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Chapter 2
Methods

While the dissociative chemisorption of a homonuclear diatomic molecule on a
thermally distorted surface is one of the easiest systems to describe, it is by no
means easy to describe. This chapter will discuss the theoretical framework
required to accurately describe such a system, as well as what can be learned
when applying these methods. In section 2.1 the basics of treating the system
quantum dynamically are discussed, expanding on Schrödinger’s equation and
introducing the Born-Oppenheimer approximation and the time-dependent wave
packet approach. Then in section 2.2 the classical dynamics are introduced,
discussing methods of bringing purely classical results closer to quantum results.
In section 2.3 the static corrugation model, an approach to including surface
temperature effects into the dynamics, is introduced. Finally, the approach to
computing several observables, which are also available to experimentalists, is
discussed in section 2.4.

2.1 Quantum dynamics

To fully describe any system at a quantum dynamical level, one has to solve
the Schrödinger equation

ĤtotΨ(−→q ,
−→
Q) = EΨ(−→q ,

−→
Q), (2.1)

with −→q and
−→
Q the electronic and nuclear coordinates of the full system described

by the wave function Ψ(−→q ,
−→
Q) and energy E. Separating the electronic and

nuclear parts we can write the full Hamiltonian Ĥtot describing both the
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electronic and nuclear motion as

Ĥtot = Ĥe(
−→q ,

−→
Q) +

∑
n

−1

2mn
∇2−→

Qn
(2.2)

using atomic units. Here the Hamiltonian is separated into an electronic part
(Ĥe) depending on both the electronic and nuclear coordinates and a summation
over each nucleus n with mass mn.

To solve (2.1) we write Ψ(−→q ,
−→
Q) as a the product of the electronic and

nuclear parts of the full wave function, summed over each electronic state k

Ψ(−→q ,
−→
Q) =

∑
k

χk(
−→
Q)ψk(

−→q ;
−→
Q). (2.3)

In the following, the solution to the electronic Schrödinger equation

Ĥe(
−→q ,

−→
Q)ψ(−→q ,

−→
Q) = Vk(

−→
Q)ψk(

−→q ;
−→
Q), (2.4)

will be useful.
Next we substitute (2.3) in (2.1), multiplying from the left with ψ∗

k(
−→q ;

−→
Q),

and integrate over −→q , as well as applying the approximations

∇−→
Qn
ψk(

−→q ;
−→
Q) = 0 and ∇2−→

Qn
ψk(

−→q ;
−→
Q) = 0. (2.5)

With these steps we can set up the nuclear Schrödinger equation[∑
n

−1

2mn
∇2−→

Qn
+ Vk(

−→
Q)

]
χk(

−→
Q) = E χk(

−→
Q) (2.6)

for every electronic state k. This procedure is known as the Born-Oppenheimer
approximation[1], solving the full Schrödinger equation in two steps, first for
the electronic wave function (2.4) and then for the nuclear wave function (2.6).

To now describe a molecule interacting with a surface, we will assume that
the surface atoms are completely fixed and, more importantly, that the system
is in its ground electronic state. This allows us to further simplify (2.6) to[∑

n

−1

2mn
∇2−→ρ n

+ V (−→ρ )
]
χ(−→ρ ) = Ĥnuc(

−→ρ ) χ(−→ρ ) = Etot χ(
−→ρ ) (2.7)

where −→ρ describes the nuclear coordinates of just the molecule. Here Ĥnuc(
−→ρ )

describes the Hamiltonian for just the nuclear motion of this molecule and χ(−→ρ )
the wave function for nuclear motion. V (−→ρ ) describes the corresponding ground
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state potential energy surface (PES), the potential energy of the molecule for
all nuclear coordinates.

For simplicity’s sake the nuclear coordinates of the molecule (−→ρ ) are split
into two parts: the centre-of-mass (c.m.) coordinates

−→
R = (X,Y, Z) and

the internal coordinates of the system −→r . We can now rewrite the nuclear
Hamiltonian (2.7) as

Ĥnuc(
−→ρ ) = Ĥnuc(

−→r ,
−→
R ) = − 1

2M
∇2−→

R
− 1

2µ
∇2−→r + V (−→r ,

−→
R ) (2.8)

with M and µ respectively the total mass and reduced mass of the molecule.
For convenience we will now also split the Laplace operator for the internal

degrees-of-freedom (DoF) into two parts, a vibrational and a rotational part.
Furthermore, to make the equation specific to a diatomic molecule scattering
from a static surface we will express the internal degrees of freedom −→r in the
form of the distance between the two atoms (r), and the orientation of this
molecular bond relative to the surface and the surface normal, respectively,
given by θ and ϕ (see figure 2.1). This yields the full Hamiltonian of our
diatomic molecule interacting with the surface:

Ĥnuc(
−→r ,

−→
R ) = − 1

2M
∇2−→

R
− 1

2µ

∂2

∂r2︸ ︷︷ ︸
Ĥvib

− ĵ2

2µr2︸ ︷︷ ︸
Ĥrot

+V (−→r ,
−→
R ). (2.9)

Here ĵ represents the angular momentum operator, associated with the angular
momentum of the diatomic molecule.

2.1.1 Solving the electronic Schrödinger equation

Density functional theory

To obtain a reasonable accurate representation of the calculated V (−→r ,
−→
R ) of

(2.9), we turn towards density functional theory (DFT) due to its ability to
efficiently solve the electronic structure problem within the Born-Oppenheimer
approximation [see (2.4)]. Hohenberg and Kohn[2] in 1964 showed that for a
system of electrons in an external potential the ground state energy is a unique,
but unknown, functional of the electron density [n(

−→
Q,−→s )], which depends on

coordinates of both the nuclei (which provide the external field) and of the
electrons (−→s ). Subsequently, Kohn and Sham[3] suggested an approach to
obtaining the kinetic energy of the electrons, one of the main issues with DFT
at the time, by redefining the problem to the form of a fictitious system of
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rH-H

CoM={X,Y,Z}

x=u

v

y
z

Ha=
{xa,ya,za}

Hb=
{xb,yb,zb}

θ

CuA={xA,yA,zA}

CuB={xB,yB,zB}

ϕ

Figure 2.1: Coordinate system of our incoming H2 (light-blue) with lattice vectors
for the Cu(111) surface slab (dark red). The 6 DoF of the incoming H2 molecule are
described both in atomic coordinates (xa/xb, ya/yb, za/zb) and molecular, center-of-
mass (c.m.) coordinates (X, Y , Z), with the H-H distance rH−H , the polar angle θ
and the azimuthal angle ϕ relative to the x-axis. The surface atoms are described

using only atomic coordinates (xI ,yI , zI).

