕ vanishes, since none of the other functions in the expression de-

pend on it. Nevertheless, it is instructive to have the expression of Q(1) ± iU (1)

written out this way, as it makes easier to understand which are the prereq-

uisites of the scalar and tensor power spectra in order to have a non-trivial

polarization profile. For instance, if one of them was not statistically isotropic,

Eq. (6.141) would give a non trivial result.

• A very relevant quantity in describing the SGWB is the two-point correlation

function〈
Hå(x,τ) Hb̊(y,τ)

〉
≡

∫
d 3k d 3p e i (y·p−x·k)Påb̊(k,τ;p,τ) , (6.144)

especially when evaluated in the same spacetime coordinate [22]. If the SGWB

is statistically homogeneous and isotropic then the polarization tensor is ∝
δ3(k−p) and in this case one can compute〈

Hå(x,τ) Hb̊(x,τ)
〉
=

∫ +∞

0

dk

k

[∫
S2

d 2n̂ k3Påb̊(k,τ)

]
, (6.145)

so that k3Påb̊ represents the amount of GW power in each logarithmic k bin,

if one focuses on the diagonal elements of the polarization tensor. We have

extracted the factor 1/k3 to have a dimensionless power spectrum. To make

contact with observation, it is also customary to define the frequency of the
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wave as f ≡ k/(2πa0), where a0 is the value of the scale factor today [22]. One

can also sum over the two polarization modes to obtain the total power spec-

trum.

• Starting from Eq. (6.144) one can compute the angular power spectrum by ex-

panding the fields, evaluated on the 2− sphere, on the spherical harmonics

basis. Despite the exciting prospects [245], the poor angular resolution typical

of GW detectors still poses a serious challenge in accessing the high multipoles

of the SGWB anisotropies (ET is expected to probe multipoles up to ℓ ≲ 50,

while LISA ℓ≲ 15 [400, 440, 441]).

6.7. Discussion and Conclusions
Detecting the stochastic gravitational wave background is one of the main science

goals of many future gravitational wave observatories [370, 380–382]. Multi-band

GW observation will also open a new observational window in cosmology, as the dif-

ferent behaviors in the various energy regimes can be used to break degeneracies be-

tween intrinsic and induced properties of the SGWB. In this Chapter, we developed

a formalism able to describe the intensity and the polarization of the SGWB, across

the entire frequency spectrum, accounting for its interaction with the matter struc-

tures present in the Universe. Working under the classical matter approximation,

justified in Section 6.2.3, we found and solved the equations of motion of the metric

perturbation. The direct consequence of such approach is to produce a source for the

first order GW, H (1)
µν , composed by the freely propagating GWs, H (0)

µν , and the gravita-

tional scalar potential,Φ. The matter density fluctuations, generating such potential

wells do not have to be small, hence Φ can also describe the gravitational potential

wells of compact lenses. Because of the presence of this second order source, as ex-

plained in Section 6.2.3, H (1)
µν develops scalar and vector components, on top of the

tensor ones, whose evolution equations are Eqs. (6.72), (6.73) and (6.76) in the cho-

sen gauge, which are physical since they source components of the Riemann tensor

participating in the geodesics tidal motion [131]. We proceed in our analysis with

the first order tensor mode, γ(1)
i j , and found its propagation equation by applying the

projector operator to Eq. (6.69). This operation led us to the first main result of the

Chapter, namely Eqs. (6.99) and (6.100), where we can see the interference effects at

play: the source in Eq. (6.100) is given by the integral over all possible momenta, p, of

the free GW. At this stage, our results can are valid for both the SGWB or single waves

in case of resolved sources. We commented that, the appearance of scalar and vector

modes, H (1), H (1)
i j and E (1)

i j is related to a change in the direction of propagation be-

tween the perturbed and unperturbed GW. Indeed, when their wave vectors, k i and

p i , are parallel, their sources vanishes (see Eq. (6.105)). Even though the concept

of GW trajectory becomes unclear in the wave-optics regime, this effect must be re-
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lated to gravitational lensing which, in geometric optics, displaces the GWs direction

of propagation toward the center of the gravitational potential well. Similar simplifi-

cations also occur in the tensor sector. Looking at the source (6.100), we commented

that each helicity component of the first order modes, i.e. γ(1)
å , is sourced by a non-

trivial linear combination of the two background ones, i.e. H (0)
å , unless k i and p i are

parallel. We claimed that this mixing, which in turns generates the polarization pat-

tern in the SGWB, can be interpreted under the light of lensing as well: it is known

that this is responsible for the production of secondary scalar-induced B-modes in

the CMB [231, 405–407].

