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Abstract

The PATH (Predictive Approaches to Treatment effect Heterogeneity) Statement was developed to 

promote the conduct of, and provide guidance for, predictive analyses of heterogeneous treatment 

effects (HTE) in clinical trials. The goal of predictive HTE analysis is to provide patient-centered 

estimates of outcome risks with versus without the intervention, taking into account all relevant 

patient attributes simultaneously, to support more personalized clinical decision making than can 

be made based only on an overall average treatment effect. We distinguished two categories of 

predictive HTE approaches (a “risk modeling” and an “effect modeling” approach) and developed 

four sets of guidance statements: 1) criteria to determine when risk modeling approaches are likely 

to identify clinically meaningful HTE; 2) methodological aspects of risk modeling methods; 3) 

considerations for translation to clinical practice; and 4) considerations and caveats in the use of 

effect modeling approaches. We also discuss limitations of these methods and enumerate research 

Corresponding Author: David M Kent, MD, MS, Director, Predictive Analytics and Comparative Effectiveness (PACE) Center, 
Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, 800 Washington St, Box 63, Boston, MA 02111, 
dkent1@tuftsmedicalcenter.org. 

Health Research Alliance
Member Organization Author Manuscript
Ann Intern Med. Author manuscript; available in PMC 2020 December 21.

Published in final edited form as:
Ann Intern Med. 2020 January 07; 172(1): W1–W25. doi:10.7326/M18-3668.H

ealth R
esearch A

lliance A
uthor M

anuscript
H

ealth R
esearch A

lliance A
uthor M

anuscript



priorities for advancing methods designed to generate more personalized evidence. This 

explanation and elaboration document describes the intent and rationale of each recommendation; 

and discusses related analytic considerations, caveats, and reservations.

Keywords

personalized medicine; subgroup analysis; RCTs; heterogeneity of treatment effect; predictive 
analytics

Introduction

In medical care, treatment decisions made by clinicians and patients are generally based 

implicitly or explicitly on predictions of comparative outcome risks under alternative 

treatment conditions. Randomized controlled trials (RCTs), widely accepted as the gold 

standard for determining causal effects, have provided the primary evidence for these 

predictions. However, there has been mounting recognition within Evidence-Based Medicine 

(EBM) of the limitations of RCTs as tools to guide clinical decision making at the individual 

patient level.1–4 Although historically the overall summary result from randomized trials 

(“average treatment effect”) has been the cornerstone of evidence-based clinical decisions, 

there is growing interest in understanding how a treatment’s effect can vary across patients

—a concept described as heterogeneity of treatment effect (HTE).5–11

There is a large literature on the limitations of conventional “one-variable-at-a-time” 

subgroup analyses, which serially divide the trial population into groups (e.g., male versus 

female; old versus young) and examine the contrast in the treatment effect across these 

groups.12–22 The limitations include the risks of false negative and false positive results—

due to low power for statistical interactions, weak prior theory on potential effect modifiers 

and multiplicity.4;10;23–25 These analyses also are incongruent with the way clinical decision 

making occurs at the level of the individual patient, since patients have multiple attributes 

simultaneously that can affect the trade-offs between benefits and harms of the intervention. 

Individual patients therefore may belong to multiple different subgroups, each potentially 

yielding different treatment effect estimates.4;10

The Predictive Approaches to Treatment effect Heterogeneity (PATH) Statement offers 

guidance relevant for “predictive” approaches to HTE analysis26 that are designed to address 

some of the limitations mentioned above. The goal of predictive HTE analysis is to provide 

individualized predictions of treatment effect, specifically defined by the difference between 

expected potential outcome(s) of interest with one intervention versus an alternative.4;8 We 

refer to this as the “individualized treatment effect” and avoid the term “individual treatment 

effects,” since this latter term confusingly suggests that treatment effects can be estimated at 

the person-level; such effects are inherently unobservable in parallel arms clinical trials.10;27 

Individualized treatment effects have also been termed “conditional average treatment 

effects” 28—denoting that they are the averaged treatment effect in a subpopulation (i.e. 

conditioned on a set of covariates). However, for prediction, we are specifically interested in 

identifying the best conditional average treatment effect given all available patient 

characteristics, where ‘best’ is defined as that which best discriminates between future 
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patients who do and do not benefit from a treatment to optimize individual patient decision 

making. By accounting for multiple variables simultaneously, predictive HTE analysis is 

foundational to the concept of personalization in EBM.4

Distinct approaches to PATH

The PATH Statement outlines a set of principles, criteria, and key considerations for 

predictive approaches to HTE in RCTs to provide patient-centered evidence in support of 

decision making. The focus of the PATH Statement guidance is on identifying “clinically 

important HTE,”4;7;10 or variation in the risk difference across patient subgroups sufficient 

to span important decision thresholds, which reflect treatment-related harms and burdens. 

The PATH Statement26 offers guidance on two distinct approaches to predictive HTE 

analysis.4 With a “risk modeling” approach, first, a multivariable model that predicts the risk 

of an outcome (usually the primary study outcome) is identified from external sources (an 

“external model”) or developed directly on the trial population without a term for treatment 

assignment (an “internal model”). This prediction model is then applied to disaggregate 

patients within trials to examine risk-based variation in treatment effects. In a second, “effect 

modeling,” approach, a model is developed on RCT data with inclusion of a treatment 

assignment variable, and potential inclusion of treatment interaction terms. These more 

flexible effect modeling approaches have the potential to improve discrimination of patients 

who do and do not benefit but are especially vulnerable to overfitting and to false discovery 

of promising subgroup effects (or require very large databases well powered for the 

detection of interaction effects)29. Both approaches can be used to predict individualized 

treatment effects, i.e., the difference in expected outcome risks under two alternative 

treatments, conditional on multiple important clinical variables. A fuller introduction to risk 

and effect modeling is presented in prior literature.4

In this PATH Statement Elaboration and Explanation, we expand on the intent and 

motivation (and reservations) regarding the PATH statements, criteria, and considerations 

and caveats. Recommendations are explained in more detail and accompanied by clinical 

applications of selected methods and supporting methodological evidence where relevant. A 

glossary of terms relevant to these methods is also provided in an Appendix.

Clarification of Terms and PATH Statement Scope

The term heterogeneous treatment effects (HTE) has been used in the literature in different 

ways. In this paper, we define the term HTE as non-random variation of treatment effects 

across levels of a covariate (i.e., a patient attribute or a score comprised of multiple 

attributes), as measured on a selected scale, against a clinical outcome. It corresponds to the 

epidemiological concept of effect measure modification, but applies specifically to treatment 

effects. HTE is identified in clinical trials by contrasting treatment effects on a chosen scale 

between subgroups and testing for statistical interactions. Importantly, HTE, effect measure 

modification, and statistical interaction are all ‘scale-dependent’ concepts—that is, their 

presence or absence depends on what scale one selects to measure treatment effect.30 The 

scale dependence of HTE is illustrated in Figure 1, which contrast three different analyses 

(the first showing HTE only on the absolute scale, the second only on the relative scale, and 

the third on both). To underscore the scale dependence of HTE, we also show the results of a 
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risk modeling analysis of the Diabetes Prevention Program (DPP) Trial, which tested 

lifestyle modification and Metformin against usual care for prevention of diabetes (Figure 

2). While only one of the tested therapies shows statistically significant HTE on the relative 

(hazard ratio) scale, both therapies had substantial HTE on the clinically important absolute 

scale. The Appendix Glossary contains definitions of key terms described here and 

elsewhere in the PATH Statement and E&E document.

HTE analysis for causal interaction versus for prediction and decision making

We also note that HTE (and statistical interactions) are used to make two very different 

kinds of inferences: 1) causal inferences (e.g. regarding causal/biological interaction) and 2) 

inferences for clinical decision making. Although the importance of statistical interactions is 

often stressed for HTE analysis, we note that these inferences are only weakly related to the 

presence of “statistically significant HTE.” Statistical interactions should not be confused 

with causal interactions and statistically significant HTE should also not be conflated with 

clinically-important HTE. These issues are described briefly below.

In regression models examining HTE, causal inferences depend on interpretation of model 

inputs (i.e. model covariates). The PATH guidance does not address causal interpretations of 
HTE. These analyses are important for identifying biomarkers that might biologically 

interact with therapy. Interaction on a multiplicative (relative) scale is taken by many as 

being stronger evidence in support of a causal interaction than interaction on an absolute 

scale (although this is by no means a universal view).31–37 Nevertheless, we note that 

treatment-by-covariate interactions (on any scale) are generally descriptive measures of 

association (when the covariate is not randomly assigned, as in a factorial trial), since an 

interacting covariate may be acting as a proxy for many measured and unmeasured variables. 

To attribute a change in the treatment effect to the covariate, one would need to control for 

all differences in these other variables (i.e. observed and unobserved confounders) across 

levels of the subgrouping factor. In any event, demonstrating causal interaction is not 

necessary for “predictive” HTE analyses that seek to target therapies to those who most 

benefit (see immediately below).

In regression models examining HTE, inferences for clinical decision making depend on 

interpretation of model outputs. Because these analyses depend on model outputs, they have 

been referred to as “predictive” HTE analyses.4;8 The PATH guidance is limited to predictive 
approaches to HTE. The goal of predictive HTE analysis is to develop models that can be 

used to predict which of two or more treatments will be better for a particular individual, 

taking into account multiple relevant variables.4;8 Clinically-important HTE occurs when 

variation in the risk difference across patient subgroups spans a decisionally-important 

threshold, which depends on treatment burden (including treatment-related harms and costs). 