non-interacting electrons in an effective external potential. This allows one to
rewrite the many electron problem as a set of N single-electron equations[

−
∇2−→s
2

+ VKS(
−→
Q,−→s )

]
ϕi(

−→
Q,−→s ) = ϵi(

−→
Q)ϕi(

−→
Q,−→s ) (2.10)

with ϕi(
−→
Q,−→s ) equal to the Kohn-Sham orbital of i at given coordinates (

−→
Q)

of the nuclei of the system. The first term should be well recognisable as the
operator describing the kinetic energy of the electrons of the system, the second
term, the Kohn-Sham potential, can be further split into three terms:

VKS(
−→
Q,−→s ) = Vext(

−→
Q,−→s ) + VH(

−→
Q,−→s ) + Vxc(

−→
Q,−→s ) (2.11)

where Vext represents the external potential brought about by the positions of
the nuclei, and VH is a simple Hartree potential, given by

VH(
−→
Q,−→s ) =

∫
n(
−→
Q,−→s ′)

|−→s −−→s ′|
d−→s ′. (2.12)

Finally the third, and perhaps most interesting, exchange-correlation term Vxc
corrects the error made in VH when it is combined with a system of fictitious
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Kohn-Sham orbitals. It can be defined as

Vxc(
−→
Q,−→s ) = δExc[n(

−→
Q,−→s )]

δn(
−→
Q,−→s )

, (2.13)

i.e., as the functional derivative of the exchange-correlation energy (Exc) to the
electron density (n).

Unfortunately, an exact expression for a universal exchange-correlation
density functional (XC-DF) is not known, although many ways of approximating
this functional do exist. These approaches come associated with varying levels
of complexity and costs, which can be arranged conceptually on the rungs
of what is known as Jacob’s ladder[4]. For this thesis, we will only concern
ourselves with one of the simpler approximations known as the generalized
gradient approximation (GGA)[5]. Here the exchange-correlation energy (for
specific coordinates of the nuclei) is written as not only a function of the electron
density (n), but also its gradient (∇n):

Exc[(n(
−→s ),∇n(−→s )] =

∫
fxc[n(

−→s ),∇n(−→s )]d−→s . (2.14)

Specific reaction parameter approach to DFT

One semi-empirical method for finding an accurate XC-DF used in this work is
the specific reaction parameter (SRP) approach, originally proposed by Truhlar
and co-workers[6, 7]. In the SRP approach, experimentally available parameters
of a reaction are fitted to results obtained using a linear combination of two
different exchange-correlation functionals with a mixing parameter α. The
semi-empirical functional, for optimal value of α, is then used to calculate
parameters of a different experimental data set, where the agreement with this
new data set determines the quality of the SRP-DF. Dìaz et al.[8, 9] extended
this approach to gas-surface scattering reactions, where the SRP was originally
fit to molecular beam dissociative chemisorption experiment of H2 and D2

on Cu(111). Here the SRP-DF was considered a true SRP-DF if it could
also reproduce the experimental results of other key experiments, such as the
rovibrationally inelastic scattering probabilities, to within “chemical accuracy”
(1 kcal/mol). Another important topic is the transferability of an SRP-DF,
its ability to accurately describe closely related systems the SRP-DF was not
originally fit for. An SRP-DF originally fitted for the CH4/Ni(111) system[10]
was, for example, found to reproduce results for the CH4/Pt(111) system to
within chemical accuracy[11].
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2.1.2 Potential energy surface fitting

DFT strikes a good balance between accuracy and computational speed when
compared to other first-principles methods and when considering small molecules
interacting with a surface. Nevertheless, it is not nearly fast enough to calculate
the energies of all the different configurations needed for full quantum dynamical
simulations of the six-dimensional systems that are discussed in future chapters.
Furthermore, the costs associated with a single DFT calculation are large enough
that even classical dynamics becomes challenging in direct dynamics mode
when one is interested in investigating (dynamically) rare events. Therefore
many interpolation, or fitting, schemes have been suggested over the years,
which are designed to (efficiently) interpolate between and fit to different DFT
data points. These can range from simple force-field fits such as the LEPS
procedure[12, 13] to more advanced high-dimensional neural network approaches
such as that proposed by Behler and Parinello[14, 15]. In this thesis, I will
only concern myself with a third method, originally proposed by Busnengo et
al., and called the corrugation reducing procedure (CRP)[16]. In the CRP, the
energetic corrugation of the full 6D PES of a diatomic molecule AB approaching
a surface is reduced by subtracting the individual atomic contributions, such
that one obtains a smooth 6D interpolation function:

I6D(−→r ,
−→
R ) = V 6D(−→r ,

−→
R )− V 3D

A (−→qA)− V 3D
B (−→qB) (2.15)

with −→qA and −→qB the coordinates of atom A and B. It is assumed that this 6D
interpolation function can be made to be smooth, and thus easy to interpolate,
which reduces the amount of DFT data points required to obtain a decent fit.
Obtaining the 3D atomic contributions to the full potential is again done the
same way, but now yielding a 3D interpolation potential

I3DA (−→qA) = V 3D
A (−→qA)−

N∑
n=1

V 1D
A (rAn)

I3DB (−→qB) = V 3D
B (−→qB)−

N∑
n=1

V 1D
B (rBn)

(2.16)

where V 1D
A (V 1D

B ) is generally chosen according to the Z-dependence of the
potential of atom A (B) directly above the top site of surface atom n, with
rAn (rBn) equal to the distance between the two, and N the total number of
surface atoms.
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Combining (2.15) and (2.16), we can now write our full 6D, CRP interpolated,
potential as

V 6D(−→r ,
−→
R ) = I6D(−→r ,

−→
R )+ I3D(−→qA)+ I3D(−→qB)+

N∑
n=1

[
V 1D
A (−→rAn)+V

1D
B (−−→rBn)

]
.

(2.17)
By considering the symmetry of both the incoming diatomic and the (periodic)
surface slab, the computational effort to obtain enough DFT data points can be
further reduced. For a homo-nuclear diatomic molecule one can further reduce
the computational load by setting I3DA = I3DB and V 1D

A = V 1D
B .

2.1.3 Solving the nuclear Schrödinger equation

Having found a solution for the electronic part (2.4), the next step in solving
the full Schrödinger equation using the Born-Oppenheimer approximation is
solving the nuclear part (2.6). Assuming a static surface, with all atoms in
their electronic ground state, this means solving (2.7) with the Hamiltonian
as described in (2.8). For chapters 4, 5 and 6 in this thesis, this will be done
using the time-dependent wave packet (TDWP) approach[17].