In Section 6.6 we built the GW’s tensor modes’ power spectrum, namely Eq. (6.117).

To draw conclusions on the SGWB, we increasingly introduced assumptions; we re-

quired that the unperturbed SGWB is unpolarized, statistically homogeneous and

isotropic and that all the fields are uncorrelated Gaussian random fields. In this

case, we derived the expression of the Stokes parameters in Eqs. (6.140), (6.139)

and (6.141). We claimed that it is an interplay of the free SGWB and the matter dis-

tribution which generates the first order effects, namely the anisotropies in the in-

tensity and polarization. In particular, the intensity of the background receives con-

tributions for the ℓ= 0,2,4, m = 0 multipoles of the integrand in Eq. (6.137). On the

other hand, the polarization parameters Q and U are sourced by the ℓ = 4, m = ±4

multipoles, compatibly with the fact that we are considering only the tensor modes

of H (1)
i j . However, we have showed that the interaction between two statistically ho-

mogeneous and isotropic backgrounds does not produce these polarization modes,

as the integral over the polar angle ϕ in Eq. (6.141) vanishes. As expected, we found

that the Stokes parameter V , related to an asymmetry between left- and right- helic-

ity eigenstates, remains zero: the interaction with matter does not act as a source or

sink of one state over the other.

The amount of possible ramifications that can be addressed starting from the results

presented in this Chapter is remarkable, and they all revolve around the two key in-

gredients of our analysis: the statistics of the GW’s sources, encoded in I (k), and the

one of the gravitational potential wells, described by PΦi n(k). For instance, by chang-

ing the scalar potential power spectrum, one could use Eq. (6.140) to probe scale

dependent features in the primordial power spectrum, usually linked to the forma-

tion of primordial black holes [145, 146, 388, 389]. To break the degeneracy among

the effects of the two stochastic processes taking place, namely the generation of the

GW and the propagation effects induced by matter overdensities, one could perform

cross-correlations with other tracers, such as galaxy surveys or CMB experiments.

Characterizing the order of magnitude of the effects predicted here, in different sce-

narios, will be the topic of future investigations.
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Appendices

A. Expansion of equations of motion
Here we write explicitly the equations used in the main text. In particular, the lin-

earized form of Eq. (6.28) once we choose Eq. (6.22) as background metric, set-

ting Φ = Ψ. To perform these computations, we use the Mathematica package

xPand [442]: a suit to compute cosmological perturbations. We organize Eq. (6.28)

as

[O0 H ]µν+ϵ [O1 H ]µν = 0, (6.146)

with the explicit expressions of the two terms

[O0 H ]µν = □η

(
Hµν− 1

2
ηµνH

)
−2H

(
Hµν− 1

2
ηµνH

)′+ n̂µn̂ν(4H2 −H′)H − Λ̂µνH′H

+2H
(
n̂ν∂

αHαµ + n̂µ∂
αHαν − n̂α∂µHαν− n̂α∂νHαµ

)
+2ηµνH2

(
n̂αn̂βHαβ

)
+ (2H′−6H2)n̂α

(
n̂µHαν+ n̂νHαµ

)
(6.147)

[
O1 H

]
µν

= 2Hµν

[
□ηΦ−2HΦ′

]
+2Φ□ηH̃µν+4Φ H̃ ′′

µν+2n̂µn̂νΦ□ηH+

+4ηµν
[
H n̂γΦ−DγΦ

]
∂γ(n̂αn̂βHαβ)+ (∂µHνα+∂νHµα)

[
4HΦ′n̂α−2∂αΦ

]
+

+4∂αHµβ

[
n̂αn̂β(∂νΦ−2Hn̂νΦ)+ n̂ν(n̂βDαΦ− n̂αDβΦ)

