-1 Universiteit
%47 Leiden
The Netherlands

This is life: some thoughts on self-organized structure

formation in active liquids and biological systems
Hoffmann, L.A.

Citation

Hoffmann, L. A. (2023, June 29). This is life: some thoughts on self-
organized structure formation in active liquids and biological systems.
Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/3628032

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the

University of Leiden
Downloaded from: https://hdl.handle.net/1887/3628032

Note: To cite this publication please use the final published version (if
applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3628032

CHAPTER 7

Full Derivation of Active Height Equation

This chapter accompanies Chapter 5 and Chapter 6. In the first part of this chap-
ter we present a detailed derivation of the equations of motion used in these two
chapters. Namely, starting from the Frank free energy, the Helfrich free energy,
and the standard equations of active nematodynamics, we systematically derive the
equations of motion governing the dynamics of an active liquid crystal coupled to
an elastic, two-dimensional surface of arbitrary geometry. The resulting equations
can be used to study activity-induced shape deformations of elastic surfaces. In
the second part of this chapter we investigate these equations for an initially flat,
disc-shaped elastic surface. We analyze how the presence of +1 and +1/2 topo-
logical defects in such a system can drive buckling instabilities. We find that only
defects with positive charge result in a buckled surface. In the third part of this
chapter we investigate the case of a toroidal ground state geometry, where no defects
are present. We present preliminary results on the instability of the ground state
geometry in this case.

All laws, written, and unwritten, have need of interpretation.
T. Hobbes. Leviathan.

[Blay is a noun only if water is dead. When bay is a noun, it is defined by
humans, trapped between its shores and contained by the word. But the verb
witkwegamaa — to be a bay — releases the water from bondage and lets it live.
“To be a bay” holds the wonder that, for this moment, the living water has
decided to shelter itself between these shores, conversing with cedar roots and a
flock of baby mergansers. Because it could do otherwise — become a stream or
an ocean or a waterfall |[...].

R. W. Kimmerer. Braiding Sweetgrass.

La crisi consiste appunto nel fatto che il vecchio muore e il nuovo non puo
nascere: in questo interregno si verificano i fenomeni morbosi piu svariati.
A. Gramsci. Quaderni del carcere.
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7.1 Introduction

The goal of this chapter is two-fold. First, we present in more detail the derivations
of the equations of motion that govern the active liquid crystal coupled to an elastic
surface. We used these equations in the two preceding chapters, Chapters 5, 6, to
describe the dynamics of an elastic surface coupled to an active liquid crystal in
the presence of topological defects. We focus on the mathematical aspects here and
refer to the previous chapters for more details about the connection to biology and
the motivation. Because of this, the present chapter is not independent and rather
technical. (If it was not for its length, this chapter could have been an appendix for
the preceding chapters.) In Chapter 5 we considered a surface that is initially a flat
disc, and investigated how the presence of a +1 defect results can drive a buckling
instability. In Chapter 6 we investigated a surface that initially had the geometry
of a sphere. We considered both the case of a polar liquid crystal, in which case
two +1 defects were present on the sphere, as well as a nematic liquid crystal with
four +1/2 defects. In both chapters the governing equations of motion coupled the
equilibrium elastic relaxation of the elastic membrane and liquid crystal with the
activity and the resulting flow and pressure fields. The full derivation of this set of
equations is rather lengthy and thus we present them here in a separate chapter.
In the second part of this chapter we generalize the results of Chapter 5 on the
buckling instability for a flat disc in the presence of a +1 defect to arbitrary defect
charges. Lastly, in the third part of this chapter, we solve the equations for an active
liquid crystal on a torus. Some basic concepts of differential geometry used here are
explained in the introduction, Chapter 1.

7.2 The Model

The model we use here can be used to explain, for example, the morphodynamics
of cell monolayers, even though the model can more generally be used to study
activity-driven shape changes. We refer to Chapters 5, 6 for the connection between
the equations derived below and biological systems. Here, we focus on the derivation
of the equations, not on their (biological) interpretation and application. In this
section we recapitulate the equations used to describe the dynamics of an active
liquid crystal on a fixed, curved surface. Afterwards, we generalize the equations to
allow for the surface itself to deform. We consider a two-dimensional active liquid
crystal (either polar or nematic) with the director field denoted by p. This liquid
crystal field is constrained to be on the two-dimensional surface .#, that is the
director does not have a component normal to the surface. The elastic energy of
the liquid crystal is minimized if nearby directors are aligned, that is gradients in
the director field are energetically unfavorable. This is quantified by the Frank free
energy (Sec. 1.1.2, Refs. [1, 3])

Fe= "5 | aapvpl (7.1)
2 Ju

where kg is the Frank elastic constant and we assume the one-elastic-constant ap-
proximation. To model the dynamics of cells, which are inherently out of equilib-
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rium, it is necessary to add activity. As explained, e.g., in Sec. 1.2.1, we choose the
following expression for the active stress tensor [41, 42, 48, 55, 56]:

1
o5 =« (pipj — 29¢j> . (7.2)

Here, g;; is the metric of the surface .# which the director field is constrained to. In
flat space it reduces to the Kronecker delta g;; = d;; and in this case Eq. (7.2) reduces
to the expression found most commonly in the literature. However, we anticipate
that our ultimate goal is to work in curved space by writing the general expression
for this stress tensor with a generic metric here. This active force can be found
from the active stress tensor by taking the divergence. The active force can drive a
fluid flow whose velocity we denote by v;. We assume the flow to be incompressible
which gives rise to a hydrodynamic pressure P,. The flow can interact with the
director field by reorienting it. For example, if the flow is sufficiently strong it can
be energetically favorable for elongated particles to align with the direction of flow
even if this entails that gradients in the director field result in an increasing Frank
free energy. This is well-known from passive liquid crystal physics with essentially
the only difference being that in the passive case the flow is externally driven while in
the active case the flow is fueled by the activity of the system itself. The interaction
is described by the Leslie-Ericksen equation (Sec. 1.1.4, Refs. [1-3, 26-28])

D . o
e ) ()\Ujkpk —wjp® +

RF

- vaj) . (7.3)

Here, D; = ¢ + v'V; is the material derivative. u;; = (V,v; + V;v;) /2 and w;; =
(Viv; — V,v;) /2 are the strain rate and vorticity tensors, respectively. X is the so-
called flow alignment parameter. Finally, M; = §Fp/dp’ = kpV?p; is the molecular
field found from the Frank free energy Eq. (7.1). It is coupled to the rotational
viscosity I' and in the absence of flows results in a minimization of the Frank free
energy, i.e., this term aligns the director field. Finally, an equation describing the
dynamics of the velocity field is needed. We use the overdamped force balance
(Sec. 1.1.4, Refs. [1-3, 26-28]):

D =V + o] (7.4
where

U?j = —Phgij + 2nuij + 0 (7.4b)
is the deviatoric stress tensor, while o7; is an, as of yet undetermined, equilibrium
stress tensor. We will derive an expression for it below. The first term of Eq. (7.4b)
enforces incompressibility. The second term is the stress due to the strain rate with
71 the viscosity. These two terms are well known from the Navier-Stokes equation.
The third term is the stress due to activity. In the absence of activity, « = 0, and
elastic stresses, Eq. (7.4a) thus reduces to the overdamped limit of the Navier-Stokes
equation. In this case Eqs. (7.3) and (7.4a) are the equations commonly used to
describe passive liquid crystal hydrodynamics. Note that all of the derivatives V;
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here are covariant derivatives such that the equations are valid on a curved surface
M .

So far we have assumed that the geometry of the surface .# is given. We now
turn towards including the dynamics of .# itself. Here, we are interested in coupling
the dynamics of the liquid crystal to an elastic surface. In particular, we want to
investigate how the presence of activity can introduce curvature in an initially flat
disc, or distort an initially spherical shell. The idea being that the presence of active
forces can distort the elastic surface, resulting in curvature. To describe the elastic
surface we use the Helfrich free energy (Sec. 1.3.3, Refs. [149, 160, 161])

Fy = JdA ['y + kg (H — Ho)? + IigKg] . (7.5)

Here, v is the surface tension acting towards reducing the surface area. kg is the
bending modulus coupled to the mean curvature H and the spontaneous mean
curvature Hy. We assume the latter to be constant. kg is the Gaussian bending
modulus coupled to the Gaussian curvature K.