It is generally assessed on the absolute scale, regardless of the scale of the analysis. The 

scale dependence of effect heterogeneity is also illustrated in Figure 1. We also note that 

controlling for confounding factors (i.e. those factors that differ between levels of the 

subgrouping variable) is not necessary for prediction.32;38

A new term, “risk magnification,” has recently been coined to describe a method of 

identifying high risk-high benefit patients. 39;40 This approach depends on the observation 
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that relative effects (and in particular those on the odds ratio scale) are often more stable 

than absolute effects.41–43 Risk magnification is distinct from the risk modeling approach 

described here, since it may be applied without any data based on the assumption of a 

contant relative treatment effect. Indeed, the use of the Pooled Cohort Equation44 (also 

known as the Atherosclerotic Cardiovascular Disease [ASCVD] Risk Estimator) to target 

statin therapy to patients at high risk of developing coronary heart disease might be 

described as an application of “risk magnification.” Because many (observed and 

unobserved) patient attributes change across different risk levels, and because the causes of 

the outcomes may also change, the assumption of a consistent treatment effect across all 

levels of risk is a strong assumption that should ideally be examined using randomized data. 

Additionally, the rate of adverse events may also differ across levels of baseline risk (see 

Box B, Recommendation 9). Examining randomized data stratified by a risk model also 

permits these other (non-primary) outcomes to be examined across levels of risk.

PATH Statement Criteria for When Risk Modeling is Likely to be of Value (Box 1)

The below criteria identify the data, modeling, and clinical decisional features common to 

scenarios in which the application of predictive HTE analyses to treatment comparisons is 

likely to be relevant for individualized clinical decision-making. The motivation and 

reservations regarding these criteria (and excluded ones) are elaborated.

1. When there is a well-established overall treatment effect. Subgroup results 

(including risk-based subgroup results) from overall null trials should be 

interpreted cautiously.

When clinical trials are null, there may be a temptation to find subgroups of 

patients in whom the treatment might work. However, clinically important 

subgroup effects discovered through a risk modeling approach are likely to be 

rare when treatment efficacy has not been established. For example, among 18 

null trials in a recent study, risk modeling did not yield clinically informative 

results on any.45 More “aggressive” effect modeling approaches (i.e., those 

reliant on including treatment-by-covariate interaction terms within a prediction 

model) may identify groups of patients that appear to benefit, but such 

approaches also are likely to yield spurious false positive results.28;46 Groups 

may be suggested by pure chance, aggravated by multiple testing, even when 

treatments have no effects whatsoever.29 Thus, predictive HTE analyses are more 

appropriately conducted on interventions for which an overall effect has been 

established. Despite a tendency to focus on any positive subgroup in an 

otherwise null trial, in the absence of strong, a priori clinical justification, 

predictive HTE analyses on null trials are unlikely to lead to reliable clinical 

evidence.

Possible exceptions to this general rule are interventions with known treatment-

related harms that mediate primary outcomes in the treatment arm that might 

nullify an overall effect. For example, ACE inhibitors both cause and prevent 

renal insufficiency; thrombolytics both cause (via hemorrhage) and prevent (via 

reperfusion) functional disability in patients presenting with acute stroke;47 
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carotid surgery can both cause and prevent ischemic stroke in patients with 

carotid stenosis;48 and antiarrhythmic agents both cause and prevent serious 

cardiac arrhythmias.49;50 In these circumstances, even when trials are null overall 

for the average treatment effect, risk models may be helpful in disaggregating 

patients who benefit from those who are harmed, either through application of an 

outcome risk model or a model identifying those patients at high risk for 

treatment-related harm (i.e., for “treatment deselection”).47;51;52 Such an 

approach is possible particularly when the predictors of outcome risk are poorly 

(or negatively) correlated with predictors of the risk of treatment-related harm. 

For example, excluding patients at high risk for thrombolytic-related intracranial 

hemorrhage in stroke (e.g. younger age, lower blood pressure), may uncover 

benefit in patients at lower risk (ref).47

2. When the benefits and harms/burdens of a given intervention are finely balanced 

(i.e. of similar magnitude on average), increasing the sensitivity of the treatment 

decision to risk prediction.

Risk models are more likely to be useful when they support a particular “risk-

sensitive” decision. This criterion corresponds to the observation that a 

prediction model or decision rule has maximum expected utility when the 

decision threshold is at or near the mean population risk.53;54 The threshold 

depends on the clinical context and involves weighing the expected benefits 

against the expected harms or costs of a decision. This assessment may be done 

with formal decision analysis, but more often it is done informally.

That the value of a risk model is higher for decisions where the threshold is near 

the population mean can be intuitively understood by considering that the value 

depends on the proportion of patients for whom the optimal treatment switches 

from the treatment that is better on average to the alternative given their model-

estimated risk, and the benefits that accrue to those switching.55–57 Beyond 

measuring model accuracy, various methods have been proposed as a means to 

evaluate the potential impact that model use might have on a particular decision, 

including risk stratification tables,58 relative utility curves,59 predictiveness 

curves,60 and decision curves.56

This discussion with respect to risk prediction also fully applies to benefit 

prediction. When the overall average benefit in a trial is balanced by the average 

treatment-related harms and costs (i.e. when net benefit is near zero), any 

additional prognostic/predictive information is likely to be especially useful for 

determining the better therapy for a particular patient.

The relative utility of risk prediction when average risk is near versus far from a 

threshold is described schematically in Figure 3, which depicts the distribution of 

expected benefits when a risk model with a C statistic of 0.75 is applied to a 

population with an average risk of 25%. We consider two different treatment 

conditions: 1) a treatment with a moderate average treatment effect (a 15% 

relative risk reduction; 3.8% risk difference) and a slightly favorable average 

benefit-harm trade-off (compared to a minimally clinically important difference 
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of 3%), and 2) a treatment with a large treatment effect (a 50% relative risk 

reduction; 12.5% risk difference) and a clearly favorable average benefit-harm 

tradeoff. All else being equal, the net benefit of risk modeling would be greater 

when the harm-benefit trade-offs are more finely balanced since risk-

stratification would reveal many patients (almost half the trial population in the 

first schematic example) whose risk-specific optimal treatment differs from the 

treatment that is best on average. Preliminary evidence from careful simulations 

or even simple algebraic calculations (see Figure 4A) using plausible 

assumptions may be important in motivating research and should generally be 

included in research proposals and protocols.

We acknowledge that the presentation of a single threshold is a simplification, 

since the threshold is sensitive to patient values and preferences, and because 

treatment harms and burdens are likely to vary across risk groups. For example, 

the CHADS Score (and its variants) are used to target anticoagulation to patients 

with non-valvular atrial fibrillation, but it is also known that higher-CHADS 

Score patients are also at higher risk for anticoagulation-related hemorrhage.61 

Given the potential (positive or negative) correlation between the benefits and 

harms, we recommend that harms should be reported in each risk stratum to 

support strata-specific evaluation of benefit-harm trade-offs (Box B, 
recommendation 9).

3. When treatments are associated with a non-trivial amount of serious harm or 

burden, increasing the importance of careful patient selection.

This criterion is related to the previous two in that HTE will be most important to 

decision making in the presence of a qualitative interaction, meaning that some 

patients benefit while others are harmed. Qualitative interactions, by definition, 

do not arise where treatments are totally innocuous. In the presence of a small 

amount of treatment-related harm, the harm may be quantitatively negligible 

among high risk patients, but sufficient to erode much (or all) of the benefit in 

low risk patients (Figure 4). The importance of risk modeling for HTE in 

treatments with treatment-related harm has been demonstrated in simulation 

studies46;62 and observed empirically for carotid endarterectomy,48 stroke 

prevention in non-valvular atrial fibrillation,63;64 and medical or mechanical 

reperfusion in ST-elevation myocardial infarction.65–67 Treatment-related harm 

may be reflected in the primary outcome, or may be ascertained as a separate 

outcome (e.g., acute kidney injury, major hemorrhage,51;68 serious bone 

fractures).52;69 Risk modeling may also be appropriate for particularly 

burdensome interventions (e.g., major lifestyle commitments,70;71 treatment-

related costs).72;73

4. When several large, randomized, well-conducted clinical trials of contemporary 

interventions are available and appropriate for pooling in individual patient meta-

analysis

Clinical trials are typically powered to detect an overall average treatment effect 

in a population, not estimate effects in relevant subgroups. Very large databases 
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are required for effect modeling, in which multiple individual covariate-by-

treatment interactions are considered. The sample size required to detect a 

subgroup effect is four-fold higher than for a main effect even under favorable 

conditions (e.g., well-balanced subgroups, overall effect and subgroup effect 

similar in size), but will generally be much higher than that.23;24 While a risk 

modeling approach does not depend on the discovery of statistically significant 

covariate-by-treatment interaction terms, greater statistical power improves the 

precision of effect estimation across risk strata, thus improving the ability to 

estimate benefit- harm trade-offs across strata. We also emphasize the need for 

contemporary trials, as they are more likely to be relevant for contemporary 

clinical care. In addition, while such analyses have not been consistently 

successful in the discovery of reliable treatment effect interactions,74 combining 

data is likely to lead to substantial increases in risk heterogeneity in the study 

population (see Criterion 5), increasing the likelihood of uncovering clinically 

important HTE (i.e. on the risk difference scale).75;76

5. When substantial, identifiable heterogeneity of risk in the trial population is 

anticipated

Risk heterogeneity is dependent on the presence of significant factors to predict 