]
+

+4∂αHνβ

[
n̂αn̂β(∂µΦ−2Hn̂µΦ)+ n̂µ(n̂βDαΦ− n̂αDβΦ)

]
+

+4∂αH̃µν

[
Hn̂αΦ+DαΦ

]
−4HΦ n̂µn̂νn̂α∂αH −2ηµνΦ□η(n̂αn̂βHαβ)+

+2∂αHαµ

[
∂νΦ+2H n̂νΦ

]
+2∂αHαν

[
∂µΦ+2H n̂µΦ

]
+

+H
[

2Λ̂µνΦ
′′−2ηµν∆Φ+Φ(2H′ηµν+8H2n̂µn̂ν)+HΦ′(4ηµν−4n̂µn̂ν)−

−2n̂µDνΦ
′−2n̂νDµΦ

′
]
+

+ (Hαβn̂αn̂β)
[
ΦH2(12ηµν−8n̂µn̂ν)+ΦH′(4ηµν+8n̂µn̂ν)+ηµνΦ′′

]
+

+Hαβ
[

(2ηµν+4n̂µn̂ν)
(
DαDβΦ+2H n̂αDβΦ

)−
−4n̂α

[
n̂µDβDνΦ+ n̂νDβDµΦ

]
+4n̂αn̂β

[
DνDµΦ−Hn̂µDνΦ−Hn̂νDµΦ

]]
+

+Hα
µ

[
n̂αn̂ν(12H2Φ−4H′Φ+4HΦ′−4Φ′′+2∆Φ)−2DαDνΦ

]
+

+Hα
µ

[
2Hn̂αDνΦ+4n̂αDνΦ

′−2Hn̂νDαΦ
]
+

+Hα
ν

[
n̂αn̂µ(12H2Φ−4H′Φ+4HΦ′−4Φ′′+2∆Φ)−2DαDµΦ

]
+

+Hα
ν

[
2Hn̂αDµΦ+4n̂αDνΦ

′−2Hn̂µDαΦ
]

(6.148)
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where H = ηµνHµν, H̃µν ≡ Hµν−ηµνH/2 and where we introduced the notation Dµ ≡
Λ̂νµ∂ν with Λ̂µν = ηµν+ n̂µn̂ν the orthogonal projector to n̂µ. The derivatives Dµ are

simply a covariant way of writing spatial partial derivatives, i.e. Dµ = δi
µ∂i . Along

with the equations of motion, the GW satisfies the de-Donder gauge condition, i.e.

Eq. (6.26), whose linearization takes the form[
∂µ

(
Hµν− 1

2
ηµν(ηαβHαβ)

)
−4H n̂µHµν+H H n̂ν

]
+ϵ

[
2Φ∂µH̃µν+8HΦ n̂µHµν+

+2HΦH n̂ν+4HΦ n̂ν(n̂αn̂βHαβ)+4Φ′ n̂µ Hµν+4Φ n̂µ H ′
µν−2Φ n̂αn̂β∂νHαβ

]
= 0,

(6.149)

while the compatibility Eq. (6.27) gives

Hµνn̂µn̂µ+2ϵHµνn̂µδûν = 0. (6.150)

B. zeroth and first order equations

Now we can plug in Hµν = H (0)
µν +ϵH (1)

µν in all the equations above, and find properties

of H (0)
µν and H (1)

µν by equating order by order in the ϵ expansion. In particular, from

Eqs. (6.149) and (6.150) we find

n̂µn̂νH (0)
µν = 0, ∂µH̃ (0)

µν −4H n̂µH (0)
µν +H (0)H n̂ν = 0, (6.151)

n̂µn̂νH (1)
µν +2n̂νδûµH (0)

µν = 0, ∂µH̃ (1)
µν −4H n̂µH (1)

µν +H (1)H n̂ν = 0, (6.152)

where the trace is H (i ) = ηµνH (i )
µν and introducing H̃ (i )

µν = H (i )
µν− 1

2ηµνH (i ). On the other

hand, the two equations of motion are[
O0 H (0)]

