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Abstract

Single-cell RNA sequencing (scRNA-seq) is a powerful approach for reconstructing cellular
differentiation trajectories. However, inferring both the state and direction of differentiation is
challenging. Here, we demonstrate a simple, yet robust, determinant of developmental potential—
the number of expressed genes per cell—and leverage this measure of transcriptional diversity to
develop a computational framework (CytoTRACE) for predicting differentiation states from
scRNA-seq data. When applied to diverse tissue types and organisms, CytoTRACE outperformed
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previous methods and nearly 19,000 annotated gene sets for resolving 52 experimentally
determined developmental trajectories. Additionally, it facilitated the identification of quiescent
stem cells and revealed genes that contribute to breast tumorigenesis. This study thus establishes a
key RNA-based feature of developmental potential and a platform for delineation of cellular
hierarchies.

Results

In multicellular organisms, tissues are hierarchically organized into distinct cell types and
cellular states with intrinsic differences in function and developmental potential (1).
Common methods for studying cellular differentiation hierarchies, such as lineage tracing
and functional transplantation assays, have revealed detailed roadmaps of cellular ontogeny
at scales ranging from tissues and organs to entire model organisms (2-4). While powerful,
these technologies, cannot be applied to human tissues in vivo and generally require prior
knowledge of cell type-specific genetic markers (2). These limitations have made it difficult
to study the developmental organization of primary human tissues under physiological and
pathological conditions.

Single-cell RNA-sequencing (sScRNA-seq) has emerged as a promising approach to study
cellular differentiation trajectories at high resolution in primary tissue specimens (5).
Although a large number of computational methods for predicting lineage trajectories have
been described, they generally rely upon (i) a priori knowledge of the starting point (and
thus, direction) of the inferred biological process (6, 7) and (ii) the presence of intermediate
cell states to reconstruct the trajectory (8, 9). These requirements can be challenging to
satisfy in certain contexts such as human cancer development (10). Moreover, with existing
in silico approaches, it is difficult to distinguish quiescent (noncycling) adult stem cells that
have long-term regenerative potential from more specialized cells. While gene expression-
based models can potentially overcome these limitations (e.g., transcriptional entropy (11—
13), pluripotency-associated gene sets (14), and machine learning strategies (15)), their
utility across diverse developmental systems and single-cell sequencing technologies is still
unclear.

Here, we systematically evaluated RNA-based features, including nearly 19,000 annotated
gene sets, to identify factors that accurately predict cellular differentiation status
independently of tissue type, species, and platform. We then leveraged our findings to
develop an unsupervised framework for predicting relative differentiation states from single-
cell transcriptomes. We validated our approach through comparison to leading methods and
explored its utility for identifying key genes associated with stem cells and differentiation in
both healthy tissues and human cancer.

RNA-based correlates of single-cell differentiation states

Our initial goal was to identify robust, RNA-based determinants of developmental potential
without the need for a priori knowledge of developmental direction or intermediate cell
states marking cell fate transitions. We evaluated ~19,000 potential correlates of cell potency
in scCRNA-seq data, including all available gene sets in the Molecular Signatures Database (77
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=17,810) (16), 896 gene sets covering transcription factor binding sites from ENCODE (17)
and ChEA (18), an mRNA-expression-derived stemness index (MRNAsi) (15), and three
computational techniques that infer stemness as a measure of transcriptional entropy
(StemID, SCENT, SLICE (11-13)). We also explored the utility of “gene counts,” or the
number of detectably expressed genes per cell. Although anecdotally observed to correlate
with differentiation status in a limited number of settings (alveolar development in mouse
and thrombocyte development in zebrafish (19, 20)), the reliability of this association, and
whether it reflects a general property of cellular ontogeny, are unknown.

