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CHAPTER 7

Full Derivation of Active Height Equation

This chapter accompanies Chapter 5 and Chapter 6. In the first part of this chap-
ter we present a detailed derivation of the equations of motion used in these two
chapters. Namely, starting from the Frank free energy, the Helfrich free energy,
and the standard equations of active nematodynamics, we systematically derive the
equations of motion governing the dynamics of an active liquid crystal coupled to
an elastic, two-dimensional surface of arbitrary geometry. The resulting equations
can be used to study activity-induced shape deformations of elastic surfaces. In
the second part of this chapter we investigate these equations for an initially flat,
disc-shaped elastic surface. We analyze how the presence of ˘1 and ˘1{2 topo-
logical defects in such a system can drive buckling instabilities. We find that only
defects with positive charge result in a buckled surface. In the third part of this
chapter we investigate the case of a toroidal ground state geometry, where no defects
are present. We present preliminary results on the instability of the ground state
geometry in this case.

All laws, written, and unwritten, have need of interpretation.
T. Hobbes. Leviathan.

[B]ay is a noun only if water is dead. When bay is a noun, it is defined by
humans, trapped between its shores and contained by the word. But the verb
wiikwegamaa — to be a bay — releases the water from bondage and lets it live.
“To be a bay” holds the wonder that, for this moment, the living water has
decided to shelter itself between these shores, conversing with cedar roots and a
flock of baby mergansers. Because it could do otherwise — become a stream or
an ocean or a waterfall [...].

R. W. Kimmerer. Braiding Sweetgrass.

La crisi consiste appunto nel fatto che il vecchio muore e il nuovo non può
nascere: in questo interregno si verificano i fenomeni morbosi più svariati.

A. Gramsci. Quaderni del carcere.
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7.1 Introduction
The goal of this chapter is two-fold. First, we present in more detail the derivations
of the equations of motion that govern the active liquid crystal coupled to an elastic
surface. We used these equations in the two preceding chapters, Chapters 5, 6, to
describe the dynamics of an elastic surface coupled to an active liquid crystal in
the presence of topological defects. We focus on the mathematical aspects here and
refer to the previous chapters for more details about the connection to biology and
the motivation. Because of this, the present chapter is not independent and rather
technical. (If it was not for its length, this chapter could have been an appendix for
the preceding chapters.) In Chapter 5 we considered a surface that is initially a flat
disc, and investigated how the presence of a `1 defect results can drive a buckling
instability. In Chapter 6 we investigated a surface that initially had the geometry
of a sphere. We considered both the case of a polar liquid crystal, in which case
two `1 defects were present on the sphere, as well as a nematic liquid crystal with
four `1{2 defects. In both chapters the governing equations of motion coupled the
equilibrium elastic relaxation of the elastic membrane and liquid crystal with the
activity and the resulting flow and pressure fields. The full derivation of this set of
equations is rather lengthy and thus we present them here in a separate chapter.
In the second part of this chapter we generalize the results of Chapter 5 on the
buckling instability for a flat disc in the presence of a `1 defect to arbitrary defect
charges. Lastly, in the third part of this chapter, we solve the equations for an active
liquid crystal on a torus. Some basic concepts of differential geometry used here are
explained in the introduction, Chapter 1.

7.2 The Model
The model we use here can be used to explain, for example, the morphodynamics
of cell monolayers, even though the model can more generally be used to study
activity-driven shape changes. We refer to Chapters 5, 6 for the connection between
the equations derived below and biological systems. Here, we focus on the derivation
of the equations, not on their (biological) interpretation and application. In this
section we recapitulate the equations used to describe the dynamics of an active
liquid crystal on a fixed, curved surface. Afterwards, we generalize the equations to
allow for the surface itself to deform. We consider a two-dimensional active liquid
crystal (either polar or nematic) with the director field denoted by p. This liquid
crystal field is constrained to be on the two-dimensional surface M , that is the
director does not have a component normal to the surface. The elastic energy of
the liquid crystal is minimized if nearby directors are aligned, that is gradients in
the director field are energetically unfavorable. This is quantified by the Frank free
energy (Sec. 1.1.2, Refs. [1, 3])

FF “
κF

2

ż

M

dA |∇p|2 , (7.1)

where κF is the Frank elastic constant and we assume the one-elastic-constant ap-
proximation. To model the dynamics of cells, which are inherently out of equilib-
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rium, it is necessary to add activity. As explained, e.g., in Sec. 1.2.1, we choose the
following expression for the active stress tensor [41, 42, 48, 55, 56]:

σaij “ α

ˆ

pipj ´
1
2gij

˙

. (7.2)

Here, gij is the metric of the surface M which the director field is constrained to. In
flat space it reduces to the Kronecker delta gij “ δij and in this case Eq. (7.2) reduces
to the expression found most commonly in the literature. However, we anticipate
that our ultimate goal is to work in curved space by writing the general expression
for this stress tensor with a generic metric here. This active force can be found
from the active stress tensor by taking the divergence. The active force can drive a
fluid flow whose velocity we denote by vi. We assume the flow to be incompressible
which gives rise to a hydrodynamic pressure Ph. The flow can interact with the
director field by reorienting it. For example, if the flow is sufficiently strong it can
be energetically favorable for elongated particles to align with the direction of flow
even if this entails that gradients in the director field result in an increasing Frank
free energy. This is well-known from passive liquid crystal physics with essentially
the only difference being that in the passive case the flow is externally driven while in
the active case the flow is fueled by the activity of the system itself. The interaction
is described by the Leslie-Ericksen equation (Sec. 1.1.4, Refs. [1–3, 26–28])

D

Dt
pi “

`

gij ´ pipj
˘

´

λujkp
k ´ ωjkp

k `
κF

Γ ∇2pj

¯

. (7.3)

Here, Dt “ Bt ` vi∇i is the material derivative. uij “ p∇ivj `∇jviq {2 and ωij “
p∇ivj ´∇jviq {2 are the strain rate and vorticity tensors, respectively. λ is the so-
called flow alignment parameter. Finally, Mi “ δFF{δp

i “ κF∇2pi is the molecular
field found from the Frank free energy Eq. (7.1). It is coupled to the rotational
viscosity Γ and in the absence of flows results in a minimization of the Frank free
energy, i.e., this term aligns the director field. Finally, an equation describing the
dynamics of the velocity field is needed. We use the overdamped force balance
(Sec. 1.1.4, Refs. [1–3, 26–28]):

D

Dt
vj “ ∇i

“

σd
ij ` σ

e
ij

‰

, (7.4a)

where
σd
ij “ ´Phgij ` 2ηuij ` σaij (7.4b)

is the deviatoric stress tensor, while σe
ij is an, as of yet undetermined, equilibrium

stress tensor. We will derive an expression for it below. The first term of Eq. (7.4b)
enforces incompressibility. The second term is the stress due to the strain rate with
η the viscosity. These two terms are well known from the Navier-Stokes equation.
The third term is the stress due to activity. In the absence of activity, α “ 0, and
elastic stresses, Eq. (7.4a) thus reduces to the overdamped limit of the Navier-Stokes
equation. In this case Eqs. (7.3) and (7.4a) are the equations commonly used to
describe passive liquid crystal hydrodynamics. Note that all of the derivatives ∇i
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here are covariant derivatives such that the equations are valid on a curved surface
M .

So far we have assumed that the geometry of the surface M is given. We now
turn towards including the dynamics of M itself. Here, we are interested in coupling
the dynamics of the liquid crystal to an elastic surface. In particular, we want to
investigate how the presence of activity can introduce curvature in an initially flat
disc, or distort an initially spherical shell. The idea being that the presence of active
forces can distort the elastic surface, resulting in curvature. To describe the elastic
surface we use the Helfrich free energy (Sec. 1.3.3, Refs. [149, 160, 161])

FH “

ż

dA
”

γ ` κB pH ´H0q
2
` κGKG

ı

. (7.5)

Here, γ is the surface tension acting towards reducing the surface area. κB is the
bending modulus coupled to the mean curvature H and the spontaneous mean
curvature H0. We assume the latter to be constant. κG is the Gaussian bending
modulus coupled to the Gaussian curvature KG.

With this we have introduced all the ingredients of our model. The goal of the
first part of this chapter chapter is to derive the equations of motion describing an
active liquid crystal coupled to an elastic, deformable surface, and to investigate if
an initially flat state can become unstable due to the presence of activity. However,
before we derive these equations, we briefly introduce some notation to describe
topological defects. We denote by (Sec. 1.1.3, Refs. [3, 10])

ρDprq ¨̈“ 2π
ÿ

i

siδpr ´ riq (7.6)

the density of defects of charge si at position ri. It will be convenient to rewrite
the Frank free energy as follows. We follow Bowick and Giomi [10] and introduce a
pair of tensors Eα that are locally orthonormal, such that

Eα ¨Eβ “ EαiE
i
β “ δαβ (7.7)

while
EαiE

α
j “ gij . (7.8)

Here we denote by greek indices the coordinates on the surface M and by latin
indices the coordinates of the embedding space R3. Consequently, α, β “ 1, 2 and
i, j “ 1, 2, 3. Latin indices are used interchangeably with bold-face characters, see
Sec. 1.A. These tangent vectors can thus still be used to define the metric, but
unlike the tangent vectors defined directly from the surface parametrization (see
Eq. (1.43)), they are locally orthonormal. Given an arbitrary vector field w, it can
be expressed in this basis as w “ wαEα, with wα “ wiEαi . Its covariant derivative
can then be written as

∇ivα “ Eαj∇iw
j “ Biwα ` Ωiαβwβ , (7.9)

where we used ∇iEαj “ 0 and where we introduce the spin connection

Ωiαβ “ Eα ¨ BiEβ (7.10)
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which is antisymmetric in its greek indices as is straightforward to see from the
definition of Eα. In two dimensions it is thus possible to write it as Ωiαβ “ εαβΩi.
The spin connection is thus defined by a single vector Ω. It is possible to show (see
App. 7.A) that this vector is related to the Gaussian curvature via

∇ˆΩ “ εij∇iΩj “ KG . (7.11)

Now, in the locally orthonormal frame tE1,E2u the director field p can be written
as

p “ cos ΘE1 ` sin ΘE2 . (7.12)

Using this, the derivative of the director field can be written as

∇ipj “ Eαj
`

Bipα ` Ωiαβpβ
˘

“ ´εαβp
βEαj pBiΘ´ Ωiq , (7.13)

where in the second step we used Bipα “ ´εαβpβBiΘ. Thus, the Frank free energy
can be written as

FF “
κF

2

ż

M

dA pBiΘ´ Ωiq
`

BiΘ´ Ωi
˘

. (7.14)

Minimizing the energy one finds the Euler-Lagrange equation ∇i

`

BiΘ´ Ωi
˘

“ 0.
As is straightforward to check, this equation is solved by a scalar field that obeys
the equation

´ εij∇jχ “ B
iΘ´ Ωi . (7.15)

As the spin connection is related to the Gaussian curvature it is possible to define
the Airy stress function χ as [10, 174, 264]

∇2χ ¨̈“ KG ´ ρD . (7.16)

Here we used that
ű

dΘ “ 2πsi, which, using Stokes theorem, can be written as
εij∇i∇jΘ “ ρDprq. The Airy stress function thus is the solution of a Poisson
equation. In the absence of Gaussian curvature, ∇2χ “ ´ρD and the Airy stress
function is a defect potential, similar to the electric potential, where the defect
density corresponds to the density of electric charges. If the Gaussian curvature
does not vanish, it screens the defect charge density. This means that if defects
with positive (negative) charge are present in regions of positive (negative) Gaussian
curvature the “effective defect charge” KG ´ ρD is reduced.

