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CHAPTER 6

Tuneable Defect-Curvature Coupling and
Topological Transitions in Active Shells

Recent experimental observations have suggested that topological defects can fa-
cilitate the creation of sharp features in developing embryos. Whereas these ob-
servations echo established knowledge about the interplay between geometry and
topology in two-dimensional passive liquid crystals, the role of activity has mostly
remained unexplored. In this article we focus on deformable shells consisting of
either polar or nematic active liquid crystals and demonstrate that activity renders
the mechanical coupling between defects and curvature much more involved and ver-
satile than previously thought. Using a combination of linear stability analysis and
three-dimensional computational fluid dynamics, we demonstrate that such a cou-
pling can in fact be tuned, depending on the type of liquid crystal order, the specific
structure of the defect (i.e. asters or vortices) and the nature of the active forces.
In polar systems, this can drive a spectacular transition from spherical to toroidal
topology, in the presence of large extensile activity. Our analysis strengthens the
idea that defects could serve as topological morphogens and provides a number of
predictions that could be tested in in vitro studies, for instance in the context of
organoids.

L. A. Hoffmann, L. N. Carenza, and L. Giomi. Tuneable defect-curvature cou-
pling and topological transitions in active shells. Soft Matter 19, 3423 (2023).
DOI: 10.1039/D2SM01370C.

We begin to ask new questions about the relationship between environmental
change and whose work is valued – and whose lives matter. Class, race,
gender, sexuality, nation – and much, much more – can be understood in
terms of their relationship with the whole of nature, and how that nature has
been radically remade over the past five centuries. Such questions unsettle the
idea of Nature and Humanity in the uppercase: ecologies without humans, and
human relations without ecologies.

J. W. Moore. The Rise of Cheap Nature.

The progress of schools and universities measures that of nationalism, just as
schools and especially universities became its most conscious champions.

E. Hobsbawm. The Age of Revolution: Europe 1789–1848.
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Figure 6.1: Organoid development.

(a) Example of an intestinal organoid; blue and green dyes denote the nuclei and E-cadherin
respectively. Scale bar: 30µm. Adapted from Ref. [294]. (b) Illustration of our continuum
approach based on the hydrodynamic of active gels. The vector p indicate the local cellular
orientation.

6.1 Introduction
The development of features at the early stage of embryogenesis is one of the most
spectacular phenomena in developmental biology and tissue biophysics. During this
process cells collectively flow over length scales orders of magnitude larger than
the typical cellular size (see e.g. Refs. [279, 280]), with neither external guidance
nor central control mechanism, eventually giving rise to specific and reproducible
morphological features [140, 254, 279–288]. Whereas the activity of each subunit is
finely regulated by the cell’s mechanosensing machinery, how this is integrated on
the scale of hundreds of cells to achieve a robust and efficient morphogenetic strategy
challenges our current understanding of self-organization in living matter [120, 289].

One of the most interesting and far-reaching concepts in this respect revolves
around the hypothesis that topological defects could serve as organizing centers for
morphogenetic events [120, 134, 140, 290]. Topological defects are isolated singular-
ities in the orientation field of arbitrary anisotropic fluids where orientational order
is locally suppressed, thereby enhancing the affinity for biological and mechanical
activity. Recent in vitro experiments have suggested, for instance, that certain kinds
of nematic defects, known as `1{2 disclinations, could govern cell apoptosis and ex-
trusion in epithelial monolayers [120, 256, 257]. With respect to the development of
features, defects have been likened to topological morphogens [88, 134, 140, 141, 248,
251, 255, 290–292], where the mechanical coupling between the topological charge
of the defect and the local curvature [10, 293] conspire with the modulation of the
lateral pressure caused by the collective cellular flow toward rendering the substrate
unstable to buckling [290].

In this article we focus on active shells ´ i.e. thin films of active liquid crystal
with spherical topology ´ and demonstrate that the mechanical coupling between
defects and curvature is in fact much more involved and versatile than previously
thought. Using a combination of linear stability analysis and three-dimensional
computational fluid dynamics, we show that activity can drastically affect the cou-
pling between curvature and topological defects. In particular, while in passive
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media positively charged defects always [10, 293] elicit the formation of positively
curved features, such as bumps, corners and cusps, in active liquid crystals this
coupling can be tuned: depending on the magnitude and the type of activity (i.e.
contractile or extensile), defects drive the appearance of features with either like- or
opposite-sign Gaussian curvature, as well as instabilities with no counterpart in pas-
sive liquid crystals. Moreover, while many living systems exhibit nematic symmetry,
the minimal excitations of a nematic liquid crystal (namely semi-integer defects) are
topologically protected from escaping in the third dimension [1, 3], therefore lead-
ing to the question regarding the mechanism that nematic system exploit to build
protrusions and other curved features. Conversely, systems with polar symmetry,
possibly arising from directed motion in cellular systems, can naturally escape in
the third dimension to release the stress accumulated in proximity of topological
defects. We will show that in the case of polar systems, asters and vortices, respec-
tively, cause the sharpening and the flattening of the substrate and that, for large
extensile activity, the latter mechanism can drive a remarkable transition from a
spherical to a toroidal topology. By contrast, in the case of active nematics, exten-
sile activity drives the emergence of periodic deformations and protrusions, whereas
contractile activity promotes a global spindle-like shape. A natural testing ground
of our predictions is found in the context of organoids [295, 296] ´ i.e. that is in vitro
cell aggregates with the small scale anatomy of real organs ´ most often consisting
of a cell monolayer enclosing a lumen (Fig. 6.1a).

6.2 The Model
Our model cell monolayer consists of a three-dimensional thin film of active polar
or nematic liquid crystal, initially organized in the form of a spherical shell and
immersed in a Newtonian solvent. The system’s local configuration is described
by the concentration field φ “ φpr, tq, which distinguishes the interior from the
exterior of our organoid-like active shell, the incompressible velocity v “ vpr, tq
(i.e. ∇ ¨ v “ 0), and a generic order parameter Ψn “ Ψnpr, tq, with n “ 1, 2. For
polar systems Ψ1 “ Ψ1p, with Ψ1 a scalar order parameter and p a unit vector
expressing the subunits’ average direction (Fig. 6.1b). For nematics we denote
the order parameter as Ψ2 which in case of uniaxial order 1 can be written as
Ψ2 “ Ψ2pnn´1{3q, with 1 the three-dimensional identity tensor, Ψ2 a scalar order
parameter and n the nematic director field. The dynamics of these material fields
is assumed to be governed by the following set of hydrodynamic equations [84]:

pBt ` v ¨∇qφ “ µ∇2 pδF{δφq , (6.1a)

pBt ` v ¨∇qΨn “ ΓMn `Ωn , (6.1b)
ρpBt ` v ¨∇qv “ ∇ ¨

`

σh ` σp
n ` σ

φ ` σa˘ . (6.1c)

Eq. (6.1a) expresses the conservation of the shell’s mass, with µ a mobility coef-
ficient and F “

ş

dV pfφ ` fp ` fcq the total free energy of the system. Here,
1Note that uniaxiality is assumed only to perform analytical calculations. For simulations, the
fully biaxial case is considered.
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Figure 6.2: Active polar liquid crystal on elastic shell.