outcome risk and differences in the distribution of these factors across the 

population (i.e. a non-homogeneous population). In the absence of factors that 

can predict outcome risk, there is no risk heterogeneity. Conversely, risk 

heterogeneity is highest in the presence of good discrimination (i.e., a high C-

statistic). Indeed, risk heterogeneity in a given population is a model-dependent 

property.77 Figure 5 shows the empirical relation between the C-statistic and the 

extreme quartile risk ratio (EQRR, the ratio of outcome rate in the highest risk 

quartile to the rate in the lowest risk quartile78) across 32 publically available 

trials.45 Because there is an abundance of clinical prediction models,7;79;80 the 

predictability of trial outcomes can generally be evaluated, at least informally, 

from the literature. Trials with broad inclusion criteria, and thus a broad case 

mix, are more likely to show greater risk-heterogeneity compared to trials with 

more narrowly restrictive enrollment criteria. Nevertheless, there seems to be 

substantial risk heterogeneity even in classic efficacy trials.45;66-68;71 Because 

individual patient meta-analyses (i.e., combining trials) have even higher patient-

level risk heterogeneity, they are an ideal substrate for these analyses.75;76

6. When there is strong preliminary evidence that a prediction model is clinically 

useful for treatment selection, or when there are models in current use for 

treatment selection

The vast majority of prediction models developed are not applied in clinical 

practice.79 Some fields produce massive numbers of new prediction models 

without clear purpose except as publishable analytic exercises. Conversely, the 

development of new models should start from some clinical need. Thoughtful 

selection of a “risk-sensitive” decision is one of the most crucial steps in 

developing a useful clinical prediction model.81 The use of a prediction model in 
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clinical practice may be an implicit marker of such a risk-sensitive decision for 

which clinicians sense that the balance of the benefits and burdens of a treatment 

decision vary across the population in a clinically meaningful way. For example, 

the widespread use of the CHADS score63;64 (and its variations82), the ASCVD 

score,44 and chest pain tools83;84 may be considered a marker of the risk-

sensitivity of these decisions. Similarly, the widespread use of certain diagnostic 

prediction models in emergency departments to rule out rare but serious 

conditions (e.g. cervical spine fracture,85 intracranial hemorrhage,86 or 

pulmonary embolism87) in low risk patients to reduce the harms/burdens of 

further diagnostic testing is a marker for the risk-sensitivity of this class of 

decisions. Such consensually-established, implicitly-revealed risk-sensitive 

decisions remain relatively uncommon. Moreover, randomized data are relatively 

scarce and risks may change meaningfully over time. Hence, opportunities to re-

examine the risk-specific benefits (or validate predictions of benefit) in new trial 

data are highly valuable.

7. When the clinical variables in the proposed model are routinely available in 

clinical care.

The advantages of easily and reliably obtainable clinical characteristics as 

predictors should be obvious. Nevertheless, there are many examples in the 

literature of models including variables not ordinarily obtained in clinical care. 

For example, waist-to-hip ratio is a very strong predictor of diabetes and of 

cardiovascular risk,88;89 but it is rarely ascertained in routine clinical care. 

Prostate volume is an important predictor of prostate cancer risk, but can only be 

obtained by an invasive test and is therefore of quesitonnable value for use in 

models.84 By raising the burden of variable ascertainment, the probability that a 

prediction model will be used—compared to selecting the best treatment on 

average—is lowered. Again, because of the abundance of published risk models, 

it is usually possible to ascertain from the literature well established risk 

predictors prior to the analysis of trial data, even when internal risk models will 

be used to stratify the trial.

Explication of Excluded Criteria—The PATH Technical Expert Panel (TEP) failed to 

reach consensus (as defined by a mean agreement score of less than 3) on two additional 

criteria to identify when a risk modeling approach is likely to be of value to analyze RCT 

results. The standard deviation of the agreement scores were also relatively high (SD>1) for 

these criteria, reflecting the conflicting positions held by panelists. These excluded criteria 

are described below.

When the outcome rate is lower

A low outcome rate is associated with a more asymmetric distribution of estimated absolute 

benefit (on the probability scale) across individuals in a trial (Figure 5). For example, when 

the outcome rate is 6% overall and the C-statistic is 0.80, the average outcome rate in the 

lowest risk quartile of patients is anticipated to be approximately 1%.45 While benefit is 

limited by a floor effect—it is impossible to lower outcome risk to less than zero—
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treatment-related harms can still be substantial. The high risk group (e.g. the highest risk 

quartile) in these low outcome trials frequently has outcome rates more than tenfold the rates 

found in the low risk group, and may account for most of the benefit in the trial (see Figure 

4B). These skewed distributions follow from the logistic regression scale (log odds) and Cox 

regression scale (log hazard45). This makes the average risk (and treatment benefit) 

misleading even for typical patients enrolled in the trial.45;90 Nevertheless, there was 

disagreement among the expert panelists that a low outcome rate was a useful criterion to 

identify worthwhile target trials for risk modeling. Outcome rate is estimated from empirical 

data with unavoidable uncertainty and unknown generalizability in other populations, which 

may have higher outcome rates.

When the two treatments are clinically very different (e.g., medicine versus surgery)

Several treatment selection models have been successfully developed on RCT data 

comparing treatments that have substantially different mechanisms of action. For example, 

well known prediction models have been developed on randomized data to disaggregate 

treatment-favorable from treatment-unfavorable patients for carotid endarterectomy versus 

medical therapy for patients with symptomatic carotid stenosis48 or percutaneous coronary 

intervention (PCI) compared to coronary artery bypass grafting (CABG) for patients with 

non-acute coronary artery disease.91 Nevertheless, the TEP disagreed on whether this 

criterion was a reliable marker of worthwhile opportunities for risk modeling. Indeed, when 

interventions in alternative trial arms differ substantially, one might anticipate that individual 

variables may interact with treatment, making an effect modeling approach more 

advantageous than a risk modeling approach. Indeed, the SYNTAX Score II Model for 

CABG versus PCI.91

Justification of Guidance on Risk Modeling Strategies to Identify HTE (Box B)
—The below criteria describe the best methodological practices in the conduct of risk 

modeling approaches to identify HTE. The motivation regarding these statements are 

elaborated, including reservations and considerations and caveats.

8. Reporting RCT results stratified by a risk model is encouraged when overall trial 

results are positive to better understand the distribution of effects across the trial 

population.

When outcome risk is described using a multivariable model, the control event 

rate will vary substantially across risk strata of a RCT. It is not uncommon for 

the control event rate to vary between 5- and even 20-fold across risk strata in 

trial populations.45;92 The control event rate is a mathematical determinant of the 

treatment effect, regardless of what scale is used to measure treatment effect 

(Table 1). Because typical treatment effect metrics are different (non-linearly 

related) contrasts of the same two quantities (control and treatment event rates), 

when the control event rate changes across subgroups, the treatment effect can 

remain constant on (at most) one scale. In particular, large changes in the control 

event rate almost always lead to substantial changes in the most clinically 

relevant scale of effect measure, the absolute risk difference.4;93 Thus, the 

widespread assumption that harm-benefit trade-offs are usually similar for 
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patients meeting trial enrollment criteria is demonstrably false and potentially 

harmfully misleading.4 Indeed, the assumption of a constant relative treatment 

effect across groups of patients that vary dramatically in their control event rate

—especially in the presence of treatment related harm— needs to be carefully 

examined. Presenting overall trial results without showing how the treatment 

effect varies across risk strata—and particularly whether changes in the risk 

difference are clinically important across risk strata—may be considered a form 

of under-reporting of trial results.6

9. Predictive approaches to HTE require close integration of clinical and statistical 

reasoning and expertise.

The optimum treatment selection model will generally be grossly 

underdetermined by the available data, particularly from a single RCT and when 

multiple potentially important risk markers are considered. Thus, it is generally 

not possible to use totally agnostic, data-driven approaches alone for variable and 

model selection when analyzing clinical trials for HTE. Prediction of treatment 

effect at the individual patient level may be very sensitive to arbitrarily-

determined model-building choices that define the reference class (i.e. 

subgrouping) scheme.94;95 While in theory, these issues asymptotically diminish 

as databases become infinitely large, clinical reasoning remains critical to the 

process of variable selection and model specification in the identification of a 

clinically-plausible, clinically useful and clinically useable model from the 

limited data sources generally available. Similarly, given the specialized 

expertise needed for prediction modeling, clinical investigators should generally 

not proceed without experienced statistical collaborators. Thus, realizing the goal 

of predictive HTE analysis requires close partnership between clinical and 

methodological experts.

Identify or Develop a Model

10. When available, apply a high-quality, externally-developed, compatible risk 

model to stratify trial results.

For major clinical trials (those that assess a treatment’s effect on mortality, major 

morbidity or other key clinical outcomes), it is often possible to perform risk-

based analysis of HTE using an externally developed tool. Prediction models are 

available to predict overall risk for most major conditions and their 

complications.7 Nevertheless, differences in populations or variable definitions 

may render published models incompatible with completed RCTs. Investigators 

may also choose to develop a new model using data from a related observational 

study or clinical trial. An external model is more relevant if the eligibility criteria 

for the derivation cohort align with, or are even broader than, those in the target 

trial. Ideally, predictor and outcome variable definitions should be similar to 

those available in the RCT. An externally-derived model enables translation into 

practice, especially when well-validated and clinically-accepted models 

compatible with the RCT are available.
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11. 4. When a high-quality, externally-developed model is unavailable, consider 

developing a model using the entire trial population to stratify trial results; avoid 

modeling on the control arm only.