With this we have introduced all the ingredients of our model. The goal of the
first part of this chapter chapter is to derive the equations of motion describing an
active liquid crystal coupled to an elastic, deformable surface, and to investigate if
an initially flat state can become unstable due to the presence of activity. However,
before we derive these equations, we briefly introduce some notation to describe
topological defects. We denote by (Sec. 1.1.3, Refs. [3, 10])

pp(r) = 2%2816(1“ —-7;) (7.6)

the density of defects of charge s; at position ;. It will be convenient to rewrite
the Frank free energy as follows. We follow Bowick and Giomi [10] and introduce a
pair of tensors FE, that are locally orthonormal, such that

E. Eg=EoE} =60 (7.7)

while
EoiE = gij - (7.8)

Here we denote by greek indices the coordinates on the surface .# and by latin
indices the coordinates of the embedding space R3. Consequently, o, 3 = 1,2 and
1,7 = 1,2,3. Latin indices are used interchangeably with bold-face characters, see
Sec. 1.A. These tangent vectors can thus still be used to define the metric, but
unlike the tangent vectors defined directly from the surface parametrization (see
Eq. (1.43)), they are locally orthonormal. Given an arbitrary vector field w, it can
be expressed in this basis as w = w*E,,, with w®* = w'E®. Its covariant derivative
can then be written as

Vive = Ea;Viw! = 0w + Qigpuw” | (7.9)
where we used V;E,; = 0 and where we introduce the spin connection

Qiap = Eo - 0 Ep (7.10)
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which is antisymmetric in its greek indices as is straightforward to see from the
definition of E,. In two dimensions it is thus possible to write it as {23 = €45:.
The spin connection is thus defined by a single vector €. It is possible to show (see
App. 7.A) that this vector is related to the Gaussian curvature via

VxQ=e'V,Q; = Kg . (7.11)

Now, in the locally orthonormal frame {E;, Es} the director field p can be written
as

p=cosOF; +sinOF, . (7.12)

Using this, the derivative of the director field can be written as
Vip; = E (0ipa + Qiapp”) = —€app’ES (3,0 — Q) (7.13)

where in the second step we used 0;p, = fea[;pﬂ 0;0. Thus, the Frank free energy
can be written as
Fr = %F dA (00 — ;) (00 — QF) . (7.14)
M

Minimizing the energy one finds the Euler-Lagrange equation V; (8i@ - Qz) =0
As is straightforward to check, this equation is solved by a scalar field that obeys
the equation

—€V;x=0'0-Q". (7.15)

As the spin connection is related to the Gaussian curvature it is possible to define
the Airy stress function y as [10, 174, 264]

V3y:= Kg —pp . (7.16)

Here we used that §d© = 2s;, which, using Stokes theorem, can be written as
€9V;V;0 = pp(r). The Airy stress function thus is the solution of a Poisson
equation. In the absence of Gaussian curvature, V2y = —pp and the Airy stress
function is a defect potential, similar to the electric potential, where the defect
density corresponds to the density of electric charges. If the Gaussian curvature
does not vanish, it screens the defect charge density. This means that if defects
with positive (negative) charge are present in regions of positive (negative) Gaussian
curvature the “effective defect charge” Kg — pp is reduced.

The Frank free energy Eq. (7.1) can then be written in terms of the Airy stress
function:

Fr = J dA (ViX)2 = _J- dAXYV?y , (7.17)
M M

where in the second step we integrated by parts and dropped the boundary term.
We will now turn towards deriving the equations of motion.
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7.3 Derivation of the Equations of Motion

We derive the equations of motion for an active liquid crystal coupled to an elastic
surface. Following Salbreux and Jiilicher [143] we write down the general force and
torque balance equations on a membrane. They read:

Vo' = -2 (7.18a)
vV,mi =o' xe; . (7.18b)

Here, o; is the surface stress tensor, m; the surface moment tensor, and Z°** the
external force per unit area. In writing these equations we assumed that there are
no inertial forces (overdamped dynamics), no external torques, and that there is no
deviatoric contribution to the moments. We can decompose the quantities appearing
in this equation into tangential and normal components as follows:

oi = (0f; + o) € + (on,; + o) m, (7.19a)
m; = mfjej +mgm, (7.19b)
Eext — E;axtei 4 E(;th . (719C)

Here, 0, is the tangential component of the surface stress tensor while o, ; is
its normal component. {ej, ey, n} is the coordinate system on .# as explained in
Sec. 1.3. By the index e we denote the equilibrium component while we use d for
deviatoric terms. By plugging Egs. (7.19) into the Eqs. (7.18) one easily sees
that the force and torque balance equations can be decomposed into in-plane and
out-of-plane equations. We find for the force balance:

Vo' =V;(c"e; +oin) = (Viaij + Kfaf]) ej + (Viol, — 0" K;j)n = B>
(
and for the torque balance:

v.m'

Vi(mYe; + min) = (Vimij + Kijmfl) e; + (Viml —m"K;;)n

=ole;x e +oinxe =o9en+oiele;, (7.20b)
where we used the Gauss-Weingarten equations. Projecting both equations onto
the in-plane and normal components, respectively, we thus have four independent
equations. Note that the second fundamental form K;; couples the normal compo-
nent of the surface stress to the in-plane force balance. This very general system of
equations is connected to our problem by specifying the components in Egs. (7.19).
We take the equilibrium components to be the contribution of the elastic membrane
and the elasticity of the liquid crystal, while the deviatoric components are due to
the presence of activity. I.e., in the limit of a passive system the deviatoric com-
ponents vanish. We now outline first the derivation of the equilibrium components
and after that comment on the deviatoric components.
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7.3.1 Equilibrium stress tensor

In this subsection we summarize the derivation of the stress tensor from the free
energies Egs. (7.5), (7.17). More details of the derivations can be found in the
Appendix. In this derivation we combine and summarize the work of Refs. [162,
165, 166, 264, 327, 328]. In particular, Refs. [162, 165, 166, 327, 328] developed the
very elegant method we will use below for deriving the stress tensor for an elastic
membrane described by the Helfrich energy, see also Ref. [149]. Santiago [264],
building on this work and using the same general ideas, used this approach to derive
the stress tensor of a liquid crystal on a surface with surface tension, but without
bending modulus or spontaneous curvature. Here, we combine both, deriving the
equilibrium stress tensors for a liquid crystal on an elastic surface. We show that,
due to the linearity of the equations, the resulting stress tensors are simply the
sum of the stress tensors derived before, and we proof that there are no additional
terms. In the following subsection we combine these equilibrium stress tensors with
the deviatoric stress tensors (which has not been done before) and derive a set of
equations describing the model outlined in the previous section.

The equilibrium components of the stress tensor can be found from the variation
of the total free energy F' = Fy + Fy with respect to the position vector X of
the surface .# (see Sec. 1.3 for the definition). That is, we want to find how the
free energy transforms when the position vector is varied as X — X’ = X + 6X.
Computing the variation of the different terms in the free energy explicitly, we find
that it is possible to write the variation of the free energy in the form

5F = JdAS[dX] 6X + fdA V.0°[0X], (7.21)

with the Euler-Lagrange derivative S[0X] and the Noether current Q*[§X]. The
explicit expression is rather lengthy and for easier readability we do not write it here.
The full expression, as well as the derivation, can be found in App. 7.C. We can
use this expression to find the equilibrium stress and moment tensor by considering
different variations of the position vector  X. Namely, to find the moment tensor, we
have to consider how the free energy behaves under a generic infinitesimal rotation.
To find the stress tensor, on the other hand, we consider an infinitesimal translation,
i.e., 0X = a. Translation invariance of the free energy implies that §F' = 0 such
that locally

S[6X]-6X = -V,;Q'[6X] . (7.22)

Substituting § X = a into this expression, it is possible to write the resulting equa-
tion as 8 = —V;0® through which the stress tensor o is defined. The explicit
expression can then easily be read off. We find that it is possible to split the stress
tensor into tangential and normal component such that it can be written as

o' =0"Ye; +op'n, (7.23a)
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where

of; = — kp (H — Ho) Kij + (7 + rp (H — Ho)*)gs;
+ kEXAXGi; — kEXViVix + krVixVix (7.23b)
oy =kBViH + kp[(Kgij — Kij)x + 2(Kij — gi; K) Vi . (7.23¢)
See App. 7.D for the derivation and further details. The moment tensor can be

derived similarity when considering how the energy transforms under a infinitesimal
rotation X = b x X. We find m’ to be

m' =mWe; + min, (7.24a)
with

mg; =mi; = kg (H — Ho) €5 + (26g — drrpx)Heij + (2rpx — mg)Kfekj , (7.24b)
ml = kpxV;xe? . (7.24¢)

Again, see App. 7.D for the details.

7.3.2 Equations of motion
We now have found all the stress and moment tensors we need and can write down
the explicit form of the equations of motion, Eqs. (7.20). First, note that both the
tangential and normal projection of the torque balance, Eq. (7.20b), are automati-
cally fulfilled for the stress and moment tensors that we derived. See App. 7.E for
the proof. Thus, of the originally four equations in Eqs. (7.20) only two are non-
trivial and determine the dynamics of the system. We now derive these equations.
First, the tangential projection of the force balance is found from Eq. (7.20a) and
reads

Vioy, + Ko, = —E5, (7.25)

where 0;; = o7, + al‘-ij, and ¢! = ¢%'. For the equilibrium terms on the left-hand
side we find, after some straightforward manipulations,

ViO'icj + UflKij = Kp [(—ZpD + KGX)va — K(;XVJ‘X] s (7.26)

where we used VZKW = VjK, Rij = KGgij = KKW - KikK;c, and [VZ,A]X =
—KgV;x. Second, the normal projection of the force balance is given by:

vidi — O—inij = —zext . (727)

—n

Using the Theorema Egregium 4H? — K K;; = 2K we find that the equilibrium
terms on the left-hand side can be written as

oK — Vot = fo+ £ (7.28)
where

f¢=2vH — kg {V;V'H — (H — Ho) [2H(H — Hy) — 4H? + 2K¢]}  (7.29)

n
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is a force due to the Helfrich free energy, and
fif = 2kp(2HgY — KY)V,Vx + 2kp (K7 — Hg")VixV;x (7.30)

is due to the Frank free energy.