The Frank free energy Eq. (7.1) can then be written in terms of the Airy stress
function:

FF “

ż

M

dA p∇iχq
2
“ ´

ż

M

dAχ∇2χ , (7.17)

where in the second step we integrated by parts and dropped the boundary term.
We will now turn towards deriving the equations of motion.
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7.3 Derivation of the Equations of Motion
We derive the equations of motion for an active liquid crystal coupled to an elastic
surface. Following Salbreux and Jülicher [143] we write down the general force and
torque balance equations on a membrane. They read:

∇iσ
i “ ´Ξext , (7.18a)

∇im
i “ σi ˆ ei . (7.18b)

Here, σi is the surface stress tensor, mi the surface moment tensor, and Ξext the
external force per unit area. In writing these equations we assumed that there are
no inertial forces (overdamped dynamics), no external torques, and that there is no
deviatoric contribution to the moments. We can decompose the quantities appearing
in this equation into tangential and normal components as follows:

σi “
`

σeij ` σ
d
ij

˘

ej `
`

σen,i ` σ
d
n,i
˘

n , (7.19a)
mi “ me

ije
j `me

n,in , (7.19b)
Ξext “ Ξext

i ei ` Ξext
n n . (7.19c)

Here, σij is the tangential component of the surface stress tensor while σn,i is
its normal component. te1, e2,nu is the coordinate system on M as explained in
Sec. 1.3. By the index e we denote the equilibrium component while we use d for
deviatoric terms. By plugging Eqs. (7.19) into the Eqs. (7.18) one easily sees
that the force and torque balance equations can be decomposed into in-plane and
out-of-plane equations. We find for the force balance:

∇iσ
i “ ∇ipσ

ijej ` σ
i
nnq “

´

∇iσ
ij `Kj

i σ
i
n

¯

ej `
`

∇iσ
i
n ´ σ

ijKij

˘

n “ ´Ξext ,

(7.20a)
and for the torque balance:

∇im
i “ ∇ipm

ijej `m
i
nnq “

´

∇im
ij `Kj

im
i
n

¯

ej `
`

∇im
i
n ´m

ijKij

˘

n

“ σijej ˆ ei ` σ
i
nnˆ ei “ σijεjin` σ

i
nε

j
i ej , (7.20b)

where we used the Gauss-Weingarten equations. Projecting both equations onto
the in-plane and normal components, respectively, we thus have four independent
equations. Note that the second fundamental form Kij couples the normal compo-
nent of the surface stress to the in-plane force balance. This very general system of
equations is connected to our problem by specifying the components in Eqs. (7.19).
We take the equilibrium components to be the contribution of the elastic membrane
and the elasticity of the liquid crystal, while the deviatoric components are due to
the presence of activity. I.e., in the limit of a passive system the deviatoric com-
ponents vanish. We now outline first the derivation of the equilibrium components
and after that comment on the deviatoric components.
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7.3.1 Equilibrium stress tensor
In this subsection we summarize the derivation of the stress tensor from the free
energies Eqs. (7.5), (7.17). More details of the derivations can be found in the
Appendix. In this derivation we combine and summarize the work of Refs. [162,
165, 166, 264, 327, 328]. In particular, Refs. [162, 165, 166, 327, 328] developed the
very elegant method we will use below for deriving the stress tensor for an elastic
membrane described by the Helfrich energy, see also Ref. [149]. Santiago [264],
building on this work and using the same general ideas, used this approach to derive
the stress tensor of a liquid crystal on a surface with surface tension, but without
bending modulus or spontaneous curvature. Here, we combine both, deriving the
equilibrium stress tensors for a liquid crystal on an elastic surface. We show that,
due to the linearity of the equations, the resulting stress tensors are simply the
sum of the stress tensors derived before, and we proof that there are no additional
terms. In the following subsection we combine these equilibrium stress tensors with
the deviatoric stress tensors (which has not been done before) and derive a set of
equations describing the model outlined in the previous section.

The equilibrium components of the stress tensor can be found from the variation
of the total free energy F “ FF ` FH with respect to the position vector X of
the surface M (see Sec. 1.3 for the definition). That is, we want to find how the
free energy transforms when the position vector is varied as X Ñ X 1 “ X ` δX.
Computing the variation of the different terms in the free energy explicitly, we find
that it is possible to write the variation of the free energy in the form

δF “

ż

dASrδXs ¨ δX `

ż

dA∇aQarδXs , (7.21)

with the Euler-Lagrange derivative SrδXs and the Noether current QarδXs. The
explicit expression is rather lengthy and for easier readability we do not write it here.
The full expression, as well as the derivation, can be found in App. 7.C. We can
use this expression to find the equilibrium stress and moment tensor by considering
different variations of the position vector δX. Namely, to find the moment tensor, we
have to consider how the free energy behaves under a generic infinitesimal rotation.
To find the stress tensor, on the other hand, we consider an infinitesimal translation,
i.e., δX “ a. Translation invariance of the free energy implies that δF “ 0 such
that locally

SrδXs ¨ δX “ ´∇iQirδXs . (7.22)

Substituting δX “ a into this expression, it is possible to write the resulting equa-
tion as S “ ´∇iσ

e,i through which the stress tensor σe,i is defined. The explicit
expression can then easily be read off. We find that it is possible to split the stress
tensor into tangential and normal component such that it can be written as

σe,i “ σe,ijej ` σ
e,i
n n , (7.23a)
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where

σe
ij “´ κB pH ´H0qKij ` pγ ` κB pH ´H0q

2
qgij

` κFχ∆χgij ´ κFχ∇i∇jχ` κF∇iχ∇jχ , (7.23b)
σe

n,i “κB∇iH ` κFrpKgij ´Kijqχ` 2pKij ´ gijKqs∇jχ . (7.23c)

See App. 7.D for the derivation and further details. The moment tensor can be
derived similarity when considering how the energy transforms under a infinitesimal
rotation δX “ bˆX. We find mi to be

mi “ mijej `m
i
nn , (7.24a)

with

me
ij “ mij “ κB pH ´H0q εij ` p2κG ´ 4κFχqHεij ` p2κFχ´ κGqK

k
i εkj , (7.24b)

mi
n “ κFχ∇jχε

ij . (7.24c)

Again, see App. 7.D for the details.

7.3.2 Equations of motion
We now have found all the stress and moment tensors we need and can write down
the explicit form of the equations of motion, Eqs. (7.20). First, note that both the
tangential and normal projection of the torque balance, Eq. (7.20b), are automati-
cally fulfilled for the stress and moment tensors that we derived. See App. 7.E for
the proof. Thus, of the originally four equations in Eqs. (7.20) only two are non-
trivial and determine the dynamics of the system. We now derive these equations.
First, the tangential projection of the force balance is found from Eq. (7.20a) and
reads

∇iσij `Kijσ
i
n “ ´Ξext

j , (7.25)

where σij “ σe
ij ` σd

ij , and σin “ σe,i
n . For the equilibrium terms on the left-hand

side we find, after some straightforward manipulations,

∇iσe
ij ` σ

i
nKij “ κF rp´2ρD `KGχq∇jχ´KGχ∇jχs , (7.26)

where we used ∇iKij “ ∇jK, Rij “ KGgij “ KKij ´ KikK
k
j , and r∇i,∆sχ “

´KG∇iχ. Second, the normal projection of the force balance is given by:

∇iσ
i
n ´ σ

ijKij “ ´Ξext
n . (7.27)

Using the Theorema Egregium 4H2 ´KijKij “ 2KG we find that the equilibrium
terms on the left-hand side can be written as

σe
ijK

ij ´∇iσ
e,i
n “ f e

n ` f
d
n , (7.28)

where

f e
n “ 2γH ´ κB

 

∇i∇iH ´ pH ´H0q
“

2HpH ´H0q ´ 4H2 ` 2KG
‰(

(7.29)
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is a force due to the Helfrich free energy, and

fd
n “ 2κFp2Hgij ´Kijq∇i∇jχ` 2κFpK

ij ´Hgijq∇iχ∇jχ (7.30)

is due to the Frank free energy.
Finally, to close the system of equations, we need an equation of motion for the

director field that appears in the deviatoric stress tensor σd
ij . We choose the Leslie-

Ericksen equation adapted to curved geometries, Eq. (7.3). To summarize, we thus
have the following three equations of motion:

∇iσd
ij ´ 2κFρD∇jχ “ Dtvj ´ Ξext

j , (7.31a)
Kijσd

ij ` f
e
n ` f

d
n “ dBth` Ξext

n , (7.31b)

Dtp
i “

`

gij ´ pipj
˘

ˆ

λujkp
k ´ ωjkp

k `
Mj

Γ

˙

. (7.31c)

Note that, because we assumed incompressibility, we furthermore have the condition

∇iv
i “ 0 . (7.32)

Lastly, we have introduced two terms containing time derivatives. In Eq. (7.31a)
the time derivative of the velocity field, as known from the common Navier-Stokes
equation. In Eq. (7.31b) the time derivative of the height field with a drag coefficient
d.