µν = 0, and
[
O0 H (1)]

µν+
[
O1 H (0)]

µν = 0, (6.153)

and their explicit expressions can be found from Eqs. (6.147) and (6.148), upon using

Eqs. (6.151) and (6.152). These are[
O0 H (0)

]
µν

= □ηH̃ (0)
µν −2H(H̃ (0)

µν )′+H
(
n̂ν∂µH (0) + n̂µ∂νH (0)

)
− (n̂µn̂ν+ Λ̂µν)H′H (0)−

−2H
(
n̂α∂µH (0)

αν + n̂α∂νH (0)
αµ

)
+2(H′+H2)n̂α

(
n̂µH (0)

αν + n̂νH (0)
αµ

)
(6.154)

[
O0 H (1)

]
µν

= □ηH̃ (1)
µν −2H(H̃ (1)

µν )′+H
(
n̂ν∂µH (1) + n̂µ∂νH (1)

)
− (n̂µn̂ν+ Λ̂µν)H′H (1)−

−2H
(
n̂α∂µH (1)

αν + n̂α∂νH (1)
αµ

)
+2(H′+H2)n̂α

(
n̂µH (1)

αν + n̂νH (1)
αµ

)
+

+2ηµνH2(n̂αn̂βH (1)
αβ

). (6.155)
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The expression of [O1 H (0)]µν depends on the solution of H (0)
µν , hence we first solve its

equations. Taking the time-time and space-time component of Eq (6.154) we obtain

1

2
□ηH (0) −3H(H (0))′−H′H (0) = 0 Time-Time (6.156)

□ηH (0)
0i −4H(H (0)

0i )′+H (0)
0i (6H2 −2H′)−H∂i H (0) = 0 Space-Time (6.157)

of which we take the solution H (0) = H (0)
0i = 0 as explained in the main text. This way

Eqs. (6.154) and (6.151) give

□ηH (0)
i j −2H(H (0)

i j )′ = 0, ∂i H (0)
i j = 0, (6.158)

which we use to compute the source of the first order GW, namely

[
O1 H (0)]

µν = 4Φ∆H (0)
µν +2H (0)

µν

[
□ηΦ−2HΦ′

]
+4∂kΦ∂k H (0)

µν−
−2n̂µDαΦ

(
H (0)′

να+HH (0)
να

)
−2n̂νDαΦ

(
H (0)′

µα+HH (0)
µα

)
−

−2Dµ

(
H (0)
αν DαΦ

)
−2Dν

(
H (0)
αµDαΦ

)
+2(ηµν+2n̂µn̂ν) H (0)

αβ
DαDβΦ . (6.159)

We look again at the constraint equations, namely the time-time and space-time of[
O0 H (1)

]
µν+

[
O1 H (0)

]
µν = 0. These are

1

2
□ηH (1) −3H(H (1))′−H′H (1) =−2H (0)

i j ∂
i∂ j Φ , Time-Time

(6.160)

□ηH (1)
0i −4H(H (1)

0i )′−H∂i H (1) −2(H2 +H′)H (1)
0i =− 2

a
∂kΦ (aH (0)

ki )′ , Space-Time

(6.161)

as it can be checked by using Eqs. (6.155) and (6.159).

C. Spin-weighted spherical harmonics and Clebsch-
Gordan coefficients

The content of this Section follows [407, 432]. The spin-0 spherical harmonics are

given by

Y ℓ
m(θ,ϕ) = (−1)m

√
(2ℓ+1)

4π

(ℓ−m)!

(ℓ+m)!
e i mϕPℓm(cosθ) (6.162)
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where Pℓm(x) is the associated Legendre polynomial. The spin weighted spherical

harmonics are defined as

s Y ℓ
m(θ,ϕ) = (−1)m

√
(2ℓ+1)

4π

(ℓ+m)!(ℓ−m)!

(ℓ+ s)!(ℓ− s)!