Finally, to close the system of equations, we need an equation of motion for the
director field that appears in the deviatoric stress tensor 0. We choose the Leslie-
Ericksen equation adapted to curved geometries, Eq. (7.3). To summarize, we thus
have the following three equations of motion:

Viafj —2kpppVix = Dy — E‘;Xt , (7.31a)
K9o8 + fo+ fi = dogh + 25 (7.31b)
Dp* = (g” —p’pj) ()\ujkpk — wjkpk + 1]) . (7.31c¢)

Note that, because we assumed incompressibility, we furthermore have the condition
Vil =0. (7.32)

Lastly, we have introduced two terms containing time derivatives. In Eq. (7.31a)
the time derivative of the velocity field, as known from the common Navier-Stokes
equation. In Eq. (7.31b) the time derivative of the height field with a drag coefficient
d.

7.3.3 Discussion

This equilibrium stress tensor in the limit kg = 0 is the same as found in Refs. [149,
328] with opposite sign convention. of does not depend on kg which enters only
through the boundary conditions when solving the force balance equations to find
the surface shape. In the absence of activity and external forces, oy is covariantly
conserved, and this is equivalent to the classical shape equation of elastic membranes
if kg = 0. The Egs. (7.31a) and (7.31b) are the hydrodynamic equations for the
velocity field of the active matter and the deformation of the membrane, respectively,
whereas Eq. (7.31c) describes the dynamic of the director. Note that fd = 0 is just
the von Karméan equation. Furthermore, with this stress tensor and in the absence of
equilibrium components, Eq. (7.31a) reduces to the incompressible Stokes equation,
with a force resulting from the active stress, commonly used to describe active liquid
crystals, see Sec. 1.1.4 and Refs. [1-3, 26-28|. This is the case where the geometry
of the surface . is fixed, see the beginning of this chapter.

7.3.4 Small-height approximation

Solving the system of equations Egs. (7.31) in full generality is very hard. Instead of
attempting this we will perform linear instability analysis. Here, we are interested
in the linear instability of a flat surface. That is, at the onset of the instability
curvatures are small and we can linearize the Egs. (7.31) by working in the so-
called small-height approximation of the Monge gauge [149, 329]. We introduce a
coordinate system (x,y), where z and y are the usual two-dimensional cartesian
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coordinates in the plane, and describe the surface by a height function h(z,y) above
the flat reference plane. That is, we can write the position vector as

X (x,y) = y |- (7.33)
h(z,y)

It is then straightforward to compute the tangent vectors and from there one finds
expressions for metric and curvature tensor. We provide the explicit expressions in
App. 7.G. If deviations from the flat reference plane are small, i.e., if the curvature
of the surface is small and |Vh| « 1, one can simplify the expressions significantly.
At the linear level we find, for example, that the metric can be approximated by the
flat metric, g;; = 6;; + O(Vh?), and the covariant derivative by the flat derivative.
Furthermore, the second fundamental form reduces to K;; = —;0;h+O(Vh?) such
that H = —V2h/2 + O(Vh?) and Kg = O(Vh?). See, e.g., Ref. [149] and App.
7.G. Using this approximation we can simplify the equations of motion, Egs. (7.31).
Namely, we find that, at linear order in Vh, Eq. (7.31a) can be written as

nAv; + f* — VP, — 2kpppVix = Opv; — Z55° (7.34)

where A is the Laplacian, f = Vjofj the active force, and where we used flow
incompressibility, cf. Eq. (7.32). Furthermore, for the normal force balance, Eq.
(7.31b), we find that

f = =V2h+ kg (V2h) (det 2:0;1) + 2 (V2R)" + “2V2V2h
= V2 + %BVQV% +O(Vh?) (7.35)
as well as

fr(l1 =4kp [030yX — OyX0usX] 0x0yh + ki [(ayx)2 — (0.x)* — 2(9;)(] (ﬁh
+ ki [(02x)° — (9yx)* — 202x] 62h + O(Vh?). (7.36)
For future reference, we summarize the equations above again here. In the small-

height approximation, in the absence of external forces, and in the stationary limit,
Egs. (7.31) reduce to

nAv; + fi —ViPy — 2kpppVix =0, (7.37a)
oV VIh+ [+ fi =0, (7.37b)
v oppt = (6 —p'p’) ()\ujkpk —wirp® + I%FApj) , (7.37¢)

with f¢ and fd given by Egs. (7.35) and (7.36), respectively. Lastly, the defining
equation of the Airy stress function, Eq. (7.16), reduces to

V2x = —pp . (7.38)
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7.4 Defect-driven Buckling Instability

We want to study the dynamics of the membrane in a disc geometry with a topo-
logical defect at the center. As the disc is initially flat the spontaneous curvature
vanishes, Hy = 0. We write the director in polar coordinates as

p = (Z?ﬁ((z B g))) : (7.39)

with 6 = s + €, where € is a constant and 2s € Z is the defect charge.
We then find after some manipulations that both components of the Leslie-
Ericksen equation, that is Eq. (7.37c), yield the same equation for 8, namely:

- Or(rvy) — Opv A U Opv
I ) = LN P/ TP T g _ P8
vV ;0 o + 5 [bln(2(p 20) <7‘8r . . )

+ cos(2¢ — 20) (ré’rvf + 65(;%)] . (7.40)

Furthermore, in polar coordinates the active force appearing in Eq. (7.37a) has

components
fa as (cos[2(s — 1)p + 2¢]
a __ T —_
7= (fg o \sin[2(s—1)p+2€]) - (7.41)
We first consider a +1 defect, that is s = 1, as in this case the system is rotationally
symmetric. Afterwards we consider other defect charges, in particular s = +1/2.

7.4.1 Height equation: +1 defect
The simplest case is that of a +1 defect due to the rotational symmetry of the
director field, that is, for s = 1 we have

i _ [cose
P = (Sm) : (7.42)

We assume, without loss of generality, that x(R) = 0, and enforce no-slip boundary
conditions v,(r = R) = v.(r = R) = 0. Furthermore, we enforce that the height
function h and all its derivatives vanish at » = R. Then the Airy stress function is
easily found to be

,
— —ln—. 7.43
X n (7.43)

Assuming rotational symmetry of the velocity field, i.e., v, = v,(r) and v, = v,.(r),
the incompressibility condition Eq. (7.32) reads

Orvp(r) =0 (7.44)

and determines the radial velocity field up to a constant. Requiring the velocity
field to be finite everywhere we thus find v, = 0. Substituting this into Eq. (7.40)
we find

0 = (1 + Xcos2e)(rorv, —vy) . (7.45)

v
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The solution to this equation is given by
| arecos (=1/X) ’
2
i.e., the flow alignment parameter A sets the geometry of the defect.

With this at hand we now turn to the generalized Stokes equation, Eq. (7.37a),
to find an expression for the azimuthal velocity field. Note that the active force now

reads ; ) o
a 2\ o« (cos2e)  « -
7= (f;) o <Sin 26) T <+ 71— 1/)\2) . (7.47)

Because P, = Py(r) and x = x(r) we thus have two equations, namely the r- and
p-component of Eq. (7.37a), that read

€ =

(7.46)

8]
0=—— —0,Py—2pp0rY , 7.48
v W — 2pp0rX (7.48)

a | 1
=nAv, £ =41 — = . 4
0 = nAv, ; \ (7.49)

Using 0,.0(r) = —4(r)/r we thus find the pressure field

o, T
Po=_—Yn_ )
h h\ HR + KF, (7.50)
and the azimuthal velocity field
a2 —1 r
=F—rln— .51
vo=TF 2 rnR, (7.51)

where we used the boundary conditions to fix the integration constants. It remains to
investigate the generalized shape equation, Eq. (7.37b). Note that in a rotationally
symmetric system Eq. (7.36) reduces to

orx)? — 202
fd — KFM@JL — kp

n r

orh %h

(0rX)(07h) = =~ + sty . (7.52)

2+ 1ro-x
T

where we used Eq. (7.43) in the second step. Furthermore, in polar coordinates
ViVjh = 0;0;h — I‘fjé’kh, with I’fj the Christoffel symbol associated with §;;. This
is non-zero only if i = j = r, in which case V2h = 0%h, or if i = j = ¢, then
Vih = r0,-h. We thus find the following equation for the height function:

A—1
2\

A+1
27

orh %h
PV2h+al " h+a arh+%V2h— i +"“F—2’”—fyv2h+’%3v4h: 0
o (7.53)
as u;j V'V/h = 0. Hence, the velocity does not enter explicitly in the final equation.

