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CHAPTER 4

Transition to Homochirality in Vicsek Model

Chirality is a feature of many biological systems and much research has been focused
on understanding the origin and implications of this property. Most famously, sug-
ars and amino acids that are found in nature are homochiral, meaning that chiral
symmetry is broken and only one of the two possible chiral states is ever observed.
Perhaps less well-know, something similar is the case for certain types of cells too.
They show chiral behavior and only one of the two possible chiral states is observed
in nature. Understanding the origin of cellular chirality and what, if any, use or
function chirality has in tissues and cellular dynamics is still an open problem and
subject to much (recent) research. Here, we develop a simple model to describe the
possible origin of homochirality in cells. Combining the Vicsek model for collective
behavior with the model of Jafarpour et al. [231], developed to describe the tran-
sition to homochirality for molecules, we investigate how a homochiral state might
have evolved in cells from an initially symmetric state without any mechanisms that
explicitly break chiral symmetry. We find that noise, both on the level of flocking
and on the level of cell division, is an important factor determining if and when a
homochiral state is reached. We study how the competition between cooperative
behavior and noise affects the transition to homochirality as well as the influence of
cell death and cell division rates.

L. A. Hoffmann and L. Giomi, Transition to Homochirality in Vicsek Model. In
preparation.

[...] [K]nowledge simply does not exist in complete independence of power [...]
[S]ystems of knowledge, although expressing objective (and perhaps even
universally valid) truth in their own right, are nonetheless always more or less
closely tied to the regimes of power that exist within a given society.
Conversely, regimes of power necessarily give rise to bodies of knowledge about
the objects they control, but this knowledge may — in its objectivity — go
beyond and even ultimately threaten the project of domination from which it
arises.
G. Gutting about M. Foucault. French Philosophy in the Twentieth Century.

[...] [T]he past should be altered by the present as much as the present is
directed by the past.

T. S. Eliot. Tradition and the Individual Talent.
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Chirality, the property of an object that cannot be superimposed onto its mirror
image, is an important concept in physics and biology. For molecules, for example,
one calls the two chiral states L- and D-molecules. Usually, chemical reactions
produce molecules of both chirality in equal amounts, producing what is called a
racemic mixture, where left-right symmetry is not broken. Thus, the production of
these molecules does not seem to favor one chiral state over the other such that chiral
symmetry is not explicitly broken during the production of molecules. Nevertheless,
it is well known that in nature and biology homochiral states (only one of the two
possible chiral states is present) are common. For example, most amino acids are
L-molecules whereas most sugars are D-molecules. These smaller chiral molecules
are the building blocks of larger molecules that in turn are also chiral. The question
about the origin of the symmetry breaking and what its effects are in biological
systems has been subject to many debates and studies, see, e.g., Refs. [232–236]
and references therein. In particular, the question of which, if any, biological use a
particular chirality has, or if the symmetry breaking is just random, is still hotly
debated. While it is known that chirality seems to be crucial in small biological
structures, where it was found to be linked to the function of e.g. proteins, it is less
clear if and how chirality plays a role in larger biological structures. However, there
has been some evidence that left-right (LR) asymmetry is crucial on these scales
as well. Unlike for molecules or certain larger biological structures like swimming
sperm cells [237, 238] or flagella of bacteria [239], the presence and role of chirality is
not necessarily as obvious for eukaryotic cells. Nevertheless, recent work has shown
that LR asymmetry plays an important role here as well, both for unicellular [235]
and multicellular systems. For example, cell chirality has been shown to have an
influence during morphogenesis in Drosophila [240], snails [241], C. elegans [242], or
mammalian cells [122, 218]. In particular, in the context of active matter, where
cells are modeled as active nematics [42, 49], it has been shown that the presence
of chiral stresses on the level of the single cell modifies the dynamics on the level
of tissues [138, 243]. However, the evolutionary origin of cellular chirality is still
unclear. Different models of active matter have been successfully applied to describe
cells. These models have in common that they describe large-scale properties, like
flocking, of cell monolayers or tissues, rather than accurately model the microscopic
dynamics of individual cells.