7.3.3 Discussion
This equilibrium stress tensor in the limit κF “ 0 is the same as found in Refs. [149,
328] with opposite sign convention. σe

i does not depend on κG which enters only
through the boundary conditions when solving the force balance equations to find
the surface shape. In the absence of activity and external forces, σe

i is covariantly
conserved, and this is equivalent to the classical shape equation of elastic membranes
if κF “ 0. The Eqs. (7.31a) and (7.31b) are the hydrodynamic equations for the
velocity field of the active matter and the deformation of the membrane, respectively,
whereas Eq. (7.31c) describes the dynamic of the director. Note that fd

n “ 0 is just
the von Kármán equation. Furthermore, with this stress tensor and in the absence of
equilibrium components, Eq. (7.31a) reduces to the incompressible Stokes equation,
with a force resulting from the active stress, commonly used to describe active liquid
crystals, see Sec. 1.1.4 and Refs. [1–3, 26–28]. This is the case where the geometry
of the surface M is fixed, see the beginning of this chapter.

7.3.4 Small-height approximation
Solving the system of equations Eqs. (7.31) in full generality is very hard. Instead of
attempting this we will perform linear instability analysis. Here, we are interested
in the linear instability of a flat surface. That is, at the onset of the instability
curvatures are small and we can linearize the Eqs. (7.31) by working in the so-
called small-height approximation of the Monge gauge [149, 329]. We introduce a
coordinate system px, yq, where x and y are the usual two-dimensional cartesian
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coordinates in the plane, and describe the surface by a height function hpx, yq above
the flat reference plane. That is, we can write the position vector as

Xpx, yq “

¨

˝

x
y

hpx, yq

˛

‚ . (7.33)

It is then straightforward to compute the tangent vectors and from there one finds
expressions for metric and curvature tensor. We provide the explicit expressions in
App. 7.G. If deviations from the flat reference plane are small, i.e., if the curvature
of the surface is small and |∇h| ! 1, one can simplify the expressions significantly.
At the linear level we find, for example, that the metric can be approximated by the
flat metric, gij “ δij `Op∇h2q, and the covariant derivative by the flat derivative.
Furthermore, the second fundamental form reduces to Kij “ ´BiBjh`Op∇h2q such
that H “ ´∇2h{2 ` Op∇h2q and KG “ Op∇h2q. See, e.g., Ref. [149] and App.
7.G. Using this approximation we can simplify the equations of motion, Eqs. (7.31).
Namely, we find that, at linear order in ∇h, Eq. (7.31a) can be written as

η∆vi ` fa
i ´∇iPh ´ 2κFρD∇iχ “ Btvi ´ Ξext

i , (7.34)

where ∆ is the Laplacian, fa
i “ ∇jσaij the active force, and where we used flow

incompressibility, cf. Eq. (7.32). Furthermore, for the normal force balance, Eq.
(7.31b), we find that

f e
n “ ´γ∇2h` κB

`

∇2h
˘

pdet BiBjhq `
κB
4

`

∇2h
˘3
`
κB
2 ∇2∇2h

“ ´γ∇2h`
κB
2 ∇2∇2h`Op∇h2q , (7.35)

as well as

fd
n “4κF rBxByχ´ ByχBxχs BxByh` κF

“

pByχq
2 ´ pBxχq

2 ´ 2B2
yχ

‰

B2
xh

` κF
“

pBxχq
2 ´ pByχq

2 ´ 2B2
xχ

‰

B2
yh`Op∇h2q . (7.36)

For future reference, we summarize the equations above again here. In the small-
height approximation, in the absence of external forces, and in the stationary limit,
Eqs. (7.31) reduce to

η∆vi ` fa
i ´∇iPh ´ 2κFρD∇iχ “ 0 , (7.37a)

σd
ij∇i∇jh` f e

n ` f
d
n “ 0 , (7.37b)

vjBjp
i “

`

δij ´ pipj
˘

´

λujkp
k ´ ωjkp

k `
κF

Γ ∆pj
¯

, (7.37c)

with f e
n and fd

n given by Eqs. (7.35) and (7.36), respectively. Lastly, the defining
equation of the Airy stress function, Eq. (7.16), reduces to

∇2χ “ ´ρD . (7.38)
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7.4 Defect-driven Buckling Instability
We want to study the dynamics of the membrane in a disc geometry with a topo-
logical defect at the center. As the disc is initially flat the spontaneous curvature
vanishes, H0 “ 0. We write the director in polar coordinates as

pi “

ˆ

cospθ ´ ϕq
sinpθ ´ ϕq

˙

, (7.39)

with θ “ sϕ` ε, where ε is a constant and 2s P Z is the defect charge.
We then find after some manipulations that both components of the Leslie-

Ericksen equation, that is Eq. (7.37c), yield the same equation for θ, namely:

vj∇jθ “
Brprvϕq ´ Bϕvr

2r `
λ

2

„

sinp2ϕ´ 2θq
ˆ

rBr
vr
r
´
Bϕvϕ
r

˙

` cosp2ϕ´ 2θq
ˆ

rBr
vϕ
r
`
Bϕvr
r

˙

. (7.40)

Furthermore, in polar coordinates the active force appearing in Eq. (7.37a) has
components

fa “

ˆ

fa
r

fa
ϕ

˙

“
αs

r

ˆ

cos r2ps´ 1qϕ` 2εs
sin r2ps´ 1qϕ` 2εs

˙

. (7.41)

We first consider a `1 defect, that is s “ 1, as in this case the system is rotationally
symmetric. Afterwards we consider other defect charges, in particular s “ ˘1{2.

7.4.1 Height equation: `1 defect
The simplest case is that of a `1 defect due to the rotational symmetry of the
director field, that is, for s “ 1 we have

pi “

ˆ

cos ε
sin ε

˙

. (7.42)

We assume, without loss of generality, that χpRq “ 0, and enforce no-slip boundary
conditions vϕpr “ Rq “ vrpr “ Rq “ 0. Furthermore, we enforce that the height
function h and all its derivatives vanish at r “ R. Then the Airy stress function is
easily found to be

χ “ ´ ln r

R
. (7.43)

Assuming rotational symmetry of the velocity field, i.e., vϕ “ vϕprq and vr “ vrprq,
the incompressibility condition Eq. (7.32) reads

Brvrprq “ 0 (7.44)

and determines the radial velocity field up to a constant. Requiring the velocity
field to be finite everywhere we thus find vr “ 0. Substituting this into Eq. (7.40)
we find

0 “ p1` λ cos 2εqprBrvϕ ´ vϕq . (7.45)
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The solution to this equation is given by

ε “ ˘
arccos p´1{λq

2 , (7.46)

i.e., the flow alignment parameter λ sets the geometry of the defect.
With this at hand we now turn to the generalized Stokes equation, Eq. (7.37a),

to find an expression for the azimuthal velocity field. Note that the active force now
reads

fa “

ˆ

fa
r

fa
ϕ

˙

“
α

r

ˆ

cos 2ε
sin 2ε

˙

“
α

r

ˆ

´1{λ
˘
a

1´ 1{λ2

˙

. (7.47)

Because Ph “ Phprq and χ “ χprq we thus have two equations, namely the r- and
ϕ-component of Eq. (7.37a), that read

0 “ ´ α

λr
´ BrPh ´ 2ρDBrχ , (7.48)

0 “ η∆vϕ ˘
α

r

c

1´ 1
λ2 . (7.49)

Using Brδprq “ ´δprq{r we thus find the pressure field

Ph “ ´
α

λ
ln r

R
` κF , (7.50)

and the azimuthal velocity field

vϕ “ ¯
α
?
λ2 ´ 1
2ηλ r ln r

R
, (7.51)

where we used the boundary conditions to fix the integration constants. It remains to
investigate the generalized shape equation, Eq. (7.37b). Note that in a rotationally
symmetric system Eq. (7.36) reduces to

fd
n “ κF

pBrχq
2 ´ 2B2

rχ

r
Brh´ κF

2` rBrχ
r

pBrχqpB
2
rhq “ ´κF

Brh

r3 ` κF
B2
rh

r2 , (7.52)

where we used Eq. (7.43) in the second step. Furthermore, in polar coordinates
∇i∇jh “ BiBjh´ ΓkijBkh, with Γkij the Christoffel symbol associated with δij . This
is non-zero only if i “ j “ r, in which case ∇2

rh “ B2
rh, or if i “ j “ ϕ, then

∇2
ϕh “ rBrh. We thus find the following equation for the height function:

Ph∇2h`α
λ´ 1

2λ B2
rh`α

λ` 1
2λr Brh`

α

2 ∇2h´
κFBrh

r3 `
κFB

2
rh

r2 ´ γ∇2h`
κB
2 ∇4h “ 0

(7.53)
as uij∇i∇jh “ 0. Hence, the velocity does not enter explicitly in the final equation.
This equation can be written more compactly as

κB
2 ∇4h´ γeff∇2h`

κF,eff

r
Br

ˆ

Brh

r

˙

“ 0 , (7.54)

where γeff “ γ ´ Ph and κF,eff “ κF ` αr
2{p2λq.
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7.4.2 Height equation: Other defect charges
We now derive the shape equations for other defect charges as well. The derivation
follows along the same lines as the one just presented for the `1 defect. However,
we are no longer dealing with a rotationally symmetric system. Hence, we do not
require the Leslie-Ericksen equation to be fulfilled in the following for simplicity,
because it is not possible to find a stationary solution when including this equation.
That is, there is not stationary solution if the flow is allowed to act back on the
director field (backflow). Thus, we are only solving the height and Stokes equation
simultaneously. We take θ “ sϕ with 2s P Z, but s ‰ 1, 2 for reasons seen during
the calculation below. We set ε “ 0 now. Choosing a different value for ε just
corresponds to an overall rotation of the system, without modifying the dynamics.
This is different from the case of a `1 defect where this constant modifies the
geometry of the defect non-trivially. For the Airy stress function we find the same
expression as before:

χ “ ´s ln r

R
. (7.55)