This equation can be written more compactly as

r3

e T‘h
%Bv‘*h — 7t V2h + ”F; 5, (ar ) -0, (7.54)

where Yog = v — Py and kp o = KF + ar?/(2)).
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7.4.2 Height equation: Other defect charges

We now derive the shape equations for other defect charges as well. The derivation
follows along the same lines as the one just presented for the +1 defect. However,
we are no longer dealing with a rotationally symmetric system. Hence, we do not
require the Leslie-Ericksen equation to be fulfilled in the following for simplicity,
because it is not possible to find a stationary solution when including this equation.
That is, there is not stationary solution if the flow is allowed to act back on the
director field (backflow). Thus, we are only solving the height and Stokes equation
simultaneously. We take 6 = sp with 2s € Z, but s # 1,2 for reasons seen during
the calculation below. We set ¢ = 0 now. Choosing a different value for € just
corresponds to an overall rotation of the system, without modifying the dynamics.
This is different from the case of a +1 defect where this constant modifies the
geometry of the defect non-trivially. For the Airy stress function we find the same
expression as before:

X = —sln% . (7.55)

The active force has components
a_ ([7) _ as (cos[2(s — 1)¢]
;= (f; o \sin[2(s — 1)g] (7.56)

in polar coordinates. Now we take the divergence of Eq. (7.37a). Due to in-
compressibility the velocity term vanishes and we find a Poisson equation for the
pressure:

V2P, =V - f* = 2kpV (ppVix) , (7.57)
and for s # 1 we find the pressure field to be

as

35— 1) 2 - Dol + PO+ kppp . (7.58)

By = -

Here, P is a solution of the Laplace equation V2P =0, i.e., PO = ¢; +¢oInr.
Having found the pressure, we now turn towards finding the velocity field. First, note
that incompressibility of the velocity field now yields the condition 0, (rv,) = —0,v,,.
Using this and the expression for the pressure just derived, we find that the r-
component of Eq. (7.37a) reads

3rdyv, + 12020, + é’ivr + v, + ars cos[2(s — 1)p] — “r=0. (7.59)
n n

Using the ansatz v, = A(r) cos[2(s — 1)¢] + B(r) sin[2(s — 1)¢], with A(r) and B(r)
arbitrary functions, we find GZUT = —4(s — 1)%v, which can be used to solve the
equation for v,.; we find:

Y — 5 cos[2(s — 1)p] — 2
" 4(s — 2)sn

T+ (r“(s)03 + rb(s)c4) (cos[2(s — 1)¢] +sin[2(s — 1)¢])

(7.60)
for s # 2. See App. 7.H for the explicit expressions of the constants a(s) and b(s).
We will set the integration constants ¢z and ¢4 to zero in the following. We also
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need to set co = 0 in order for the solution to agree with our ansatz. From the
incompressibility condition we then obtain v,. In summary, we thus find for the
velocity fields:

~ sacos[2(s — 1)¢]
vy = (s — Don r, (7.61a)
_asin[2(s — 1)<p]r

4(2 —3s + %)y

Vg (7.61Db)

This velocity field does not vanish at the boundary of the disc, however. Thus, we
need to find an additional velocity field vg to enforce the no-slip boundary conditions.
Namely, we require that at r = R:

vp+vo, =0 and Vp + 0, =0, (7.62)

and this defines the velocity vg. See App. 7.H for the derivation of the expression of
this velocity field. We can then compute the strain rate tensor associated with the
total velocity v+wvg and write down the height equation. After some straightforward
manipulations we find

1-C doh V2h — 202h
p— sin[2(s — 1)(/)](97«% + RFeff —— 5

a — g VI + %Bv‘*h —0 (7.63)

with the new effective surface tension
Veff:fyfphfp()a (764)

and the new effective Frank elastic constant

KFeff = (OWTQ cos[2(s — 1)p] + kps(s — 2)) . (7.65)

Here we defined the term

R

C = (25° — 3s) (f)Q(s_l) +(3s—25"— 1) (>2s , (7.66)

r

which enters due to the no-slip boundary conditions, to write the equations more
compactly. If one takes vy = 0 in the derivation above this term vanishes identically.
Furthermore,

as(3 = 2s 2(s—1)
Pr= BB () o2t - 1)) 67)

is the pressure field due to the velocity field v, i.e., the solution of the equation
nAvg = VPy. See App. 7.H for details.



7.4 Defect-driven Buckling Instability 183

7.4.3 Analysis: +1 defect

We now turn towards analyzing the height equation, investigating whether the pres-
ence of activity results in shape deformations of the initially flat membrane. We
first present the results for the +1 defect. This case has been discussed in detail
in Chapter 5 and we refer to this chapter for more details. Here, we merely out-
line and repeat the arguments in anticipation of the discussion of the +1/2 defects,
where the equations are more complicated but have a similar structure. Thus, it is
instructive to briefly repeat the discussion of the simpler case of the +1 defect here.
We first consider the case where both bending modulus and activity vanish, kg = 0,
« = 0. This corresponds thus to the passive instability, first considered by Frank
and Kardar [270]. In this case the height equation simply reads

V2h + Eo, (ah> , (7.68)
T T

which can be integrated to yield the equation

(r* = R2)0,h =0, (7.69)
with the critical length scale
Re= |22 (7.70)
Y

at which the prefactor of the above equation vanishes. Due to the boundary con-
ditions for the height function h that we impose (namely, h and all its derivatives
vanish at the boundary), this equation admits a nontrivial solution ounly if R > R..
Now, for non-zero activity, but still kg = 0, the height equation can be written in
the same form, but with a different critical length. Namely, the prefactor vanishes
if

KE o a R

— =7————In— 7.71

-7 xR (7.71)
is fulfilled, defining the critical length scale. There is no exact solution to this tran-
scendental equation. However, the last term on the right-hand side is of secondary
importance when interested in the onset of the instability, where R ~ R.. Neglecting

this term we thus find

Ro=,|—%_ (7.72)

RA>Y

As in the previous case, we find that there is a non-trivial solution only if R > R,
in which case the flat conformation becomes unstable. Note that the activity renor-
malizes the surface tension. For A\ > 1 the activity reduces (increases) the effective
surface tension in the presence of contractile (extensile) stresses, and vice versa for
negative A. Thus, for positive flow alignment buckling is favored for extensile activ-
ity, while it is inhibited for contractile activity. Lastly, we note that reintroducing
the bending stiffness kg does not modify the buckling instability qualitatively but
energetically punishes diverging curvatures. We refer to Chapter 5 for a discussion
of this case.
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7.4.4 Analysis: +1/2 defect
For s = +1/2 the height equation Eq. (7.63) takes the form:

2 i h 2h —20%h
Wafi + HF,CHVT% — e Vh+ DV =0, (773)

with the new effective surface tension

4
Yeff = Y — 704 TGZ 3R) cos (7.74)
and the new effective Frank elastic constant
al2r+ R 3k
K,F7eff = %7’2 COSQO — TF . (775)

First, we consider the passive case a = 0. In this case the height equation Eq. (7.73)

reduces to
3 6 h 6’ h
—V2h + —V“h S < ) -0. (7.76)

42 r2 r

Again, we investigate the problem in the absence of bending stiffness, i.e., in the
limit kg = 0, such that the equation reduces to:

o2h
VV2h 4 ORE ( - o h) ~0. (7.77)

4r2
To solve this equation we us a mode expansion ansatz:

Z b (1) cos(ngp) (7.78)

We are interested in the linear instability of the flat state and the lowest modes
will be the first to be excited. For n = 0, i.e., the radially symmetric term, we can
integrate the equation that results from substituting h(r, ¢) = ho(r) into Eq. (7.77)

to find 3
2 KF
——— | 0hg =0, 7.79
(T 4y ) ’ (7 )
and thus we find a length scale
3I€F

=4l 7.80
=T (7.80)

For n # 0 we have an equation which can be written as

n2h, 9 3I<6F 2 3/{F Orhoy,

Only for n = 1 can this equation be integrated to yield

3Kp hy cosp
2
=0. .82
<r ™ > Or . 0 (7.82)
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Thus, we find two length scales in Eq. (7.81), but only one of them is real for positive
elastic constants. Note that an exact solution for this equation can be found but it
violates our initial assumption of small gradients of the height function, |Vh| « 1,
as the solution is logarithmically divergent for small r.