In this article we are investigating the possible origin of cellular homochirality
and, in particular, we investigate how large-scale flocking might influence the transi-
tion to homochirality. For molecules, simple models have been proposed to explain
how one might end up in a homochiral state starting from a racemic state without
any explicit LR asymmetry. One example is the recent work by Jafarpour et al.
[231, 236] who showed, using a minimal model of only two reaction equations, that
the homochiral state can be the only fixed point of the dynamics if the noise inherent
in the chemical reactions that are producing molecules is taken into account. That
is, due to the presence of noise the LR symmetry is spontaneously broken and the
system can reach a homochiral state from an initially racemic one, with the choice
of which homochiral state is selected being random. We adopt a similar model to
investigate the possible origin of homochirality in cells. Rather than being con-
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cerned with the microscopic details, e.g. if there is a connection between chirality
on the molecular level and chirality of cells, we adopt a simplified coarse-grained
model of cells. The major difference between the molecules considered by Jafarpour
et al., that undergo passive diffusion, and our approach is that we consider cells
to be active, self-propelled particles that tend to align with their neighbors. This
results in markedly different spatial dynamics. We numerically investigate if and
how the presence of activity and alignment interactions influences the transition
to homochirality from a racemic state. We find that for the right choice of model
parameters the system is guaranteed to reach a homochiral state in a finite time.
While the system is in a mixed state, that is away from homochirality, we find large
fluctuations of the number density and the local chirality. Furthermore, we observe
that particles of same chirality tend to be more correlated in space than particles
of opposite chirality, even though there is no explicit interaction term favoring one
over the other. Finally, we find that the time a given system takes to transition
to homochirality follows a long-tail distribution, with mean and standard deviation
being of the same order of magnitude.

In the following section we first describe our model in more detail. Afterwards, we
investigate under which conditions the system transitions from a racemic to an ho-
mochiral state. Furthermore, we investigate spatial fluctuations and heterogeneities
in the system. Finally, we consider in more detail the transition to homochirality,
and how the transition time depends on several of the parameters of the model.

4.1 Model
Our model consists of two separate parts that are minimally coupled, one describing
cell division and death, the other the spatial dynamics, namely collective motion
and flocking, of cells. We first describe the two parts separately and afterwards
explain how they are coupled in our simulations. We adopt a version of a stochastic
model introduced originally by Frank [232] and expanded on by Jafarpour et al.
[231, 236] recently. There are two kinds of reactions for the two chiral states:

F `R
km
ÝÑ 2R , F ` L

km
ÝÑ 2L (4.1a)

R
kd
ÝáâÝ
kc

F , L
kd
ÝáâÝ
kc

F . (4.1b)

Here, R denotes right-chiral cells, L denotes left-chiral cells and F denotes nutri-
ents; see also Fig. 4.1a. Thus, the first two equations, Eqs. (4.1a), simply describe
cell division: A single cell consumes nutrients and divides into two cells with a rate
km. The second set of equations, Eqs. (4.1b), contains a forward and a backwards
reaction. The former, occurring with rate kd, models cell death. A single cell decays
into a nutrient. This reaction can be seen as an effective reaction consisting of two
parts. In cell monolayers, for example, a cell that died will be extruded from the
monolayer (cell apoptosis). New nutrients can then enter the system, effectively re-
placing, simplistically speaking, the dead cell. These two steps can be summarized
as one effective reaction occurring with the rate kd. The backwards reaction, oc-
curring with rate kc, appears to describe that cells are spontaneously created from
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Figure 4.1: Model.