The active force has components

fa “

ˆ

fa
r

fa
ϕ

˙

“
αs

r

ˆ

cos r2ps´ 1qϕs
sin r2ps´ 1qϕs

˙

(7.56)

in polar coordinates. Now we take the divergence of Eq. (7.37a). Due to in-
compressibility the velocity term vanishes and we find a Poisson equation for the
pressure:

∇2Ph “ ∇ ¨ fa ´ 2κF∇i pρD∇iχq , (7.57)
and for s ‰ 1 we find the pressure field to be

Ph “ ´
αs

2ps´ 1q cosr2ps´ 1qϕs ` P p0q ` κFρD . (7.58)

Here, P p0q is a solution of the Laplace equation ∇2P p0q “ 0, i.e., P p0q “ c1` c2 ln r.
Having found the pressure, we now turn towards finding the velocity field. First, note
that incompressibility of the velocity field now yields the condition Brprvrq “ ´Bϕvϕ.
Using this and the expression for the pressure just derived, we find that the r-
component of Eq. (7.37a) reads

3rBrvr ` r2B2
rvr ` B

2
ϕvr ` vr `

αrs

η
cosr2ps´ 1qϕs ´ c2

η
r “ 0 . (7.59)

Using the ansatz vr “ Aprq cosr2ps´1qϕs`Bprq sinr2ps´1qϕs, with Aprq and Bprq
arbitrary functions, we find B2

ϕvr “ ´4ps ´ 1q2vr which can be used to solve the
equation for vr; we find:

vr “
sα cosr2ps´ 1qϕs ´ c2

4ps´ 2qsη r `
´

rapsqc3 ` r
bpsqc4

¯

pcosr2ps´ 1qϕs ` sinr2ps´ 1qϕsq

(7.60)
for s ‰ 2. See App. 7.H for the explicit expressions of the constants apsq and bpsq.
We will set the integration constants c3 and c4 to zero in the following. We also
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need to set c2 “ 0 in order for the solution to agree with our ansatz. From the
incompressibility condition we then obtain vϕ. In summary, we thus find for the
velocity fields:

vr “
sα cosr2ps´ 1qϕs

4ps´ 2qsη r , (7.61a)

vϕ “ ´
α sinr2ps´ 1qϕs
4p2´ 3s` s2qη

r . (7.61b)

This velocity field does not vanish at the boundary of the disc, however. Thus, we
need to find an additional velocity field v0 to enforce the no-slip boundary conditions.
Namely, we require that at r “ R:

vr ` v0,r “ 0 and vϕ ` v0,ϕ “ 0 , (7.62)

and this defines the velocity v0. See App. 7.H for the derivation of the expression of
this velocity field. We can then compute the strain rate tensor associated with the
total velocity v`v0 and write down the height equation. After some straightforward
manipulations we find

α
1´ C
s´ 2 sinr2ps´ 1qϕsBr

Bϕh

r
` κF,eff

∇2h´ 2B2
rh

r2 ´ γeff∇2h`
κB
2 ∇4h “ 0 (7.63)

with the new effective surface tension

γeff “ γ ´ Ph ´ P0 , (7.64)

and the new effective Frank elastic constant

κF,eff “

ˆ

αpC ` s´ 1q
2ps´ 2q r2 cosr2ps´ 1qϕs ` κFsps´ 2q

˙

. (7.65)

Here we defined the term

C “
`

2s2 ´ 3s
˘

ˆ

R

r

˙2ps´1q
`
`

3s´ 2s2 ´ 1
˘

ˆ

R

r

˙2s
, (7.66)

which enters due to the no-slip boundary conditions, to write the equations more
compactly. If one takes v0 “ 0 in the derivation above this term vanishes identically.
Furthermore,

P0 “
αsp3´ 2sq

2p2´ 3s` s2q

ˆ

R

r

˙2ps´1q
cos r2ps´ 1qϕs (7.67)

is the pressure field due to the velocity field v0, i.e., the solution of the equation
η∆v0 “ ∇P0. See App. 7.H for details.
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7.4.3 Analysis: `1 defect
We now turn towards analyzing the height equation, investigating whether the pres-
ence of activity results in shape deformations of the initially flat membrane. We
first present the results for the `1 defect. This case has been discussed in detail
in Chapter 5 and we refer to this chapter for more details. Here, we merely out-
line and repeat the arguments in anticipation of the discussion of the ˘1{2 defects,
where the equations are more complicated but have a similar structure. Thus, it is
instructive to briefly repeat the discussion of the simpler case of the `1 defect here.
We first consider the case where both bending modulus and activity vanish, κB “ 0,
α “ 0. This corresponds thus to the passive instability, first considered by Frank
and Kardar [270]. In this case the height equation simply reads

γ∇2h`
κF

r
Br

ˆ

Brh

r

˙

, (7.68)

which can be integrated to yield the equation
`

r2 ´R2
c
˘

Brh “ 0 , (7.69)

with the critical length scale

Rc “

c

κF

γ
, (7.70)

at which the prefactor of the above equation vanishes. Due to the boundary con-
ditions for the height function h that we impose (namely, h and all its derivatives
vanish at the boundary), this equation admits a nontrivial solution only if R ą Rc.
Now, for non-zero activity, but still κB “ 0, the height equation can be written in
the same form, but with a different critical length. Namely, the prefactor vanishes
if

κF

R2
c
“ γ ´

α

2λ ´
α

λ
ln R

Rc
(7.71)

is fulfilled, defining the critical length scale. There is no exact solution to this tran-
scendental equation. However, the last term on the right-hand side is of secondary
importance when interested in the onset of the instability, where R „ Rc. Neglecting
this term we thus find

Rc “

c

κF

γ ´ α
2λ

. (7.72)

As in the previous case, we find that there is a non-trivial solution only if R ą Rc
in which case the flat conformation becomes unstable. Note that the activity renor-
malizes the surface tension. For λ ą 1 the activity reduces (increases) the effective
surface tension in the presence of contractile (extensile) stresses, and vice versa for
negative λ. Thus, for positive flow alignment buckling is favored for extensile activ-
ity, while it is inhibited for contractile activity. Lastly, we note that reintroducing
the bending stiffness κB does not modify the buckling instability qualitatively but
energetically punishes diverging curvatures. We refer to Chapter 5 for a discussion
of this case.
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7.4.4 Analysis: `1{2 defect
For s “ `1{2 the height equation Eq. (7.63) takes the form:

2αpr `Rq sinϕ
3R Br

Bϕh

r
` κF,eff

∇2h´ 2B2
rh

r2 ´ γeff∇2h`
κB
2 ∇4h “ 0 , (7.73)

with the new effective surface tension

γeff “ γ ´
αp4r ` 3Rq

6R cosϕ , (7.74)

and the new effective Frank elastic constant

κF,eff “
αp2r `Rq

6R r2 cosϕ´ 3κF

4 . (7.75)

First, we consider the passive case α “ 0. In this case the height equation Eq. (7.73)
reduces to

´ γ∇2h`
κB
2 ∇4h´

3κF

4r2

˜

B2
ϕh

r2 ´ rBr
Brh

r

¸

“ 0 . (7.76)

Again, we investigate the problem in the absence of bending stiffness, i.e., in the
limit κB “ 0, such that the equation reduces to:

γ∇2h`
3κF

4r2

˜

B2
ϕh

r2 ´ rBr
Brh

r

¸

“ 0 . (7.77)

To solve this equation we us a mode expansion ansatz:

hpr, ϕq “
ÿ

n

hnprq cospnϕq . (7.78)

We are interested in the linear instability of the flat state and the lowest modes
will be the first to be excited. For n “ 0, i.e., the radially symmetric term, we can
integrate the equation that results from substituting hpr, ϕq “ h0prq into Eq. (7.77)
to find

ˆ

r2 ´
3κF

4γ

˙

Brh0 “ 0 , (7.79)

and thus we find a length scale

Rc “

c

3κF

4γ . (7.80)

For n ‰ 0 we have an equation which can be written as

´
n2hn
r3

ˆ

r2 `
3κF

4γ

˙

` Br

ˆ„

r2 ´
3κF

4γ



Brhn
r

˙

“ 0 . (7.81)

Only for n “ 1 can this equation be integrated to yield
ˆ

r2 ´
3κF

4γ

˙

Br
h1 cosϕ

r
“ 0 . (7.82)
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Thus, we find two length scales in Eq. (7.81), but only one of them is real for positive
elastic constants. Note that an exact solution for this equation can be found but it
violates our initial assumption of small gradients of the height function, |∇h| ! 1,
as the solution is logarithmically divergent for small r.

In the active case, but still with κB “ 0, we have to solve

2αpr `Rq sinϕ
3R Br

Bϕh

r
`

ˆ

αp2r `Rq
6R r2 cosϕ´ 3κF

4

˙

∇2h´ 2B2
rh

r2

´

ˆ

γ ´
αp4r ` 3Rq

6R cosϕ
˙

∇2h “ 0 . (7.83)

Looking at the two lowest modes n “ 0, 1 again and dropping terms of order 2ϕ and
higher, we find an equation for which we can consider the equation for the zeroth
and first mode separately. Integrating both of these equations we find

αpr `Rqr2

6R Br
h1

r
`

3κF ´ 4r2γ

4r Brh0 “ 0 , (7.84a)

and
4r3pr `RqαBrh0 ` 3R

`

3κF ´ 4r2γ
˘

r2Br
h1

r
“ 0 . (7.84b)

Substituting the first into the second equation yields, after some small manipula-
tions, the equation

“

9R2p3κF ´ 4r2γq2 ´ 8r4pr `Rq2α2‰ Br
h1

r
“ 0 . (7.85)

As before, to find the critical length scale Rc we are interested in, we consider the
case where the prefactor vanishes. This condition can be written as

κF

R2
c
“

4
3

„

γ `
|α|

3
?

2



`
8
81 |α|

Rc

R
. (7.86)

A few comments are in order. First, note that the second term on the right-hand
side is due to our choice of boundary conditions, through which the radius of the
disc enters this equation. While it is possible to solve the above equation exactly
for Rc, the resulting expression is rather lengthy and not very insightful. The main
effect of the instability, however, is the renormalization of the surface tension in
the first term on the right-hand side. To underline this message we can neglect the
second term on the right-hand side, which is due to the boundary conditions, as we
did for the `1 defect above, such that it is possible to write a simple expression for
the critical radius:

Rc “

d

9κF

12γ ` 2
?