When such models are not available, internally derived (or endogenous) models 

may be employed. Guidance on good prediction modeling practice should be 

followed, e.g., a large number of events per independent variable, and pre-

specified, a priori, selection of risk variables based on prior literature.96;97 

Models derived directly on RCT data may provide internally valid treatment 

effect estimates within risk strata. One approach is to develop the model ignoring 

treatment assignment.98 The risk model defines the reference class or 

subgrouping scheme;4 a second step then estimates treatment effects across risk 

strata. Separating the variable selection and model specification process from 

treatment effect estimation minimizes some of the biases (such as so-called 

“testimation bias”96) that complicate effect modeling. Alternatively, some have 

recommended that only the control arm be used to model risk99 as ostensibly the 

best estimate of the control event rate. However, modeling on the control arm 

only can potentially induce differential model fit on the two trial arms, biasing 

treatment effect estimates across risk strata, and generally exaggerating HTE;
46;98;100 various cross-validation techniques have been proposed to address this 

bias even when modeling on only the control arm.101 Concerns about differential 

fit between arms from endogenously derived models may also apply when 

randomization is unbalanced (e.g., 1:2 or 1:3 randomization) or when treatment 

effects are very large, such that the number of events in the control arm is much 

larger than in the treatment arm. When imbalance in events is caused by very 

large treatment effects, risk-based HTE may be less clinically relevant (see 

Figure 3). Potential approaches to modeling on trials with imbalanced 

randomization and/or strong treatment effects should be evaluated in future 

research (Table 2).

12. 5. When developing new risk models or updating externally-developed risk 

models, follow guidance for best practice for prediction model development.

While not the focus of the PATH Statement, there is existing guidance to support 

development of new risk models, or the updating of externally-developed 

models.96;97;102;102 In particular, the TRIPOD Explanation and Elaboration 

document102 offers detailed, referenced guidance on how to design, conduct, and 

analyze prediction model studies – with published exemplars – with a view to 

limiting risk of bias and maximizing the clinical usefulness of the model. We 

emphasize that TRIPOD indicates that continuous predictors should ideally be 

kept as continuous (and examined for linear or nonlinear relations with the 

outcome). This best practice of modeling continuous variables continuously, or 

modeling risk continuously, does not necessarily proscribe the common practice 

of displaying clinical trial data to readers in subgroups which is part of the 

guidance below. The TRIPOD Explanation and Elaboration document102 also 

provides a good discussion of the considerations for handling missingness for 

clinical prediction models, which are relevant here. When important risk factors 
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are missing on some patients, analyses should apply techniques, including 

multiple imputation when appropriate, to avoid exclusion of randomized patients. 

Alternative approaches for subgroup identification in the presence of missing 

variables should be investigated in future research (see Table 4: A Meta-
Research Agenda for Predictive Approaches to Treatment Effect 
Heterogeneity). The PROGRESS series of papers103–106 and several textbooks 

also offer guidance on the optimal development of clinical prediction models.
96;97

Since adequate power for HTE analysis might best be achieved by combining 

multiple randomized trials, prediction modeling guidance should be 

complemented in these cases by guidance for best practice for individual patient 

meta-analysis (IPDMA).107 In particular, it is recommended to include study-

specific intercepts to account for unexplained risk heterogeneity.108;109 Similarly, 

study-specific effects should be accounted for in analyzing treatment effects. 

Alternative meta-analytic approaches are discussed in the literature and are 

beyond the scope of this guidance.110;111

Apply the Model and Report Results

13. Report metrics for model performance for outcome risk prediction on the RCT, 

including measures of discrimination and calibration (when appropriate).

14. Report distribution of predicted risk (or the risk score) in each arm of the trial, 

and in the overall study population.

15. Report outcome rates and both relative and absolute risk reduction across risk 

strata.

16. When there are important treatment-related harms, these harms should be 

reported in each risk strata to support strata-specific evaluation of benefit-harm 

trade-offs.

Consistent with the TRIPOD Statement, measures of discrimination and calibration should 

be presented whether an externally or internally derived model is applied (Box B, 
Recommendation 6). However, one should not confuse these conventional measures of 

model performance with discrimination and calibration of predicted benefit (see Special 

Considerations for Evaluating Models that Predict Benefit). We also note that point scores, 

such as TIMI,112 CHADS-VASC82 or ABCD2,113 may be useful for trial risk stratification 

but do not yield predictions for calibration.

Although its importance was highlighted two decades ago,92 reporting the distribution of 

baseline risk is rarely done (Box B, Recommendation 7). It is thus generally impossible to 

assess the degree of baseline risk heterogeneity in most published clinical trials. Risk 

reporting should allow readers to assess the full distribution of risk in the study population, 

either graphically or by including information on the mean, standard deviation, median, and 

interquantile ranges. The precise approach for presentation is not important, as long as it 

allows the reader to understand the distribution of predicted baseline risk (or the risk score of 

a risk index) in the study population. The “Table 1” of a clinical trial report (which 
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conventionally includes patient attributes for participants in each study arm) should also 

include the population mean and median predicted baseline risk (or risk score) with 

measures of variability, and additional information on the population distribution of risk if 

there is substantial skewness (such as quartiles/percentiles, a histogram, or a box plot). If the 

study includes a largely homogeneous population with regard to overall risk, the reader will 

know that generalizing the study results to populations with substantially different risk 

would be speculative. If there is substantial heterogeneity in the study population, then 

reviewers will know that conducting a risk-stratified analysis is particularly important.

We recommend grouping patients using quantiles (e.g. quartiles) for reporting purposes and 

displaying and estimating treatment effects separately (e.g. dividing patients into equal-sized 

quarters) in these groups, as an initial step (Box B, Recommendation 8). Reporting 

treatment effect across strata is important because it illustrates how the absolute risk 

difference varies across the study population, whether or not the relative effect is constant 

(see Figure 4B for an example). Additionally, it permits the assumption of a constant relative 

effect across risk strata to be evaluated (see Box B, Recommendation 10, explanation 

below). As an alternate presentation, treatment effects may also be displayed by continuous 

risk, as seen in Figure 2, rather than by quantiles (which are sample-dependent). As 

discussed above, examining variation in the relative treatment effects may be particularly 

important when there is even a small amount of treatment-related harm.3;62 In the case of 

time-to-event analysis, treatment effects should be analyzed and reported by cumulative 

incidence curves. Relative treatment effect estimates can be summarized by hazard ratios 

over a clinically meaningful time horizon (or several meaningful time horizons). Absolute 

treatment effect estimates can be summarized by cumulative incidences at a clinically 

meaningful time point (or several meaningful time points). In reporting risk-stratified results, 

readers should be provided with the information needed to easily determine the amount of 

variation in risk difference/number needed to treat (NNT) and relative effects. These 

stratum-specific results can provide a rough guide for clinical interpretation, which can be 

further refined for clinical implementation by continuous modeling (see Box C, 
Recommendation 3).

From a decision analytic perspective, the clinical value of a prediction model is determined 

by its ability to distribute patients by their absolute treatment effect across an important 

decision threshold. This threshold depends on the burdens of treatment, which depend on 

treatment harms and costs and patient values and preferences. However, even apart from 

patient values and preferences (which are inherently patient-specific), treatment burden may 

differ substantially across patient subgroups. Because patients in different risk strata vary in 

many clinically important characteristics, one cannot assume that subgroups stratified by 

their risk of the primary outcome have similar rates of treatment-related harms. For example, 

patients with atrial fibrillation who have higher CHADS scores (indicating higher stroke risk 

and greater potential benefit from anticoagulation) also have substantially higher risks of 

bleeding.69 Stroke patients with a higher risk of stroke recurrence, according to a recurrence 

risk score, have potentially greater benefit from pioglitazone, but also have a higher risk of 

pioglitazone-related bone fracture.61 Because of the potential correlation between these two 

different risk dimensions (i.e., between the risk of the primary outcome and the risk of 
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treatment-related harm), event rates for these harms should be presented at a congruent level 

of disaggregation as the primary outcome in order for readers to determine within risk-strata 

benefit-harm trade-offs (Box B, Recommendation 9).

Risk modeling is potentially most useful when predictors of the risk of the primary outcome 

and the benefits of therapy are poorly (or negatively) correlated with the risks of treatment-

related harm. This will maximize heterogeneity in the benefit-harm trade-offs across risk 

strata, increasing the decisional value of the risk model. While several investigators have 

sought to arithmetically combine separate prediction models predicting outcome risk and 

treatment-related harm to stratify trial results by the benefit-harm trade-off,48;65;68 this 

approach can be exquisitely sensitive to miscalibration of the two models (which may 

compound miscalibration of the harm-benefit trade-offs). The best approach to model 

benefits and harms simultaneously is beyond the scope of these recommendations and is an 

important topic for future research.