(a) A schematic of the reactions defined in Eqs. (4.1). To perform the reactions we subdi-
vide the total system into square boxes of height 2R. Left-chiral particles (red arrow) and
right-chiral particles (blue arrow) can divide with the rate km through the consumption of
nutrients (green dot). Here a left-chiral particle divides. Furthermore, they die with the
rate kd and are replaced by a nutrient, or the nutrient “spontaneously transforms” into a
particle with rate kc. Here a left-chiral particle undergoes these reactions. See the main
text for a proper interpretation of the rates. (b) Snapshot of the simulations carried out
in a square system of height L at density ρ “ 2 and noise η “ 0.3. Again, right-chiral
particles are represented by blue arrows while left-chiral particles are represented by red
arrows. (c) A snapshot taken for higher densities (ρ “ 4) and lower noise (η “ 0.1).

nutrients. However, it is again better interpreted as an effective reaction that can
be split into two parts. This reaction describes cells entering the system we are con-
sidering from an external reservoir. In the system they replace some of the nutrients
that are present. The reaction rate kc thus encodes the “openness” of the system
we are considering. If the rate vanishes the system is closed and no cells can enter
from outside, while if the rate is positive there is a non-vanishing flux of cells into
the systems. While these interpretations perhaps do not accurately reflect the bio-
logically processes occurring on the microscopic scale, we choose the reactions like
this for two reasons: i) the simplicity of the reactions, capturing the main dynamics
while ii) the total number N “ NR`NL`NF of particles in the system is conserved
by this choice of reactions, which simplifies the dynamics considerably. Thus, we
have a model with three non-trivial reaction rates, km (division), kd (death), and
kc (entering). Note that all of the reactions in Eqs. (4.1) are symmetric for left and
right chirality, i.e., there is no explicit symmetry breaking.

We now explain to the Vicsek model, which we use to model the spatial dynamics
of the cells. Since this model has been studied intensely over the last 25 years we
keep the description here brief and refer to, e.g., Chapter 1 and Refs. [97, 99,
100] for a more in-depth explanation. The ith of M “ NR ` NL self-propelled
particles is located at position riptq at time t and it has an orientation piptq “
pcos θiptq, sin θiptqq. Each particles moves with constant speed v0 in the direction of
their orientation. Additionally, a given particle tends to align its orientation with the
average orientation of all neighboring particles that are closer than a distance R to
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this particle. Additionally, there is some rotational noise perturbing this alignment
interaction. This results in the following time-discrete equations of motion:

ript`∆tq “ riptq `∆tv0pipt`∆tq (4.2)

θipt`∆tq “ arg
«

ÿ

j

Cijptqsjptq

ff

` ηξiptq , (4.3)

where Cijptq is the connectivity matrix whose entries are Cijptq “ 1 if |riptq´rjptq| ă
R and Cijptq “ 0 if |riptq ´ rjptq| ą R. ξiptq is a Gaussian white noise with
zero average and unit variance. The parameter η determines the importance of
noise relative to alignment and in our convention 0 ă η ă 1 such that η “ 1
corresponds to effectively random reorientation after each time step and alignment
is not important, i.e., the particles undergo active Brownian motion. If, on the
other hand, η is sufficiently small and the density of particles is sufficiently large
this results in a phase transition to a flocking state. The left- and right-chiral
particles are subject to these dynamic equations while the nutrient particles are
static and are not assigned an orientation.