In the active case, but still with kg = 0, we have to solve

2a(r + R)sing | dyh a2r+ R) , 3kp\ V2h —20%h
s 0 T\ 6r YT 2
4
- (7 - W cos <p) V2h=0. (7.83)

Looking at the two lowest modes n = 0, 1 again and dropping terms of order 2¢ and
higher, we find an equation for which we can consider the equation for the zeroth
and first mode separately. Integrating both of these equations we find

alr+ R)r? _ hy  3kp —4r?y
— 00—+ ———0:hg=0, .84
R 0 " + i Orhg =0 (7.84a)
and "
4r%(r + R)ad,ho + 3R (3rp — 4r%7) 7'2&71 0. (7.84D)

Substituting the first into the second equation yields, after some small manipula-
tions, the equation

[9R*(3kp — 4r°7)? — 8r(r + R)??] a,% =0. (7.85)

As before, to find the critical length scale R. we are interested in, we consider the
case where the prefactor vanishes. This condition can be written as

4 8, R
= 3|7+ |+ grla

R 3 @ . (7.86)
A few comments are in order. First, note that the second term on the right-hand
side is due to our choice of boundary conditions, through which the radius of the
disc enters this equation. While it is possible to solve the above equation exactly
for R, the resulting expression is rather lengthy and not very insightful. The main
effect of the instability, however, is the renormalization of the surface tension in
the first term on the right-hand side. To underline this message we can neglect the
second term on the right-hand side, which is due to the boundary conditions, as we
did for the +1 defect above, such that it is possible to write a simple expression for

the critical radius:
9/€F
R.o=),|————— . 7.87
A\ 12y + 2v2)q (7.87)

The term neglected here actually reduces the critical radius slightly, with the rel-
evance of the term slightly increasing with increasing kg and decreasing . The
main difference of the critical radius compared with the one found for a +1 defect

v
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(Eq. (7.72)) is that only the absolute value of the activity enters here. Thus, the
sign of activity is not relevant for the question if there is a buckling instability, only
its magnitude. This can be understood as follows: Unlike for the +1 defect, where
the pressure and velocity field were radially symmetric, now they are varying in
azimuthal direction. Considering the hydrodynamic pressure, for example, which
gives rise to the effective surface tension above, we have

P, = %cosgo . (7.88)
Thus, the pressure is always positive in some region and negative in another, inde-
pendent of the sign of activity. The sign only determines in which area the pressure
is positive and negative. Thus, we can interpret the above results in this view in
predicting that for a +1/2 defect activity, irrespective of sign, drives a buckling
instability. The magnitude of activity determines the height of the buckled state.
However, this buckling is not rotationally symmetric, and the sign of activity deter-
mines if the buckled region is on the side of the defects’ head or tail. We find that
for extensile activity, o < 0, the pressure is positive for ¢ € [7/2,37/2], that is on
the side of the defects’ head. On the other hand, for contractile activity, a > 0, the
pressure is positive for ¢ € [—7/2,7/2], i.e., on the side of the defects’ tail. In either
case, this is the region towards which the velocity of the defect core is pointing.

7.4.5 Analysis: —1/2 defect
For s = —1/2 the height equation Eq. (7.63) takes the form:

2a (1 2t 3 V2h — 20%h
5

. ) KB
ﬁ + R) Sin 3@%+EF7GHT_’YBHV2}L+ 7v4h =0 ) (789)

with the new effective surface tension

a (5R® + 8%)

VE cos3p , (7.90)

Vet =V +

and the new effective Frank elastic constant

5kp  ar? (3R 4 6rR — 4r3)
KFeff = —— + TE cos 3y . (7.91)

Again, we first analyze the passive case a = 0, and assume a vanishing bending
modulus kg = 0. In this limit the equation reduces to
V2h —20%h 4y

2h=0. .92
= 5KFV 0 (7.92)

As before, a mode analysis can be employed to analyze this equation, h(r,¢) =
> b (1) cos(ng). Substituting this ansatz into the above equation yields

5Kkp 9 n2h, 5  OKp | Orhy
[(Mr>r3+6r<[r +H . cosng =0. (7.93)
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For n = 0 and n = 1 the equation can be integrated. We find:

4ry r

Comparing with the equation we found for the +1/2 defect we see that, apart from
the numerical prefactor, the sign is reversed. Defining the critical length scale as

before we therefore find
5I<;F
R. = “_ﬂ (7.95)

which is always imaginary for positive elastic constants. Thus, there is no real
critical length scale for the —1/2 defect. Unlike the positive +1 and +1/2 defects,
there is thus no passive buckling instability. We now turn towards investigating
whether the presence of activity can cause the flat surface to become unstable.

For non-zero activity, but with kg = 0, the height equation reads:

2 27“3 3r Ooh (0% (5R3 + 87"3)
2X (A O 3l AT T w2

1 O . 0. (7.96)

) ( Srp | or® (3R +6rR —4r°) 3@) V2h—20%h _
r
We are interested in the modes n = 0 and n = 3, since these are the modes appearing
in the equations above, e.g., the active force. Thus, we substitute the mode ansatz
and consider modes up to order n = 3. We find that the resulting equations can
be split into two independent sets of equations, two equations coupling hg and hs,
as well as two equations coupling h; and hy. We can thus consider hy and hs
independently, and set h; = hy = 0. Thus, our ansatz reads h(r) = hg + hs cos 3.

We find the following set of equations:
) drho 20 [7\3 R\®> (RY’
0= (4972 4 5rp) 04 T2 () 403 () + () —2|ns
r r r
r&rhg} , (7.97)

15 \R

9 (R) " (R) 9
T T

0= { [4r2'y — 5/<;F] (9hs — ro hg) — 4 [47‘27 + 5/<cp] r202hs+

G (L) 2 (5) wlon

9 (f)z +7 (f)S - 21 r&3h0> } cos 3¢ . (7.98)

However, it does not seem possible to define a new activity-dependent critical radius
as was possible for the +1 or +1/2 defects. Thus, it seems that either there is no

+




188 7 Full Derivation of Active Height Equation

activity-induced buckling, or this method used above to find the instability is not
straightforwardly applicable here to find the instability. However, a closer analysis
of this equations and a comparison with numerical simulations of either the above
equations, or the phase field simulations used in Chapters 5, 6 are needed to make
a more accurate and confident statement about buckling instabilities of negative
defects. We note that we have presented here the equations for a —1/2 defect, but it
is straightforward to repeat the same calculations for the —1 defect. Up to numerical
factors we find the same result as for the —1/2 defect.

7.5 Active Liquid Crystal on Torus

Above and in Chapter 5 we have considered a disc as the ground state geometry. In
Chapter 6, on the other hand, we have considered a spherical geometry to be the
ground state. Now, in this section, we present the derivation of the shape equation
for an initially toroidal surface on which an active liquid crystal is present. It turns
out that the derivation that follows is similar to the case of a spherical surface
which we considered in Chapter 6. One main difference between a spherical and a
toroidal geometry is the different defect structure required by the Poincaré theorem.
A sphere is of genus zero and thus the total defect charge on the surface must add
up to two, >}, s; = 2. On the other hand, the genus of a torus is one such that the
sum of the charge of all defects must vanish, » . s; = 0. In particular, a defect-free
ground state is available. We now first list a few geometric quantities. Afterwards,
we solve the Leslie-Ericksen and the Navier-Stokes equation on the torus. Finally,
we write down the resulting shape equation.

7.5.1 Geometry of torus
The surface of a torus can be parametrized as

(a +bcosb)cosp
X(0,p) =1 (a+bcosh)siny (7.99)
bsin 0

with the angles 6, ¢ € [0, 27] and the two radii @ and b, where a > b > 0. From this
we find the tangent vectors

—sinfcos —(a +bcos)sinp
epg=b| —sinfsing |, e, =| (a+bcosb)cosp |, (7.100)
cos 0 0

such that the metric components are
gog = b* | 9pp = (a + bcos 0)?, gop = 0. (7.101)

The non-trivial Christoffel symbols are

bsin 6 a
®» 0 :
Fe = beosd Fw = (b + cos 9) sin 6 . (7.102)
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From the surface normal
cos 6 cos p

n = | cosfsing (7.103)
sin 0

we find the second fundamental form to be

b 0
Rij = (0 cosf(a + bcosH)) ’ (7.104)

In the coordinate system of the tangent vectors the director field can be written in

terms of an angle © as

cos © sin ©
- i 1
P Teal © " el ¢ (7109

where we added the absolute value of the tangent vectors to ensure that, the director
is a unit vector. It therefore has components

g CcosO o sin ©
= =—. 7.106
P b P a+ bcosf ( )

Finally, the mean and Gaussian curvature are found to be

a+ 2bcos 6 cos

— AT APCosy Kg= %% 1
2b(a + bcosh) ’ %7 ba+ beosh) (7.107)

We can now proceed by solving the Leslie-Ericksen and Navier-Stokes equations.
7.5.2 Leslie-Ericksen and Navier-Stokes equations on torus

To write down an explicit expression of the Stokes equation (Eq. (7.31a)) in the
stationary limit, we compute the following terms. From

A= Vi (') = o (0" + Thap®) + ' (0 + Th") (7.108)
and - |
VA" = ﬁ@' (VgAY (7.109)
we find
ViV, (p'p) = b(aﬁsife)cose . (7.110)