2|α|
. (7.87)

The term neglected here actually reduces the critical radius slightly, with the rel-
evance of the term slightly increasing with increasing κF and decreasing γ. The
main difference of the critical radius compared with the one found for a `1 defect
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(Eq. (7.72)) is that only the absolute value of the activity enters here. Thus, the
sign of activity is not relevant for the question if there is a buckling instability, only
its magnitude. This can be understood as follows: Unlike for the `1 defect, where
the pressure and velocity field were radially symmetric, now they are varying in
azimuthal direction. Considering the hydrodynamic pressure, for example, which
gives rise to the effective surface tension above, we have

Ph “
α

2 cosϕ . (7.88)

Thus, the pressure is always positive in some region and negative in another, inde-
pendent of the sign of activity. The sign only determines in which area the pressure
is positive and negative. Thus, we can interpret the above results in this view in
predicting that for a `1{2 defect activity, irrespective of sign, drives a buckling
instability. The magnitude of activity determines the height of the buckled state.
However, this buckling is not rotationally symmetric, and the sign of activity deter-
mines if the buckled region is on the side of the defects’ head or tail. We find that
for extensile activity, α ă 0, the pressure is positive for ϕ P rπ{2, 3π{2s, that is on
the side of the defects’ head. On the other hand, for contractile activity, α ą 0, the
pressure is positive for ϕ P r´π{2, π{2s, i.e., on the side of the defects’ tail. In either
case, this is the region towards which the velocity of the defect core is pointing.

7.4.5 Analysis: ´1{2 defect
For s “ ´1{2 the height equation Eq. (7.63) takes the form:

2α
5

ˆ

1´ 2r3

R3 `
3r
R

˙

sin 3ϕBϕh
r
`κF,eff

∇2h´ 2B2
rh

r2 ´γeff∇2h`
κB
2 ∇4h “ 0 , (7.89)

with the new effective surface tension

γeff “ γ `
α
`

5R3 ` 8r3˘

30R3 cos 3ϕ , (7.90)

and the new effective Frank elastic constant

κF,eff “
5κF

4 `
αr2 `3R3 ` 6rR´ 4r3˘

10R3 cos 3ϕ . (7.91)

Again, we first analyze the passive case α “ 0, and assume a vanishing bending
modulus κB “ 0. In this limit the equation reduces to

∇2h´ 2B2
rh

r2 ´
4γ

5κF
∇2h “ 0 . (7.92)

As before, a mode analysis can be employed to analyze this equation, hpr, ϕq “
ř

n hnprq cospnϕq. Substituting this ansatz into the above equation yields
„ˆ

5κF

4γ ´ r2
˙

n2hn
r3 ` Br

ˆ„

r2 `
5κF

4γ



Brhn
r

˙

cosnϕ “ 0 . (7.93)
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For n “ 0 and n “ 1 the equation can be integrated. We find:
ˆ

r2 `
5κF

4γ

˙

Brh0 “ 0 ,
ˆ

r2 `
5κF

4γ

˙

Br
h1 cosϕ

r
“ 0 . (7.94)

Comparing with the equation we found for the `1{2 defect we see that, apart from
the numerical prefactor, the sign is reversed. Defining the critical length scale as
before we therefore find

Rc “

c

´
5κF

4γ (7.95)

which is always imaginary for positive elastic constants. Thus, there is no real
critical length scale for the ´1{2 defect. Unlike the positive `1 and `1{2 defects,
there is thus no passive buckling instability. We now turn towards investigating
whether the presence of activity can cause the flat surface to become unstable.

For non-zero activity, but with κB “ 0, the height equation reads:

2α
5

ˆ

1´ 2r3

R3 `
3r
R

˙

sin 3ϕBϕh
r
´

˜

γ `
α
`

5R3 ` 8r3˘

30R3

¸

∇2h

`

˜

5κF

4 `
αr2 `3R3 ` 6rR´ 4r3˘

10R3 cos 3ϕ
¸

∇2h´ 2B2
rh

r2 “ 0 . (7.96)

We are interested in the modes n “ 0 and n “ 3, since these are the modes appearing
in the equations above, e.g., the active force. Thus, we substitute the mode ansatz
and consider modes up to order n “ 3. We find that the resulting equations can
be split into two independent sets of equations, two equations coupling h0 and h3,
as well as two equations coupling h1 and h2. We can thus consider h0 and h3
independently, and set h1 “ h2 “ 0. Thus, our ansatz reads hprq “ h0 ` h3 cos 3ϕ.
We find the following set of equations:

0 “
`

4γr2 ` 5κF
˘ Brh0

r
`

2α
15

´ r

R

¯3
#

9
«

3
ˆ

R

r

˙2
`

ˆ

R

r

˙3
´ 2

ff

h3

`

«

9
ˆ

R

r

˙2
` 7

ˆ

R

r

˙3
´ 2

ff

rBrh3

+

, (7.97)

0 “
"

“

4r2γ ´ 5κF
‰

p9h3 ´ rBrh3q ´ 4
“

4r2γ ` 5κF
‰

r2B2
rh3`

4αr3

15

´ r

R

¯3
˜«

9
ˆ

R

r

˙2
` 2

ˆ

R

r

˙3
´ 10

ff

Brh0

´

«

9
ˆ

R

r

˙2
` 7

ˆ

R

r

˙3
´ 2

ff

rB2
rh0

¸+

cos 3ϕ . (7.98)

However, it does not seem possible to define a new activity-dependent critical radius
as was possible for the `1 or `1{2 defects. Thus, it seems that either there is no
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activity-induced buckling, or this method used above to find the instability is not
straightforwardly applicable here to find the instability. However, a closer analysis
of this equations and a comparison with numerical simulations of either the above
equations, or the phase field simulations used in Chapters 5, 6 are needed to make
a more accurate and confident statement about buckling instabilities of negative
defects. We note that we have presented here the equations for a ´1{2 defect, but it
is straightforward to repeat the same calculations for the ´1 defect. Up to numerical
factors we find the same result as for the ´1{2 defect.

7.5 Active Liquid Crystal on Torus
Above and in Chapter 5 we have considered a disc as the ground state geometry. In
Chapter 6, on the other hand, we have considered a spherical geometry to be the
ground state. Now, in this section, we present the derivation of the shape equation
for an initially toroidal surface on which an active liquid crystal is present. It turns
out that the derivation that follows is similar to the case of a spherical surface
which we considered in Chapter 6. One main difference between a spherical and a
toroidal geometry is the different defect structure required by the Poincaré theorem.
A sphere is of genus zero and thus the total defect charge on the surface must add
up to two,

ř

i si “ 2. On the other hand, the genus of a torus is one such that the
sum of the charge of all defects must vanish,

ř

i si “ 0. In particular, a defect-free
ground state is available. We now first list a few geometric quantities. Afterwards,
we solve the Leslie-Ericksen and the Navier-Stokes equation on the torus. Finally,
we write down the resulting shape equation.

7.5.1 Geometry of torus
The surface of a torus can be parametrized as

Xpθ, ϕq “

¨

˝

pa` b cos θq cosϕ
pa` b cos θq sinϕ

b sin θ

˛

‚ (7.99)

with the angles θ, ϕ P r0, 2πs and the two radii a and b, where a ą b ą 0. From this
we find the tangent vectors

eθ “ b

¨

˝

´ sin θ cosϕ
´ sin θ sinϕ

cos θ

˛

‚ , eϕ “

¨

˝

´pa` b cos θq sinϕ
pa` b cos θq cosϕ

0

˛

‚ , (7.100)

such that the metric components are

gθθ “ b2 , gϕϕ “ pa` b cos θq2 , gθϕ “ 0 . (7.101)

The non-trivial Christoffel symbols are

Γϕθϕ “ ´
b sin θ

a` b cos θ , Γθϕϕ “
´a

b
` cos θ

¯

sin θ . (7.102)
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From the surface normal

n “

¨

˝

cos θ cosϕ
cos θ sinϕ

sin θ

˛

‚ (7.103)

we find the second fundamental form to be

Kij “

ˆ

b 0
0 cos θpa` b cos θq

˙

. (7.104)

In the coordinate system of the tangent vectors the director field can be written in
terms of an angle Θ as

p “
cos Θ
|eθ|

eθ `
sin Θ
|eϕ|

eϕ (7.105)

where we added the absolute value of the tangent vectors to ensure that, the director
is a unit vector. It therefore has components

pθ “
cos Θ
b

, pϕ “
sin Θ

a` b cos θ . (7.106)

Finally, the mean and Gaussian curvature are found to be

H “
a` 2b cos θ

2bpa` b cos θq , KG “
cos θ

bpa` b cos θq . (7.107)

We can now proceed by solving the Leslie-Ericksen and Navier-Stokes equations.