To assess these RNA-based features, we compiled a training cohort consisting of nine gold
standard scRNA-seq datasets with experimentally-confirmed differentiation trajectories.
These datasets were selected to prioritize commonly used benchmarking datasets from
earlier studies and to ensure a broad sampling of developmental states from the mammalian
zygote to terminally differentiated cells (table S1). Overall, the training cohort encompassed
3174 single cells spanning 49 phenotypes, six biological systems, and three SCcRNA-seq
platforms (fig. S1A and table S1). To determine performance, we used Spearman correlation
to compare each RNA-based feature, averaged by phenotype, against known differentiation
states (Fig. 1A). We then averaged the results across the nine training datasets to yield a final
score and rank for every feature (table S2).

This systematic screen revealed many known and unexpected correlates of differentiation
status (Fig. 1B; fig. S1B; table S2). However, one feature in particular showed notable
performance — the number of detectably expressed genes per cell (‘gene counts’). Appearing
in the top 1% of the ranked list (104 out of 18,711), this data-driven feature compared
favorably to well-established stem cell signatures, including cell cycle and pluripotency
genes (14, 15), yet also showed evidence of unique biology and broader applicability. For
example, regardless of whether we examined cycling cells, non-cycling cells, or published
data from the earliest stages of human embryogenesis prior to the upregulation of
pluripotency factors (21), gene counts generally decreased with successive stages of
differentiation (fig. S2, A and B, left). Pluripotency genes, by contrast, showed an arc-like
pattern early in human embryogenesis, characterized by progressively increasing expression
until the emergence of embryonic stem cells, followed by decreasing expression (fig. S2B,
right).

These findings suggested that gene counts might extend beyond isolated experimental
systems to recapitulate the full spectrum of developmental potential. To test this possibility,
we compiled, remapped, and normalized a set of in vivo mouse lineage trajectories based on
five plate-based scRNA-seq experiments encompassing 5059 cells and 30 phenotypes that
together spanned all major potency levels (22) (table S3 and materials and methods). Indeed,
when averaged according to known phenotypes and assessed across independent studies, the
association between gene counts and differentiation was maintained (/72 =0.89, P= 1.8 x
1078) (Fig. 1C and materials and methods). Notably, this relationship was also observed in
other organisms, including Caenorhabditis elegans (Fig. 1D) and zebrafish (table S4),
suggesting that it is a general feature of cellular ontogeny.
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Because the transcriptional output of a cell is associated with its genome-wide chromatin
profile, we next tested whether single-cell gene counts is ultimately a surrogate for global
chromatin accessibility, which has been shown to decrease with differentiation in certain
contexts (23-25). To do this, we compared single-cell gene counts derived from scRNA-seq
data with paired bulk ATAC-seq (assay for transposase-accessible chromatin sequencing)
profiles obtained from a recent study of in vitro mesodermal differentiation from human
embryonic stem cells (hESCs) (26). Indeed, genome-wide chromatin accessibility was
observed to progressively decrease with differentiation of hESCs into paraxial mesoderm
and lateral mesoderm lineages (Fig. 1E; fig. S3, A and B). We observed strong concordance
between the number of accessible peaks and the mean number of detectably expressed genes
per phenotype (fig. S3A). Similar patterns were observed for lung adenocarcinoma cells
jointly profiled by ATAC-seq and RNA-seq (sci-CAR) and for human hematopoiesis,
supporting the generality of this result (fig. S3, C to E).

Development of CytoTRACE

The number of expressed genes per cell generally showed consistent performance with
respect to key technical parameters and was generally correlated with mRNA content (figs.
S4 to S7 and supplementary text). However, in some datasets, such as that for in vitro
differentiation of hESCs into the gastrulation layers (27), the number of expressed genes per
cell exhibited considerable intra-phenotypic variation (Fig. 2A, left). Indeed, when evaluated
at a single-cell level, 412 predefined gene sets from our in silico screen outperformed gene
counts (fig. SBA and table S2). Because sScCRNA-seq was designed to capture single-cell gene
expression, we reasoned that genes whose expression patterns correlate with gene counts
might better capture differentiation states. Indeed, by simply averaging the expression levels
of genes that were most highly correlated with gene counts in each dataset (materials and
methods), the resulting dataset-specific gene counts signature (GCS) became the top-
performing measure in the screen, outranking every predefined gene set and computational
tool that we assessed (fig. S8, A to D).