Time-dependent wave packet approach

Using the time-dependent Schrödinger equation

i
∂Ψ(t)

∂t
= ĤΨ(t), (2.18)

in atomic units, one can find a formal solution for any time-independent
Hamiltonian in the form of

Ψ(t = tf ) = e−iĤtf︸ ︷︷ ︸
Û(tf )

Ψ(t = 0). (2.19)

Here Û(tf ) is commonly known as the time-evolution operator.
Combining (2.19) with our nuclear Hamiltonian in (2.9), one can write the

final wave function Ψ(tf ) as a superposition of stationary scattering states
χ(E;−→r ,

−→
R ) which form solutions for (2.7):

Ψ(t = tf ;
−→r ,

−→
R ) =

∫ ∞

−∞
χ(E;−→r ,

−→
R ) · e−iEtf dE (2.20)



222

32 Chapter 2. Methods

or when Fourier transformed as:

χ(E;−→r ,
−→
R ) =

1

2π

∫ ∞

−∞
Ψ(t;−→r ,

−→
R ) · eiEt dt. (2.21)

The initial wave-packet

As the initial wave-packet describing the incoming molecule will be far away
from the surface, well out of the interaction range with the surface, it is
convenient to split the full (6D) potential into two parts:

V (−→r ,
−→
R ) = Vgas(

−→r ) + Vint(
−→r ,

−→
R ). (2.22)

Here the gas-phase part of the potential (Vgas) is independent of the c.m.
coordinates relative to the surface, while the interaction part (Vint) purely
describes the interaction with the surface. Now combining this with (2.9), we
can rewrite the Hamiltonian for the molecule in the gas-phase

lim
Z→∞

Ĥnuc(
−→r ,

−→
R ) = Ĥgas(

−→r ,
−→
R ) = − 1

2M
∇2−→

R
+ Ĥvib+ Ĥrot+Vgas(

−→r ) (2.23)

where the c.m. coordinates are now only included in the Laplacian for the
molecule.

With this separation we now get the eigenfunctions of the gas-phase Hamil-
tonian (Ĥgas) as the product of a plane-wave in

−→
R and the wave function

describing the internal motion of the molecule, expressed by the rovibrational
eigenstates of the diatomic molecule κ (Φκ(

−→r )):

Ĥgas(
−→r ,

−→
R )

[
ei
−→
k0

−→
R · Φκ(

−→r )
]
=

(
Ekin(

−→
k0) + Eκ

)[
ei
−→
k0

−→
R · Φκ(

−→r )
]

(2.24)

with Ekin(
−→
k0) the kinetic energy of the molecule corresponding to its momentum

vector
−→
k0 = (kx0 , k

y
0 , k

z
0), and Eκ the eigen energy of rovibrational state κ.

By including a linear superposition of plane-waves in the Z-direction (normal
to the surface), we can now construct our full initial wave-packet

Ψ(t = 0;−→r ,
−→
R ) = Φκ(

−→r ) · eikX0 X · eikY0 Y ·
∫ ∞

−∞
b(kZ0 )e

ikZ0 Z dkZ0 (2.25)

with b(kZ0 ) a Gaussian shaped momentum distribution of the form

b(kZ0 ) =
(2σ2
π

) 1
4
exp[−2σ(kav − kZ0 )

2 + i(kav − kZ0 )Z0]. (2.26)
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Here kav describes the average momentum described by the Gaussian, with a
half-width parameter σ and centered around the initial coordinate in Z (Z0). By
appropriately choosing these parameters, a wave-packet can be constructed that
describes molecules in an initial rovibrational state κ moving towards the surface
with a range of incidence energies. Care should be taken to ensure no positive
momentum (away from the surface) is included in the initial wave-packet.

Representing the wave-packet

In the collocation method, which is described in more detail in [17] and [18],
the wave function [Ψ(−→r ) ] is approximated by a set of N linearly independent
basis functions [fn(−→r )], and expansion coefficients [cn]

Ψ(−→r ) ≈
N∑

n=1

cnfn(
−→r ). (2.27)

By defining the wave function only at specific grid points [Ψi = Ψ(−→r i)], this
can be rewritten to

Ψm =
∑
m

Fm,ncn (2.28)

with Fm,n = fn(
−→r m), which we can also rewrite to

−→
Ψ = f−→c . (2.29)

Here f describes an N -dimensional square matrix that transforms the coefficient
vector −→c , known as the finite basis representation[19, 20], into the wave function
as defined on the grid points

−→
Ψ , generally referred to as the discrete variable

representation (DVR)[21, 22]. This technique is especially powerful as one can
use cleverly chosen basis functions (fn) such that one can describe actions of
non-local operators [Ô(−→r )] on the full wave function [Ψ(−→r )] in ways that are
computationally very efficient.

Fourier representation

One such form for the basis functions fn is that of the plane-wave functions
(eikr), as used in section 2.1.3, to define the wave-packet along the lattice
vectors[17]. Similarly they are used in the Fourier grid Hamiltonian method,
discussed later in section 2.2.1. Plane-waves are especially interesting as they
are eigenfunctions of the Laplacian with fairly simple eigenvalues −k2 and they
are mutually orthogonal for a series of N equally spaced discrete points[22].



222

34 Chapter 2. Methods

Furthermore, their transformation matrix has the elements fmn = e
2iπmn

N , which
when applied perform a Fourier transform from the coordinate space in rn to the
momentum space km. This is particularly convenient due to the availability of
well-scaling fast Fourier transform (FFT) routines[23, 24], as switching between
the coordinate and momentum space as needed allows for very efficient time
propagation of the wave function (ψ), which we will see in the next section.

Several other representations used as shown in (2.25) will not be discussed.
Instead the reader is referred to Ref. [22] which describes each of them in detail.