Furthermore, from the commutator
[Vi, ViV vp = g V7 (Kcv;) — Vi (Kqvi) = giev; VI K — Vi (Kgv;) , (7.111)
where we used incompressibility V;v* = 0 in the second step, we find

asin 0

I(V, Vi + Kav;) = 20.VIKa = —2— "7 4%,
\v4 (VZVUJ-&- ij) v; V' Kg b(a+bc0$9)2v

(7.112)
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The incompressibility condition can be written as

1 bsinf

Vvl = —0¢; N =0 — ———— 7.113
Y NG (\/ﬁv) Y a+bc059u ( )
Assuming that v* = v* (f) we find from this equation:

v =0. (7.114)

Furthermore, taking the divergence of the Navier-Stokes equation yields

acos 20

AP, = —+—+——— 0. 7.115
" b(a + bcos0) o8 ( )

From this equation, and assuming P, = P; (0), we can find the pressure field to be

—b 6
P, = acos201n (a+ bcosh) + ¢; artanh [a tan ] +co. (7.116)

2
V@ Va2

We have thus found an expression for all terms appearing in the Navier-Stokes
equation. Substituting these terms, we find from the #-component of the equation
that ¢; = 0. Finally, we find that the ¢-component can be written as the equation

ab? sin 0 sin 20

2,0 ; Y =
(a + bcosb)dzv 3bsin 00gv (a + beosO)n

(7.117)

Integrating the equation and using the integration constant to cancel the divergent
terms we find the velocity field

°(0) bv? (a® — b2 + 3a(a + beosf)) sin b a sin 20
T T 22 1 2)(a + beos )2 o

(7.118)

For the Leslie-Ericksen equation (Eq. (7.31c)) we find after some lengthy but straight-
forward algebraic manipulations that it is possible to write

; sin? 0 »
Apt = ————p". A1
P (a+ bcos@)zp (7.119)

For the strain rate and vorticity tensors we find that the non-trivial components are
given by

bcos)?
%69@” , (7.120a)
(a + bcosh)?

2

Upp = Uop =
Wep = —wpy = b(a + beos §)? sin fv? — Opv¥ (7.120b)

with all other components vanishing identically. The 6—component of the Leslie-
Ericksen equation reads

vV’ = (g% = p°p7) (Mujnp” — winp®) (7.121)
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Using the results for the individual terms we found above, we find after some
straightforward manipulations that this equation can be written as

1 1
0= 5 arccos (—)\> . (7.122)

Thus, the angle of the director field is determined by the flow alignment parameter
A. Thus, to summarize, the hydrodynamic quantities we found are

ab? (a* —b* + 3a(a + beos ) sin 6 /X2 — 1
A (2a2 + b?)(a + bcos §)? 2n
Pu(6) = —% In(a+bcosf) +cs . (7.123b)

v?(0) = (7.123a)

7.5.3 Shape equation for torus

We can now turn towards writing down an explicit expression for the shape equation.
Substituting all the relevant terms we found in the previous subsection, we find that
it is possible to write the shape equation (Eq. (7.31b)) as

Kol + fe+ fl =P, (7.124)
with
fS=2vH — kg {V;V'H — (H — Ho) [2H(H — Ho) — 4H* + 2K¢|} , (7.125)
and
fd = 2kp(2Hg" — K9V, V,x + 26p(KY — Hg" )V xV;x , (7.126)

where Ax = Kg as no defects are present. We find

aa

Kiol = 2P ,H + ————~ 7.127
i ni 2X\b(a + beosh) ’ ( )
and
x =—In(a+bcosh) + ¢y, (7.128)
with an integration constant ¢;. From this we find
d a + 4bcos® 0 + 3a cos 20
- 7.129
Ju = rr 2b(a + bcos 6)3 ( )
such that the shape equation reads
a a+4bcos® 0 + 3acos20 « a
P=2(y+$n(a+beos)) H £
LY n (@ +boos6) e 2b(a + bcos )3 +2)\b(a+bc0s0)
— kg {V;V'H — (H — Hy [2H(H — Hy) — 4H* + 2K¢]} . (7.130)

This equation assumes that the toroidal shape is fixed but can still be used as a
starting point for considering shape deformations of a torus. In particular, as the
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term u;; K% vanished identically, one can investigate the properties of the active
pressure field to get a first idea of the active forces acting on the torus. For a more
complete picture, it is necessary to consider perturbations of the toroidal shape and
solving the resulting perturbed equations. This way it is possible to see if activ-
ity enhances or suppresses certain perturbations. For example, one could consider
b — b+ 6b(p). However, the complexity of the equations increases significantly
and it is not clear if it is possible to find an analytical expression for éb(«), the
activity-induced perturbation. As a first step one can neglect the corrections to the
hydrodynamic equations due to b — b+ db(¢) and only consider the shape equation,
hence assuming that, for example, velocity and director field are not modified by
the perturbation of the outer radius. We will not perform a rigorous analysis of
this case here but leave it for future work. We conclude this chapter with some
summarizing remarks.

7.6 Conclusion and Outlook

In the first part of this chapter we have derived a set of equations that can be used
to describe shape deformations of elastic surfaces in the presence of active liquid
crystals. In our model, the director field is taken to be a two-dimensional vector
field that is confined to the two-dimensional surface. We did not consider the case
of a surface with a finite thickness or of a three-component director field that is not
necessarily constrained to be on the surface. As mentioned in the introduction, we
did not include explicit coupling between the extrinsic curvature and the director
field in our model. This results in a minimal model that is nevertheless quite com-
plex. The main source of complexity is due to the shape equation which, even in
the passive case, is notoriously difficult to solve. As a first step we thus applied the
model to one of the simplest possible problems, an initially flat disc with a single
topological defect being present. We derived an explicit expression for the equations
of motion in this case for an arbitrary defect charge s. These were the equations
used in Chapter 5 in the case s = +1. In this chapter, we analyzed the equations
for defect charges +1/2. We presented preliminary results pointing towards a buck-
ling instability for a positive charge and a stable flat surface for a negative charge.
However, more numerical work is needed to substantiate these claims. Apart from
an initially flat surface, it is possible to consider different ground state geometries.
The case of a sphere was investigated in detail in chapter Chapter 6. Here, we
presented preliminary results for a toroidal geometry. We solved the respective
equations in the unperturbed state and thus found the velocity and director field
on an undeformed torus. This can be taken as the ground state from which, using
linear stability analysis, it is possible to investigate if the toroidal shape is unstable
due to the presence of activity, even though no defects are present.

7.A Spin Connection and Gaussian Curvature

We derive in this section the relation between the curl of the spin connection and
the Gaussian curvature. We follow Bowick and Giomi [10]. The Riemann tensor is
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defined as the commutator of the covariant derivatives. Namely, for an arbitrary
vector w®:
[Va, Vy]we = R% wqg . (7.131)

In the infinitesimal version, this can be transformed into a statement about how
a vector is transformed as it is transported parallelly along an infinitesimal square
loop of sides dz and dy:

Aw® = R w’dzdz? (7.132)

where Aw® = w'® — w® is the difference between the original vector w® and the
vector after parallel transport, w'®, both of which are situated at the same point
of the manifold. Using the locally orthonormal tangent vectors {E,} this can be
written as

Aw® = Ry swPdacda? (7.133)

by simply multiplying both sides with the tangent vectors, thereby projecting the
vector w® onto the local orthonormal coordinate system. Here, Ry 5 is the curvature
tensor associated with the spin connection. In two dimensions, where Q;,8 = €45,
it can be written as

Raba,@ = aaQbeag — 81,(2@6@5 + QaQbﬁa'yeze — Qanea«,eg = (8aQb — aan) €ap -
(7.134)

On the other hand, the two Riemann tensors are related through the projection
operators:
Rabaﬁ = RabchgEg . (7135)

We thus have the relation
Rabaﬁ = Rabch(iEg = (6aQb - (7an) €ap - (7136)
Using that in two dimensions the Riemann tensor is given by

Rabcd = KG (gacgbd - gadgbc) (7137)

we have
(aaQb - aan) €Cap = Kqg (gaagbﬂ - ga,@gba) . (7138)

Contracting both sides with the respective inverse metric yields

(0a — Q) € = K¢ . (7.139)

7.B Deformations

To find the equations of a membrane equipped with nematic structure in equilibrium
we can look at the deformation of its free energy. In this section we derive some
general formulas we will need in the following. A variation of the position vector
X — X' = X +6X can be written as § X = ®%e, + ®n, with the two functions ®¢
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and ¢ quantifying the tangential and normal deformation, respectively. From this
the variation of the tangent vector e, is found to be

0€q = 0(0aX) = 0,(0X) = (Va®)ey, — Koy ®n + (Vo®)n + ®Kypg%e.. , (7.140)

where [§, d,] = 0 was used in the first step and the Gauss-Weingarten equations in
the second step. For simplicity, to keep the expressions shorter, it will be useful
below to consider the tangential variations §; X = ®“e, and the normal variations
0,1 X = dn separately. For the tangent vectors we thus have