7.5.2 Leslie-Ericksen and Navier-Stokes equations on torus
To write down an explicit expression of the Stokes equation (Eq. (7.31a)) in the
stationary limit, we compute the following terms. From

Aj ¨̈“ ∇i

`

pipj
˘

“ pj
`

Bip
i ` Γikipk

˘

` pi
´

Bip
j ` Γjkip

k
¯

(7.108)

and
∇iA

i “
1
?
g
Bi
`?
gAi

˘

(7.109)

we find
∇i∇j

`

pipj
˘

“
´ cos 2Θ

bpa` b cos θq cos θ . (7.110)

Furthermore, from the commutator
“

∇i,∇j∇j
‰

vk “ gik∇j pKGvjq ´∇k pKGviq “ gikvj∇jKG ´∇k pKGviq , (7.111)

where we used incompressibility ∇iv
i “ 0 in the second step, we find

∇j
`

∇i∇ivj `KGvj
˘

“ 2vj∇jKG “ ´2 a sin θ
bpa` b cos θq2 v

θ . (7.112)
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The incompressibility condition can be written as

∇iv
i “

1
?
g
Bi
`?
gvi

˘

“ Biv
i ´

b sin θ
a` b cos θ v

θ . (7.113)

Assuming that vi “ vi pθq we find from this equation:

vθ “ 0 . (7.114)

Furthermore, taking the divergence of the Navier-Stokes equation yields

∆Ph “ ´
α cos 2Θ

bpa` b cos θq cos θ . (7.115)

From this equation, and assuming Ph “ Ph pθq, we can find the pressure field to be

Ph “ α cos 2Θ ln pa` b cos θq ` c1
2

?
b2 ´ a2

artanh
„

a´ b
?
b2 ´ a2

tan θ2



` c2 . (7.116)

We have thus found an expression for all terms appearing in the Navier-Stokes
equation. Substituting these terms, we find from the θ-component of the equation
that c1 “ 0. Finally, we find that the ϕ-component can be written as the equation

pa` b cos θqB2
θv
ϕ ´ 3b sin θBθvϕ “

αb2 sin θ sin 2Θ
pa` b cos θqη . (7.117)

Integrating the equation and using the integration constant to cancel the divergent
terms we find the velocity field

vϕpθq “
b2
`

a2 ´ b2 ` 3apa` b cos θq
˘

sin θ
p2a2 ` b2qpa` b cos θq2

α sin 2Θ
2η . (7.118)

For the Leslie-Ericksen equation (Eq. (7.31c)) we find after some lengthy but straight-
forward algebraic manipulations that it is possible to write

∆pi “ ´ sin2 θ

pa` b cos θq2 p
i . (7.119)

For the strain rate and vorticity tensors we find that the non-trivial components are
given by

uϕθ “ uθϕ “
pa` b cos θq2

2 Bθv
ϕ , (7.120a)

ωϕθ “ ´ωθϕ “ bpa` b cos θq2 sin θvϕ ´ pa` b cos θq2
2 Bθv

ϕ , (7.120b)

with all other components vanishing identically. The θ´component of the Leslie-
Ericksen equation reads

vϕ∇ϕp
θ “

`

gθj ´ pθpj
˘ `

λujkp
k ´ ωjkp

k
˘

. (7.121)
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Using the results for the individual terms we found above, we find after some
straightforward manipulations that this equation can be written as

Θ “
1
2 arccos

ˆ

´
1
λ

˙

. (7.122)

Thus, the angle of the director field is determined by the flow alignment parameter
λ. Thus, to summarize, the hydrodynamic quantities we found are

vϕpθq “
α

λ

b2
`

a2 ´ b2 ` 3apa` b cos θq
˘

sin θ
p2a2 ` b2qpa` b cos θq2

?
λ2 ´ 1
2η , (7.123a)

Phpθq “ ´
α

λ
ln pa` b cos θq ` c2 . (7.123b)

7.5.3 Shape equation for torus
We can now turn towards writing down an explicit expression for the shape equation.
Substituting all the relevant terms we found in the previous subsection, we find that
it is possible to write the shape equation (Eq. (7.31b)) as

Kijσd
ij ` f

e
n ` f

d
n “ P , (7.124)

with

f e
n “ 2γH ´ κB

 

∇i∇iH ´ pH ´H0q
“

2HpH ´H0q ´ 4H2 ` 2KG
‰(

, (7.125)

and

fd
n “ 2κFp2Hgij ´Kijq∇i∇jχ` 2κFpK

ij ´Hgijq∇iχ∇jχ , (7.126)

where ∆χ “ KG as no defects are present. We find

Kijσd
ij “ ´2PhH `

αa

2λbpa` b cos θq , (7.127)

and
χ “ ´ lnpa` b cos θq ` c1 , (7.128)

with an integration constant c1. From this we find

fd
n “ κF

a` 4b cos3 θ ` 3a cos 2θ
2bpa` b cos θq3 (7.129)

such that the shape equation reads

P “2
´

γ `
α

λ
ln pa` b cos θq

¯

H ` κF
a` 4b cos3 θ ` 3a cos 2θ

2bpa` b cos θq3 `
α

2λ
a

bpa` b cos θq
´ κB

 

∇i∇iH ´ pH ´H0
“

2HpH ´H0q ´ 4H2 ` 2KG
‰(

. (7.130)

This equation assumes that the toroidal shape is fixed but can still be used as a
starting point for considering shape deformations of a torus. In particular, as the
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term uijK
ij vanished identically, one can investigate the properties of the active

pressure field to get a first idea of the active forces acting on the torus. For a more
complete picture, it is necessary to consider perturbations of the toroidal shape and
solving the resulting perturbed equations. This way it is possible to see if activ-
ity enhances or suppresses certain perturbations. For example, one could consider
b Ñ b ` δbpϕq. However, the complexity of the equations increases significantly
and it is not clear if it is possible to find an analytical expression for δbpαq, the
activity-induced perturbation. As a first step one can neglect the corrections to the
hydrodynamic equations due to bÑ b`δbpϕq and only consider the shape equation,
hence assuming that, for example, velocity and director field are not modified by
the perturbation of the outer radius. We will not perform a rigorous analysis of
this case here but leave it for future work. We conclude this chapter with some
summarizing remarks.

7.6 Conclusion and Outlook
In the first part of this chapter we have derived a set of equations that can be used
to describe shape deformations of elastic surfaces in the presence of active liquid
crystals. In our model, the director field is taken to be a two-dimensional vector
field that is confined to the two-dimensional surface. We did not consider the case
of a surface with a finite thickness or of a three-component director field that is not
necessarily constrained to be on the surface. As mentioned in the introduction, we
did not include explicit coupling between the extrinsic curvature and the director
field in our model. This results in a minimal model that is nevertheless quite com-
plex. The main source of complexity is due to the shape equation which, even in
the passive case, is notoriously difficult to solve. As a first step we thus applied the
model to one of the simplest possible problems, an initially flat disc with a single
topological defect being present. We derived an explicit expression for the equations
of motion in this case for an arbitrary defect charge s. These were the equations
used in Chapter 5 in the case s “ `1. In this chapter, we analyzed the equations
for defect charges ˘1{2. We presented preliminary results pointing towards a buck-
ling instability for a positive charge and a stable flat surface for a negative charge.
However, more numerical work is needed to substantiate these claims. Apart from
an initially flat surface, it is possible to consider different ground state geometries.
The case of a sphere was investigated in detail in chapter Chapter 6. Here, we
presented preliminary results for a toroidal geometry. We solved the respective
equations in the unperturbed state and thus found the velocity and director field
on an undeformed torus. This can be taken as the ground state from which, using
linear stability analysis, it is possible to investigate if the toroidal shape is unstable
due to the presence of activity, even though no defects are present.

7.A Spin Connection and Gaussian Curvature
We derive in this section the relation between the curl of the spin connection and
the Gaussian curvature. We follow Bowick and Giomi [10]. The Riemann tensor is
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defined as the commutator of the covariant derivatives. Namely, for an arbitrary
vector wa:

r∇a,∇bswc “ Rdabcwd . (7.131)

In the infinitesimal version, this can be transformed into a statement about how
a vector is transformed as it is transported parallelly along an infinitesimal square
loop of sides dx and dy:

∆wa “ Rabcdw
bdxcdxd , (7.132)

where ∆wa “ w1a ´ wa is the difference between the original vector wa and the
vector after parallel transport, w1a, both of which are situated at the same point
of the manifold. Using the locally orthonormal tangent vectors tEαu this can be
written as

∆wα “ Rαbcβw
βdxcdxd , (7.133)

by simply multiplying both sides with the tangent vectors, thereby projecting the
vector wa onto the local orthonormal coordinate system. Here, Rαbcβ is the curvature
tensor associated with the spin connection. In two dimensions, where Ωiαβ “ εαβΩi,
it can be written as

Rabαβ “ BaΩbεαβ ´ BbΩaεαβ ` ΩaΩbεαγεγβ ´ ΩbΩaεαγεγβ “ pBaΩb ´ BbΩaq εαβ .
(7.134)

On the other hand, the two Riemann tensors are related through the projection
operators:

Rabαβ “ RabcdE
c
αE

d
β . (7.135)

We thus have the relation

Rabαβ “ RabcdE
c
αE

d
β “ pBaΩb ´ BbΩaq εαβ . (7.136)

Using that in two dimensions the Riemann tensor is given by

Rabcd “ KG pgacgbd ´ gadgbcq (7.137)

we have
pBaΩb ´ BbΩaq εαβ “ KG pgaαgbβ ´ gaβgbαq . (7.138)

Contracting both sides with the respective inverse metric yields

pBaΩb ´ BbΩaq εab “ KG . (7.139)

7.B Deformations
To find the equations of a membrane equipped with nematic structure in equilibrium
we can look at the deformation of its free energy. In this section we derive some
general formulas we will need in the following. A variation of the position vector
X ÑX 1 “X` δX can be written as δX “ Φaea`Φn, with the two functions Φa
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and Φ quantifying the tangential and normal deformation, respectively. From this
the variation of the tangent vector ea is found to be

δea “ δ pBaXq “ BapδXq “ p∇aΦbqeb ´KabΦbn` p∇aΦqn`ΦKabg
bcec , (7.140)

where rδ, Bas “ 0 was used in the first step and the Gauss-Weingarten equations in
the second step. For simplicity, to keep the expressions shorter, it will be useful
below to consider the tangential variations δ‖X “ Φaea and the normal variations
δKX “ Φn separately. For the tangent vectors we thus have

δ‖ea “ p∇aΦbqeb ´KabΦbn , (7.141a)
δKea “ p∇aΦqn` ΦKabg

bcec . (7.141b)

On the other hand, the deformation of the surface normal is easily found from using
the product rule as well as the relations ea ¨ n “ 0 and n ¨ n “ 1 to be

δ‖n “ KabΦagbcec , (7.142a)
δKn “ ´p∇aΦqgabeb . (7.142b)

From the variation of the tangent vectors we can find the variation of the metric
gab “ ea ¨ eb to be δgab “ pδeaq ¨ eb ` ea ¨ pδebq. Using Eqs. (7.141) and ea ¨ n “ 0
it is straightforward to see that

δ‖gab “ ∇aΦb `∇bΦa , (7.143a)
δKgab “ 2KabΦ . (7.143b)

For the inverse metric we can use its definition to find δ
`

gabgbc
˘

“ 0 such that

δ‖g
ab “ ´∇aΦb ´∇bΦa , (7.144a)

δKg
ab “ ´2KabΦ . (7.144b)

From this it is found that the area element dA “
?

det gabds1ds2 transforms as

δ‖dA “ dA∇aΦa , (7.145a)
δKdA “ dAKΦ . (7.145b)

We now turn towards computing the variation of the Ricci scalar and the mean
curvature. For this we first need to compute the variation of the Christoffel symbols.
In general, we have

δΓcab “
1
2g

cdp∇bδgad `∇aδgbd ´∇dδgabq . (7.146)

Substituting Eqs. (7.143) and using the Codazzi-Mainardi equation ∇aKbc “

∇cKab we find, after some straightforward steps, that the variations of the Christof-
fel symbol can be written as:

δ‖Γcab “
1
2 pr∇b,∇csΦa ` r∇a,∇csΦb ` t∇a,∇buΦcq , (7.147a)

δKΓcab “ Kc
a∇bΦ`Kc

b∇aΦ´Kab∇cΦ` p∇aK
c
b qΦ . (7.147b)
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We use this results to compute the variation of the Ricci scalar. Again, the derivation
is straightforward but rather lengthy. As a final result we find:

δ‖R “ Φa∇aR , (7.148a)
δKR “ ´2RabKabΦ` 2∇arpK

ab ´ gabKq∇bΦs . (7.148b)

Lastly, for the trace of the curvature tensor K we find from its definition after using
Eqs. (7.141) and (7.143) that

δ‖K “ Φb∇aKab , (7.149a)
δKK “ ´∇2Φ` pR ´K2qΦ . (7.149b)

The variation of the mean curvature H is found from remembering that, in our
convention, H “ K{2.