Propagating the wave-packet

With the initial wave-packet as written in (2.25), (2.19) can now be used to
propagate the wave function forward in time. For the chapters 4, 5 and 6, this
was done using the split-operator (SPO) method as described by Feit, Fleck
and Steiger[25]:

Ψ(t0 +∆t;−→r ,
−→
R ) = exp

[
− i

2
K̂(−→r ,

−→
R )∆t

]
exp

[
− i

2
Ĥrot(

−→r )∆t
]

(2.30)

exp
[
− iV̂ (−→r ,

−→
R )∆t

]
exp

[
− i

2
Ĥrot(

−→r )∆t
]

exp
[
− i

2
K̂(−→r ,

−→
R )∆t

]
Ψ(t0;

−→r ,
−→
R ) +O[(∆t)3],

with K̂(−→r ,
−→
R ) = − 1

2M∇2−→
R
+ Ĥvib(

−→r ). With this step wise propagation, first
a half-step is done for the free particle propagation, followed by a separate
half-step for the rotation of the molecule, and then the full action of the external
potential. Subsequently another half-step is done for the rotation and finally
the other half-step of the free particle. By transforming between the momentum
space (for K̂) and the coordinate space (for V̂ ), each of these steps can be very
efficiently applied as a multiplication, as was introduced in section 2.1.3. The
rotation of the molecule will have to be treated separately, as it contains both
potential (in r) and kinetic elements in the spherical coordinate system we use.

However, due to this symmetrical splitting and the non-commutativity of
K̂ and V̂ an error is accumulated in the order of O[(∆t)3], with[17]

err ≈ max
(
− i

∆t3

8
[V̂ , [V̂ , K̂]],−i∆t

3

8
[K̂, [K̂, V̂ ]]

)
. (2.31)

Therefore, while very convenient as a time propagation procedure, care should
be taken to not take too large time steps, as we will see in chapters 5 and 6.



222

2.1. Quantum dynamics 35

Analysing the wave-packet

To obtain scattering probabilities from the wave packet during propagation,
scattering matrix (S-matrix) elements are calculated using the scattering matrix
amplitude formalism of Balint-Kurti and co-workers[26, 27]. Although this
approach was originally designed for gas-phase scattering, it was adapted to
work with surfaces as well[28]. The S-matrix elements Sκ→κ′nm(E) describe
the (energy dependent) scattering of the diatomic in state κ, to final state κ′,
with the diffraction state (n,m), obtained from:

Sκ→κ′nm(E) = δn,0δm,0δκ′,κ · e−2ikZ0 Zana (2.32)

− e−2ikZ
κ′nm

Zana

Mb(−kZ0 )

(kZ0 kZκ′nm

2π

) 1
2
AZana

κ′nm(E)

with
AZana

κ′nm(E) =

∫ ∞

0
CZana
κ′nm(t) · eiEt dt, (2.33)

the coefficients CZana
κ′nm(t) are given by

CZana
κ′nm(t) =

〈
e
i(kX0 +n 2π

LX
)X+i(kY0 +n 2π

LY
)Y

(LXLY )
1
2

· Φκ′(−→r )

∣∣∣∣∣Ψ(t;−→r ,
−→
R )|Z=Zana

〉
.

(2.34)
CZana
κ′nm(t) describe the scattered wave function projected onto the rovibrational

states of the free molecule and the molecular diffraction states at the analysis
line in Zana, with LX and LY the length of the surface unit cell. The first
term on the right-hand side of (2.32) is included to cancel the contribution
of the incident wave function to the time integral of (2.33). The state-to-
state scattering probabilities [Pκ→κ′nm(E)] can now be computed at a specific
incidence energy (E) using

Pκ→κ′nm(E) = |Sκ→κ′nm(E)|2. (2.35)

The reaction probability for an initial rovibrational state κ, at incidence energy
E, is computed simply as

P κ
reac(E) = 1−

∑
κ′nm

Pκ→κ′nm(E). (2.36)

The total reaction probability is given as 1 minus the sum of the scattering
probabilities Pκ→κ′nm.
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Another method of obtaining the reaction probability is the reactive flux
analysis method. Here we define a flux

ρ(E;κ;
−→
R, θ, ϕ) =

2πM

|kz|µ
· Im

[
χ∗(E;

−→
R, rana, θ, ϕ) ·

∂χ(E;
−→
R, rana, θ, ϕ)

∂r

]∣∣∣
r=rana

(2.37)
through a specific plane given by r = rana[29–31]. By integrating over the
other degrees-of-freedom (

−→
R , θ, ϕ), one can obtain the reaction probability

for a specific energy E, and rovibrational state κ, assuming the plane in r at
rana was properly placed in the exit channel of the PES. Furthermore, one can
also integrate over only portions of X and Y , yielding site-specific reaction
probabilities[32].

Absorbing the wave-packet

Once a part of the wave function has reacted or scattered and it has been
analysed, it is computationally helpful to completely remove it from the grid.
This will remove the storage requirements for the wave function in large Z (and
r) and therefore reduce the total amount of memory needed. By including an
imaginary potential Vopt = −iVquad(Z) into the potential operator V̂ of (2.9)
the wave-packet can be absorbed on the grid after passing the analysis plane in
Zana. Here Vquad is a purely real function of Z, with the quadratic form

Vq(Z) =

A
(

Z − Zmin

Zmax − Zmin

)2

for Zmin < Z < Zmax

0 for Z < Zmin

. (2.38)

Zmin is best chosen to be a grid point right after the analysis line, while Zmax

is simply the end of the grid. A similar complex absorbing potential (CAP) is
constructed on the grid in r, a few grid points behind the analysis line at rana
if it is included.

2.2 Classical dynamics

Instead of constructing a wave-packet and propagating it in time using our
PES, which is obtained by solving the electronic Schrödinger equation (2.4)
using DFT, one can also turn to much simpler classical dynamics. Here the
dynamics of the molecule interacting with the surface is described purely as that
of a (point) particle moving through the potential field. Turning to classical
mechanics, the expressions most suited for the works in this thesis are those
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derived by Hamilton from the Langrangian equations

d−→q
dt

=
∂H

∂−→p
and

d−→p
dt

= −∂H
∂−→q

, (2.39)

where −→q and −→p describe respectively the coordinates and momentum vector
of the system, and H is the classical Hamiltonian. Thus by choosing a suitable
Hamiltonian and finding its partial derivatives with respect to to the coordinates,
one can find the change in momentum in time. The Hamiltonian describing
each atom separately takes on the form of a kinetic part T and a potential part
V with

H(−→q ,−→p ) =
−→p 2

2m︸︷︷︸
T

+V (−→q ), (2.40)

where the kinetic part depends only on the momenta of each of the particles
(−→p ), while the potential part only depends on the coordinates of the particles
(−→q ), see for example also (2.8) which has the same components. Combining
(2.39) and (2.40), we find that we can express the change in the position in
time (also known as the velocity v) as

d−→q
dt

=
∂T

∂−→p
=

−→p
m

= −→v (2.41)

while the change in momentum over time is described by

d−→p
dt

= −∂V (−→q )
∂−→q

, (2.42)

or in words by the negative of the gradient of the potential relative to the
coordinates, for our system described by the PES. In Newtonian mechanics
one similarly defines the force