GCS, like gene counts, is inherently insensitive to dropout events, is agnostic to prior
knowledge of developmentally regulated genes, and is not solely attributable to multi-
lineage priming (28) (fig. S9 and supplementary text) or a known molecular signature (e.g.,
pluripotency) (fig. S2B and table S5). Despite these characteristics, GCS was still
moderately noisy in some datasets (e.g., Fig. 2A, center and fig. S8C). We therefore
implemented a two-step procedure to directly smooth GCS on the basis of transcriptional
covariance among single cells (Fig. 2A, right, and materials and methods). The resulting
method, which we call CytoTRACE [for cellular (Cyto) Trajectory Reconstruction Analysis
using gene Counts and Expression; https://cytotrace.stanford.edu], outperformed GCS and
the other RNA-based features that we evaluated (fig. S8 and table S2).

Performance evaluation across tissues, species, and platforms

To validate our findings, we assembled an expanded compendium of 33 additional SCRNA-
seq datasets from 26 studies (fig. S10A, table S1, and materials and methods). These
datasets represent diverse developmental and differentiation processes and consist of
141,267 single cells spanning 266 phenotypes, nine biological systems, five species
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[including two whole organisms (29, 30)], and nine scRNA-seq platforms (three droplet-
based and six plate-based protocols, ranging from an average of ~10,000 unique molecular
identifiers to ~1 million reads per cell, respectively; fig. S5A).

When assessed at the single-cell level, CytoTRACE outperformed all evaluated RNA-based
features in the validation cohort (Fig. 2B), achieving a substantial gain in performance over
the second highest-ranking approach (median rho = 0.72 versus 0.53 for the second-highest-
ranking approach, A= 0.001) (Fig. 2C; fig. S10B; and table S2 and S4). Similar
improvements were observed across many complex systems, including bone marrow
differentiation (fig. S10C). In addition, CytoTRACE results were positively correlated with
the direction of differentiation in 88% of datasets (P= 7 x 10~7, binomial test). These results
were consistent with our findings for the training cohort (Fig. 2B and fig. S10D) and were
robust to the use of smoothing (fig. S11). Moreover, no significant biases in performance
were observed in relation to tissue type, species, the number of cells analyzed, time-series
experiments versus snapshots of developmental states, or plate-based versus droplet-based
technologies (fig. S12).

To further evaluate CytoTRACE, we compared it with RNA velocity, a kinetic model that
can predict future cell states but is limited to SCRNA-seq data with continuous fate
transitions (8). To analyze RNA velocity’s output, which consists of an individualized
prediction for every cell (fig. S13), we identified all pairs of current and future cell states
spanning a known shift in developmental potential (in the order of less to more, or vice
versa). We then scored each predicted trajectory against known differentiation states on five
datasets with continuous developmental processes (fig. S13B and materials and methods).
To permit a fair comparison, CytoTRACE was evaluated on the same cells. Although both
methods performed similarly on an embryonic chromaffin dataset from the RNA velocity
study (8), CytoTRACE achieved higher accuracy overall (median of 74% versus 54%,
respectively; fig. S13C). This was likely due to the short mRNA half-lives and
developmental time scales assumed for the RNA velocity model (8) (supplementary text).

Having assessed performance on individual datasets, we next asked whether CytoTRACE
could be applied across independent scRNA-seq datasets unified by batch correction. To
address this, we leveraged mutual nearest neighbor and Gaussian kernel normalization
techniques from Scanorama (31) (materials and methods). We then merged several datasets
with this approach. Regardless of whether we integrated datasets profiled on different
scRNA-seq platforms (Fig. 3A) or datasets containing developmentally distinct cell types
(fig. S14), single-cell orderings predicted by CytoTRACE were accurate.

