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Summary

Walking around outside and looking at different biological systems, three things
are easily appreciated: First, biological systems are unfathomably complicated. A
detailed understanding of how a tree grows or a deer runs seems impossible. Second,
there is a huge diversity, and different biological systems look extremely different.
The appearance and movement of bird and a fish share, at first glance, not many
similarities. Third, biological organisms vary greatly in length (and time) scale.
An elephant is much bigger than a mouse. It then seems almost inconceivable to
find general laws which govern the evolution and dynamics of biological systems in
general. Nevertheless, despite the enormous diversity, there are some similarities,
which gives rise to some hope. For example, different organisms are all made up
of cells. More fundamentally, all organisms are subject to, and constrained by, the
laws of physics. A human has to spend a lot more energy to fly than a butterfly.
Furthermore, while an elephant is much larger than a mouse, when comparing them
with the length scales of atoms or the universe, they are almost the same size.

Indeed, in recent years it has emerged that these and other similarities are suf-
ficient to enable one to identify a few general laws and rules that are valid for a
large range of biological systems, and that it is possible to ignore many microscopic
details. This is in the spirit of a school of physics that aims to identify a minimum
number of laws that describe as many different phenomena as possible. The goal in
this case then is to find a small set of equations that can be used to describe and
explain the dynamics of different biological systems: How do bacteria navigate their
environment, how do cells move, how do embryos develop, how do fish swim, how
do birds fly, ...?

To put this into context, we can take a step back and look at many-body physics
in general. Inherently, one deals with systems where many microscopic constituents
are interacting with each other. Through their interaction on the microscopic level,
collective dynamics on the macroscopic level may arise. One way of dealing with
these large degrees of freedom at the microscopic level is to use computer simulations
to explicitly model each microscopic particle and its interactions with other parti-
cles. However, analytically this is almost always impossible due to the large degrees
of freedom. One would have to solve too many equations simultaneously. Luckily,
if we are interested in the dynamics on the macroscopic level, it is often possible
to ignore many aspects on the microscopic level. By averaging (coarse-graining)
over many particles it is possible to find effective equations of motion that describe
the system on the macroscopic level. During the undergraduate physics lectures
one often first encounters this strategy when learning about statistical physics and
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thermodynamics. In the present thesis, where we are interested in how particles
move in space, the effective macroscopic equations of motion we use are hydrody-
namic equations like the infamous (Navier-)Stokes equation. This equation is used
to describe the dynamics of liquids, e.g., how water flows in a river or how air
flows around a driving car. However, we are not dealing with the ordinary Stokes
equation. We are interested in “living” systems in the sense that each of the mi-
croscopic particles is not just passively reacting to external forces, but is instead
exerting forces on its environment. Thus, the systems we are considering are not
“just” evolving towards their equilibrium state, but the microscopic particles are
constantly converting energy into forces or motion. Such systems are called active.
The classical hydrodynamic equations are then expanded to include these additional
out-of-equilibrium forces, but the general idea is still the same. A few (think two
or three) equations can be used to describe the dynamics of the system on the
macroscopic level.

In the field of active liquids there are two equations that stand out, the Toner-Tu
equations, and the equations of active nematodynamics. These are a set of two and
three equations, respectively. See the Introduction for more details. Importantly, the
central equation in either case is a modified Navier-Stokes equation which, compared
with the classical Navier-Stokes equation, contains additional terms to account for
the active forces . The difference between the two equations is, essentially, that the
Toner-Tu equations are used for systems in which the particles are not embedded in
another liquid in a “relevant way”, whereas the active nematodynamic equations are
used if this is the case. Here, “relevant” means that the liquid is mediating interac-
tions, i.e., the dynamics of the liquid is important, and a particle can interact with
another particle far away through the presence of the liquid. Thus, for example,
a flock of birds is described with the Toner-Tu equations because, while the birds
are flying (embedded) in air, the birds are not interacting with each other through
perturbing the air. A flying bird perturbs the air around it with its wings, but an-
other bird at a distance will not notice this. On the other hand, cells are embedded
in a liquid and when they move they displace this liquid, which other cells further
away will notice. Again, see the Introduction for a more precise discussion of this.
Thus, one chooses one equation or the other depending on the properties of the sys-
tem one wants to study. These equations have very rich dynamics. Much research
involves studying the same equations (potentially with small modifications like an
additional term) in different conditions (different geometry, different boundary con-
ditions, different parameter range, ...), and investigating the resulting dynamics.
Once the equations have been solved and analyzed for a given scenario, there is
then one last step one needs to take in order to make the connection between the
abstract equations and the biological system that we ultimately want to describe.
This is potentially the most difficult and controversial step. Namely, identifying
certain parameters and quantities in the equations with biological quantities that
can be observed experimentally. Ideally, through this process, solving the (relatively
simple) hydrodynamic equations yields insights into the dynamics of many differ-
ent biological systems, as well as experimentally verifiable predictions that can be
tested.
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We start in Chapter 2 by going back to the basics. It is well-known that the
Toner-Tu equations can be used to describe the collective motion of, e.g., birds or
fish. They can be used to show that an initially disordered system of motile particles
can organize into a macroscopically ordered state with all particles moving in the
same direction. However, how exactly does the system go from a disordered state to
an ordered state, what are the dynamics of the intermediate state, and is it possible
to identify exactly what drives the transition to order? Chapter 2 is concerned
with these questions and we answer them by combining an analytical and numerical
analysis of the Toner-Tu equations with an experimental colloidal system. This
experimental system is well described by the Toner-Tu equations and can be used
as a tractable model system. We find that certain structures, so-called topological
defects (see the Introduction) drive the transition to order.