(a-d) Typical configuration of active shells and polar liquid crystal arrangements for exten-
sile activity, panels (a-b), and contractile activity, panels (c-d). The yellow vectors denote
the local direction p polarization field whose magnitude Ψ1 is used to color the shell surface
according to the color bar in (b). (a) For small extensile activity (α “ ´0.0005) defects
(blue) with the local geometry of a vortex (sketched in inset) are located at the poles of
an undeformed sphere and create an azimuthal flow. In (b), for larger extensile activity
(α “ ´0.002), the sphere flattens and the defects move away from the poles to increase
the bending instability of the director field. This symmetry breaking results in the shell
moving in the direction of the red arrow. (c) On the other hand, in the case of small
contractile activity (α “ 0.0005) we observe buckling near the aster-shaped defects (aster
sketched in inset). (d) Similarly as for extensile activity, for larger contractile activity
(α “ 0.004), the two aster-like defects move away from the poles and the shell becomes
motile. (e) To phenomenologically illustrate why we observe buckling only for asters but
not for vortices, we sketch the escape in the third dimension for a liquid crystal coupled
to an elastic ribbon. The aster configuration (bottom) is able to escape with significantly
less deformation of the ribbon (right column) than for the vortex (top). The yellow arrows
represent the orientation of the polar liquid crystal and the orange ribbon the confining
substrate. (f) Deformed shell in the turbulent extensile regime (α “ ´0.015). The region
circled in pink produces a vesicle that eventually transforms from a flattened sphere to a
torus, as shown in the time-series on the right. The hole of the torus increases in time and
eventually the torus rips apart into a filament. The parameters used in all simulations can
be found in the Appendix 6.A.3.

fφ “ apφ{φ0q
2pφ´φ0q

2`pkφ{2q|∇φ|2 is the free energy density of the interface with
φ0 the equilibrium value of the concentration field inside the droplet, a and kφ pos-
itive material parameters related to the interface thickness ξ “

a

2kφ{a and surface
tension γ “

a

8akφ{9. The free energy density fp „ κF{2|∇Ψn|
2`fbp|∇φ|q quanti-

fies the energetic cost associated with spatial variations of the orientation field Ψn,
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Figure 6.3: Flattening and defect-curvature coupling for polar liquid crystal.

(a) The shell’s speed and sphericity for different activities. We observe that the sphericity
remains larger as contractile activity is increased, compared with the situation for increas-
ing extensile behavior. To better quantify our observation and justify our claim, that active
defects flatten the sphere for extensile activity we consider the probability density function
of the position of defects as a function of the local Gaussian curvature for different ac-
tivities. (b) Probability distribution of the Gaussian curvature for extensile activity. The
Gaussian curvature of the undeformed sphere of radius R0 “ 18 is given by KG « 0.003
and indicated by the dashed line. Indeed, in this case defects (vortex) are more likely to be
found in flat regions and the probabliity distribution function is peaked near zero Gaussian
curvature. The inset shows the probability distribution of the Gaussian curvature for the
case α “ ´0.015, that is in the active turbulence regime. We present the curves for positive
(magenta) and negative (cyan) defects, as well as their sum (black). On the other hand,
in (c), defects in the presence of contractile activity (aster) are more likely to be found in
regions where the local Gaussian curvature is greater than that for an undeformed sphere.
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with κF the Frank constant, while the polynomial bulk free energy fb suppresses the
formation of the liquid crystal everywhere but at the droplet’s interface 2 [297]. Its
explicit form depends on the polar or nematic nature and is given in Appendix 6.A.
fc ensures tangential anchoring of the liquid crystal across the monolayer and is
given by fc “W1 pΨ1 ¨∇φq2 in polars and by fc “W2 p∇φqT ¨Ψ2 ¨ p∇φq in nemat-
ics, with Wn a positive constant. The anchoring term fc in the free energy acts as
a soft constraint for the liquid crystal field to be tangential to the surface defined
by the φ-field interface. Any deviation from a tangential configuration results in an
increase in energy resulting in an effective force acting towards aligning the liquid
crystal tangentially to the surface.

The dynamics of the orientational order parameter, in turn, is governed by
Eq. (6.1b), where the first term on the right-hand side embodies the relaxation
dynamics, with Γ´1 the rotational viscosity and Mn “ ´δF{δΨn the molecular
field, while the second term contains the flow alignment parameter λ and reflects
the coupling between the orientational order and flow, see Appendix 6.A for the
full expressions. Finally, Eq. (6.1c) implies conservation of the total momentum
ş

dV ρv, where the total density ρ “ ρs ` φ, with ρs the density of the solvent,
is assumed to be constant and the stress tensor has been decomposed into four
contributions: σh “ ´P1 ` 2ηu, with P the pressure, η the shear viscosity, and
u “ r∇v ` p∇vqTs{2 the strain rate tensor; σφ “ pf ´ φ δF{δφq1 ´ kφ∇φ∇φ, re-
sulting from a deformation of the active monolayer; σp

n, whose expression, given in
Appendix 6.A, explicitly depends on the polar or nematic nature of the liquid crys-
tal and embodyies the stresses originating from a distortion of the orientation field
Ψn; and, finally, the active stress σa “ αΨ2 for nematics and σa “ αΨ1ppp´ 1{3q
for polars. Here, the constant α is proportional to the forces exerted by the active
mesogens and models contractile or extensile stresses when positive or negative,
respectively.

6.3 Morphogenetic Activity of Asters and Vortices
We begin our analysis with polar systems, by numerically integrating Eqs. 6.1 (with
n “ 1) by means of a hybrid lattice Boltzmann approach [278] (see Appendix 6.A.3).
The liquid crystal is randomly initialized on the shell and the configuration is evolved
for different values of the activity α. In this case the Poincaré-Hopf theorem [298,
299] requires the existence of at least two +1 defects which, at equilibrium (i.e.
α “ 0), are stationary and located at the opposite poles of the sphere, in such a
way as to miniminize the orientational free energy [300]. Furthermore, on a flexi-
ble substrate and for sufficiently low surface tension, the distortion caused by this
configuration is still prohibitive and the substrate is energetically favored to focus
Gaussian curvature at the poles, in such a way to compensate the angular deficit
introduced by the vortices, hence morphing from spherical to spindle-like [301–303].