It remains to consider the variation of the Airy Function χ and of the defect
charge density ρD. The Airy function is defined as ∇2χ “ KG ´ ρD, thus δ∇2χ “
δKG ´ δρD. The total defect charge density is conserved under a small variation,
that is

0 “ δ

ż

dAρD “
ż

pδdAq ρD `
ż

dAδρD , (7.150)

and it follows from Eqs. (7.145) that

δ‖ρD “ ´ρD∇aΦa , (7.151a)
δKρD “ ´ΦaKρD . (7.151b)

These are all the expressions for the variation of quantities we will need to derive
the stress tensor form the variation of the free energy. However, it will turn out
that it is convenient to compute the commutator of the variation and the Laplace
operator as well. Before turning to the variation of the free energy we will briefly
state these results. We denote by J the commutator J ¨̈“ rδ,∇2sf , where f is a
generic scalar function. We have,

J “ rδ,∇2sf “ δ
`

gab∇a∇bf
˘

´ gab∇a∇bδf “
`

δgab
˘

∇a∇bf ´ g
ab pδΓcabq∇cf ,

(7.152)
where we used δf “ 0, rδ, Basf “ 0, ∇af “ Baf , and ∇a∇bf “ BaBbf ´ ΓcabBcf .
Substituting Eqs. (7.143), (7.144), and (7.147), as well as using the Theorema
Egregium Rab “ KGgab, and r∇a,∇bsf “ 0 we find1:

J‖ “ rδ‖,∇2sf “ ´2∇aΦb∇a∇bf ´KGΦa∇af ´∇2Φa∇af , (7.153a)
JK “ rδK,∇2sf “ ´2KabΦa∇a∇bf `∇arpKg

ab ´ 2KabqΦas∇bf . (7.153b)

These are all the preliminary results we will need. We can now turn towards the
variation of the free energies, namely we want to compute the variation of the Frank
free energy

FF “ ´

ż

M

dAχ∇2χ , (7.154)

1Note that there is a typo in Santiago Ref. [264] in the expression for J‖ which we correct here.
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as well as the Helfrich free energy

FH “

ż

dA
”

γ ` κB pH ´H0q
2
` κGKG

ı

. (7.155)

It is easy to see that a generic variation of the Frank free energy can be written as

δFF “ ´

ż

M

pδdAqχ∇2χ`

ż

M

dAχpJ ` 2δρD ´ 2δKGq , (7.156)

where we integrated by parts (dropping boundary terms) and used J “ rδ,∇2sχ.
Similarly, the variation of the Helfrich free energy can be written as

δFH “

ż

pδdAqrγ ` κB pH ´H0q
2
` κGKGs `

ż

dArκB pH ´H0q
2
δK `

κG
2 δRs ,

(7.157)
where we used δ

`

H2˘ “ 2HδH, 2H “ K, and R “ 2KG. However, finding an
explicit expression involves lengthy expressions and thus we consider parallel and
normal variations separately in the following section.

7.C Deformation of the Energy and Shape Equation
We first consider the parallel deformation of the free energy, that is we want to find
an explicit expression for

δ‖F “ δ‖FF ` δ‖FH . (7.158)
To this end, we start from Eqs. (7.156) and (7.157). We then substitute Eqs.
(7.145), (7.153), (7.151), (7.148), and (7.149). This yields a lengthy expression for
the variation of the free energy. However, it is possible to compactly write it in the
from

δ‖F “

ż

dASaΦa `∇aQa
‖ . (7.159)

To achieve this it is necessary to integrate terms which contain a derivative of Φa
by parts. The resulting boundary terms can be written as an area integral over a
divergence and hence the expression takes the above form. Writing Sa “ SaH ` SaF
and Qa

‖ “ Qa
‖,H `Qa

‖,F we find the following explicit expressions:

SaH “ 0 , (7.160a)
SaF “ 2κFρD∇aχ , (7.160b)

Qa
‖,H “ rγ ` κB pH ´H0q

2
` κGKGsΦa , (7.160c)

Qa
‖,F “ κF

 

´χpρD `KGqΦa ´ χΦb∇a∇bχ` Φb∇aχ∇bχ´ χ∇aΦb∇bχ
(

.

(7.160d)

Note that the contribution from the Helfrich energy is just a boundary term because
the energy is reparametrization invariant as is expected for the energy of a fluid
membrane. The Frank free energy, on the other hand, is not and thus there is a
bulk term contribution.
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Similarly, the perpendicular perturbation can be written in the form

δKF “

ż

dASΦ`
ż

dA∇aQa
K (7.161)

with

SH “ 2Hγ ´ κB
 

∇i∇iH ´ pH ´H0q
“

2HpH ´H0q ´ 4H2 ` 2KG
‰(

, (7.162a)
SF “ κFp2Kab ´Kgabq∇aχ∇bχ` 2κFpKg

ab ´Kabq∇a∇bχ , (7.162b)
Qa
K,H “ κBp∇apH ´H0qΦ´ pH ´H0q∇aΦq ` κGpKab∇bΦ´ 2H∇aΦq , (7.162c)

Qa
K,F “ κFrpKg

ab ´ 2Kabqχ` 2pKab ´ gabKqsΦ∇bχ´ 2κFχpK
ab ´ gabKq∇bΦ .

(7.162d)

In summary, it is possible to write the variation of the free energy as

δF “

ż

dAS ¨ δX `

ż

dA∇aQa , (7.163)

where S “ pSH ` SFqn` SaFea. The Euler-Lagrange equations found from this free
energy show that in equilibrium we have S “ 0 and therefore the tangential and
normal components must vanish independently. We obtain two equations:

0 “ κFrp2Kab ´Kgabq∇aχ∇bχ` 2pKgab ´Kabq∇a∇bχs ` 2Hγ
´ κB

 

∇i∇iH ´ pH ´H0q
“

2HpH ´H0q ´ 4H2 ` 2KG
‰(

(7.164)

and 2κFρD∇aχ “ 0. However, instead of the equilibrium equations of motion we
need to find the stress and torque tensor. Their derivation is outlined in the following
section.

7.D Stress Tensor and Torque Tensor
To find the equilibrium stress tensor we consider how the free energy transforms
under an infinitesimal translation a, i.e., δX “ a. Thus, Φ “ a ¨ n, Φa “ a ¨ ea,
and ∇bΦa “ ∇bpa ¨ nq “ a ¨K

c
bec. Then we want to find the stress tensor in the

from S “ ´∇aσ
e,a. Since we can write the energy deformation as

δF “

ż

dAS ¨ δX `∇aQa (7.165)

and invariance under translations implies that δF “ 0 so that locally

S ¨ δX “ ´∇aQa . (7.166)

We can thus find the stress tensor σe,a by substituting Φa “ a ¨n etc. into Qa and
we can thus write the stress tensor as

σe,a “ σe,abeb ` σ
e,a
n n “

´

σabK,F ` σ
ab
K,H ` σ

ab
‖,F ` σ

ab
‖,H

¯

eb

`

´

σaK,F ` σ
a
K,H ` σ

a
‖,F ` σ

a
‖,H

¯

n , (7.167a)
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where

σabK,F “ 2κFχKGg
ab , (7.167b)

σabK,H “ ´κB pH ´H0qK
ab ´ κGKGg

ab , (7.167c)
σab‖,F “ ´κFχpρD `KGqg

ab ´ κFχ∇a∇bχ` κF∇aχ∇bχ , (7.167d)

σab‖,H “ pγ ` κB pH ´H0q
2
` κGKGqg

ab , (7.167e)
σaK,F “ κFrpKg

ab ` 2Kabqχ` 2pKab ´ gabKqs∇bχ , (7.167f)
σaK,H “ κB∇aH , (7.167g)
σa‖,F “ κFK

abχ∇bχ , (7.167h)
σa‖,H “ 0 . (7.167i)

To find the torque tensor we need to look at infinitesimal rotations instead, δX “

bˆX such that
Φ “ b ¨X ˆ n , Φa “ b ¨X ˆ ea , (7.168)

so that ∇bΦ “ b ¨ pεabea `KabX ˆ eaq and ∇bΦa “ b ¨ pεban´KabX ˆ nq, where
εab “

?
gεab. The deformation of the energy is then given by

δF “

ż

dAS ¨ pbˆXq `
ż

dA∇aT a , (7.169)

where T a
“ma ´X ˆ σe,a is the associated Noether current. We find ma to be

ma “ mabeb `m
a
nn “X ˆQarΦ “ n,Φa “ eas ´QarΦ “X ˆ n,Φa “X ˆ eas ,

(7.170a)
with

mab “ κB pH ´H0q ε
ab ` p2κG ´ 4κFχqHε

ab ` p2κFχ´ κGqK
a
c ε
cb , (7.170b)

ma
n “ κFχ∇bχε

ab . (7.170c)

7.E Torque Balance
The tangential projection of the torque balance Eq. (7.20b) reads