[
sin

(
θ

2

)]2ℓ

e i mϕ×

×∑
r

(
ℓ− s

r

) (
ℓ+ s

r + s −m

)
(−1)ℓ−r−s

[
cot

(
θ

2

)]2r+s−m

. (6.163)

The sum over r runs over those values for which the binomial coefficients are non-

vanishing, namely max{0,m− s} ≤ r ≤ min{ℓ− s,ℓ+m}. The spin weighted spherical

harmonics are defined for |s| ≤ ℓ and |m| ≤ ℓ and, under the complex conjugation

and a parity transformation, respect the following relations(
s Y ℓ

m(θ,ϕ)
)∗ = (−1)s+m

−s Y ℓ
−m(θ,ϕ) (6.164)

s Y ℓ
m(π−θ,π+ϕ) = (−1)ℓ −s Y ℓ

m(θ,ϕ) . (6.165)

The products of two spin weighted spherical harmonics is given by

s1
Y ℓ1

m1
(θ,ϕ) s2

Y ℓ2
m2

(θ,ϕ) =
√

(2ℓ1 +1)(2ℓ2 +2)

4π

j=ℓ1+ℓ2∑
j=|ℓ1−ℓ2|

√
4π

(2 j +1) s Y j
m(θ,ϕ)

× 〈ℓ1,ℓ2;m1,m2| j ,m〉〈ℓ1,ℓ2;−s1,−s2| j ,−s〉 (6.166)

where s = s1+ s2, m = m1+m2 and the Clebsh-Gordan coefficients can be computed

as

〈ℓ1,ℓ2;m1,m2| j ,m1 +m2〉 =

=
√

(ℓ1 +ℓ2 − j )!( j +ℓ1 −ℓ2)!( j +ℓ2 −ℓ1)!(2 j +1)

( j +ℓ1 +ℓ2 +1)!
×

×∑
k

[
(−1)k

√
(ℓ1 +m1)!(ℓ1 −m1)!(ℓ2 +m2)!(ℓ2 −m2)!

k !(ℓ1 +ℓ2 − j −k)!(ℓ1 −m1 −k)!

×
√

( j +m1 +m2)!( j −m1 −m2)!

(ℓ2 +m2 −k)!( j −ℓ2 +m1 +k)!( j −ℓ1 −m2 +k)!

]
(6.167)

where the sum over k goes from max{0,ℓ2 − j −m1,ℓ1 − j +m2} ≤ k ≤ min{ℓ1 +ℓ2 −
j ,ℓ1 −m1,ℓ2 +m2}.
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Samenvatting

De directe detectie van zwaartekrachtgolven (ZG) is een baanbrekende wetenschap-

pelijke prestatie van het afgelopen decennium. Het betekende onder andere het

begin van de ZG-kosmologie: de mogelijkheid om het heelal, vanaf de oerfase tot

vandaag, te bestuderen met behulp van deze nieuwe fascinerende detectiemethode.

Gravitatiegolven bevatten waardevolle informatie over hun bronnen en de ruimtetijd

waarin ze zich voortplanten. Daarom kunnen ze inzichten onthullen in het homo-

gene en isotrope heelal en de kosmische structuren die hierdoor verstoord worden.

Hoewel de huidige technologie voor de detectie van deze golven geen kosmologis-

che gegevens van vergelijkbare kwaliteit kan leveren als die vanuit elektromagnetis-

che signalen worden verzameld, blijft het inherente potentieel van gravitatiegol-

ven bestaan. Vooruitkijkend naar toekomstige missies beoogt dit proefschrift te be-

grijpen wat gravitatiegolven ons kunnen vertellen over de dynamiek van het hee-

lal op kosmologische schalen, met een bijzondere nadruk op donkere energie en

grootschalige structuren. Na Hoofdstuk 1, waarin we alle noodzakelijke concepten

betreffende kosmologie en gravitatiegolven introduceren, is de rest van het proef-

schrift verdeeld in drie onderdelen:

1. In het eerste deel wordt een poging ondernomen de kracht van de fluctuaties

in de helderheidsafstand van gravitatiegolven te benutten als een robuust in-

strument om scalar-tensor theorieën van de zwaartekracht te onderzoeken.