2We stress that, the thickness of the confining interface is small when compared to the radius
of the droplet, yet non-zero. Motivated by the monolayer arrangement of experimental systems
targeted by our model, in the following we will refer to the the thin active surface as model cell
monolayer.
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Extensile activity (i.e., α ă 0) affects this picture by sourcing an azimuthal flow3,
which in turn reorients the orientation field, ultimately leading to the spiral configu-
ration shown in Fig. 6.2a, see also Ref. [57]. Remarkably, increasing the magnitude
of the active stress α drives a flattening of the substrate at the poles (Fig. 6.2b,
Fig. 6.3a and Movie 1), thus an expulsion of Gaussian curvature from the regions
where this is energetically favored to be maximal (Fig. 6.3b).

By contrast, a small contractile activity (α ą 0) renders the polar liquid crystal
unstable to splay deformations [57], thereby favoring the rearrangement of the two
topologically required `1 defects in the form of asters (Fig. 6.2c). At intermediate
activity, however, the spherical shell still undergoes the same flattening dynamics
described in the extensile case, but to a lesser extent (Fig. 6.3a). Additionally,
the aster conformation makes it possible for the orientation field to escape toward
the normal direction in the core region, so to partially ease the local distortion
(Fig. 6.2e). As in extensile polar shells, the defects tend to approach each other
in response to the concerted action of the active flow and the deformation of the
underlying substrate, while the shell moves toward the same direction (Fig. 6.2d
and Movie 3). In response to this deformation, the defects move away from the
poles and approach each other, thereby increasing the bending of the orientation
field. Moreover, the breakdown of spherical symmetry, prompts a motion of the shell
in the direction of the defects (Fig. 6.2b, Fig. 6.3a).The resulting non-equilibrium
steady state is similar, in principle, to the motion of two-dimensional active drops
that have been studied in detail, see e.g. Refs. [304–306]

A geometrical survey of the Gaussian curvatures at the defect position, shown in
Fig.6.3b, surprisingly reveals that vortices are preferably found in regions of small
or vanishing Gaussian curvature (|α| ď 0.006 in Fig. 6.3b), whereas asters tend
to locate in regions of high Gaussian curvature (Fig.6.3c). This behavior persists
even in the passive limit (α “ 0) for non-spherical geometries, suggesting that it
is not an active effect [155, 156]. However, when activity is increased the bending
of the liquid crystal on the surface becomes progressively more intense, leading to
non-static configurations and to the wrinkling of the droplet surface. This effect
is reflected in the behavior of the Gaussian curvature at the defect location (see
α “ ´0.008 in Fig. 6.3b) featuring a significantly broader distribution which also
extends towards negative values, compatibly with the wrinkled shape of the droplet.

At even larger extensile activity, on the other hand, the active film enters a
chaotic regime4. At the early stage, this process is characterized by the appearance
of four “arms”, located in proximity of the defects (Fig. 6.2f), while later, as active
turbulence [77, 78, 269, 275, 307] builds up, additional defect pairs, also featuring
asters (`1 defects) and saddles (´1 defects), nucleate. Interestingly, the inset of
Fig. 6.3b shows that in the active turbulent regime defects are found in a consider-
ably wider range of Gaussian curvature, with the positive (negative) defects localized
in regions with positive (negative) curvature. Finally, the branching shell becomes

3The normal component of the flow field becomes relevant only in proximity of topological defects.
See Fig. 6.7.

4We discuss here the case for extensile activity, even if a chaotic regime is also observed for
contractile systems.
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unstable to the breakup of satellite shells (i.e. pearling), whose topology evolves in
time from spherical, with two `1 defects at the poles, to toroidal and defect free
(Fig. 6.2f and Movie 2). This topological transition originates from the fact that, in
the case of small satellite shells, the aforementioned flatting at the poles eventually
forces the internal leaflets to come into contact and fuse. As toroidal liquid crystals,
unlike spheres, are not topologically required to have defects, this process is dynam-
ically accessible whenever there is enough extensile activity to render the mother
shell unstable to pearling. The resulting toroidal shells are, however, themselves un-
stable to Ostwald ripening and eventually shrink and dissolve [308–311]. The torus
configuration is thus only a transient state that is not stable on long timescales. The
genus transition from a spherical to a toroidal shell is relatively independent of the
exact initial geometry of the spherical shell and its elastic parameters in the sense
that we find the transition for various initial configurations and parameter values if
the activity exceeds a critical threshold. Only this threshold depends on, e.g., the
surface tension of the shell.

6.4 Flattening Transition in Polar Shells
To gain insight into the fascinating phenomena presented above, we have consid-
ered a reduced version of the two-dimensional limit of Eqs. (6.1b) and (6.1c) (see
Appendix 6.B.1 for details) together with the condition

∆P ´ f e
n ´ f

d
n “ Kij

„

´Phg
ij ` 2ηuij‖ ` α

ˆ

pi‖p
j
‖ ´

1
2 g

ij

˙

, (6.2)

resulting, after the dimensional reduction, from force balance along the surface
normal [143, 290]. Here ∆P is the Laplace pressure while f e

n is the normal force
originating from the restoring force due to the surface tension γ and the bending
modulus κB . The normal force fd

n derives from the distortions of the liquid crystal
tangent orientation field p‖ and is proportional to the Frank elastic constant κF.
On the right-hand side of Eq. (6.2), K and g are the extrinsic curvature and metric
tensor, respectively [298], Ph the lateral pressure acting on a two-dimensional fluid
patch and u‖ the strain rate associated with the tangent velocity field v‖ (see Ap-
pendix 6.B.1 for details and Chapter 7 for a full derivation). We stress that, in this
analytical calculation, the interface is assumed strictly two-dimensional, in contrast
to our previously described numerical model. As the thickness ξ of the simulated
shell is very small compared to the system size, however, we expect this difference to
be marginal with respect to the in-plane dynamics of the director (see also Fig. 6.7).