Stem-cell-related genes and hierarchies

Given the ability of CytoTRACE to recover the direction of differentiation in nearly every
evaluated dataset (supplementary text), we next explored its potential to identify markers of
immature phenotypes without prior knowledge. By rank-ordering genes on the basis of their
correlation with CytoTRACE, markers of immature cells were readily prioritized in 86% of
benchmarking datasets (fig. S15A). These included well-established stem and progenitor
markers, such as Kitand Stmnl in mouse bone marrow (32) and Axin2and Lgr5in mouse
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intestinal crypts (33), underscoring the utility of CytoTRACE for the de novo discovery of
developmentally regulated genes (fig. S15B and table S6).

Lineage relationships and their associated genes can also be determined by dedicated branch
detection tools, such as Monocle 2; however, these approaches do not predict the starting
point of the biological process. For example, when applied to 4,442 bone marrow cells,
Monocle 2 identified 23 possible “roots” from which to calculate pseudotime values (Fig.
3B, left). By contrast, CytoTRACE readily identified the correct root without user input
(Fig. 3B, right, and fig. S16, A and B). Integration of these methods facilitated automatic
identification of lineage-specific regulatory factors and marker genes during granulocyte,
monocyte, and B cell differentiation (fig. S16C). Similar results were obtained on mouse
intestinal cells (fig. S16, D to F). Notably, other methods also showed strong performance
when oriented by CytoTRACE (fig. S16G; table S4).

We next asked whether CytoTRACE could distinguish cycling and long-term or quiescent
stem cells from their downstream progenitors (34). As these populations have been well-
characterized in the bone marrow (3), we investigated this question in the mouse
hematopoietic system. Although both cycling and quiescent hematopoietic stem cell (HSC)
subpopulations (34) were correctly predicted to be less differentiated, only proliferative
HSCs were significantly ranked above early progenitors (Fig. 3C). This result was not
unexpected, however, because quiescent cells have reduced metabolic activity and low RNA
content (1). By devising a simple approach to visualize inferred RNA content as a function
of CytoTRACE (Fig. 3D, top), we observed a distinct valley in RNA abundance that
coincided with elevated expression of Hoxb5, a marker of long-term or quiescent HSCs (35)
(Fig. 3D, bottom). Since these cells could not be identified by gene counts or RNA content
alone, this analysis confirmed the utility of CytoTRACE and demonstrates an approach for
elucidating tissue-specific stem cells from scRNA-seq data.

Application to neoplastic disease

Increasing evidence suggests that human breast tumors contain less differentiated cells that
are resistant to therapy and associated with the development of relapse and metastasis (10,
36). Subpopulations of tumor cells within the luminal progenitor (LP) epithelium are
thought to give rise to aggressive basal-like breast cancers, such as triple-negative breast
cancer (TNBC) (37), and possibly also to estrogen receptor positive (ER+) breast cancers
(38). However, the differentiation states and tumor-initiating properties of LP subsets remain
incompletely understood.

To determine whether CytoTRACE can provide insights into immature LP cells and their
associated genes in breast cancer, we performed scRNA-seq profiling of breast tumor
epithelial cells and adjacent normal epithelial cells from eight patients with triple-negative (7
=2) or ER+ (1= 6) breast cancer. Using a Smart-seg2 protocol combined with fluorescence-
activated cell sorting (FACS), we index-sorted and sequenced cells from three major human
epithelial subpopulations: basal (CD49fMShEPCAM™Med-1ow) ‘[yminal progenitor
(CD49fMgNEPCAMNIEN)  and mature luminal (ML) subpopulations (CD49flOWEPCAMNigh)
(fig. S17A; table S7). After removing low quality cells and applying principal component
analysis to visualize the data, we confirmed three well-separated clusters of basal, LP, and
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ML cells, each with characteristic expression patterns of previously described lineage
markers (Fig. 4A and fig. S17B). No obvious clustering was observed for tumor versus
normal cell differences or by patient (Fig. 4A, fig. S18A).