Dit zijn uitgebreide zwaartekrachttheorieën waarin een scalair veld een ex-

tra zwaartekrachtinteractie bemiddelt. De aanwezigheid van het scalaire veld

laat sporen na in de zogenaamde relativistische effecten: vervormingen van

de ZGen door de aanwezigheid van kosmische structuren langs het voort-

plantingstraject. Aangezien het groeipatroon van de zwaartekrachtpotentialen

van de materie afhangt van de zwaartekrachttheorie, dragen relativistische ef-

fecten informatie over het scalaire veld. De analyse wordt uitgevoerd in het

geometrische optica regime, waar de frequentie van de gravitatiegolven veel

groter is dan de karakteristieke energieschaal van de ondervonden obstakels.

Hoofdstuk 2 stelt een nieuwe schattingsfactor voor, die gebruik maakt van ZG

en Type-Ia Supernovae observaties, om de onderscheidende signaturen geas-

socieerd met de lopende Planck massa en de clustering van donkere energie

te detecteren. Volgens onze analyse is in het meest optimistische scenario

nabij 1014 effectief aantal gebeurtenissen nodig om dergelijke signaturen op
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te sporen. Hoofdstuk 3 verlegt de aandacht naar de zwakke lensing conver-

gentieterm, het meest prominente relativistische effect. We onderzoeken de

mogelijkheden ervan om de parameters van het uitgebreide kosmologische

model in te perken, waarbij we ZG-missies alleen of in combinatie met ster-

renstelselonderzoeken beschouwen. Wij concluderen dat ZGen het inperkend

vermogen kunnen vergroten als hun statistiek vergelijkbaar wordt met die van

sterrenstelsels.

2. Het tweede deel van het proefschrift formuleert aanvullende testen voor

scalair-tensor theorieën van de zwaartekracht. Opnieuw werkend in de hoge

frequentie benadering, introduceerden we in Hoofdstuk 4 de energie-impuls-

tensor voor zwaartekrachtsgolven in de subklasse van dergelijke theorieën

waar de tensormodi zich voortplanten met de lichtsnelheid. Uit dit resultaat

hebben we de zwaartekrachtgolfafstanden afgeleid, d GW
L en d GW

A , en aange-

toond dat beide expliciet gewijzigd kunnen worden door de aanwezigheid

van het scalaire veld. We hebben ook de geldigheid van de reciprociteitswet

van Etherington bewezen en de implicaties van ons resultaat in de context

van sterke lensing tijdsvertraging onderzocht. Hoofdstuk 5 onderzoekt de

mogelijkheden van directe detectie van scalaire veldgolven met de focus op

twee screeningsmechanismen: chameleon en symmetron. Wil een scalair-

tensor theorie namelijk aanvaardbaar zijn, dan moet deze voorzien zijn van

een mechanisme dat het scalaire veld onderdrukt in gebieden met een hoge

dichtheid, zoals bijvoorbeeld het Zonnestelsel. Wij tonen aan dat in beide

scenario’s de interactie tussen de scalaire golven en de testdeeltjes wordt on-

derdrukt. Daarom concluderen wij dat scalaire golven in deze theorieën niet

waarneembaar zouden moeten zijn.

3. In het derde deel onderzoeken we de voortplanting van ZGen in het gol-

foptische regime binnen de algemene relativiteitstheorie. De reden achter

deze keuze is om aan te tonen dat bepaalde effecten, die gewoonlijk wor-

den toegeschreven aan bijkomende dynamische veldinhoud, degeneratie kun-

nen vertonen met golfoptische effecten. In Hoofdstuk 6 hebben we laten

zien dat de voortplantingseffecten zelfs in de algemene relativiteitstheorie

waarneembare scalaire en vectoriële polarisatiemodi kunnen voortbrengen.

Hoewel de verkregen resultaten van toepassing blijven op opgeloste ZG-

gebeurtenissen, hebben we ons in dit deel gericht op de stochastische ZG-

achtergrond en de polarisatie-inhoud hiervan. Voor het eenvoudige geval van

een ongepolariseerde, Gaussische, statistisch homogene beginachtergrond

hebben we laten zien dat de interactie met materiestructuren geen netto ver-

schil veroorzaakt in de hoeveelheid links- en rechtsdraaiende tensormodi. Wij

hebben ook geconstateerd dat, om Q- en U-polarisatiemodes te produceren,

een hexadecapool anisotropie vereist is.