∇im
e,i
k `me,i

n Kik “ pσ
e
n,i ` σ

d
n,iqε

i
k . (7.171)

We find that this relation is fulfilled for the following components of the stress and
torque tensors which we found in the previous section: me,i

n “ κFχ∇jχεji, σd
n,i “ 0,

and

σe
n,i “ κB∇iH ` κFrpKg

i
j ´ 2Kj

i qχ` 2pKj
i ´ g

j
iKqs∇jχ` κFK

j
i χ∇jχ . (7.172)

To see this note that

∇im
ij `Kj

im
i
n “pκB ` 2κGqεij∇iH ´ κGε

kj∇iK
i
k ´ 4κFε

ij∇ipχHq

` 2κFε
kj∇ipχK

i
kq ` κFε

kiKj
i χ∇kχ , (7.173)
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and

σn,iε
ij “ κBε

ij∇iH `κFε
ij
“

pKgki ´ 2Kk
i qχ` 2pKk

i ´ g
k
i qK

‰

∇kχ`κFε
ijKk

i χ∇kχ .
(7.174)

Then, multiplying both by ´εjl, using εjlεij “ ´δil , and subtracting the result, we
find,

εjlε
ijσn,i ´ εjl∇im

ij ´ εjlK
j
im

i
n

“ ´4∇lpχHq ` 2∇ipχK
i
l q ´ εjlε

kiKj
i χ∇kχ´ χK∇lχ` χK

k
l ∇kχ

´ 2Kk
l ∇kχ` 2K∇lχ “ 0 , (7.175)

where we used εjlεki “ δkj δ
i
l ´ δ

i
jδ
k
l .

On the other hand, for the normal projection we find that, using the symmetry
of σij and Kij , and the antisymmetry of εij :

0 “ ∇imn,i ´mijK
ij “ κF∇ipχ∇jχqεji ´ p´κGK

k
i εkj ` 2κFχK

k
i εkjqK

ij “ 0 ,
(7.176)

where all three terms vanish identically in the last step. Thus, for our choice of
stress and moment tensors the torque balance equations are trivially fulfilled.

7.F Boundary Conditions
We only consider surfaces with vanishing spontaneous mean curvature in this sec-
tion, H0 “ 0. This is assumed for simplicity and because all surfaces with H0 ‰ 0
that we consider (sphere and torus) do not have a boundary. Only the initially flat
disc has a boundary but in this case the surface has no spontaneous mean curva-
ture. To determine the boundary condition we work in the Darboux frame [149,
264]. That is at the boundary we have the frame tt, l,nu where l “ tˆ n “ eala .
is the outward pointing tangent normal vector. We can also write t “ taea. On
the edge gab “ tatb ` lalb such that ea “ tat ` lal. The curvature tensor then has
components KK “ Kabl

alb, K‖ “ Kabt
atb, and KK‖ “ Kabl

atb in this coordinate
system. KK‖ is called the geodesic torsion. The directional derivatives on the edge
are ∇K “ la∇a and ∇‖ “ ta∇a. There are the relations

9t “ ´KGl´ knn , 9l “ KGt´ τgn , 9n “ τgl` knt , (7.177)

where the dot indicates ∇‖, kn “ K‖, τg “ KK‖, and KG “ ´lb∇‖t
b “ ´l ¨ ∇‖t.

The variation of the edge can be written as δY “ φt ` ψl ` Φn, where ψ “ laΦa
and φ “ taΦa. Therefore, for the deformation of the unit tangent we have

δt “ δptaeaq “ p∇‖Φbqptbt` lblq ´ taKabΦbn` p∇‖Φqn` taΦKabpt
bt` lblq .

(7.178)

From p∇‖Φaqta “ 9φ` ψKG and 9ψ “ 9ψ ´ φKG we find

δt “ 9φt` 9ψl` 9Φn` φ 9t` ψ 9l` Φ 9n . (7.179)
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Furthermore,

δ

¿

ds “
¿

dst ¨ δt “
¿

dsp 9φ` ψKG ` Φknq “ ∆φ`
¿

dspψKG ` Φknq , (7.180)

with ∆φ “ 0 for closed curves. Finally, we write

Qa
K,F “Mab∇bΦ`MaΦ , Qa

‖,F “ Na
b Φb `Nb∇aΦb , (7.181)

and
δF “

¿

dsrlaQa
H ` laQa

F ` σbpKGψ ` knΦqs , (7.182)

where we added a term σb
ű

ds as the line tension of the boundary to the energy.
Then we find the boundary conditions of a free edge to be

0 “lalbNab `Nb∇Klb ` γ ` κBH2 ` κGKG ` σbKG , (7.183a)
0 “laMa ´∇‖rlatbM

abs ` κB∇KH ´ κG∇‖τg ` σbkn , (7.183b)
0 “lalbMab ´ κBH ´ κGK‖ , (7.183c)
0 “lbNb , (7.183d)
0 “tbNb , (7.183e)

where

Mab “ 2κFpKg
ab ´Kabqχ , (7.183f)

Ma “ κFrpKg
ab ´ 2Kabqχ` 2pKab ´ gabKqs∇bχ , (7.183g)

Nab “ κF
“

∇aχ∇bχ´ χ∇a∇bχ´ gabpρD `KGqχ
‰

, (7.183h)
Na “ ´κFχ∇aχ . (7.183i)

7.G Monge Gauge
To investigate the buckling instability of a flat disc, we use the small-height approx-
imation of the Monge gauge. In this parametrization, the surface is described by a
height function hpx, yq above a flat reference plane with coordinates tx, yu. Here,
we present the results for a cartesian coordinate system. It is straightforward to
find the equivalent expression for other coordinate systems on the reference plane,
e.g., polar coordinates. The surface parametrization can then be simply written as
[149]

Xpx, yq “

¨

˝

x
y

hpx, yq

˛

‚ . (7.184)

From this the tangent vectors and normal vector are found to be

ex “

¨

˝

1
0
Bxh

˛

‚ , ey “

¨

˝

0
1
Byh

˛

‚ , n “
ex ˆ ey
?
g

“
1
?
g

¨

˝

´Bxh
´Byh

1

˛

‚ . (7.185)
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Here, g is the determinant of the metric

gij “ ei ¨ ej “

ˆ

1` pByhq2 ´BxhByh

´BxhByh 1` pBxhq2
˙

. (7.186)

The area element of the surface is then

dA “ ?gdxdy “
b

1` p∇hq2dxdy , (7.187)

where ∇ “ tBx, Byu is the derivative on the flat reference plane. Finally, the curva-
ture tensor is given by

Kij “ ´
1
?
g

ˆ

B2
xh BxByh
BxBy B2

yh

˙

(7.188)

such that the mean and Gaussian curvature are

H “ ´
1
2∇ ¨

ˆ

∇h
?
g

˙

, KG “

`

B2
xh

˘ `

B2
yh

˘

´ pBxByhq
2

g2 . (7.189)

These are the most important expressions written in the Monge gauge. Now, as
we are interested in the buckling instability of a flat disc, we only consider small
perturbations of the flat reference state. Thus, we can work in the so-called small-
height approximation. In this approximation we assume |∇h| ! 1 such that we
can linearize the above expressions the expressions. We find that the metric can be
approximated by the flat metric,

gij “ δij `Op∇h2q , (7.190)

and the covariant derivative on the surface is reduces to the flat derivative. Thus,
the determinant of the metric is trivial, g “ 1`Op∇h2q, and the second fundamental
form reduces to the simple expression

Kij “ ´BiBjh`Op∇h2q (7.191)

such that mean and Gaussian curvature are simply given by

H “ ´
1
2∇2h`Op∇h2q , KG “ Op∇h2q . (7.192)

In particular, the linearized Gaussian curvature vanishes. Lastly, note that expres-
sions that can be written in terms of ∇ without explicit reference to Bx and By are
coordinate-independent and thus also valid for, e.g., polar coordinates.

7.H No-slip Boundary Conditions
First, we note that the exponents not written in the main text are

apsq “ r
´2

b

1
´4ps´2qs´3

?
´4ps´2qs´3|s´1|´1

, (7.193)
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and
bpsq “ r

2
b

1
´4ps´2qs´3

?
´4ps´2qs´3|s´1|´1

. (7.194)

However, since we set the corresponding integration constants to zero they will not
be relevant in the following.

We now present in some more detail the derivation of the height equation for
defect charges s ‰ 0. As mentioned above, we impose no-slip boundary conditions
at the the boundary of the disc, r “ R. To find the velocity field that fulfills these
boundary conditions we use the stream function

ψ “
”

Ar2p1´sq ` Br2p2´sq
ı

sinr2p1´ sqϕs , (7.195)

where A and B are constants to be determined. This stream function is in turn used
to define a velocity

v0 “

ˆ

´Byψ
Bxψ

˙

. (7.196)

Note that this vector field is divergence-free such that the velocity field v0 is in-
compressible by construction. The corresponding pressure field is found from the
velocity field by solving

η∆v0 “ ∇P0 . (7.197)

We can add this new velocity and pressure field to the solution already found and,
due to the linearity of the Stokes equation, this is a solution of the equation as well.
In this way we can easily construct the velocity field v0 to enforce the boundary
conditions. Namely, requiring at r “ R that

vr ` v0,r “ 0 and vϕ ` v0,ϕ “ 0 , (7.198)

with vr and vϕ given by Eq. (7.61), it is straightforward to find

A “
αR2s

8p2´ sqη , B “ αsR2ps´1q

8ps2 ´ 3s` 2qη . (7.199)

The components of the resulting velocity field can be written as

v0,r “

«

ps´ 1q
ˆ

R

r

˙2s
´ s

ˆ

R

r

˙2ps´1q
ff

αr cos r2ps´ 1qϕs
4ps´ 2qη , (7.200a)

v0,ϕ “

«

ps´ 1q
ˆ

R

r

˙2s
´
s´ 2
s´ 1s

ˆ

R

r

˙2ps´1q
ff

αr sin r2ps´ 1qϕs
4ps´ 2qη . (7.200b)

Lastly, from Eq. (7.197) we find the pressure to be

P0 “
αsp3´ 2sq

2p2´ 3s` s2q

ˆ

R

r

˙2ps´1q
cos r2ps´ 1qϕs . (7.201)