To validate the ability of CytoTRACE to define LP differentiation states, we started by rank-
ordering genes expressed in adjacent normal LPs by their Pearson correlation with
CytoTRACE. We found that previously described marker genes of less-differentiated normal
LPs [ALDH1A3and MFGES) (39)] and more-differentiated normal LPs [ GATAS3, FOXAL,
and AR (39, 40)] were successfully enriched by this approach (Fig. 4B). Moreover, genes
that were up-regulated in highly clonogenic normal LPs (39) were skewed toward genes
predicted to mark less-differentiated cells (Fig. 4B).

We next sought to identify LP genes associated with tumorigenesis. We first ordered genes
expressed in malignant LPs by their Pearson correlation with CytoTRACE. In this rank-
ordered list, we observed a significant enrichment of genes whose knockdown by RNA
interference (RNAI) led to decreased viability of tumor cells in patient-derived xenograft
(PDX) models of TNBC (41) (@ = 0.002, gene set enrichment analysis) (Fig. 4C; fig. S18, B
and C, and table S8). Moreover, when we applied CytoTRACE to prioritize genes in tumor
LPs compared to tumor MLs, the latter of which are developmentally downstream of LPs in
normal breast (39), the top 15 genes included known members of tumorigenic pathways in
breast cancer [e.g., MET and JAKI (42, 43)], as well as unknown candidates (e.g., GULPI)
(Fig. 4D, top). We focused on genes that were (i) more highly expressed in tumor LPs than
MLs and (ii) expressed in a subpopulation of tumor LPs (<20% of cells) (Fig. 4D, bottom).
After applying this filter, GULPI emerged as the top candidate gene (Fig. 4D, bottom right,
and fig. S18C).

GULP1 is an engulfment adaptor protein (44) and its murine homolog is a specific marker of
mouse HSCs, suggesting a conserved role of this gene in other immature cell states (fig.
S19A). We measured the effect of GULPI knockdown on the proliferation of metastatic
TNBC cell lines, MDA-MB-231 and MDA-MB-468 (fig. S19, B to E). We found that
GULPI knockdown reduced proliferation of both cell lines as measured by a colorimetric
assay for metabolic activity (fig. S19E). In addition, GULPI knockdown in PDXs (7=2)
either inhibited tumor growth (TNBC sample) or fully abrogated tumor growth (ER+
sample) (Fig. 4, E and F). These data suggest a possible role for GULP1 in human breast
cancer tumorigenesis.

Discussion

Efforts to characterize single-cell transcriptomes in diverse tissues, organs, and whole
organisms have underscored the need for RNA-based determinants of developmental
potential. In our analysis of RNA-based features across numerous developmental processes,
we observed that the number of detectably expressed genes per cell powerfully associates
with cellular differentiation status.

Although previous studies have demonstrated a global reduction in chromatin accessibility
and/or plasticity during lineage commitment in specific developmental settings [e.g.,

Science. Author manuscript; available in PMC 2020 November 27.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Gulati et al.

Page 8

embryonic stem cells, intestinal stem cells, and neural stem cells (23-25)], this work extends
the scope of this result and quantitatively links it to single-cell gene counts. Moreover, as has
been previously shown (45), our results indicate that variability in gene counts between
phenotypically identical single cells is not exclusively due to drop-out events, but also due to
differential sampling of the transcriptome (fig. S4). Our results are therefore consistent with
a model in which less mature cells maintain looser chromatin to permit wider sampling of
the transcriptome, while more differentiated cells generally restrict chromatin accessibility
and transcriptional diversity as they specialize (Fig. 1E and fig. S3) (46). Theoretically, this
model can be represented by “attractor states” within a genome-wide gene regulatory
network (47). In this context, differentiating cells descend toward stable regions of the
network (attractor states), characterized by restricted gene expression, whereas metastable
cells broadly sample the network, maintaining higher differentiation potential (47). Future
investigations of this phenomenon, and its relationship to single-cell gene counts, may reveal
new mechanisms of stem cell regulation and lineage commitment. However, further studies
will be needed to confirm the validity of this model across additional tissue compartments,
developmental time points, and phenotypic states.