17. To test the consistency of the relative treatment effect across prognostic risk, a 

continuous measure of risk (e.g., the logit of risk) may be used in an interaction 

term with treatment group indicator

While it has generally been stressed that testing for a statistical interaction 

between subgroups is recommended to determine HTE, when the outcome rates 

vary substantially across strata, one may assume that the risk difference also 

varies (Table 1; Figure 4). Thus, even though the absolute scale is the most 

relevant clinically, null hypothesis testing for HTE across risk strata on the risk 

difference scale is generally not useful, as a non-signficant result is far more 

likely to reflect low power rather than true consistency of effects on the risk 

difference scale. Statistically testing a risk-by-treatment interaction on the 

relative scale (e.g., whether the linear predictor of risk interacts with treatment) 

provides information on whether a constant relative treatment effect may be a 

reasonable approximation with which to estimate a risk-specific 

(“individualized”) treatment effect. Yet the presence or absence of a statistically 

significant result should not be conflated with the clinical significance of HTE 

(which should always be evaluated on the risk difference scale). In conducting a 

risk-by-treatment interaction test, using a continuous measure of risk (e.g., the 

logit of risk) typically provides superior power compared to testing for effect 

differences across distinct risk groups (see middle panel Figure 4B).114 

Nevertheless, a visual (non-parametric) exploration of how the relative effect 

varies across values of outcome risk may ensure the appropriateness of linear 

effect modification. Testing for a non-linear interaction between risk and 

treatment (e.g., using the logit of risk in a quadratic term, or with another flexible 

non-linear shape115;116) may also be useful. However, it should be recognized 

that such an interaction test may be poorly powered to detect deviations from 

linearity, particularly when only a single trial with a limited number of events is 

the substrate for modeling. Moreover, once it is established that there is an 

overall treatment effect, determining the risk-specific treatment effect should be 

considered an estimation problem (rather than a hypothesis testing problem). 
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Standard errors across levels of risk can be estimated through a proportional 

interactions model.117;118 Flexibly modeling the treatment effect across risk 

strata, or simply reporting the effects across subgroups defined by quantiles (e.g., 

quartiles) provides useful information regardless of the p-value of the interaction 

terms testing effect modification on the relative scale. Most importantly, the 

presence or absence of a statistically significant treatment interaction term should 

not be conflated with the presence or absence of clinically important HTE (see 

below).

Justification of Caveats and Considerations Before Moving to Clinical 
Practice (Box C)—The below considerations relate to the translation of findings from 

predictive approaches to HTE analyses into clinical practice. Clinical translation of these 

analyses is a complex topic including many issues, and a detailed discussion of these 

challenges is beyond the scope of this project, where we focus on analysis and reporting of 

RCT findings. However, below are some priority analytical considerations for facilitating 

model translation into clinical practice.

1. Clinical interpretation of HTE should stress differences in the absolute treatment 

effects across risk groups: the statistical significance of effect modification on the 

relative scale should not be conflated with the clinical significance of absolute 

treatment effect estimates.

As discussed, it is generally agreed that the most important scale for clinical 

interpretation is the absolute risk difference scale (or its reciprocal, the number 

needed to treat). The clinical significance of HTE should generally be discussed 

with reference to the absolute scale, while a relative scale (e.g., odds ratio or 

hazard ratio) is typically appropriate for null hypothesis testing in HTE analyses. 

Investigators should consider reporting results in ways that facilitate clinical 

interpretation of how treatment decisions might be changed with use of the risk 

model (e.g., number of patients treated or the number of events avoided with 

versus without model use) and should consider decision analytic approaches for 

evaluation.55;119 Table 2 illustrates how results can be presented in a simple way 

that facilitates understanding of the clinical relevance of risk-modeling. 

Presentation of important treatment-related harms should also permit within-

strata evaluation of absolute effects.

2. External validation and calibration of risk prediction is important for translation 

of risk-specific treatment effects into clinical practice.

Although internally-derived (or endogenous) prognostic models can provide 

reliable internally valid estimates of treatment effects within trial risk strata, 

implementation of an externally valid prognostic model is necessary for 

translation into practice.105 Finding clinically important HTE across risk strata 

within a trial with an endogenous model provides an important impetus for 

developing and implementing an externally valid prognostic model. It should be 

noted that external validity is a general concern for RCT results and their 
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subgroup analyses, not one confined to results subgrouped using prediction 

models.120

3. Clinical implementation may be supported by translating multivariable risk-

based subgroup analysis into models yielding continuous treatment effect 

predictions to avoid artefactual discontinuities in estimation at the quantile 

boundary of an outcome risk group.

In presenting HTE analyses of clinical trial results, it is customary to categorize 

patients into subgroups. Here, we have recommended presenting results in risk 

strata. Nevertheless, dividing patients into discrete groups based on values of a 

continuous measure has some disadvantages.121 Categorization into risk groups 

suggests that risk and treatment effects are homogeneous within groups, and 

leads to a potentially misleading “step function” in either risk or in treatment 

effect estimation. With such an approach, for example, a very small change in 

risk at the boundary of a group defined by a quantile can lead to a very large 

change in the anticipated benefit. Additionally, quantiles have specific 

disadvantages in that they are sample-driven cut points, leading to difficulties in 

comparing results across studies,122 and also potentially obscuring problems 

with model calibration. For example, using an internally developed risk model 

and the Framingham model to stratify patients in the Diabetes Prevention 

Program (DPP) Trial appeared to yield near-identical results.71;123 However, if 

the trial population was divided into groups of patients based on predicted risk 

thresholds (as they would in clinical practice), risk groups defined by the 

Framingham model would have revealed that the Framingham model was poorly 

calibrated to the DPP Trial population. Thus, while trial results displayed by risk 

strata are frequently sufficient to evaluate the clinical importance of risk-based 

HTE, clinical implementation may be supported by translating multivariable 

risk-based subgroup analysis into models yielding continuous predictions of 

outcome risks with and without therapy (see Legend Figure 1).

Treatment Effect Modeling to Identify HTE (Box D)—Conventional one-variable-at-

a-time subgroup analysis are known to have low credibility due to noisy data (very low 

power for interactions) weak theory (little prior knowledge about effect modification) and 

multiplicity4. Including relative effect modifiers as interaction terms within a prediction 

model engenders the same concerns.

While relative effect modifiers are difficult to reliably identify, they are highly influential on 

individual patient predictions of benefit120. Including spurious false positive interaction 

terms in models that predict treatment benefit can mis-target therapies; excluding true 

interaction terms limits the usefulness of prediction by substantially lowering discrimination 

of patients who benefit from those who don’t29. Whether or not to include a treatment effect 

interaction term in a prediction model is a fraught and consequential decision; the PATH 

TEP accordingly recommends a cautious approach. We restrict our recommendations to the 

unusual situation where highly credible effect modifiers have been identified, and otherwise 

offer caveats and considerations for more data driven approaches.
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1. When highly credible relative effect modifiers have been identified, they should 

be incorporated into prediction models using multiplicative treatment-by-

covariate interaction terms.

A. Credibility should be evaluated using rigorous multidimensional criteria 

(such as described by the ICEMAN tool) and should not rely solely on 

statistical criteria (such as p-value thresholds).

There have been important efforts to establish criteria that might 

identify highly credible subgroup analyses.9;19;124 A newly proposed 

tool (Instrument for assessing the Credibility of Effect Modification 

ANalyses, (ICEMAN)124) is based on 5 criteria to evaluate credibility 

of effect modification: Four of these criteria are related to pre-

specification and markers of the “prior probability” or plausibility of 

effect modification: 1) presence of prior evidence; 2) prespecification of 

a few primary subgroup analyses; 3) prespecification of the anticipated 

directionality of effect modification; 4) full specification of cut points 

when thresholds are used for continuous variables. The fifth criterion (a 

low p-value) is a measure of the statistical strength of the interaction 

effect in the data being analyzed. The PATH group endorses the 

rigorous and multidimensional approach recommended in ICEMAN to 

identify highly credible interaction terms. Examples of highly credible 

effect modifiers include symptom onset to treatment time for 

thrombolytic therapy in acute myocardial infarction or acute ischemic 

stroke125;126, and urinary protein excretion as a modifier of the effect of 

ACE inhibition on the progression of chronic kidney disease75;127.

In the analysis of trial data, identification of credible interaction terms 

can be facilitated by explicitly distinguishing those subgroup analyses 

that are intended to be confirmatory analyses (hypothesis testing 

analyses, well-motivated by prior evidence and intended to produce 

clinically actionable results), from secondary (exploratory) subgroup 

analyses (performed to inform future research).7;8 Because in any given 

clinical trial, there is typically limited prior information regarding effect 

modification, subgroup analyses will frequently be exclusively 

exploratory, and therefore not yield any covariate-by-treatment 

interaction effects appropriate for inclusion in prediction models 

intended for informing clinical care.

Prespecification of primary subgroups should include explicit 

definitions and categories of the subgroup variables, including cut-off 

thresholds for continuous or ordinal variables where these are used, and 

the anticipated direction of the effect modification. By conducting 

primary subgroup analysis that are few in number, fully pre-specified, 

hypothesis-driven and statistically robust (i.e. based on multiplicative 

interactions), subgroups can produce evidence regarding factors that 
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influence the benefit of treatment that might then be carried forward 

into models to yield clinically actionable predictions.

Although only primary (confirmatory) subgroup analyses are relevant 

for clinical decisions and the predictive HTE analyses we address here, 

we acknowledge the importance of secondary subgroup analyses to 

explore more uncertain or unexpected relationships between individual 

patient attributes and treatment effects; such analyses are appropriate 

for hypotheses generation, which can then be tested (and usually 

disproved23;25;128;129 in future studies.