−→
F as the change in momentum over time which,

assuming −→p = m−→v with a constant mass m, can be rewritten to

−→
F =

d−→p
dt

= m
d−→v
dt

= m−→a , (2.43)

with −→a equal to the acceleration. This is commonly known as Newton’s second
law of motion.
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2.2.1 Quasi-classical dynamics

To better reproduce the quantum dynamical behaviour using purely classical
dynamics, one can also turn to quasi-classical dynamics (QCD). While the
molecules here are treated fully classical, initial energies and momenta are
chosen in such a way that they correspond to those one would expect from a
quantum dynamical approach. In this thesis, initial rovibrational energies are
determined using the Fourier grid Hamiltonian (FGH) method, as outlined by
Marston and Balint-Kurti[33]. It relies on discretizing the coordinate space, for
this work the gas-phase potential of the diatomic molecule, and then solving
the Schrödinger equation and obtaining the eigen energies for the different
rovibrational states. It makes use of a fast Fourier transform (FFT)[23, 24] to
compute the Hamiltonian matrix, as the kinetic energy term is easier computed
in momentum space (see section 2.1.3). This Hamiltonian matrix is subsequently
diagonalised.

2.2.2 Initial state selection

The initial position of the diatomic molecule’s c.m. is chosen uniformly between
0 and a along the lattice vectors u[= x− y/

√
3] and v[= 2y/

√
3 for the (111)

surface slab], with a the lattice constant of the surface slab. The diatomic
molecule is placed far enough away from the surface in Z to be considered in
the gas-phase (in this thesis always at least 7 Å). Initial vibrational distances
and momenta (in r) are obtained through a constant time step propagation
for one full vibrational cycle of the molecule in the gas-phase, which yields the
quasi-classical distribution of these parameters. The molecular angles relative to
the surface, θ and ϕ (see 2.1), are randomly chosen from a uniform distribution
on the sphere with cos(θ) from −1 to 1 and ϕ from 0 to 2π, respectively. Only
calculations for single initial vibrational (v) and rotational (J) states are used
for the chapters in this thesis. Internal angular velocities are chosen according
to the quantized angular momentum L2 = J(J + 1)h̄2, while the angle θL
between the angular momentum vector and the surface normal is constrained
by θL = π for J = 0 and cos(θL) = mJ/

√
J(J + 1) if J ̸= 0, where J is the

initial rotational state of the molecule. The initial rotational mJ states are
chosen with equal probability between −J and J, with the number of quasi-
classical trajectories increased to ensure each mJ state is sampled the same
amount of times.
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2.2.3 Integration methods

Bulirsch-Stoer

With the initial state selected, the system is propagated forward in time using
the Bulirsch-Stoer (BuS) predictor-corrector algorithm[34], according to (2.39)
and (2.40). The BuS algorithm combines the Richardson extrapolation[35] and
the modified mid-point method to accurately estimate solutions to ordinary
differential equations, such as (2.39), while not providing very large compu-
tational loads. Here one first chooses some large time step B, which is then
subdivided into smaller time step steps bn. Using Richardson extrapolation
and starting from the initial position vector −→x (t), the new positions [−→x (t+B)]
are estimated by determining the position values for each −→x (t + bn), fitting
to some analytical form, and then extrapolating to infinitely small sub time
steps (bn → 0, n→ ∞). Initially starting with two substeps and using rational
functions to fit, the BuS algorithm continues to add two more substeps until
the extrapolation to infinite substeps is found to have a small enough error to
be considered accurate, or a maximum number of iterations (imax) is passed
(in this thesis imax = 9). If the desired accuracy is not reached within imax

iterations, B is halved and the entire sequence is repeated. If the desired
accuracy is achieved, a new B can also be estimated based on the number of
iterations needed. For this thesis, Bnew = 1.5B was used when the integration
was completed within 6 iterations, or Bnew = 0.6i−6 · 1.5B when it was not.

Velocity-Verlet

Another integration method used in chapter 3 is the velocity-Verlet (VV)
algorithm, first described by Verlet[36]. In this simple three step algorithm,
one first advances the velocities of the system for half a time step ∆t using

−→v (t+ ∆t

2
) = −→v (t) +−→a (t)∆t

2
, (2.44)

then the positions are advanced the full time step:

−→x (t+∆t) = −→x (t) +−→v (t+ ∆t

2
), (2.45)

and then finally the second half-step is computed, using a new acceleration −→a
obtained from the potential at the new positions x(t+∆t):

−→v (t+∆t) = −→v (t+ ∆t

2
) +−→a (t+∆t)

∆t

2
. (2.46)
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2.2.4 Final state binning

For the trajectories in this thesis, propagation ends when the two atoms move
more than a specific distance apart from each other, or when Z is large enough
that the molecule can be considered to be in the gas-phase again. As the focus
of this thesis will be on H2 and D2, these parameters are set to 2.25 Å and 7
Å for the r and Z distances, respectively. The final rovibrational state of the
diatomic molecules that are scattered can be determined using several simple
binning methods. First the modulus of the classical angular momentum (|Lf |)
is calculated according to

|Lf |2 = pθ
2 +

pϕ
2

sin2 θ
(2.47)

where pθ and pϕ describe the momenta conjugate to θ and ϕ which describe the
orientation of the molecule relative of the surface (see Fig. 2.1). This angular
momentum is then used to determine a classical “rotational state”

Jf =

√
1 + 4|Lf |2 − 1

2
(2.48)

which is found by equating |Lf |2 to J(J + 1).
Next this classical state is binned using one of three methods, with the

floor and weighted methods only used in chapter 5. Using the standard binning
method, which is how the binning was generally performed in the previous SCM
studies, the rotational state is binned to the closest allowed J state, keeping
in mind the selection rule for the rotational state of our diatomic molecule:
∆J = ±2. With the weighted binning method the integer rotational state
closest to Jf is chosen and given a weight of Wi = 2 when it is allowed or
Wi = 0 when it is not allowed, with i for the ith trajectory performed[37]. This
approach effectively ignores any trajectory with a disallowed transition while
counting those scattered trajectories with allowed final rotational states twice.
As a consequence this method will significantly affect reaction and scattering
probabilities if the final rotational states of the scattered molecules are not
evenly distributed between the allowed and disallowed states. Finally, with the
floor binning method the classical rotational state Jf is rounded downwards
towards the first allowed J state, keeping in mind the selection rule. For both
the standard and floor binning, Wi = 1 is always chosen for every trajectory.
A weight of Wi = 1 is also used for the reacted trajectories of the weighted
binning method.
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With the rotational state (J) determined, the vibrational state (v) is cho-
sen by finding the rovibrational state which is closest in total rovibrational
energy to the states allowed by the binned rotational state. Trajectories are
considered rovibrationally elastically scattered when the final rovibrational
state of diatomic molecule is binned to the same state as its initial state, and
rovibrationally inelastically when the binned final state is not the same as the
initial rovibrational state. The mJ state is not taken into account at all for
the final state, as it is degenerate with the other possible mJ states within the
same (v, J) level.