In summary, we have shown that the number of expressed genes per cell is a hallmark of
developmental potential. By exploiting this property of ScRNA-seq data, we developed a
general framework for resolving single-cell differentiation hierarchies. We envision that our
approach will complement existing SCRNA-seq analysis strategies, with implications for the
identification of immature cells and their developmental trajectories in complex tissues
throughout multicellular life.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. RNA-based deter minants of developmental potential.
(A and B) In silico screen for correlates of cellular differentiation status in SCRNA-seq data.

(A) Depiction of the scoring scheme. Each phenotype was assigned a rank on the basis of its
known differentiation status (less differentiated = lower rank), and the values of each RNA-
based feature (fig. S1A) were mean-aggregated by rank for each dataset (higher value =
lower rank). Performance was calculated as the mean Spearman correlation between known
and predicted ranks across all nine training datasets (table S1). (B) Performance of all
evaluated RNA-based features for predicting differentiation states in the training cohort,
ordered by mean Spearman correlations (fig. S1 and table S2). (C) The developmental
ordering of 30 mouse cell phenotypes across 17 developmental stages shown as a function of
single-cell gene counts (table S3). Data are expressed as means + 95% confidence intervals.
The linear regression line and coefficient of determination (/#4) are shown. (D) Performance
of gene counts for ordering C. elegans embryogenesis. (Left) Radial tree map showing gene
counts for each cell type with available SCRNA-seq data from a recent study (48). NA, not
available. Embryogenesis originates at the center of the plot [PO (zygote)] and moves
outwards towards terminally differentiated cells, with concentric rings representing
sequential cell divisions. (Right) Boxplot showing weighted Spearman correlations between
single-cell gene counts and developmental lineages with available transcriptomic data (7=
456). (E) Association between single-cell gene counts and chromatin accessibility in cells
from an in vitro differentiation series of purified phenotypes from the human paraxial
mesoderm lineage [Mesoderm (C1) dataset; table S1]. (Top) Association of single-cell gene
counts with differentiation. Each point represents a cell colored by known phenotype
(below). (Bottom) Heat map showing chromatin accessibility profiles for the same
phenotypes as above. Peaks are centered by their summit, defined as the base with maximum
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coverage, shown within a window of 1 kb (0.5 kb), and ordered top to bottom within each
phenotype by decreasing total signal per peak. Cell type abbreviations are defined in
materials and methods.
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Fig. 2. Development and validation of CytoTRACE.
(A) Schematic overview of the CytoTRACE framework applied to the hESC in vitro

differentiation (C1) dataset (materials and methods and table S1). (B) Scatterplot comparing
the average performance of 18,706 annotated gene sets, four stemness inference methods,
gene counts, GCS, and CytoTRACE in the training and validation cohorts (table S2). (C)
Boxplots showing the single-cell performance of CytoTRACE against RNA-based features
and methods in the validation cohort (7= 33 datasets; table S2). Each point represents the
Spearman correlation, weighted by number of cells per phenotype, between predicted and
known differentiation states for a given dataset, calculated as described in materials and
methods. Statistical significance was assessed by a one-sided paired Wilcoxon signed-rank
test against CytoTRACE (table S4).
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Fig. 3. Characterization of developmental hierarchies and quiescent stem cellsusing

CytoTRACE.