We then turn towards investigating the dynamics of cells and tissues using the
active nematodynamic equations. The basic idea is that each cell is imagined to be
a force dipole exerting forces on its environment. Combining many cells, like in a
tissue, this results in a collective behavior that one is interested in describing. In
Chapter 3 we modify the traditionally used active nematodynamic equations by
adding a term to account for chirality. What if the cells are not left-right symmetric
but actually are chiral, i.e., the forces they exert on their environment are not
mirror symmetric. We investigate how including this effect modifies some well-
known phenomena of classic active nematodynamics, namely the motion of half-
integer defects and the spontaneous flow transition.

Indeed, there is increasing evidence that some kinds of cells are chiral (that is,
only cells of a given chirality are found in nature), and that this chirality is crucial,
e.g., during the development of drosophila embryos for them to achieve the correct
final shape. Assuming that cells are chiral, these processes could be explained by
developing models similar to the one derived in Chapter 3. However, a different
problem is the question of how chirality in cells developed in the first place. That
is, what is the mechanism that evolutionarily favored one chirality over the other.
Is it pure chance or does one chirality have advantages over the other? Chapter 4
contains a simple model that we developed to explain how chirality might have
evolved in certain cells or bacteria. The idea is that from an initial state where
both left- and right-chiral particles were present, over time one of the two died out.
Thus, after some time the entire system only contains particles of one chirality.

After this brief detour, we return to investigating the dynamics of cells and
tissues. The remaining chapters are concerned with understanding morphogenesis,
that is the process of shape formation during the growth of tissues and organisms.
For example, how does an initially spherical human embryo grow legs and arms?
Rather than understanding the details for a single organism, we are interested in
uncovering general laws and principles that might be a starting point for answering
this question. Again, we use active nematodynamics as the equations to model
tissue dynamics. However, whereas in previous chapters we solved equations in
flat, two-dimensional space, we now investigate these equations on top of a two-
dimensional elastic surface. This surface is allowed to deform such that the active
forces could, in principle, deform the surface and create shapes on their own. This
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can be used as a first simple model to explain some morphogenetic processes. In
Chapter 5 we develop the model for an active liquid crystal coupled to an elastic
surface. We then investigate how an initially flat disk can become unstable due to the
presence of active forces. If these forces are sufficiently strong, they can deform the
disk to create a protrusion. We analyze this instability both analytically and with
simulations, and connect it to some recent experimental observations. Continuing
this research, we consider a surface that is initially spherical, not flat. This is
closer to the spherical embryos often observed in nature. The results of this study
are presented in Chapter 6. We find a number of different dynamical regimes,
depending on the symmetry of the microscopic particles considered, and the sign
and magnitude of the active force. In some cases we again find the formation of
protrusions, whereas in other cases we find the opposite, namely the flattening of the
sphere. Finally, in Chapter 7 we present a detailed derivation of the equations used
in the previous two chapters. Due to the length of the derivation we present it as
a separate chapter, and not merely as an appendix of one of the previous chapters.
Furthermore, we present some preliminary results extending and generalizing the
results of Chapter 5. Thus, in Chapters 5–7 we develop both an analytical and a
computational model which can be used as a starting point to understand some
aspects of shape development in organisms and which illuminate some aspects of
morphogenesis.