We couple the two models as follows: After each time step of the Vicsek model
we divide the total system into boxes of area p2Rq2 and let the stochastic model
Eq. (4.1) run in each of these boxes for m steps. We simulate these reactions using a
Gillespie algorithm [244, 245]. After updating the population in each box according
to the reactions we perform another time step of the Vicsek model. The system
we consider is two-dimensional square box of height L, with periodic boundary
conditions imposed. We initialize the system with one randomly positioned and
oriented left-chiral and one right-chiral particle, each. At a given density ρ there
are then NF pt “ 0q “ ρL2 number of nutrient particles. Thus, the total number of
particles in the system for a given density ρ is given by Nptq “ N “ ρL2` 2 which,
as explained above, is conserved and constant in time by construction. We fix length
scales by setting the interaction radius to unity, R “ 1, and time scales by setting
the time step in the Vicsek model to unity, ∆t “ 1. Furthermore, we fix kd “ 10 and
define k̃m “ km{kd and k̃c “ kc{kd. In the following we will always work with the
rescaled rates, but drop the tilde. The effect of varying the other model parameters
will be investigated below. In Figs. 4.1b,c we show a snapshot of the simulations at
different densities and values of NL{NR. While the global alignment in Fig. 4.1b is
low, for higher values of density and lower values of noise almost all particles have
the same orientation in Fig. 4.1c. We color left-chiral particles red and right-chiral
particles blue. Note that the latter system shown in Fig. 4.1c is considerably closer
to homochirality than the former, with NL " NR. The question whether the density
and flocking has an effect on the appearance of homochirality or the mean time until
this state is reached will be discussed below.

4.2 Results
We now present the results of our analysis of the described model. First, we inves-
tigate the effect of the rate kc. As we will see, the system is guaranteed to reach a
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homochiral state only if this rate vanishes. Therefore, as we are interested in the
transition to homochirality, we afterwards set kc “ 0 and instead investigate the
time it takes a given system on average to reach the homochiral state. We investi-
gate how varying different model parameters speeds up or slows down the transition
time.

4.2.1 Finite creation rate
As mentioned above, we interpret the rate kc as the rate with which new cells of
either chirality are introduced into the system but not as a result of cell division.
The most likely scenario for this to happen is for cells from outside the system we are
considering to enter it, thereby replacing (consuming) nutrients that were present in
the system before; i.e. there is a non-vanishing flux of cells into the system. This is
assumed to happen equally likely for cells of either chirality, therefore guaranteeing
that chiral symmetry is not explicitly broken. To study the effect of the rate kc on
the chirality of the system we first consider the global chirality of the system for
different values. To this end we define the chiral order parameter as

ω ¨̈“
NL

NL `NR
P r0, 1s (4.4)

such that ω “ 0 if no left-chiral particles are present, NL “ 0, and ω “ 1 if no right-
chiral particles are present, NR “ 0. At these values of the order parameter the
system is thus in a homochiral state. We now consider the probability distribution
ω after a given number of time steps of the Vicsek model when the average of many
independent runs has approximately reached a steady state. To obtain the proba-
bility distribution we record the order parameter at this time for 1000 independent
simulations. This way we find the probability for a system to achieve a certain
value of the order parameter for a given value of kc. The resulting distributions are
shown in Fig. 4.2 for some values of kc. If kc vanishes we find a bimodal probability
distribution which takes non-vanishing values only at the homochiral states ω “ 0
and ω “ 1, see Fig. 4.2a. That is, the system always ended up in a homochiral
state. It is equally likely to end up in a left-chiral or a right-chiral state, reflecting
the fact that there is no explicit LR-symmetry breaking. While it is thus not pos-
sible to predict which of the two possible homochiral states a given system evolves
to, it is, however, guaranteed to reach one of the two states in a finite time. The
time evolution of the order parameter for some of the runs is presented in the inset.
As can be seen, the order parameter heavily fluctuates initially, but once a system
has evolved into a homochiral state it remains in this state. This reflects the fact
that, for kc “ 0, once NL “ 0, new left-chiral particles cannot be created from the
reactions Eqs. (4.1). The only reactions occurring for NL “ 0 are cell division and
death of right-chiral particles. Similarly for NR “ 0. Thus, the homochiral states
are a fixed point of the reactions if kc “ 0.

If the creation rate is finite, however, the system is not guaranteed to reach a
homochiral state. In fact, we find that already for small values of kc the probability
distribution changes dramatically, with a system usually no longer reaching a ho-
mochiral state at all and the distribution being peaked at the racemic state ω “ 0.5
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Figure 4.2: Distributions of global order parameter.