On a sphere of radius R0 a stationary flowing solutions can be found, consistently
with the numerical solution illustrated in Fig. 6.2a, in the form p‖ “ pR

´1
0 cos εq eθ`

pR´1
0 sin ε{ sin θq eϕ and v‖ “ α{p2ηq sin 2ε artanhpcos θq eϕ, where eθ and eϕ are

tangent unit vectors in the direction of the polar angle θ and the azimuthal angle ϕ
respectively, while ε “ 1{2 arccosp´1{λq and Ph “ P 0

h ´ pα{λq logpsin θq. With this
solution in hand, one can then consider a linear azimuthally symmetric perturbation
of the sphere radius δR “ δRpθq and, after expanding this in Legendre polynomials –
i.e. δR “

ř8

l“1 δRlPlpθq – find Ph “ P 0
h ´αδR{pλR0q, from which the renormalized
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Laplace pressure is found, from the l “ 0 mode, to be ∆P “ r2γ ´ α{pλ
?
πqs {R0.

Furthermore, for a `1 defect located at each pole, δRl “ 0 for odd l values, while
for even l values

δRl “
a

p2l ` 1qπ
2κF `

4αR2
0

λpl´1qpl`2q

lpl ` 1q γR0 ` κBfplq
, (6.3)

where fplq “ lpl` 1qrl2pl` 1q2` 2s{ rpl ´ 1qpl ` 2qR0s. The dominant mode is l “ 2
and, dropping higher modes, one finds that the curvature at the poles changes from
positive to negative, thus indicating the tendency of the shell to flatten (see also
Fig. 6.8 in the Appendix), for R0 larger than

Rc “
a

2|λ| `a , (6.4)

if α{λ ă 0 and with `a “
a

κF{|α| the so-called active length scale expressing the
distance at which active and passive torques balance [77]. Eq. (6.4) also holds for
contractile systems, in which case, taking the formal limit λ Ñ ´1 to recover the
radial configuration of p‖ around the asters (i.e. ε “ 0 and p‖ “ eθ), leads again
to Eq. (6.4). The asymmetry between extensile and contractile shells captured
by the simulations, but not by the linear stability analysis, likely results from the
previously mentioned tendency of the orientation field associated with asters to
escape toward the surface normal. This additional deformation mode stabilizes
asters, thus rendering contractile shells less prone to flattening than extensile shells.

6.5 Protrusion Formation in Nematic Shells
Next, we turn our attention to nematic shells, whose equilibrium configuration con-
sists of four topologically required `1{2 defects [134, 299, 300, 312].

In the following it is important to recall that, if director is allowed to escape from
the tangent plane of the shell mid-surface, `1 defects are no longer topologically
protected. This is because, by aligning the director normally to the shell mid-surface,
it is always possible to continuously deform it into a defect-free configuration. This
process, in turn, is contrasted by the bending elasticity of the shell, which, by
reducing the local curvature of the shell, indirectly penalizes escaped configurations.
The ability to escape in the third dimension also affect the topology of ˘1{2 defects,
which can now continuously transform into each other upon rotating by 180° about
an axis parallel to the local tangent plane [11] (see Fig. 6.4). While in the full
three-dimensional space, this feature allows, for example, the existence of neutral
disclination lines [80, 85, 313] this procedure is not enough to remove the singularity,
and for this reason, semi-integer defects are still topologically protected [300].

To study the effect of activity we numerically integrate Eqs. 6.1 for n “ 2. At
low extensile activity, when the shell preserves the initial spherical conformation,
we recover the oscillatory motion initially observed in Ref. [134] in active vesicles
and then thoroughly investigated using different approaches (Fig. 6.5a,b) [135, 314–
321]. During one semi-period, the defects move from a tetrahedral configuration to
a planar one or vice versa. For larger |α| values, such an oscillatory motion is inher-
ited by the shell itself, which, again by virtue of the mechanical coupling between
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Figure 6.4: Escape of `1 and `1{2 defect.

Topological protection of nematic defects. (a) Configuration of a `1{2 defect on
the plane. (b) A `1{2 disclination can be continuously deformed into a ´1{2 disclination
upon rotating the director about an arbitrary axis on the plane of the director by an angle
Θ “ π. By contrast, rotating the director by an angle Θ “ π{2 gives rise to an escaped-like
configuration, but does not remove the central singularity, which is, therefore, topologi-
cally protected. The latter can be better appreciated by considering the corresponding
trajectory traced by the director in one loop around the defect core and corresponding to
a hemicircle connecting two antipodal points on the hemisphere (inset). These, in turn,
correspond to the same orientation in the physical space because of the D8h symmetry of
uniaxial nematics. In this representation, semi-integer point defects correspond to hemi-
circles on the equatorial plane (red curve), with their sign given by the orientation of the
hemicircle with respect to that of the equator. Escaped-like configurations correspond
instead to hemicircles connecting two antipodal points across the positive half-space (or-
ange and black curve), while an isolated point identifies a uniformly oriented configuration.
Whether lying on the equatorial plane or bending across the positive half-space, hemicircles
cannot be contracted into a point, thus it is impossible to continuously transform a planar
disclination into a defect free configuration by rotating the nematic director out of plane.
(c) Configuration of a `1 defect on the plane. (d) Unlike for semi-integer defects, a `1
planar disclination can be continuously transformed into a defect free state upon rotating
the director perpendicularly to the plane. In the order parameter space, this amounts to
contracting a loop around the equator into a point (inset).
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Figure 6.5: Active nematic liquid crystal on elastic shell.

We observe four distinct phases for an active nematic liquid crystal as presented in the
phase diagram in (a). At small activity `1{2-defects move periodically on an essentially
undeformed sphere (blue circles, Tetrahedral-Planar (T-P) periodic). Defects oscillate
between a planar (left snapshot in panel (b)) and a tetrahedral (right snapshot in panel
(b)) configuration. For larger extensile activity, defects deform the sphere periodically
and, for sufficiently large activity, protrusions are formed (yellow triangles in (a)) as shown
in (c) for α “ ´0.003. In the main text, using the sketch in (c), it is explained how
the pressure field of a `1{2-defect moving with velocity v (top-left corner) can lead to a
dipolar normal force F (blue arrows in the sketch) that creates the protrusion. For larger
contractile activity we observe a bipolar configuration (green diamonds in (a)) as shown in
(d), for α “ 0.002, with two `1{2 defects located near each pole. For even larger activity
we find a turbulent regime (red stars).
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Figure 6.6: Periodic deformation of elastic shell.