We note that because p-values (or other statistical criteria) in general 

are influential in how subgroup analyses are interpreted (and are 

included in ICEMAN criteria) and because interaction effects are 

poorly estimated in trials of conventional size (even when these are 

pooled), treatment interaction terms selected for inclusion are likely to 

overestimate the true interaction effects (i.e. from overfitting).4;29;130 

Therefore, even when only highly credible interaction terms are 

included, we recommend model building procedures that take into 

account model complexity (i.e. approaches using regularization/

penalization) whenever interactions are included (see Box D, 

Recommendation #3).

Caveats and Considerations for Data Driven Effect Modeling

Emerging ‘data driven’ methods proposed to develop effect models on trial data when there 

is little prior information on effect modifiers are a promising area of research28, but were felt 

by the TEP to be at too formative a stage to offer recommendations. A systematic scoping 

review131 was conducted in an effort to characterize this rapidly evolving literature, and 

revealed future research opportunities. Table 3 summarizes at a high level the key features of 

the differing approaches. In addition to risk and effect modeling, the scoping review 

identified methods collectively described as optimal treatment rules that use combinations of 

relative effect modifiers to classify patients into treatment favorable and treatment 

unfavorable categories—i.e. based only on the sign of the effect. Because these are 

classification, rather than prediction methods, we do not discuss these in our guidance, but 

direct interested readers to the literature on these approaches132–142. A key feature of many 

of the procedures for predictive analyses (and particularly effect modeling) is that they 

separate the variable selection procedure in building a model that defines subgroups (or 

reference class scheme) from the estimation of treatment effects, thereby avoiding 

testimation bias.96;143;144 Alternatively, various methods of penalization/regularization to 

reduce the likelihood of overfitting have been proposed and tested.145 Although the PATH 

TEP did not articulate a full set of methodological best practices for treatment effect 

modeling given more limited practical experience (as compared to risk modeling), we offer 

caveats and considerations for this type of predictive HTE analysis (and their justifications) 

below.
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2. Avoid one-variable-at-a-time null hypothesis testing or stepwise selection (e.g., 

backward selection, forward selection) strategies to select single relative effect 

modifiers

One-variable-at-a-time null hypothesis testing will preferentially select effects 

that are over-estimated within the sample database (i.e., Type I error and 

testimation bias). Including treatment interaction terms in models predicting 

benefit generally requires reliable prior information regarding relative effect 

modifiers. Interaction terms for well-established treatment effect modifiers 

should be included in the prediction model, regardless of the statistical 

significance of the interaction (see Box D, Recommendation 1). When multiple 

relative effect modifiers are hypothesized to be of potential importance in 

determining treatment effects, the value of including these interactions may be 

assessed simultaneously by a single overall test, limiting the opportunity for 

Type I error and testimation bias.102 To increase the power of this test, the 

number of treatment effect interactions included should be limited.102 

Investigators should use clinical considerations and should also consider 

examining associations between candidate effect modifiers to reduce the number 

of interactions assessed within the overall test. A null result on the overall test for 

interaction suggests that an effect modeling approach (i.e., including interaction 

terms) will not add substantially to a risk modeling approach.

3. 3. Avoid the use of regression methods that do not take into account model 

complexity when estimating coefficients (e.g. ‘conventional’ unpenalized 

maximum-likelihood regression) when one or more treatment by covariate 

interaction terms are included in a treatment effect model.

Although there is no consensus on the optimal approach for including relative 

effect modifiers in a risk prediction model (“effect model”), conventional 

regression techniques should be anticipated to result in overfitting. Penalized 

estimation (e.g. LASSO; penalized/ridge; elastic net regularization regression; 

Bayesian penalization, as well as other non-regression based methods discussed 

above) at least partially addresses the tendency to overfit benefit predictions. The 

optimal approach to penalization for effect modeling is a subject of current 

research, but avoiding overfitting for benefit prediction is much more difficult 

than avoiding overfitting for outcome prediction (Figure 6). Alternatively, 2-

stage methods relying on different datasets (or subsets) for variable and model 

selection for determining the subgrouping (i.e. reference class) scheme and for 

treatment effect estimation can also avoid/mitigate ‘testimation’ bias.

4. 4. Avoid evaluating models that predict treatment benefit using only conventional 

metrics for outcome prediction (e.g. based on discrimination and calibration of 

outcome risk prediction).

The performance of models intended to predict benefit should be evaluated for 

the prediction of benefit (i.e., predicted versus observed outcome rates across 

subgroups defined by quantiles of predicted benefit occurring with versus 
without treatment), not for their ability to predict outcome risk. Calibration for 
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outcome risk can be seriously misleading when evaluating models that purport to 

predict treatment benefit (Figure 6). The discrepancy arises because benefit 

miscalibration compounds the error in the risk estimation in the control and 

treatment groups and magnifies this error (i.e., the scale of the risk difference is 

typically much smaller than that of outcome rate). Evaluation methods that 

pertain to models intended for treatment selection or to predict benefit are 

discussed further in the section immediately below.

Special Considerations for Evaluating Models that Predict Benefit—The 

statistical performance of prediction models is typically decomposed into measures of 

calibration (“Do x of 100 patients with a predicted risk of x% actually have the outcome?”) 

and discrimination (“What is the probability that patients with the outcome have a higher 

predicted risk than those without the outcome?”). Evaluating a prediction model intended to 

predict treatment effect using these usual metrics related to outcome risk prediction (e.g., C-

statistic) fails to provide information on how well the model performs for predicting benefit 

and informing treatment decisions. Efforts to develop measures to assess model accuracy for 

predicting benefit (in particular, evaluating measures of discrimination for benefit) are 

hampered by the fundamental problem of causal inference for the individual. That is, 

individual patient treatment effects are inherently unobservable, as only one of the possible 

outcomes is observed for each patient (the actual outcome they experienced under 

randomization).146

For example, for “predictive” biomarkers (i.e., factors that can aid in treatment selection), it 

has been suggested to evaluate performance by the sensitivity and the specificity of the 

biomarker for benefit rather than risk, i.e., the probability that the biomarker is positive for 

patients that benefit from treatment, and the probability that the biomarker is negative for 

patients that do not benefit from treatment, respectively.147 However, it has been shown that 

one can estimate these quantities only under strong unverifiable assumptions about the joint 

distribution of observed and unobserved outcomes so that each patient can be assigned to a 

treatment response (bad outcome without treatment, good outcome with treatment, [1,0]), 

neutral (good or bad outcome regardless of treatment [0,0 or 1,1]) and harm (good outcome 

without treatment, bad outcome with treatment [0,1])).148 For example, one proposed 

method assumes that no subjects are harmed by treatment;149 others that, conditional on a 

set of covariates, the potential outcomes with and without treatment are independent.150;151 

Without such assumptions, we can only focus on a model’s ability to predict outcome risk in 

one arm of a trial or the other, rather than the difference in outcome across arms.148;152

However, for treatment decision making purposes, we are more interested in optimizing the 

ability to predict the difference in outcome risk under two treatment conditions. Due to the 

fact that counterfactual outcomes are unobservable at the individual patient level, evaluating 

benefit prediction requires some form of stratification of patients into groups with similar 

predicted benefit. The smallest possible strata are pairs of matched patients. Recently, the C-

statistic, commonly used to measure discrimination in outcome risk models, has been 

adapted to evaluate treatment effect prediction.151 To do so, two patients discordant on 

treatment assignment are matched according to their predicted benefit (i.e., the absolute 

difference in their outcome risk with and without therapy). These matched pairs of patients 
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with a similar “propensity for benefit” can then be classified into the three benefit categories 

according to their “observed benefit” based on a comparison of outcomes in the control and 

treated patients: 1) benefit (1,0); 2) neutral (1,1 or 0,0); or 3) harm (0,1); the C-statistic 

assesses how well the model discriminates pairs of patients based on this trinary “outcome.” 

Again, the definition of “observed benefit” assumes that the potential outcomes with the two 

therapies are independent within each patient. Since the potential outcomes within each 

patient are presumably dependent to some (unknowable) degree, the “observed benefit” 

contains more randomness than the actual (unobservable) individual patient treatment 

benefit. This leads to conservative estimates of the C-statistic.

Ultimately, the usefulness of a model depends not just on its ability to provide accurate 

predictions of within-strata treatment effect, but on its ability to improve decisions. Of 

course, the ultimate test of a predictive approach is to compare decisions (or outcomes) in 

settings using such individualized predictions to usual care in an experiment.153 Lamentably, 

this is seldom done; well-controlled trials of predictive tools are rare and more are needed. 

However even in the absence of a randomized trial, methods have been developed to assess 

the potential impact of models on clinical decision-making. Evaluating clinical usefulness 

depends on model performance relative to a specific decision threshold—i.e., the absolute 

risk difference that perfectly balances the burdens, harms, and costs of therapy. Decision 

curve analysis,56 has been proposed to evaluate the clinical usefulness of prediction models 

on decision making. Decision curve analysis examines the Net Benefit across multiple 

decision thresholds, where each threshold is used to simultaneously determine allocation to a 

particular treatment strategy and also to mathematically derive an utility weight of benefits 

versus harms. The approach has also been adapted to evaluate the potential impact of 

prediction of treatment benefit on decision making compared with the default best overall 

strategy (i.e., treat all or treat none).119

While it is impossible to identify the correct treatment for any given individual (since 

individual treatment effects are unidentifiable in the absence of repeated N of 1 trials27;154), 

all these methods evaluate whether a particular prediction-decision strategy optimizes 

benefits for a population,55 since population-wide benefits are optimized when treatments 

are optimized for each individual.

