

Highly accurate simulations and benchmarking of moleculesurface reactions

Tchakoua, T.

Citation

Tchakoua, T. (2023, July 4). *Highly accurate simulations and benchmarking of molecule-surface reactions*. Retrieved from https://hdl.handle.net/1887/3628451

Version:	Publisher's Version
License:	Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from:	https://hdl.handle.net/1887/3628451

Note: To cite this publication please use the final published version (if applicable).

HIGHLY ACCURATE SIMULATIONS AND BENCHMARKING OF MOLECULE-SURFACE REACTIONS

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Leiden, op gezag van rector magnificus prof.dr.ir. H. Bijl, volgens besluit van het college voor promoties te verdedigen op dinsdag 4 juli 2023 klokke 10:00 uur

 door

Théophile Tchakoua geboren te Foumban, Kameroen in 1988 Promotor: Prof. dr. G. J. Kroes Co-promotor: Dr. M. F. Somers

Promotiecommissie

Prof. dr. M. UbbinkProf. dr. A. KrosProf. dr. P. Hyldgaard (Chalmers University of Technology, Sweden)Prof. dr. P. Larrégaray (University of Bordeaux, France)Dr. I. M. N. Groot

ISBN: 978-94-6473-148-4

The research reported in this thesis has been performed in the Theoretical Chemistry group at the Leiden Institute of Chemistry (Einsteinweg 55, 2333 CC, Leiden, the Netherlands). This work has been made possible by financial support by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) through an NWO/CW TOP Grant (No. 715.017.001) and by the European Research Council through an ERC-2013 advanced grant (Nr. 338580), and with computer time granted by the Physical Sciences division of NWO (NWO-EW).

Je voudrais dedier ce travail à ma grand-mère **Samou Marthe** qui est passée de vie à trépas le 7 février 2021. Tu as su durant les deux premières années de cette thèse, me motiver sans ménager un quelconque effort. Reposes en paix, car ton voeu le plus cher qui était de finir cette thèse s'est realisé! Tu m'a offert un havre de paix pendant les moments épineux de ma vie depuis mon jeune âge.

Celui qui sait et qui sait qu'il sait est un savant, il faut le suivre. Celui qui sait et ne sait pas qu'il sait est un dormeur, il faut le réveiller. Celui qui ne sait pas et sait qu'il ne sait pas est un chercheur, il faut le guider. Celui qui ne sait pas et ne sait pas qu'il ne sait pas est un danger public, il faut l'eviter.

Proverbe africain.

Contents

1	Ger	eral Introduction	1
	1.1	Gas-surface reactions	1
	1.2	Molecule metal-surface reaction mechanisms	3
	1.3	Background to topics of this thesis	4
		1.3.1 H_2 reacting on metal surfaces	4
		1.3.2 Databases	6
		1.3.3 Mixed DFs for SRP-DF development	7
	1.4	Aims of this thesis	8
	1.5	Main results	9
	1.6	Outlook	2
2	Tow	ards a Specific Reaction Parameter Density Functional for	
	\mathbf{H}_2	+ Ni(111): Comparison of Theory with Molecular Beam	
	Stic	king Experiments 3	1
	2.1	Introduction	52
	2.2	Methods	57
		2.2.1 Dynamical model	57
		2.2.2 Construction of the PES	57
		2.2.3 Interpolation of PES	0
		2.2.4 Dynamics Methods	1
		2.2.4.A Quasi-classical Dynamics	1
		2.2.4.B Quantum Dynamics	2
		2.2.5 Computation of the Observables	.3
		2.2.5.A Degeneracy-Averaged reaction probabilities 4	.3
		2.2.5.B Molecular Beam sticking probabilities 4	.3
2.3 Results and Discussion		Results and Discussion	5
		2.3.1 Potential Energy Surfaces	5
		2.3.2 Comparison to experiment	8
		2.3.3 Causes for the discrepancies between theory and experiment 5	53
	2.4	Conclusions	59

3	SBI	H17: E	Benchmark Database of Barrier Heights	
	for	Dissoc	iative Chemisorption on Transition Metal Surfaces	69
	3.1	Introd	luction	70
	3.2	Metho	ds	73
		3.2.1	Density functionals tested	73
		3.2.2	Semi-empirical approaches to obtaining reference values	
			of barrier heights	76
			3.2.2.A The specific reaction parameter approach to den-	
			sity functional theory (SRP-DFT)	78
			3.2.2.B Ad hoc semi-empirical approaches	79
		3.2.3	The SBH17 database	80
			3.2.3.A Dissociative chemisorption of H_2 on transition	
			metals	81
			3.2.3.B N_2 dissociation on Ru surfaces	84
			3.2.3.C CH_4 dissociation on transition metals	85
		3.2.4	Algorithms for computing minimum barrier heights	88
			3.2.4.A Light Algorithm	89
			3.2.4.B Medium Algorithm	89
			3.2.4.C High Algorithm	90
		3.2.5	Computational details	90
	3.3	Results		91
		3.3.1	Structure of the metals	91
		3.3.2	Dissociative chemisorption barriers	91
	3.4	Discus	ssion	102
		3.4.1	Description of the metal	102
		3.4.2	Description of barrier heights to DC	103
			3.4.2.A Preferred algorithm	103
			3.4.2.B Performance of DFs for SBH17 with medium	
			algorithm	104
			3.4.2.C Dependence on the type of system	109
			3.4.2.D Comparison to present and previous results for	
			SBH10	110
		3.4.3	Comparison to results for adsorption and to gas phase results	113
		3.4.4	Future improvements	114
	3.5	Conclu	usions and outlook	117
4	Sim	ulatin	g Highly Activated Sticking of H_2 on Al(110): Quan-	-
	\mathbf{tur}	ı versu	is quasi-classical dynamics	138
	4.1	Introd	luction	139
	4.2	Metho	od	141

		4.2.1	Dynamical model	141
		4.2.2	DFT Method	142
		4.2.3	Interpolation of PES	144
		4.2.4	Calculations of observables	146
		4.2.5	Dynamics Methods	150
			4.2.5.A Quantum Dynamics	150
			4.2.5.B Quasi-classical dynamics	152
	4.3	Result	s and discussion	153
		4.3.1	The fitted potential energy surface	153
		4.3.2	Sticking probabilities computed with quantum and quasi-	
			classical methods, and their comparison	155
		4.3.3	Analysis of the size of the quantum effects on the sticking:	
			role of vibration and incidence energy	159
	4.4	Conclu	isions	164
5	Con	structi	ing Mixed Density Functionals for Describing	
	Diss	ociativ	ve Chemisorption on Metal Surfaces: Basic Principles	174
	5.1	Introd	uction	175
	5.2	Metho	ds	176
		5.2.1	The SBH16 database	176
		5.2.2	Mixed density functional expressions	177
		5.2.3	Computational details	180
	5.3	Result	s and discussion.	181
		5.3.1	Equilibrium lattice constants computed with mixed density	
			functionals	181
		5.3.2	Performance of limiting forms of the mixed density func-	
			tionals	181
		5.3.3	Performance of mixed density functionals as tunable SRP	
			DFs	185
		5.3.4	Correlation of the mixing parameter with the charge trans-	
			fer parameter	190
	5.4	Conclu	isions and outlook	192
	5.A	Appen	dix Tables and Figures	195
Samenvatting				
C.	mnic		itaa	010
U	II FICI		ilat	414

List of publications

 $\mathbf{213}$

 $\mathbf{214}$