To quantify the periodic deformation of the sphere due to the active nematic defects we
show the sphericity of the elastic shell as a function of time in panel for different values
of activity. Each of the activity values we chose corresponds to one of the four different
phases we found (see Fig. 6.5). The periodicity in the sphericity is clearly visible, as is the
fact that the deformation increases with increasing activity.

defects and curvature, periodically deforms from spherical to elliptical (Fig. 6.5a,
Fig. 6.6, and Movie 4). Upon increasing the extensile activity further, the shape
oscillations becomes more pronounced and eventually leads to the growth of protru-
sions (Fig. 6.5c and Movie 5). Specifically, these originate from the merging of two
`1{2 defects into a `1 aster, after which the protrusion shrinks and the aster splits
again into two `1{2 defects 5. Although analytically intractable, this behavior can
be rationalized by considering that the lateral pressure Ph undergoes a gradient in
the opposite direction compared to that of the flow velocity, thus the direction of
motion of a defect. To see this note that the pressure field of an isolated `1{2-defect
in flat space is given by Ph “ α{2 cos arctanpy{xq, in a reference system centered
at the defect position with the x direction defining the symmetry axis of the `1{2
topological defects. This defect moves with velocity v in negative x-direction, thus
in the direction of larger pressure. Locally, close to the defect core, this expression
is a good approximation of the pressure field of a `1{2-defect even in the presence
of small curvature. Since ∆P „ Ph, when the activity is sufficiently large to over-
come other restoring forces, such a gradient in the Laplace pressure gives rise to
bending moments that either sharpen the surface, if the defects move toward each
other, or flatten it, if they move apart (Fig. 6.5c). In the former case, the resulting
curvature increase has the secondary effect of attracting the defects, thereby en-
hancing the performance of the morphogenetic mechanism via a positive feedback
loop. Finally, for even larger |α| values, the active nematic shells enters a chaotic
5Note that even in the case of a fixed sphere the defects merge if the activity is high enough, see
Ref. [317]
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regime, where perpetual pearling instabilities detach from the main shells several
elongated, snail-like surfaces, which eventually dissolve because of Ostwald ripening
(Movie 6). Similarly, at low contractile activity, the shell exhibits oscillations anal-
ogous to those discussed in the extensile case, whereas for larger α values, two `1{2
defects move towards the poles and deform the sphere into in a spindle-like shape
reminescent of a bipolar configuration and located in the regions of high curvature
(Fig. 6.5d and Movie 7). We highlight that wide variety of dynamical states as well
as defect configurations presented in the phase diagram of Fig. 6.5a is possible only
because of the flow induced by activity. Indeed, regardless of the strength of surface
tension and elasticity, activity can be used to select and tune a particular state.

6.6 Conclusions
In this article we have investigated the mechanical coupling between defects and
curvature in active shells of polar and nematic liquid crystals as a possible morpho-
genetic mechanism in developing tissues. In passive materials, this coupling arises
from the fact that defects introduce an orientational deficit that a like-sign Gaus-
sian curvature can compensate, thereby reducing the system’s elastic energy [10].
As a consequence, positively charged defects, such as `1{2 or `1 disclinations in
nematic and polar liquid crystals respectively, are either attracted by or able to
focus positive Gaussian curvature, depending on the substrate’s flexibility as well
as the orientational stiffness of the fluid [293].

By contrast, in active shells the interplay between defects and curvature is much
more versatile, so that the presence of `1 vortices at the poles of an active polar
shell can either increase or decrease the local curvature, depending on whether
the system is extensile or contractile. Such a correlation between regions of high
(low) Gaussian curvature and `1{2 (`1) disclinations, echos a recent observation
by Maroudas-Sacks et al., who suggested that `1{2 defects could favor the growth
of highly curved tentacles, while `1 defects facilitate the positioning of the gently
curved mouth and foot regions in Hydra [140]. Furthermore, at large extensile
activity, such a vortices-mediated flattening can result in a fusion of the internal
leaflet of the shell, which eventually drives a transition from spherical to toroidal
topology. Something related has recently be observed by Khoromskaia and Salbreux
[322] and in the context of elastic sheets by Pearce et al. [291].

To better understand the pathway leading to the formation of protrusions, we
focused on active nematic shells and showed that, for large extensile activity and
after two oscillatory regimes (Fig. 6.6), protrusions appears as the result of the
merging of pairs of `1{2 disclinations into asters. Unlike previously though, this
process crucially relies on the polar structure of `1{2 defects [68], which, as result
of crosstalk between flow velocity and pressure along the longitudinal direction of
the defect, leads to a steep and highly localized gradient in the Laplace pressure.
This, in turn, gives rise to bending moments that sharpen the surface, when the two
`1{2 defects approach each other, or flatten it when these move apart.

Our work has a natural tie with the emerging field of organoids mechanics (see
e.g. Ref. [323]), where topology could possibly serve as a key to deciphering the
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complex elongation and branching dynamics routinely observed in in vitro experi-
ments.

6.A Phase-field Model
6.A.1 Active polar shells
To describe a polar liquid crystal we take Ψ1 “ Ψ1p, with Ψ1 a scalar order param-
eter and p the direction of the local polarization. The free energy density is then
given by (see e.g. Ref. [290]):

fp “
κF

2 |∇Ψ1|
2 `A

ˆ

ψ

2 |Ψ1|
2 `

1
4 |Ψ1|

4
˙

. (6.5)

The parameter ψ depends on the concentration gradient |∇φ| and is chosen such that
ψ “ ´1 if |∇φ| is larger than a suitable threshold Opφ0{ξq [0.1 in our simulations]
and zero otherwise [290], see also Fig. 6.7(a,b)). The bulk constant A fixes the
coherence length of the liquid crystal, i.e. `c “

a

κF{A , which controls how sharply
the order parameter drops from one to zero in proximity of a topological defect.
The stress tensor associated with a distortion of the director field is

σp
1 “ ´κF∇Ψ1 ¨ p∇Ψ1q

T `
1
2 pΨ1M1 ´M1Ψ1q ´

λ

2 pΨ1M1 `M1Ψ1q , (6.6)

where λ the flow-alignment parameter and M1 “ ´δF{δΨ1 is the molecular field.
The strain-rotational derivative in the Leslie-Ericksen equation is now given by
Ω1 “ λu ¨Ψ1 ´ ω ¨Ψ1, where ω “ rp∇vq ´ p∇vqTs{2 is the vorticity tensor.