Reaction (and scattering) probabilities are finally determined by

Preac =

∑
reacted

W∑
total

W
(2.49)

with W being the weight of each individual trajectory. For the standard and
floor binning methods, this procedure amounts to dividing the number of reacted
(or scattered) trajectories by the total number of trajectories performed.

2.3 Potentials for surface displacements

2.3.1 Static corrugation model

The static corrugation model (SCM) was designed to include surface tempera-
ture effects due to surface atom displacement on the BOSS dynamics of reactive
scattering. This is achieved by expanding the description of the PES into three
terms[38], with the first one being the the potential for the ideal, static surface:
VDFT (

−→q id,
−→r ). The two additional terms Vstrain and Vcoup are included to

describe the internal strain of the surface due to distortion, and the change
in molecule-surface interaction due to surface atom displacement, respectively.
Thus the total PES can be described using

VDFT (
−→q ,−→r ) = VDFT (

−→q id,−→r ) + Vcoup(
−→q id → −→q ,−→r ) + Vstrain(

−→q id → −→q )
(2.50)

where −→q describes the positions of all surface atoms, −→q id the ideal lattice
positions of all surface atoms, and −→r the positions of the adsorbed atoms.
−→r gas describes the position of the small molecule for Z → ∞, where no
interaction with the surface is expected. To ensure the coupling potential
describes the change in energy of just the molecule-surface interaction, due to
the surface atoms being displaced from their ideal crystal lattice positions, the
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coupling potential is fitted using

Vcoup(
−→q id → −→q ,−→r ) = [VDFT (

−→q ,−→r ) − VDFT (
−→q id,−→r )]

− [VDFT (
−→q ,−→r gas)− VDFT (

−→q id,−→r gas)].
(2.51)

Here the change in internal (strain) energy of the surface due these displacements
is subtracted from the change in interaction energy of the molecule with the
surface. This strain potential is fitted separately using

Vstrain(
−→q id → −→q ) = VDFT (

−→q ,−→r gas)− VDFT (
−→q id,−→r gas) (2.52)

and added back to the full potential in (2.50). With this formulation, the changes
in interaction between the molecule and the surface, due to the displacement
of surface atoms, is described separately from the changes in interaction of the
surface atoms with each other.

As the name already suggests, the SCM also relies on the sudden approx-
imation introduced in section 1.2. Here the motion of the surface atoms is
assumed to be slow enough relative to the incoming diatomic molecule that the
surface can be approximated as a thermally distorted, but static, surface. One
further assumes that the interaction time between the molecule and the surface
is short, while the mass mismatch is large, which reduces the influence of energy
exchange between the molecule and the surface on the interaction. Under this
assumption of a static surface Vstrain can be neglected during dynamics, as
it will be a constant value (and therefore its derivative is 0). Thus the full
dimensional DFT PES for the thermally distorted system can be approximated
as

VDFT (
−→q ,−→r ) ≈ VSCM (−→q id → −→q ,−→r ) = VDFT (

−→q id,−→r )
+ Vcoup(

−→q id → −→q ,−→r )
(2.53)

For VDFT (
−→q id,−→r ) the CRP as discussed in section 2.1.2 is used, although

other approaches should also allow for accurate results.
The main focus of the initial work by Wijzenbroek, Spiering and Somers was

obtaining a continuous description of Vcoup for the H2 on Cu(111) system[38, 39].
This was achieved through interpolation of a collection of DFT data, similar to
the CRP approach, and fitting this to

Vcoup
(−→r ,−→q id → −→q

)
=

−→r∑
i

−→q∑
j

[
VH-Cu(|−→ri −−→qj |)− VH-Cu(|−→ri −−→qj id|)

]
(2.54)
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with −→r i the positions of adsorbate i, and −→q j the position of surface atom j
and where

VH-Cu(R) = (1− s(R))V (R) + s(R)V (P7) (2.55)

with

V (R) = −e−P4(R−P5) ·
( 3∑

k=0

Pk(R− P5)
k

)
(2.56)

and

s(R) =


0 for R < P6

1

2
cos

(
π(R− P7)

P7 − P6

)
+

1

2
for P6 ≤ R ≤ P7

1 for R > P7

. (2.57)

The SCM was later expanded to include an effective three-body potential,
by making each fitting parameter Pi linearly dependent on the the distance
between the two adsorbates rH−H :

Pi =


Pi,ar

min
H−H + Pi,b for rH−H < rmin

H−H

Pi,arH−H + Pi,b for rmin
H−H ≤ rH−H ≤ rmax

H−H

Pi,ar
max
H−H + Pi,b for rH−H > rmax

H−H

. (2.58)

Here the cut-off values rmax
H−H and rmin

H−H are obtained from the largest and
smallest values of rH−H , respectively, used during the fitting procedures.

To account for thermal expansion effects while using the CRP potential
of the system for an ideal lattice, the molecule’s c.m. vectors are linearly
contracted or stretched along the lattice vectors u and v (see Fig. 2.1). By
stretching along the lattice vectors instead of the x- or y-vectors, accidental
introduction of extra artificial vibrational or rotational strain is avoided. Thus
the full effective SCM potential becomes

VSCM (−→r ,−→q ,−→q id) = VCRP (
−→r id(−→r ),−→q id)

+

−→r∑
i

−→q∑
j

[
VH-Cu(|−→ri −−→qj |)− VH-Cu(|−→r id(−→r )−−→qj id|)

]
(2.59)

where −→r id(−→r ) scales the molecular c.m. vectors along the lattice vectors[39].
Although the SCM was fitted only for the H2/Cu(111) system, it can be

easily employed to also describe other diatomics reacting on other surfaces.
Here the most important aspects would be the mass mismatch and interaction
time between the molecule and the surface. Both a larger mass mismatch
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and a shorter interaction time would reduce the likelihood of energy exchange
playing a significant role in the reaction process, increasing the validity of the
sudden approximation the SCM is based on. Equations (2.50), (2.51), and
(2.52) are similarly general enough to be applied to molecules of more than two
atoms interacting with a thermally distorted surface, although new forms of
the coupling potential would be required to obtain proper fits.