Summary

The direct detection of gravitational waves (GW) is a groundbreaking scientific

achievement of the past decade. Among others, it marked the beginning of GW-

cosmology: the possibility of studying the Universe, from its primordial phase until

today, using this new fascinating probe. Gravitational waves carry valuable infor-

mation about their sources and the spacetime through which they propagate. For

this reason, they have the power of revealing insights into the homogeneous and

isotropic Universe, and the cosmic structures that perturb it. While the current tech-

nology for their detection is not able to deliver cosmological data of comparable

quality as the one gathered through electromagnetic signals, the inherent potential

of gravitational waves still remains. Looking ahead to future missions, this Thesis

aims at understanding what gravitational waves can tell us about the dynamics of

the Universe on cosmological scales, with particular emphasis on dark energy and

large-scale structures. After Chapter 1, where we introduce all the necessary con-

cepts regarding cosmology and gravitational waves, the rest of the Thesis is divided

in three main parts:

1. The first Part seeks to harness the power of gravitational waves luminosity dis-

tance fluctuations as a robust tool to investigate scalar-tensor theories of grav-

ity. The latter are extended gravitational theories where a scalar field medi-

ates an additional gravitational interaction. The presence of the scalar field

leaves traces in the so-called relativistic effects: distortions of the GWs due

to the presence of cosmic structures along the propagation path. Since the

growth pattern of the matter gravitational potentials depends on the gravita-

tional theory, relativistic effects carry information about the scalar field. The

analysis is conducted in the geometric optics regime, where the frequency of

the gravitational waves greatly exceeds the characteristic energy scale of the

encountered obstacles. Chapter 2 proposes a novel estimator, which exploits

GW and Type-Ia Supernovae observation, to detect the distinctive signatures

associated with the running Planck’s Mass and the clustering of dark energy.

According to our analysis, in the most optimistic scenario, a total of 1014 effec-

tive number of events is needed to pick up such signatures. Chapter 3 shifts

the focus to the weak lensing convergence term, the most prominent relativis-

tic effect. We investigate its potentiality in constraining the parameters of the

extended cosmological model, considering GW-missions alone or in combi-
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nation with galaxy surveys. We concluded that GWs can help the constraining

power if their statistic becomes comparable with the one of galaxies.

2. The second Part of the Thesis formulates additional tests for scalar-tensor the-

ories of gravity. Working again in the high frequency approximation, in Chap-
ter 4 we introduced the gravitational wave stress-energy tensor in the subclass

of such theories where tensor modes propagate at the speed of light. From this

result, we derived the gravitational wave distances, d GW
L and d GW

A , and showed

that both of them can be explicitly modified by the presence of the scalar field.

We also proved the validity of the Etherington’s reciprocity law and investigated

the implications of our result in the context of strong lensing time delay. Chap-
ter 5 explores the direct detection prospect of the scalar field waves in light of

two screening mechanisms: chameleon and symmetron. Indeed, in order for a

scalar-tensor theory to be viable, it must be equipped of a mechanism which

suppresses the scalar field in high-density regions, such as the Solar System.

We show that, in both scenarios, the interaction between the scalar waves and

test particles is suppressed. Because of this, we concluded that scalar waves in

these theories should not be observable.

3. In the third Part, we investigate the propagation of gravitational waves in

the wave-optics regime within General. The reason behind this choice is to

demonstrate that certain effects, commonly attributed to additional dynami-

cal field content, may exhibit degeneracy with wave-optics effects. In Chap-
ter 6 we showed that the propagation effects can produce observable scalar

and vector polarization modes even in General Relativity. While the results

obtained remain applicable to resolved gravitational wave events, in this part

we focused on the stochastic gravitational wave background and its polariza-

tion content. For the simple case of an unpolarized, Gaussian, statistically

homogeneous initial background, we showed that the interaction with mat-

ter structures does not generate a net difference in the amount of left- and

right-helicity tensor modes. We also observed that, in order to produce Q- and

U-polarization modes, a hexadecapole anisotropy is required.
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