Limitations of the PATH Statement—We note several limitations of the PATH 

Statement. The guidance here is intended only for binary or time to event models, which 

account for the vast majority of large phase 3 clinical trials.155–158 Much of the guidance 

would nevertheless pertain also to continuous outcomes. The complexities of HTE analyses 

for increasingly common longitudinal data involving interaction with time are not discussed. 

Further, we focus on treatments where a decision is made at a particular point in time 

(corresponding to the trial baseline) rather than dynamic treatment regimens where treatment 

decisions may be continually revisited. We also focus on subgroup identification and 

treatment effect estimation rather than on HTE analyses to inform trial design. The 

Statement also does not provide advice about performing n-of-1—or multi-person n-of-1—

trials, which some consider the only means of estimating “person-level” treatment effects. 

While we anticipate that observational studies will play an increasingly important role in 

studying both treatment effects and HTE, the PATH Statement does not address HTE in 
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observational studies (except to stress that methods of debiasing treatment comparisons to 

support HTE are a research priority). Although each of the above approaches are consistent 

with the broad goal of evidence personalization, the methods are sufficiently distinct so as to 

be beyond the scope of this Statement. Notwithstanding the above limitations, we emphasize 

that the PATH Statement applies to the comparison of treatments as well as the comparison 

of treatment to no treatment.

An additional limitation of the PATH Statement is that it does not address the topic of the 

best estimand for predictive HTE analyses and how to best cope with post-randomization 

events, including drop out, non-adherence, treatment switching and loss to follow up. These 

issues have received considerable attention in the methodological and regulatory literature, 

particularly since The National Research Council (NRC) Expert Panel Report on Prevention 

and Treatment of Missing Data in Clinical Trials159;160 highlighted the need for clearly 

defining objectives and estimands and the subsequent ICH E9(R1) draft addendum161. We 

direct readers to recent literature on this topic162–164. In general, the primary analysis of 

most trials is often an intent to treat (ITT) analysis. However, other contrasts are also of 

clinical import and interest. In particular, the direct causal effect of treatment (i.e. the effect 

if a patient adheres to their treatment, estimated with a per protocol (PP) or adherence-

adjusted analysis165–169) is often considered the most appropriate estimand for shared 

decision making in the individual patient. However, as with observational studies, estimating 

the direct treatment effect can only be done with methods based on unverifiable 

assumptions; mis-specifying a model predicting non-adherence (or using an instrumental 

variable approach when causes of non-adherence or drop outs are complex) can lead to 

biased estimates of treatment effects. An ITT analysis is general felt to yield an unbiased 

estimate of the treatment policy, though this may be less appropriate for shared decision 

making. More research is needed regarding optimal approaches to combine predictive HTE 

approaches with approaches that estimate direct treatment or adherence-adjusted effects.

Discussion

The PATH Statement is comprised of four sets of guidance on the conduct of predictive HTE 

analyses. The purpose of the Explanation and Elaboration document is to explain the 

rationale and support for these guidance statements, and to detail caveats or reservations 

where applicable.

The goal of predictive HTE analysis is prediction of treatment effect to support decision 

making in each patient.8;170 Developers of the PATH Statement recognize the inherent 

difficulties and fundamental limitations of using group data to estimate treatment effects in 

individuals, and enumerated some of these challenges.26 As more deeply explored in this 

Explanation and Elaboration document, there remain substantial barriers to fully understand 

the potential of the predictive HTE approaches to usher in a new era of Personalized EBM.
171 Table 4 outlines some outstanding research questions related to methodological issues 

raised in the development of the PATH Statement. Stronger methodological and evidentiary 

standards will need to be established to assure that incorporating these methods do not cause 

more harm than benefit. We also need research to better integrate clinical prediction into 

practice,172 to understand how to individualize clinical practice guidelines, to establish or 
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extend reporting guidelines,173 to establish new models of data ownership to facilitate 

individual level meta-analyses,174 and to re-engineer the clinical research infrastructure to 

support substantially larger clinically-integrated trials sufficiently powered to determine 

HTE (and/or to develop our ability to predict when observational data are likely to be 

sufficiently de-biased for reliable HTE determination).175 Many recent and ongoing 

organizational and technical advances should help towards this evolution.174;176–178

As the PATH Statement focused on prediction in randomized trials, we did not explore the 

use of observational data – and when they may be sufficiently de-biased for reliably 

identifying HTE.10;179;180 In addition, there is an evolving set of tools for data-driven 

approaches to predicting patient benefit, including machine learning techniques.28;181;182 

The PATH Statement should thus be understood as a formative first step (along a much 

longer path) towards the goal of personalized predictions of treatment benefit using the best 

available evidence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The Scale Dependence of Heterogeneity of Treatment Effect (HTE)
The above plots depict the scale dependence of effect heterogeneity. All 3 scenarios are 

drawn from hypothetical trials with the same overall results (outcome rates 8.8% versus 

6.6% in the control (open circles) versus treatment (closed circles) groups) and depict 

outcomes in low risk (75% of patients, Q1–3) and high risk (25% of patients, Q4) groups 

(where control event rates are 5% versus 20%, respectively). Plots in the left, middle and 

right column display outcome risks, relative effects and absolute effects, respectively. In the 

first row, effect heterogeneity is absent on the relative scale, but present on the absolute 

scale. In the second row, effect heterogeneity is present on the relative scale but absent on 

the absolute scale. In third row, effect heterogeneity is present on both the relative and the 

absolute scale. Most typically, the statistical significance of HTE is tested on the relative 

scale (middle column), since regression analyses are often performed on these scales. 

Provided sufficient statistical power, analyses 2 and 3 would show statistically significant 

HTE. However, regardless of the scale of the analysis, the clinical importance of HTE 
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should generally be evaluated on the absolute scale. When absolute effects span a 

decisionally-important threshold, which depends on the treatment burden (e.g. harms and 

costs), HTE is said to be clinically important. In this example, for illustratrive purposes we 

have arbitrarily set a decisionally relevant threshold at a 1 percentage point reduction in 

outcome risk. Here, while there is HTE on the absolute scale in both analyses 1 and 3, 

clinically-important heterogeneity is present only in the third analysis, where the treatment 

that is beneficial on average may not be worth the treatment burden for many (indeed most) 

patients. Note, the presence of statistically significant interaction (on the relative scale) does 

not imply clinically important HTE, and that the absence of a statistically significant 

interaction does not imply the absence of clinically important HTE. It is also important to 

note that testing heterogeneity on the relative scale does not test a specific causal hypothesis 

regarding effect modification (regardless of the subgrouping variable), but merely tests the 

hypothesis that relative effects are the same in one group versus another group. Establishing 

causal interaction effects are not necessary to improve the targeting of therapy. We also note 

that this diagram makes the simplifying assumption of uniform treatment burdens across all 

levels of risk.In practice adverse events may vary across risk groups, and the threshold is 

also sensitive to patient values and preferences.
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Figure 2. Effects of Lifestyle Modification and Metormin versus Usual Care in Patients with 
Prediabetes at Different Risks of Developing Diabetes71

Figure 2 presents HTE analysis of the Diabetes Prevention Program (DPP) Trial as a 

function of baseline risk71. Event rates (top graph), hazard ratios (middle graph) and 

absolute effects (lower graph) are shown. Both lifestyle modification (left panel) and 

metformin (right panel) are compared to usual care as a function of baseline risk. For 

lifestyle modification, a consistent 58% reduction in the hazard of developing diabetes over 

three years was found across all levels of risk. This consistent relative effect yields HTE on 

the absolute scale of potential clinical importance. In contrast, the effects of metformin are 

heterogeneous on the both the hazard ratio scale and on the absolute scale. Penalized splines 

were used to model the relationship between the linear predictor of risk and the time to event 

outcome. Vertical lines denote 95% confidence intervals and p-values are based on the null 

hypothesis of no effect modification tested using the linear predictor of risk in a Cox model. 
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The dashed lines show the average effects in the trial. Prediction of incient diabetes with an 

external model derived from the Framingham cohort yielded a similar pattern123.
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Figure 3: The Value of a Risk Modeling Approach is Likely to be Greater when the Average 
Treatment Effect in a Trial (Treatment A) is Near a Decision Threshold
Figure 3 depicts the anticipated influence of a risk modeling approach in two trials testing 

different treatments in the same population, one of a treatment (A) with a slightly favorable 

benefit-harm trade-off, and the other of a treatment with an extremely favorable benefit-

harm trade-off (treatment B). Under both conditions, the control event rate is 25% and the 

minimal clinically significant difference (MCSD, i.e., the absolute benefit that would justify 

the experimental therapy) is 3 percentage points. (For simplicity, we display a single MCSD, 

with grey shading corresponding to portions of the population that should not be treated, but 

this value varies according to individual patient values and preferences.) A risk modeling 

approach would be of substantially greater value for the trial of therapy A, with the slightly 

favorable trade-off (with a relative risk reduction [RRR] of 0.15; absolute risk difference = 

3.75%, just above the MCSD), compared to the trial of the therapy B with the extremely 

favorable trade-off (RRR of 0.5; risk difference = 12.5%, substantially above the MCSD). 

Kent et al. Page 39

Ann Intern Med. Author manuscript; available in PMC 2020 December 21.