Thermally distorted surface generation

One important aspect of implementing the SCM is obtaining (accurate) rep-
resentations of thermally distorted surface slabs of the surface of interest, in
this thesis Cu(111). Initial work in designing the SCM achieved this through
random displacements of each individual atom from its ideal lattice position,
based on a bulk-like displacement uniform in the three Cartesian coordinates, in
this thesis referred to as RD-SCM[38, 39]. The magnitude of this displacement
is randomly selected from a Gaussian distribution with a standard deviation of

σ =

√
3B

8π2
(2.60)

with B the surface temperature dependent Debye-Waller factor, obtained from
fits to experimental inelastic neutron scattering data[40]. To also include the
thermal expansion of the surface, surface atom slab positions are shifted along
the lattice vectors based on an experimental thermal expansion coefficient[41].
The inter-layer distances, found in the z-direction of the slab, are taken directly
from experimental results[42].

Another approach to generating these thermally distorted surface slabs
is simple molecular dynamics, using some form of accurate potential, in the
micro-canonical ensemble. However, care should be taken to stay above the
Debye temperature of the surface when applying such a classical method (≈ 300
K for Cu). At surface temperatures below this “classical” limit the erroneous
use of Maxwell-Boltzmann statistics (instead of Bose-Einstein statistics) and
zero-point energy leaking, due to an applied thermostat, will influence the final
surface atom positions obtained.

In Chapter 3 the generation of a database of thermally distorted surface
slabs [of Cu(111)] at a modelled surface temperature of 925 K will be discussed
in detail, which is then also used for the three subsequent chapters. Here an
embedded-atom method (EAM) potential was used to describe the thermal
surface motion, thus the approach will be referred to as the EAM-SCM.
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2.3.2 Embedded-atom method

First described by Daw and Baskes in 1983[43], the EAM has been a powerful
tool for theoretical surface scientists. The EAM is based on the quasiatom[44],
or effective medium[45], approach which was designed to describe impurities in
metals[46]. Here an impurity, such as a small atom, embedded in the metal is
modelled as a particle in a uniform environment of electron density. The EAM
instead takes it one step further, treating each surface atom as the “impurity”
in an electron density obtained from contributions of each of the neighbouring
atoms. Each atom would thus get an embedding energy, which is defined as
the difference in energy between the atom inside the uniform electron density
associated with its neighbours, and that of the same atom in a vacuum. The
total sum of each individual atomic energy is then approximated as the total
(potential) energy of the metal:

Etot =
∑
i

Fi(ni) (2.61)

where Fi is the so-called embedding energy of atom i, and ni the density this
atom experiences at position ri.

This initial approach to the EAM did not perform as well as was expected,
yielding unrealistic properties for solids due to the neglect of core-core repulsion
and the “assumption of extreme locality”[46]. Thus a second, short-range pair
interaction was added to the model to yield a total energy given by

Etot =
∑
i

[
Fi(ni) +

1

2

∑
j ̸=i

ϕij(Rij)
]
. (2.62)

Here ϕij describes the pair interaction potential between atoms i and j, Rij

being the distance between the two. In this work, we will use another pair
interaction to approximate the density ni experienced by atom i using

ni =
∑
j ̸=i

ρij(Rij) (2.63)

where ρi yields the density contribution of atom j to the density of atom i.

2.3.3 Dynamic corrugation model

While the SRP48 DFT functional, used for the Cu(111) CRP PES and the
SCM coupling potential used in this thesis, has been shown to reproduce H2

dissociation on the Cu(111) surface to within chemical accuracy[47, 48], it is
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most likely not too suitable for describing bulk Cu. The EAM on the other
hand is very accurate in describing the Cu system, both the bulk and the
surface, itself[49]. Therefore, by combining the SCM expressions (2.50) and
(2.59) with the EAM potential of (2.62), it is possible to fully describe the
system including the dynamics of the surface:

VDCM (−→r ,−→q ,−→q id) = VCRP (
−→r id(−→r ),−→q id)

+

−→r∑
i

−→q∑
j

[
VH-Cu(|−→ri −−→qj |)− VH-Cu(|−→r id(−→r )−−→qj id|)

]

+

−→q∑
k

[
Fk(

−→q∑
l ̸=k

ρkl(|−→q k −−→q l|)) +
1

2

−→q∑
l ̸=k

ϕkl(|−→q k −−→q l|)
]
.

(2.64)
While this dynamic corrugation model (DCM) is much more computationally
expensive, massively increasing the number of DoF of the system compared
to the SCM, it also allows for energy exchange between the molecule and the
surface. Furthermore, it also allows for other dynamic effects that could affect
dissociation probabilities, such as a dynamic puckering effect of surface atoms
moving towards the incoming H2. As both the EAM-SCM and EAM-DCM
are based on exactly the same potentials, with only one allowing the surface
to move, it is also an excellent tool to investigate the (lack of) effect these
additional DoF have on the many observables that can be calculated for the H2

on Cu(111) system, some of which we will discuss in section 2.4. This then will
also allow for a validation of the sudden approximation that lies at the basis of
the SCM.

2.4 Computation of other observables

2.4.1 Rotational quadrupole alignment parameter

The rotational quadrupole alignment parameter (RQAP) [A(2)
0 (J)] is a measure

of preference for a diatomic molecule to dissociate in particular mJ states.
If this parameter is positive, dissociating molecules prefer to react rotating
parallel to the surface (|mJ | = J; "helicopter"), while negative values indicate a
preference for reaction of molecules with a rotation perpendicular to the surface
(|mJ | = 0; "cartwheel"). A value of 0 indicates no preference for either.

The RQAP is defined as

A
(2)
0 ≡ ⟨3 cos2 θL − 1⟩ (2.65)
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with θL the angle between the angular momentum vector and the surface
normal. It can also be computed through

A
(2)
0 (v, J) =

∑
mJ

Pstick(v, J,mJ)
(

3m2
J

J(J+1) − 1
)

∑
mJ

Pstick(v, J,mJ)
, (2.66)

with Pstick(v, J,mJ) being the sticking probability for the specific rovibrational
state.

Assuming direct inversion under detailed balance the RQAP can also be
measured experimentally, although there are no studies available for the H2

on Cu(111) system to our knowledge. Experimentally obtained RQAPs are
available for the D2/Cu(111) system[50–52].