Sjea = (Va®)ey, — Kp®'n (7.141a)
d1eq = (Vo®)n + K g%, . (7.141b)

On the other hand, the deformation of the surface normal is easily found from using
the product rule as well as the relations e, -n =0 and n-n =1 to be

(5”n = Kabq)agbcec , (7.142&)

dim = —(V,®)g%e, . (7.142Db)

From the variation of the tangent vectors we can find the variation of the metric

Jab = €4 - € to be dgap = (dey) - ep + €4 - (0ep). Using Egs. (7.141) and e, - =0
it is straightforward to see that

5\|gab =V.P + V@, , (7143&)

6J_gab = QKabq) . (7143b)

For the inverse metric we can use its definition to find 0 (gabgbc) = 0 such that
59"t = —Vieb — VP (7.144a)
519" = 2K® . (7.144b)

From this it is found that the area element dA = \/det g,,ds;dss transforms as

5||dA = dAV,P%, (7.145a)
0,dA =dAKD . (7.145b)

We now turn towards computing the variation of the Ricci scalar and the mean
curvature. For this we first need to compute the variation of the Christoffel symbols.
In general, we have

1
§9Cd(vb59ad + Vadgbd — Vadgas) - (7.146)

Substituting Eqgs. (7.143) and using the Codazzi-Mainardi equation V,Kp. =
VK a4 we find, after some straightforward steps, that the variations of the Christof-
fel symbol can be written as:

ore, =

1
0105 = 5([Vo, VI %a + [V, V120 + {Va, Vo) 2 (7.147a)
51T, = KEV,® + KEV,® — Koy Ved + (V,KE)® . (7.147b)
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We use this results to compute the variation of the Ricci scalar. Again, the derivation
is straightforward but rather lengthy. As a final result we find:

5||R = ®*V,R, (7.148a)
§1R = 2R, K™® 4 2V, [(K® — g™ K)V,®] . (7.148b)

Lastly, for the trace of the curvature tensor K we find from its definition after using
Egs. (7.141) and (7.143) that

61K = @'V Ky, (7.149a)
61K =-V?®+ (R—-K*)d. (7.149b)

The variation of the mean curvature H is found from remembering that, in our
convention, H = K /2.

It remains to consider the variation of the Airy Function y and of the defect
charge density pp. The Airy function is defined as V?y = Kg — pp, thus 6V?y =
0Kg — dpp. The total defect charge density is conserved under a small variation,
that is

0= §JdApD = J(5dA) pp + fdAépD , (7.150)

and it follows from Eqs. (7.145) that
dpp = —ppVad" , (7.151a)
(5J_pD = —(I)aKpD . (7151b)

These are all the expressions for the variation of quantities we will need to derive
the stress tensor form the variation of the free energy. However, it will turn out
that it is convenient to compute the commutator of the variation and the Laplace
operator as well. Before turning to the variation of the free energy we will briefly
state these results. We denote by J the commutator J := [, V2] f, where f is a
generic scalar function. We have,

J =[5, V?]f =6 (9°°VaVif) — g""VaVed f = (69°°) VaVif — g (6T5,) Vef
(7.152)
where we used 6f = 0, [0,0,]f = 0, Vof = 0of, and VoV f = 0a0pf —T¢,0.f.
Substituting Eqs. (7.143), (7.144), and (7.147), as well as using the Theorema
Egregium R, = Kagap, and [V, V] f = 0 we find!:

gy = [0y, V?]f = =2V @'V, V,f — Kc®"V.f — V2@V, [, (7.153a)
J = [0, V2]f = 2K™®°V,V,f + V. [(Kg*® — 2K®)®*|V,f . (7.153b)
These are all the preliminary results we will need. We can now turn towards the

variation of the free energies, namely we want to compute the variation of the Frank
free energy

Fr=—| dAxV?y, (7.154)
M

INote that there is a typo in Santiago Ref. [264] in the expression for J); which we correct here.
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as well as the Helfrich free energy
Fy = JdA [7 + kg (H — Ho)® + IigKg] . (7.155)
It is easy to see that a generic variation of the Frank free energy can be written as

§Fp = — f (5dA)XV2 + f dAX(J + 26pp — 26Kq) (7.156)
M M

where we integrated by parts (dropping boundary terms) and used J = [d, V?]y.
Similarly, the variation of the Helfrich free energy can be written as

§Fy = f (6dA) [ + rp (H — Ho)* + kG Ka] + fdA[mB (H — Ho)* 6K + =6R]

(7.157)
where we used 4 (Hz) = 2H6H, 2H = K, and R = 2Kg. However, finding an
explicit expression involves lengthy expressions and thus we consider parallel and
normal variations separately in the following section.

7.C Deformation of the Energy and Shape Equation

We first consider the parallel deformation of the free energy, that is we want to find
an explicit expression for
(5”F = (5HFF + 5HFH . (7.158)

To this end, we start from Eqs. (7.156) and (7.157). We then substitute Egs.
(7.145), (7.153), (7.151), (7.148), and (7.149). This yields a lengthy expression for
the variation of the free energy. However, it is possible to compactly write it in the
from

5 F = JdAS“@a + V.09 . (7.159)

To achieve this it is necessary to integrate terms which contain a derivative of ®¢
by parts. The resulting boundary terms can be written as an area integral over a
divergence and hence the expression takes the above form. Writing S¢ = Sfj + Sg
and Qﬁ = Q“T’H + Qﬁf we find the following explicit expressions:

Sp=0, (7.160a)
St =2kpppVix , (7.160Db)
Qiu=I[v+rs(H— Ho)* + ko Kcl®® (7.160c)

Qi r = kr {—x(pp + K¢)®" — xPPViVyx + PPV x — XV“@”V;]X} .
(7.160d)

Note that the contribution from the Helfrich energy is just a boundary term because
the energy is reparametrization invariant as is expected for the energy of a fluid
membrane. The Frank free energy, on the other hand, is not and thus there is a
bulk term contribution.
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Similarly, the perpendicular perturbation can be written in the form
SLF - f dAS® + fdAVaQ‘j (7.161)
with
Su =2Hy — kg {V;V'H — (H — Hy) [2H(H — Hy) — 4H* + 2K¢]} , (7.162a)
Sk = kr(2K% — K¢V xVix + 26p(Kg® — K®)V,Vyx , (7.162b)

Q% i = ke(V*(H — Ho)® — (H — Ho)V*®) + ki (K*V,® — 2HV*®) , (7.162c)

Qt ¢ = kp[(Kg® = 2K™)x + 2(K® — g K)]®V,x — 2kpx (K — g’ K)V,® .
(7.162d)

In summary, it is possible to write the variation of the free energy as
oF = JdAS 0X + JdAVaQa , (7.163)

where 8 = (Su + Sp)n + Site,. The Euler-Lagrange equations found from this free
energy show that in equilibrium we have & = 0 and therefore the tangential and
normal components must vanish independently. We obtain two equations:

0= wp[(2K™ — Kg**)VaxVix + 2(Kg" — K®)V,Vix] + 2Hy
— kg {V;V'H — (H — Hy) [2H(H — Hy) — 4H* + 2K¢|} (7.164)

and 2kpppV%x = 0. However, instead of the equilibrium equations of motion we
need to find the stress and torque tensor. Their derivation is outlined in the following
section.

7.D Stress Tensor and Torque Tensor

To find the equilibrium stress tensor we consider how the free energy transforms
under an infinitesimal translation a, i.e., X = a. Thus, ® = a -n, ®* = a - e,
and V@ = Vy(a-n) = a- Kfe.. Then we want to find the stress tensor in the
from & = —V,0%%. Since we can write the energy deformation as

oF = JdAS 0X +V,0° (7.165)
and invariance under translations implies that §F = 0 so that locally

S 6X = -V,0". (7.166)

We can thus find the stress tensor o by substituting ®* = a - n etc. into Q% and
we can thus write the stress tensor as

0%t = 0%y +of'n = (UilfF + 08y +of + Uf\le) €

+lolrptolintojet Jﬁ,H) n, (7.167a)
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where
09 = 2kpxKag™ (7.167h)
01’y = —kp (H — Ho) K** — kcKag™ (7.167c)
o = —rex(pp + Ka)g™ — rexV VX + ke VX VX, (7.167d)
ofity = (v + kp (H — Ho)* + raKa)g™ | (7.167e)
ot p = rr[(Kg™ + 2K)x + 2(K® — g K)|Vyx , (7.167f)
ol y=*reV'H, (7.167¢g)
ofl p = kEK*XVix (7.167h)
oln=0- (7.167i)

To find the torque tensor we need to look at infinitesimal rotations instead, § X =
b x X such that
d=b-X xn, b, =b-X xe,, (7.168)

so that V?® = b - (e?e, + KX x e,) and V;®, = b - (epan — K, X x n), where
€ab = y/9€ab- The deformation of the energy is then given by
oF = JdAS (bx X) + JdAVa’Ta , (7.169)

where T% = m® — X x 0%% is the associated Noether current. We find m® to be

m® =m™e, + min =X x QU0 =n, P, =e,] — Q[P =X xn, P, = X x e,],
(7.170a)
with

m® = kg (H — Hp) €®® + (2rg — 4kpX)He™ + (26px — kg) K%, (7.170b)
me = kpxVyxe® . (7.170c)

7.E Torque Balance
The tangential projection of the torque balance Eq. (7.20b) reads
Vim',i’i +m& K, = (on:+ agji)eik ) (7.171)

We find that this relation is fulfilled for the following components of the stress and
torque tensors which we found in the previous section: m§* = kpx V7 x€;i, ag,i =0,
and

o = weViH + rp[(Kg) — 2K )x + 2(K] — g/ K)|V,;x + ke K] XV;x . (7.172)
To see this note that
Vim™ + K/m! =(kp + 26a)e"ViH — kgeM V,Ki — 4rpedV;(xH)
+ 26p eIV (YKL + kpe" KIxVix (7.173)
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and

an,ie” = kp€?V,H + kpe [(Kgic —2KF)x + 2(KF - gf)K] Vix + kre€? KFxVix .