6.A.2 Active nematic shells
The order parameter to describe a nematic liquid crystal is now the 2-ranked nematic
tensor, traceless and symmetric, Ψ2 “ Ψ2pnn ´ 1{3q, with Ψ2 the nematic order
parameter. The free energy density is given by (see e.g. Refs. [84, 297]):

fp “
κF

2 |∇Ψ2|
2 `A

„

1
2

ˆ

1´ Φ
3

˙

|Ψ2|
2 ´

Φ
3 |Ψ2|

3 `
Φ
4 |Ψ2|

4


. (6.7)

The nematic liquid crystal is confined at the interface by requiring the parameter Φ
to depend on the gradients of the phase field φ as follows

Φ “ Φ0 ` Φsp∇φq2 , (6.8)

so that Ψ2 is non-zero only in regions where |∇φ| ą
a

pΦc ´ Φ0q{Φs, with Φc “ 2.7
the critical value above which the system is in the ordered phase, and Φ0, Φs free
parameters [297]. The stress tensor arising in response of a departure of the nematic
order parameter tensor from its lowest free energy configuration is given by

σp
2 “ ´λ

„

M2 ¨

ˆ

Ψ2 `
1
3 1

˙

`

ˆ

Ψ2 `
1
3 1

˙

¨M2



` 2λ
ˆ

Ψ2 ´
1
3 1

˙

Ψ2 : M2 `Ψ2 ¨M2 ´M2 ¨Ψ2 , (6.9)
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where the molecular field M2 is defined as

M2 “ ´
δF
δΨ2

`
1
3 tr

ˆ

δF
δΨ2

˙

1 . (6.10)

Finally, the strain-rotational derivative in the Leslie-Ericksen equation is given by

Ω2 “ pλu` ωq ¨

ˆ

Ψ2 `
1
3 1

˙

`

ˆ

Ψ2 `
1
3 1

˙

¨ pλu´ ωq

´ 2λ
ˆ

Ψ2 `
1
3 1

˙

trpΨ2 ¨∇vq . (6.11)

6.A.3 Numerical method
The dynamical equations, Eqs. (6.1), have been integrated by means of a hybrid
lattice Boltzmann (LB) method, where the hydrodynamics is solved through a
predictor-corrector LB algorithm [34] on aD3Q15 lattice [324], while the dynamics of
the order parameter has been treated with a finite-difference approach implementing
a first-order upwind scheme and fourth-order accurate stencil for the computation
of spacial derivatives.

In our LB algorithm, the evolution of the fluid is described in terms of a set of
distribution functions fiprα, tq (with the index i labelling different lattice directions,
ranging from 1 to 15 for our D3Q15 model) defined on each lattice site rα. Their
evolution follows a discretised predictor-corrector version of the Boltzmann equation
in the Bhatnagar-Gross-Krook (BGK) approximation:

fiprα ` ξi∆tq ´ fiprα, tq “ ´
∆t
2 rCpfi, rα, tq ` Cpf˚i , rα ` ξi∆t, tqs . (6.12)

Here tξiu is the set of discrete velocities of the D3Q15 lattice. Here, Cpf, rα, tq “
´pfi ´ f

eq
i q{τ ` Fi is the collisional operator in the BGK approximation, expressed

in terms of the equilibrium distribution functions f eq
i and supplemented with an

extra forcing term Fi for the treatment of the anti-symmetric part of the stress
tensor and τ the relaxation time of the algorithm, related to the viscosity of the
fluid, as discussed in the following. The distribution functions f˚i are first-order
estimations to fiprα` ξi∆tq obtained by setting f˚i ” fi in Eq. (6.12). The density
and momentum of the fluid are defined in terms of the distribution functions as
follows:

ÿ

i

fi “ ρ
ÿ

i

fiξi “ ρv. (6.13)

The same relations hold for the equilibrium distribution functions, thus ensuring
mass and momentum conservation. In order to correctly reproduce the Navier-
Stokes equation, the following conditions on the second moment of the equilibrium
distribution functions are imposed:

ÿ

i

fiξi b ξi “ ρvb v´ σ̃si, (6.14)



6

162 6 Tuneable Defect-Curvature Coupling

whilst the following condition is imposed for the force term:
ÿ

i

Fi “ 0,
ÿ

i

Fiξi “ ∇ ¨ σ̃an,
ÿ

i

Fiξi b ξi “ 0. (6.15)

In the equations above, we respectively denoted with σ̃si and σ̃an the symmetric
and anti-symmetric part of the total stress tensor, diminished of the hydrodynamic
contribution σh, which naturally arises from the continuum limit of Eq. (6.12) (see
Ref. [278]). The equilibrium distribution functions are expanded up to second order
in the velocities, as follows:

f eq
i “ Ai `Bipξi ¨ vq ` Ci|v|2 `Dipξi ¨ vq2 ` G̃i : pξi b ξiq. (6.16)

Here cthe oefficients Ai, Bi, Ci, Di, G̃i are to be determined by imposing the condi-
tions in Eqs. (6.13) and (6.14). In the continuum limit, the Navier-Stokes equation
is restored by choosing the relaxation time τ “ 3η{ρ and the speed of sound cs “ 1
(see also Ref. [325] and [278]).

Eqs. (6.1) were integrated in a three-dimensional box of size L “ 128, volume
V “ L3, and periodic boundary conditions. For all results presented in the main
text, the radius of the shell is R “ 18. More radii, R “ 15, 24, 32 have been also
simulated to check consistency of results. We report no qualitative difference with
the cases presented in the main text. The numerical code has been parallelized by
means of Message Passage Interface (MPI) by dividing the computational domain
in slices and by implementing the ghost-cell method to compute derivatives on the
boundary of the computational subdomains. Runs have been performed using 64
CPUs for at least 106 lattice Boltzmann iterations (corresponding to „ 35d of CPU-
time on Intel Xeon 8160 processors). The model parameters in lattice units used
for simulations are a “ 0.01, kφ “ 0.015, φ0 “ 2.0, µ “ 0.1, Γ “ 0.2, η “ 5{3.
For polar liquid crystals we used A “ 0.1,W1 “ 0.03, λ “ 1.1, κF “ 0.02 and we
varied the activity in the range ´0.015, 0.015 as reported in the main text. For
nematics we used A “ 0.1, Φ0 “ 2.45, Φs “ 1.0, W2 “ 0.01, λ “ 1.1. We
varied the activity in the range r´0.015, 0.015s and the Frank constant in the range
r0.008, 0.04s. The typical flow velocity measured in simulations v „ 3 ˆ 10´2, in
lattice units. Therefore, numerical density fluctuations δρ{xρy „ Ma2

“ pv{csq
2 „

10´3 are negligible and the fluid is effectively incompressible.

6.B Two-dimensional Limit
6.B.1 Hydrodynamic equations for polar membranes
The two-dimensional limit of Eqs. (6.1) is obtained upon assuming Ψ1 “ const. and
treating the cell polarization as a tangent unit vector field on M : i.e. p‖ “ pi‖ei,
with

|p‖|
2 “ gijp

i
‖p
j
‖ “ 1 . (6.17)

The free energy of the system is given by

F “

ż

M

dA
”

γ ` κB pH ´H0q
2
` κGKG `

κF

2 |∇p‖|
2
ı

. (6.18)
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Figure 6.7: Illustration of simulated shell.