2.4.2 Simulating time-of-flight spectra

To more directly compare to the time-of-flight (ToF) spectra obtained from
the state-selective desorption experiments, we can also directly simulate ToF
spectra from our dissociation curves. Mirroring the experimental approach as
described in Ref. [53], we make use of direct inversion under detailed balance to
directly relate the dissociative adsorption results to the ToF spectra obtained
from associative desorption experiments. Here we relate the intensity of the ToF
spectrum to the the sticking probability function multiplied by a flux-weighted
velocity distribution expressed in the time domain, accounting for a t′

x0
term

due to the detection method used:

I(t′)dt′ = K · C(t′) · exp
(−Ekin[t

′]

2kbTs

)(x0
t′

)4
· Pstick(Ekin[t

′]) dt′. (2.67)

Here kb is the Boltzmann constant, Ts the surface temperature, K a proportion-
ality constant, Ekin = m

(
x0
t′

)2, and t′ = t− tshift. A cutoff function [C(t′)] is
also included, which models the experimental decrease in ion detection efficiency
as the kinetic energy decreases[54]. Here t (tshift) and x0 describe the travel
time in (after leaving) the field-free region, and the length of this field-free region
in the detector of the experimental setup that is being simulated, respectively.
Using this expression the assumption is made that all molecules desorb parallel
to the surface normal, completely neglecting any off-normal contribution to
the final signal. This means we can set the kinetic energy (Ekin) equal to the
kinetic energy normal to the surface (En). In Chapter 3 comparisons will be
made to work where this does not hold, and instead the desorbed molecules
are modelled to desorb in a cone with the surface as a base. This requires an
additional term, integrating over the expected aperature of the cone and the
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azimuthal angle, as well as slight modifications in the calculation of the kinetic
energy Ekin and the length of the field-free region, which is well described in
Ref. [55]. In Chapter 6 comparisons are made to the more recent experimental
work of Kaufmann et al. on H2, D2, and HD, where this angular averaging can
be fully neglected[54].

Two cutoff functions are used throughout this thesis. In Chapter 3 it is of a
tanh form:

C(t′) = 1− tanh
( t′ − tc

tw

)
(2.68)

with tc a cutoff parameter, and tw a width parameter which governs how fast
the signal decays, matching that of earlier work[55]. The cutoff function used
in Chapter 6 is instead of an exponential form,

C(Ekin) = 1− e−Eslope(Ekin−Emin) for Ekin > Emin, (2.69)

based on the kinetic energy of the molecule, as was used in a more recent
experimental study[54]. The cutoff parameters Eslope, which governs how fast
the signal decays, and Emin, which determines the minimal energy of the
molecule needed for it to be experimentally detectable, were obtained from the
same experimental study.

To simulate the ToF spectra using equation (2.67), we require a continuous
representation of the dissociation curves [Pstick(En)], which we obtained from
fitting to several functional forms as used in chapters 3 and 6. The fitting
method used was that of Levenberg-Marquardt[56, 57], as implemented in the
LMFIT package[58]. The first is the error function (ERF) form

Pstick(En) =
A

2

[
1 + erf

(En − E0

W

)]
, (2.70)

with A, E0 and W equal to the saturation value, the energy at half saturation,
and the width of the curve respectively. This symmetric sigmoidal function is
one of the most used functional forms for fitting dissociation curves, both for
theoretical and experimental works, which ensures a large amount of data to
compare to.

Next comes the generalized logistic function (LGS), which is the only
function used in Chapter 3:

Pstick(En) =
A(

1 + ν exp
[
− E−B

C

]) 1
ν

. (2.71)

The LGS provides a flexible root to derive several other functional forms. Here
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A is again the saturation parameter, B the effective barrier height parameter,
C the width parameter, and ν a parameter which influences the symmetry
of the curve. Several other functional forms can be found by picking specific
values for ν, with of particular note the ordinary logistic function (ν = 1) and
the Gompertz function (GMP, ν → 0+) given by

Pstick(En) = A · exp
[
− exp

(
− En −B

C

)]
, (2.72)

where A, B and C similarly describe the saturation value, the energy at half
saturation, and the width of the curve, respectively. The GMP function in
particular has a very asymmetric sigmoidal form, with a much more gradual
increase towards the saturation value compared to the initial curve onset.

Finally, a combination of Gompertz function and the LGS function (with
ν = 1), in previous studies used as the five-parameter function (FPC), is given
by

Pstick(En) =
A · exp

[
− exp

(
− En−B

C

)]
1 + exp

(
− En−B1

C1

) . (2.73)

Again A, B and C similarly describe the saturation value, the energy at half
saturation, and the width of the curve, respectively. The two additional terms
B1 and C1 increase the flexibility of the function at the cost of adding two
additional parameters.

2.4.3 Threshold offset and efficacies

Using the (fitted) state-selective results, it is also possible to obtain both
rotational and vibrational efficacies, as discussed in Chapter 6. These efficacies
indicate the ability of rotational and vibrational energy of the diatomic molecule
to promote reaction with the surface, which is often available from experiments.

To best obtain these values this thesis will make use of the “threshold value”
method by Shuai et al.[59]. With this method the shift in translational energy
[∆S(v, J)] of the fitted dissociation curves [Pstick(v, J ;Ekin)] with respect to
the results of the rovibrational ground state [Pstick(v = 0, J = 0;Ekin)] is
calculated by minimising the root-mean-square (RMS) difference between the
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curves (or the logarithm of the curves) of the two states

RMS[v, J,∆S(v, J)] =
[ 1
n

n∑
Ekin

(
Pstick(v, J ; [Ekin −∆S(v, J)])

−Pstick(v = 0, J = 0;Ekin)
)2] 1

2
.

(2.74)

This threshold offset ∆S should then allow for an analysis of the results
independent of the functional form chosen. The offset can also be fit directly
to the sticking probability curves obtained from our dynamics as well as give
us another observable that we can compare directly to the experimental value.
We make use of the Levenberg-Marquardt routine for fitting, minimising the
difference between the sticking curve of the rovibrationally excited state and
that of the rovibrational ground state.

With this offset, one can then directly calculate the rotational

µrot(v, J) =
∆S(v, J)−∆S(v, 0)

Eint(v, J)− Eint(v, 0)
for J > 0 (2.75)

and vibrational

µvib(v, J) =
∆S(v, 0)−∆S(0, 0)

Eint(v, 0)− Eint(0, 0)
for v > 0 (2.76)

efficacies for the (fitted) dissociation curves. The internal energies of the
molecule are again obtained from the FGH method as described in 2.2.1.
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