- ‘ (7.174)
Then, multiplying both by —e;;, using €;€ = —d;, and subtracting the result, we
find,

ejleijam — eleimij — elefmfl
= —4V(XH) + 2V,;(xK}) — € KIxVix — xKVix + xK[Vix
—2KfVpx +2KV;x =0, (7.175)

where we used €€ = 5;?6{ - 5§5f.
On the other hand, for the normal projection we find that, using the symmetry
of 0;; and Kjj, and the antisymmetry of €;;:

0= Vimn7i - minij = HFVi(Xij)eji - (—ngKfekj + 2nprfekj)Kij =0,
(7.176)
where all three terms vanish identically in the last step. Thus, for our choice of
stress and moment tensors the torque balance equations are trivially fulfilled.

7.F Boundary Conditions

We only consider surfaces with vanishing spontaneous mean curvature in this sec-
tion, Hy = 0. This is assumed for simplicity and because all surfaces with Hy # 0
that we consider (sphere and torus) do not have a boundary. Only the initially flat
disc has a boundary but in this case the surface has no spontaneous mean curva-
ture. To determine the boundary condition we work in the Darboux frame [149,
264]. That is at the boundary we have the frame {¢t,I,n} where l =t x n = e/l .
is the outward pointing tangent normal vector. We can also write t = t%e,. On
the edge gap = tats + lolp such that e, = t,t + [,l. The curvature tensor then has
components K| = K1%°, K, = Kttt and Ky = K,,1%t" in this coordinate
system. K is called the geodesic torsion. The directional derivatives on the edge
are V| =1,V and V| =t"V,. There are the relations

t=—Kal—kon, I=Kgt—7mn, n=r1l+k.t, (7.177)
where the dot indicates V|, k, = K|, 7 = K, and Kg = —leth =-1-Vt.
The variation of the edge can be written as Y = ¢t + ¥l + ®n, where ¢ = [P,

and ¢ = t*®,. Therefore, for the deformation of the unit tangent we have

5t = 0(t"q) = (V0 (tut + bpl) — t" Koy @' + (V| @)n + t* @K o (£t + 1°1) .
(7.178)

From (V| ®%)t, = ¢ + Y Kg and ¢ = 1 — ¢Kg we find

5t = gt + Pl + dn + ot + Yl + Dn . (7.179)
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Furthermore,

(5j€ds = jgdst <ot = jgds((/ﬁ + ¢y Kg + Pky,) = Ag + §d3(¢KG + ®k,), (7.180)
with A¢ = 0 for closed curves. Finally, we write
Qf p = MUVy® + M“D, g = Ny® + N,Vea’, (7.181)

and
OF = %ds[laQ% + 1,98 + op(Kgy) + kp,@)] (7.182)

where we added a term o, §ds as the line tension of the boundary to the energy.
Then we find the boundary conditions of a free edge to be

0 =l,ybN + NyV 1 1 + v + kpH? + kg Kg + 0pKg (7.183a)

0 =laM* = V[lats M**] + KV LH — kc V) Ty + opky (7.183b)

0 =lol,M™ — kpH — Ko K, (7.183c)

0=I"Ny, (7.183d)

0 =t’N, , (7.183e)

where

M = 2kp(Kg®® — K%y, (7.183f)

M*® = kp[(Kg® — 2K*)x + 2(K* — "’ K)]Vyx , (7.183g)

N = kp [VXVPx = xVVPx — ¢ (pp + Kc)x] , (7.183h)

N® = —kpxV . (7.183i)

7.G Monge Gauge

To investigate the buckling instability of a flat disc, we use the small-height approx-
imation of the Monge gauge. In this parametrization, the surface is described by a
height function h(z,y) above a flat reference plane with coordinates {x,y}. Here,
we present the results for a cartesian coordinate system. It is straightforward to
find the equivalent expression for other coordinate systems on the reference plane,
e.g., polar coordinates. The surface parametrization can then be simply written as
[149]

x
X@y=| v |- (7.184)
h(z,y)
From this the tangent vectors and normal vector are found to be
1 0 e, X e 1 —0zh
ez=1| 0 |, e,=1| 1|, n=—"—"%=—|-0,h (7.185)
osh a,h VI VI
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Here, ¢ is the determinant of the metric

(148" —dshéyh
gij = €; e]<8mh(3yh 1+((9mh)2 . (7.186)

The area element of the surface is then

dA = gdady = A/1 + (Vh)*dzdy , (7.187)

where V = {0,, 0, } is the derivative on the flat reference plane. Finally, the curva-

ture tensor is given by
1 (2h 0.0,k
Kij=~"7% (amay oyh ) (7159

such that the mean and Gaussian curvature are

02h) (82h) — (0,0,h)*
Hetv (T Ko = ) @) = @2h)"
2 NG g

These are the most important expressions written in the Monge gauge. Now, as
we are interested in the buckling instability of a flat disc, we only consider small
perturbations of the flat reference state. Thus, we can work in the so-called small-
height approximation. In this approximation we assume |Vh| « 1 such that we
can linearize the above expressions the expressions. We find that the metric can be
approximated by the flat metric,

(7.189)

gij = 0i; + O(VA?) , (7.190)

and the covariant derivative on the surface is reduces to the flat derivative. Thus,
the determinant of the metric is trivial, g = 1+O(Vh?), and the second fundamental
form reduces to the simple expression

K;j = —0;0jh + O(Vh?) (7.191)

such that mean and Gaussian curvature are simply given by
H= —%v% +0O(Vh?),  Kag=O0O(Vh?). (7.192)
In particular, the linearized Gaussian curvature vanishes. Lastly, note that expres-

sions that can be written in terms of V without explicit reference to 0, and ¢, are
coordinate-independent and thus also valid for, e.g., polar coordinates.

7.H No-slip Boundary Conditions

First, we note that the exponents not written in the main text are

a(s) = riz\/m\/%(#ms*%i”il , (7.193)
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and

b(s) = 12V T v/ Ao =8ls =1 (7.194)

However, since we set the corresponding integration constants to zero they will not
be relevant in the following.

We now present in some more detail the derivation of the height equation for
defect charges s # 0. As mentioned above, we impose no-slip boundary conditions
at the the boundary of the disc, r = R. To find the velocity field that fulfills these
boundary conditions we use the stream function

o = [ A2 1 Br2@=) [ sinf2(1 - s)¢] (7.195)

where A and B are constants to be determined. This stream function is in turn used

to define a velocity
vy = (;agbz/’) : (7.196)

Note that this vector field is divergence-free such that the velocity field vg is in-
compressible by construction. The corresponding pressure field is found from the
velocity field by solving

’I7A’Uo = VPO . (7197)

We can add this new velocity and pressure field to the solution already found and,
due to the linearity of the Stokes equation, this is a solution of the equation as well.
In this way we can easily construct the velocity field vy to enforce the boundary
conditions. Namely, requiring at » = R that

v +vg, =0 and Uy + v, =0, (7.198)
with v, and v, given by Eq. (7.61), it is straightforward to find

aR?s asR2(s—1)
_ _ s 1
A 8(2—s)n’ 5 8(s2 —3s+2)n (7.199)

The components of the resulting velocity field can be written as

Vo, = l(s —1) <R)28 —s (R)Q(S_l)] arcos[2(s = 1)g] (7.200a)

T r 4(s — 2)n
® s 2670 sin [2(s —
Vo, = l(s —1) <f) - = is (f) ] 4(£2( 2)771)@] . (7.200b)

Lastly, from Eq. (7.197) we find the pressure to be

as(3 —2s 2(s—1)
Fo= 2(2—(333-?32) (1:) cos[2(s — 1)¢] . (7.201)