(a) Cross-section of an active shell, as modeled in our numerical simulations. In the interior
of the droplet (plotted in green) φ “ φ0, while φ « 0 in the exterior. Concentration gradi-
ents ∇φ are significant only at the droplet interface (red in the picture). By construction
the orientational order parameter Ψn is finite when |∇φ| is larger than a certain critical
threshold (see Appendix 6.A), hence the fluid is orientationally ordered and active within
a thin shell which corresponds to the droplet interface and isotropic as well as passive else-
where. (b) The radial profiles (with r being the distance from the centre of the droplet)
measured from simulations and expressed in lattice units of φ,∇φ and the magnitude of
the order parameter |Ψ1| for the polar case. Panel (c) shows the color-plot of the ratio of
normal versus tangential flow vK{v‖ measured in simulations for the polar case of Fig. 6.1b.
Notice that normal flows are significant only in proximity of topological defects.

The first three terms on the right-hand side of Eq. (6.18), where γ is the surface
tension, κB the bending rigidity, H0 the spontaneous mean curvature and κG the
Gaussian-splay modulus, comprise the Helfrich free energy [161]. The last term is
the Frank free energy in one-elastic-constant approximation which drives the liquid
crystal towards an aligned state [1]. Assuming the velocity field to be incompressible,
a stationary configuration of the fields p‖ and v‖ is found by solving the following
set of hydrodynamic equations [77, 262, 290]:

η
´

∇2vi‖ `KGv
i
‖

¯

´∇iPh ` α∇jpi‖p
j
‖ “ 0 , (6.19)

vk‖∇kp
i
‖ “

´

gij ´ pi‖p
j
‖

¯´

λu‖jk p
k
‖ ´ ω‖jk p

k
‖ ` ΓM‖i

¯

. (6.20)

Here, Eq. (6.19) is the covariant Stokes equation, with η the shear viscosity, Ph
the hydrodynamic pressure enforcing the incompressibility of the fluid and we have
neglected the passive stress tensor σp

n for simplicity. Eq. (6.20), on the other hand,
is the Leslie-Ericksen equation describing the dynamics of the tangent unit vector
field, with

M‖i “ ´
δF

δpi‖
“ κF∇2p‖i , (6.21)

the covariant molecular field and u‖ij “ p∇iv‖j ` ∇jv‖iq{2 and ω‖ij “ p∇iv‖j ´

∇jv‖iq{2 the covariant strain rate and vorticity tensor respectively. Finally, force
balance along the surface normal direction, leads to the shape equation Eq. (6.2),
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where

f e
n “ 2γH ´ κB

 

∆H ´ pH ´H0q
“

2HpH ´H0q ´ 4H2 ` 2K
‰(

(6.22)

is the normal force per unit area arising in response of a departure from the mini-
mizer of the Helfrich energy and

fd
n “ 2κFp2Hgij ´Kijq∇i∇jχ` 2κFpK

ij ´Hgijq∇iχ∇jχ , (6.23)

the normal force per unit area resulting from a distortion of the director p‖. The
function χ is known as geometric potential and can be found from the Poisson
equation ∇2χ “ KG ´ ρD, where ρD is the topological charge density [10]. See
Chapter 7 for a detailed derivation.

6.B.2 Polar spherical shells
A sphere of radius R0 is parametrized in spherical coordinates as

X “ R0

¨

˝

sin θ cosϕ
sin θ sinϕ

cos θ

˛

‚ (6.24)

with 0 ď θ ď π and 0 ď ϕ ă 2π. A stationary configuration of the polarization field
p‖ can then be constructed in the form

p‖ “
1
R0

ˆ

cos ε eθ `
sin ε
sin θ eϕ

˙

, (6.25)

where ε is a constant determining the local geometry of the two `1 defects located
at the poles of the sphere. If ε “ 0 the polarization field is along the meridians of
the sphere and the defects are asters. On the other hand, if ε “ π{2 the polarization
field is purely azimuthal and the defects are vertices.

With Eq. (6.25) in hand, one can solve Eqs. (6.19) and (6.20) to find the lateral
pressure Ph and velocity v‖. Taking the divergence of Eq. (6.19) gives

∇2Ph “ α∇i∇jp
i
‖p
j
‖ , (6.26)

whose azimuthally symmetric solution, i.e. Ph “ Phpθq, is found in the form

Ph “ P0 ` P1 artanhpcos θq ` α cosp2εq logpsin θq , (6.27)

with P0 and P1 integration constants. Similarly, using that an azimuthally sym-
metric incompressible velocity field must vanish along the θ´direction, we set v‖ “

vϕeϕ, with vϕ “ vϕpθq. Thus, from the θ´component of Eq. (6.19) we then find
P1 “ 0 and

η tan θ B2
θv
ϕ
‖ ` 3η Bθvϕ‖ ` α

sin 2ε
sin θ “ 0 , (6.28)

which has the solution

vϕ‖ “
c2
2

„

artanhpcos θq ` cot θ
sin θ



`
α cos ε sin ε

2η

„

artanhpcos θq ´ cot θ
sin θ



. (6.29)
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Setting c2 “ α cos ε sin ε{η to cancel the divergent term we thus arrive at

vϕ‖ “
α sin 2ε

2η artanhpcos θq . (6.30)

To find the physical velocity field in the coordinate system of R3 we have to multiply
this velocity by sin θ and then the velocity is finite everywhere.

Now we turn to the Leslie-Ericksen equation, Eq. (6.20). We find that the
equation can be written as pλ cos 2ε` 1q Bθvϕ‖ “ 0 and therefore

ε “
1
2 arccos

ˆ

´
1
λ

˙

, (6.31)

so that we find that a stationary solution is possible only if |λ| ą 1 and that the
geometry of the director field is set by the flow alignment parameter. It is instructive
to replace these solutions into the shape equation Eq. (6.2) to compute the elastic
pressure necessary to keep the sphere from deforming if that was allowed. We find
that away from the poles

∆P “ 2
R0

„

γ `
α

λ
log psin θq ` κF

R2
0



, (6.32)

which shows the different scaling with R0 that can also be found from dimensional
analysis. Thus surface tension and activity dominate at large R0 values, whereas at
small R0 values Frank elasticity is dominant.

Before moving on to the deformable sphere we note that the pressure field of an
isolated `1 defect in a flat disk of radius R is given by Ph “ ´α{λ logpr{Rq (see
e.g. Ref. [57]) where r is the radial distance from the defect center. This is equal to
the pressure near the center of a `1 defect at the poles of a sphere. Namely, up to
additive constants, Ph “ ´α{λ logpsin θq » ´α{λ log θ ` O

`

log2 θ
˘

where θ can be
seen (to first order) as the radial distance from the defect.