H
ealth R

esearch A
lliance A

uthor M
anuscript

H
ealth R

esearch A
lliance A

uthor M
anuscript



The distributions show the anticipated risk differences that emerge with a constant RRR 

when the same moderately-predictive risk prediction model (i.e., with a c-statistic = ~0.70) 

is applied to the population. In the slightly favorable treatment condition (A), harms 

outweigh benefits in almost half the trial population (43%), despite overall results showing 

benefit on average. In the extremely favorable treatment condition (B), treatment remains 

worthwhile in virtually the entire population (97%). Thus, applying the risk modeling 

approach is very valuable in the low benefit condition, as it reclassifies many patients as 

treatment-unfavorable who would otherwise have been treated based on the overall result.
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Figure 4. Schematized and Actual Risk-based Heterogeneous Treatment Effects
This figure schematically depicts outcome risks for a trial testing a hypothetical intervention 

with an odds ratio of 0.75 but with an absolute treatment-related harm of 1% (shown in the 

top panel). Observed odds ratios (middle panel) and risk differences (bottom panel) are 

shown. Overall trial results are dependent on the average risk of the enrolled trial population. 

When the average risk is ~7% (as above), a well-powered study would detect a positive 

overall treatment benefit (shown by the horizontal dashed line in the middle and bottom 

panels). However, a prediction model with a C-statistic of 0.75 generates the risk distribution 

at the top of the figure. A treatment-by-risk interaction emerges (middle panel). Whether or 

not this interaction is statistically significant, examination of treatment effects on the 

absolute risk difference scale (bottom panel) reveals harm in the low risk group and very 

substantial benefit in the high risk group, both of which are obscured by the overall 

summary results. Conventional one-variable-at-a-time subgroup analyses are typically 

inadequate to disaggregate patients into groups that are sufficiently heterogeneous for risk 

such that benefit-harm trade-offs can misleadingly appear to be consistent across the trial 
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population. Baseline risk is logit normal distributed with mu=−3 and sigma=1 (the log odds 

are normally distributed). Figure adapted from Kent DM et al. JAMA 2007.3

The RITA-3 trial (N=1810) tested early intervention versus conservative management of 

non-ST-elevation acute coronary syndrome. Results for the outcome of death or non-fatal 

myocardial infarction at 5 years are shown above, stratified into equal-sized risk quarters 

using an internally-derived risk model; the highest risk quarter is sub-stratified in halves 

(groups 4a and 4b). Event rates with 95% confidence intervals (top panel), odds ratios 

(middle panel), and risk difference (bottom panel) are displayed. The risk model is 

comprised of the following easily obtainable clinical characteristics: age, sex, diabetes, prior 

MI, smoking status, heart rate, ST depression, angina severity, left bundle branch block, and 

treatment strategy. As in the schematic diagram to the left, the average treatment effect seen 

in the summary results (horizontal dashed line in middle and bottom panels) closely reflect 

the effect in patients in risk quarter 3, while fully half of patients (q1 and q2) receive no 

treatment benefit from early intervention. Absolute benefit (bottom panel) in the primary 

outcome was very pronounced in the eighth of patients at highest risk (4b). A statistically 

significant risk-by-treatment interaction* can be seen when results are expressed in the odds 

ratio scale (middle panel). Such a pattern can emerge if early intervention is associated with 

some procedure-related risks that are evenly distributed over all risk groups, eroding benefit 

in low risk but not high risk patients, as illustrated schematically in Figure 4A.

*The interaction p value is from a likelihood ratio test for adding an interaction between the 

linear predictor of risk and treatment assignment (one degree of freedom).
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Figure 5: Risk heterogeneity increases with higher discrimination – Extreme Quartile Risk Ratio 
Increases With Increasing C-Statistic, Especially at Low Outcome Rates
The curves above depict the relationship between the c-statistic and extreme quartile risk 

ratio (EQRR) – that is, the risk in the highest quartile compared to the risk in the lowest 

quartile – for different outcome rates across 32 trials.45 Unsurprisingly, the degree of risk 

heterogeneity (as represented by the EQRR) is strongly related to the discriminatory power 

of the prediction model. The relationship is strongest when the overall outcome rates are 

low. The c-statistic and EQRR both reflect how well the risk factors predict the outcome in a 

given population. For reference, in a trial with an outcome rate of 15%, a predictive model 

with a c-statistic of 0.80 is anticipated to yield an outcome rate that is 13-fold higher in the 

high risk quartile compared to the low risk quartile. When the outcome rate is lower (5%), 

this ratio is expected to be greater than 20-fold for a model with similar discrimination. 
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Patient groups with such different outcome risks are unlikely to have similar benefit-harm 

trade-offs for most therapies, even thought they may be included in the same trial.
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Figure 6: Evaluating Model Performance: A Comparison of Conventional Outcome Risk 
Calibration versus Treatment Effect (Benefit) Calibration
These data represent box plots of predicted and observed event rates by quartiles of 

predicted risk in the control and treatment arm of a hypothetical RCT (500 simulations; 

panel A). These rates appear to demonstrate appropriate model calibration. However, 

examining the same data for predicted and observed benefit (differences in event rates) by 

quarters of predicted benefit (panel B) reveals very poor model calibration at the extreme 

quarters. This poor calibration occurs because miscalibration for the risk difference includes 

error from both the control and treatment arm, and because the scale of the risk difference is 
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much smaller than that for the outcome risk. These data was generated from a simulation of 

a prediction model that included 12 treatment effect interactions, 6 of which represented true 

interactions. The boxes represent, in line with Tukey’s definition, the 25% quantile to the 

75% quantile (with the median shown). The lower and upper whiskers include the most 

extreme observations within the range of 1.5 times the interquartile range, from the 25% and 

75% quantiles, respectively.
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Table 1:

Treatment Effect is Mathematically Dependent on the Control Event Rate

Measure Definition

Absolute Risk Difference CER-TER

Relative Risk Reduction
1‐ TER

CER

Odds Ratio
TER/ 1‐TER
CER/(1‐CER)

CER=control event rate

TER=treatment event rate
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Table 2:

Hypothetical Example Presentation of the Effects of Model-based Decision Making

Strategy Number of Patients Treated Number of Events Decrease in Event Rate

Treat no patient 0 250 --

Treat all patients 1000 200 50

Treat only those with a predicted benefit >5% 400 215 35
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Table 3.

Methodological Literature on the Conduct of Regression Modeling Approaches to Treatment Effect 

Heterogeneity Analysis

Approach Description

Risk-modeling 
approaches7;45;62;98;117;118;120;183–186

Using a multivariable risk model developed blinded to treatment effect, analyze the 
relationship between baseline risk and treatment effect on the relative and on the absolute 
scale. While treatment effect modification on the relative scale across different levels of 
baseline risk is considered, treatment effect modification on the relative scale for individual 
risk factors is not.

Treatment effect modeling 
approaches120;143-145;151;186–193 Subgroup 
identification (2-step process)143;144;187 

Individualized treatment effects (1-step 
process)120;145;186;188–190

Use both the main effects of risk factors and interaction effects with treatment assignment 
(on the relative scale) to estimate more individualized treatment effects. They can be used 
either for defining patient subgroups with similar expected treatment effects or for 
predicting individualized treatment effects on the absolute scale for future patients.

Optimal treatment regimens132–142 Classify patients into those who benefit from treatment (positive individualized treatment 
effect) and those who do not (negative individualized treatment effect), through the 
identification of modifiers of treatment effects on the relative scale.
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Table 4.

A Meta-Research Agenda for Predictive Approaches to Treatment Effect Heterogeneity More research is 
needed to:

High Priority Research Needs

Better understand the value of HTE methods through empirical analyses across a wider range of clinical domains.

Determine optimal approaches to penalization/regularization in effect modeling to mitigate the risks of overfitting; or other methods that permit 
the exploration of plausible hypotheses of effect modification on the relative scale while strongly protecting against false positive findings.

Determine optimal methods to simultaneously predict multiple risk dimensions (e.g. risk of the primary outcome versus risk of treatment-
related harm) and/or optimal approaches to combine models predicting these outcome risks for improved benefit-harm discrimination.

Determine the optimal measures to evaluate models intended to predict treatment benefit.

Identify heuristics or general principles to judge the adequacy of sample sizes for predictive analytic approaches to HTE, particularly for 
treatment effect modeling.

Determine optimal methods to validate, recalibrate, and/or update models predicting treatment effect in the absence of new randomized trials.

Other Research Needs

Determine optimal methods to combine predictive HTE analyses with methods that permit the estimation of direct treatment effects or 
adherence-adjusted effects in the presence of drop out, loss to follow up, poor adherence and treatment switching.

Identify the appropriate clinical contexts for which modeling multiple dimensions of risks (e.g., risk of the primary outcome; risk of treatment-
related harm; risk of an important competing outcome) is important and feasible for adequate disaggregation of benefit-harm trade-offs.

Determine methods to analyze trials with multiple important outcomes, or outcomes where differences in treatment effect may be related to the 
choice of follow-up time.

Better understand the impact of different missingness mechanisms and develop principled methods for dealing with missing data in the context 
of subgroup identification.

Determine methods to permit models predicting treatment effect to cope with missing data in clinical practice.

Determine optimal methods for modeling the functional form of the risk-by-treatment interaction to translate risk stratified results from trials 
into continuous treatment effect predictions for clinical application.

Address concerns about differential fit between arms from endogenously derived risk models when randomization is unbalanced (e.g., 1:2 or 
1:3 randomization).

Determine optimal methods to achieve balance in covariates across subgroups in observational databases.

Determine whether novel methods, including machine learning techniques, have distinct advantages over traditional statistical approaches for 
predicting treatment benefit.

Examine how to best extend these approaches to other trial designs (e.g. longitudinal studies, dynamic treatment regimens)
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