(A) Impact of batch correction (materials and methods) on two datasets of mouse bone
marrow differentiation: Bone Marrow (10x) and Bone Marrow (Smart-seq2) (table S1). diff,
differentiated. (B) Combined application of CytoTRACE and Monocle 2 to mouse bone
marrow differentiation [Bone marrow (Smart-seq2) dataset] (table S1). (Left) Multi-lineage
tree inferred by Monocle 2 showing all 23 possible pseudotimes when the root is unknown.
(Right) Automatic selection of the correct root by CytoTRACE. (C and D) Prioritization of
quiescent and cycling HSCs in index-sorted scRNA-seq data of mouse hematopoiesis [Bone
Marrow (Smart-seq2) dataset] (table S1). All plots are identically ordered by CytoTRACE.
(C) Boxplots showing CytoTRACE values for candidate cycling HSCs (7= 31), long-term
or quiescent HSCs (n7= 30), early immature B cells (7= 285), late immature B cells (n=
863), and mature B cells (7= 700). HSCs, long-term or quiescent HSCs, and proliferating
cells were defined on the basis of expression of Fga'5 (49), Hoxb5 (35), and Mki67,
respectively. Although boxplots represent all analyzed cells, a maximum of 50 cells per
phenotype are displayed as points for clarity. Statistical significance was assessed by a two-
sided Wilcoxon signed-rank test. **P=0.003. (D) 7op: RNA content per cell, shown as a
function of CytoTRACE and displayed as the moving average of 200 cells. Bottom:
Expression of Fgd5and Hoxb5 displayed as a smoothing spline over the moving average of
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200 cells. Data from monocytic and granulocytic lineages are consistent with the above
results.
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Fig. 4. Identification of immature cell markersin normal and malignant human breast L Psusing
CytoTRACE.

(A) Principal component analysis of SCRNA-seq profiles from 1902 human breast epithelial
cells, colored according to subpopulations (top) and patient (bottom). (B) Heat map showing
genes from adjacent normal LPs rank-ordered by their Pearson correlation with CytoTRACE
and colored according to a clonogenicity index, defined as the log, fold change in
expression between highly and lowly clonogenic LPs from normal human breast (39)
(materials and methods). The clonogenicity index is displayed as a moving average of 200
genes. Key genes associated with less (ALDHIA3, MFGES) and more (GATA3, FOXAL,
AR) differentiated normal LPs are indicated. (C) Enrichment of genes associated with
human breast tumorigenesis [RNAI dropout viability screen (41)] within a ranked list of
genes expressed by malignant LPs, rank-ordered by their Pearson correlation with
CytoTRACE. Enrichment was calculated with preranked gene set enrichment analysis. NES,
normalized enrichment score; ES, enrichment score. (D) Identification of candidate
tumorigenic genes associated with immature malignant human LPs. (Top) Genes rank-
ordered by the difference in their Pearson correlations with CytoTRACE in malignant LPs
versus malignant mature luminal cells. The top 15 genes that are predicted to be specifically
associated with less differentiated LPs are indicated on the left. (Bottom) Schema for the
identification of genes that are ranked as above, but that are also more highly expressed in
malignant LPs than MLs (log, fold change > 0; Benjamini-Hochberg adjusted £ < 0.05,
unpaired two-sided #test) and that are expressed by a subpopulation of LPs (<20% of cells).
The top 5 filtered genes are shown (right). (E) Schema for shRNA knockdown of GULPI in
a human breast cancer xenograft model. (F) Growth of human breast cancer xenografts from
two patients, one with TNBC (left) and one with ER+ luminal-type cancer (right), after
lentiviral transduction with empty vector or shRNA targeting GULPI. Tumor volumes after
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knockdown with shGULPI #1 (orange) and shGULPI #2 (red) were indistinguishable in
COH69 xenografts (right). Data are expressed as means + SD (7= 3 mice). Statistical
significance was assessed by a two-way ANOVA. **** p< (.0001.
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