6.B.3 Flattening of polar spherical shells
To assess the stability of active shells with respect to flattening, we express the
normal force per unit area fd

n , featured in Eq. (6.2), in terms of Legendre polynomials
Pl “ Plpθq. That is

fd
n “ ´

1
R3

0

ÿ

lą0

pl ´ 1qpl ` 2q
lpl ` 1q Plsl , (6.33)

where sl “
ř

i P˚l pθiq is the defect topological charge density of an aster or vortex
(see e.g. Refs. [303, 326]). We next look at radial perturbations R “ R0 ` δRpθq
with respect to the initial shape. This gives the following expressions for the mean
and Gaussian curvature at the linear order in δR:

H “
R0 ´ δR

R2
0

´
∇2δR

2 , (6.34a)

KG “
R0 ´ 2δR

R3
0

´
∇2δR

R0
, (6.34b)
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(a) (b) (c)

Figure 6.8: Flattening of sphere.

In panels (a) and (b) we show, respectively, the pressure Ph (Eq. (6.27)) and physical
velocity field vϕ

‖ pθq (Eq. (6.30) multiplied by sin θ) for a fixed sphere for contractile and
extensile activity. In panel (c) we show the radius of the deformed sphere for extensile and
contractile activity, see Eq. (6.42). The black horizontal line corresponds to δRpθq “ 0. If
the extensile activity is sufficiently large, as it is here, the sphere flattens at the poles, that
is the radius after deformation is less than R0. The parameter values used for all panels
are α “ ˘5, λ “ 1.1., η “ 1, κF “ 1, γ “ 1, κB “ 1, R0 “ 1.

where ∇2 “ 1{pR2
0 sin θq Bθ sin θ Bθ ` 1{pR0 sin θq2 B2

ϕ is the unperturbed covariant
Laplacian. Analogously, for the director we find

p‖ “
R0 ´ δR

R2
0

ˆ

cos ε eθ `
sin ε
sin θ eϕ

˙

(6.35)

such that it is normalized with respect to the perturbed metric. For the lateral
pressure we then find instead

Ph “ P0 ` P1 artanhpcos θq ` α cos 2ε
„

logpsin θq ` δR

R0



, (6.36)

and we set P0 “ P1 “ 0.
The equilibrium Helfrich force per unit area is given by

f e
n “ 2γH ` κB

2R4
0

`

R4
0∇2δR` 2δR

˘

. (6.37)

Next, taking δR “
ř

lą0 δRlPl and, using ∇2Pl “ ´lpl ` 1q{R2
0Pl, we find

f e
n “

2γ
R0
`

ÿ

lą0

δRlPl
R2

0

"

γpl ´ 1qpl ` 2q ` κB
R2

0

“

l2pl ` 1q2 ` 2
‰

*

. (6.38)

Furthermore, taking PhH « Ph{R0 for small α values, one can recast Eq. (6.2) in
the form

∆P “ 2γ
R0
`

2α
λR0

logpsin θq `
ÿ

lą0

δRlPl
R2

0

"

γpl ´ 1qpl ` 2q ` κB
R2

0

“

l2pl ` 1q2 ` 2
‰

*

´
κF

R3
0

ÿ

lą0

pl ´ 1qpl ` 2q
lpl ` 1q Plsl . (6.39)
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Finally, using the expansion

logpsin θq “ ´ 1
?

4π
´

ÿ

lP2N

2
a

p2l ` 1qπ
lpl ` 1q Pl , (6.40)

where 2N “ t2, 4, 6 . . .u denotes the set of even natural numbers. From the zero
mode, on the other hand, we obtain the renormalized isotropic Laplace pressure

∆P “ 2γ
R0
´

α

λR0
?
π
. (6.41)

Now, for a `1 defect at each pole one has

sl “ 2π rPlp0q ` Plpπqs ,

hence sl “ 0 if l is odd and sl “
a

4πp2l ` 1q if l is even. Thus, for odd l values
we find δRl “ 0 from the shape equation. On the other hand, for even l values
we recover Eq. (6.3). The dominant mode is l “ 2, thus, neglecting higher modes,
yields

δR2 “
5
4

ˆ2κFR0 `
α
λR

3
0

6R0γ ` 57κB

˙

`

3 cos2 θ ´ 1
˘

. (6.42)

Hence, when R0 ą Rc, with Rc given in Eq. (6.4), the radial displacement at the
poles, i.e. θ “ 0, π, changes from positive to negative, thus marking the flattening
transition of the active shell.

6.C Movies
The movies can be found at https://doi.org/10.1039/D2SM01370C.

Movie 1: Flattening of polar shell in presence of extensile activity. The
extensile active stresses (α “ ´0.002) lead to a flattening of the initially spherical
shell. The two `1 defects have a spiral geometry and move away from the poles and
the shell becomes motile. The vectors denote the polarization field, while the color
code refers to the local magnitude of the polarization according to the color bar at
the bottom.

Movie 2: Genus transition of polar shell. For large extensile activity
(α “ ´0.012) the a chaotic regime is entered and the shell is deformed significantly.
Small vesicles separate from the original shell and flatten, eventually leading to a
genus transition from a spherical topology to a toroidal topology.

Movie 3: Flattening of polar shell in presence of contractile activity.
The contractile active stresses (α “ 0.004) lead to a flattening of the initially spher-
ical shell albeit less than in the presence of comparable extensile stresses. The two
`1 defects have an aster geometry and near the center of the defects we observe a
buckling of the shell. The defects move away from the poles and the shell becomes
motile.

Movie 4: Periodic deformation of nematic shell. In the case of small
activity (α “ ´0.002 in this movie) the periodic movement of the four active, motile

https://doi.org/10.1039/D2SM01370C
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`1{2 defects couples to the elastic shell resulting in a periodic deformation of the
shell.

Movie 5: Tentacle formation. In the presence of intermediate extensile
activity (α “ ´0.004 in this movie) we observe the periodic deformation of the shell
as well as the creation of tentacles which are formed by two `1{2 defects approaching
each other and in the process creating a protrusion.

Movie 6: Chaotic deformation of nematic shell for extensile activity.
For large extensile activity (α “ ´0.007 in this movie) the original shell is elongated
and eventually the shell rips apart creating several smaller snail-like surfaces that
eventually dissolve due to Oswald ripening.

Movie 7: Spindle-like shape of nematic shell in presence of contractile
activity. For intermediate contractile activity two `1{2 defects move towards the
poles and the sphere is deformed into a spindle-like shape.