(a) Probability distribution P pωq of the order parameter ω for vanishing rate kc. The
system is guaranteed to evolve to a homochiral state, thus ω “ 0 and ω “ 1 both occur
with a probability of about 50%. The inset represents the time evolution of the order
parameter for twenty independent runs. Each of the columns is an independent run and
time increases in positive y-direction. The color code is according to the legend at the top,
i.e., ω “ 0 (homochirality of right particles) is red, ω “ 1 (homochirality of left particles) is
blue, the racemic state ω “ 0.5 is white. Every systems is initialized in a state with ω “ 0.5.
The order parameter can be seen to fluctuate in time but eventually all systems evolve to
one of the two homochiral states. (b) Probability distribution of the order parameter for
kc “ 0.025. (c) Distribution for kc “ 1. (d) Distribution for kc “ 10. To obtain each of
the histograms we measure the order parameter of the system after a certain number of
time steps ∆t, where the system has on average reached a stationary state, and average
over 1000 independent runs. (d) We plot the standard deviation σpωq of the distribution
P pωq as a function of the reaction rate kc. We find that the curve is well approximated
by a power law decay with exponent ´0.25 (see inset for log-log plot of standard deviation
σpωq over kc). Simulation parameters: km “ 5, ρ “ 2, η “ 0.3, v0 “ 0.4, m “ 2.
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Figure 4.3: Distributions of local order parameter.

We measure the local order parameter ωbox, that is the order parameter in each of the
square boxes of height 2R. Per system there are pL{2Rq2 “ 100 boxes. To obtain the
histograms we show here we average over 1000 independent runs. If a box is empty the order
parameter is not well defined and we do not include it in the histogram. (a) The probability
distribution for noise η “ 0.3 and density ρ “ 2. (b) The probability distribution for noise
η “ 0.1 and density ρ “ 4. Simulation parameters: kc “ 0.025, km “ 5, v0 “ 0.4, m “ 2.

(see Fig. 4.2b for kc “ 0.025). As kc increases, the width of the probability distri-
bution decreases rapidly (see Fig. 4.2c for kc “ 1), and for large values of kc the
distribution is sharply peaked around ω “ 0.5 (Fig. 4.2d for kc “ 10). To quantify
this behavior we computed the standard deviation σpωq of the distributions as a
function of the rate kc over four orders of magnitude. We find that approximately
σpωq „ k

´1{4
c . Lastly, note that the distribution is symmetric for all values of kc,

reflecting that the fact that there is no mechanism that explicitly breaks the chiral
symmetry. The average order parameter is always xωy “ 0.5. On the other hand, if
initially there were more cells of one chirality in the system this would heavily skew
the final results and break symmetry (not shown here).

So far we have only considered global properties of the system (namely the global
order parameter). We now turn towards studying some local properties, namely the
spatial variation of the order parameter as well as number density fluctuations and
number density correlation functions. Above we presented the results for the order
parameter ω which is obtained from averaging over the entire system. However, as
is already evident from the simulations of the snapshots in Figs. 4.1b,c, the order
parameter and particle density are not homogeneous but instead vary greatly in
space. The inhomogeneity of the order parameter is due to the anisotropy introduced
through the alignment interaction in the Vicsek model.

To investigate how the order parameter varies in space we choose kc “ 0.025
as an example. Instead, we consider one case of higher noise (η “ 0.3) and lower
density (ρ “ 2) as well as one case of lower noise (η “ 0.1) and higher density
(ρ “ 4). The latter is deep in the flocking regime (see snapshot Fig. 4.1c), while
for the former the overall alignment of particles is lower (see snapshot Fig. 4.1b).
We present in Fig. 4.3 the histogram that we obtain as follows. At the end of the
run we measure the order parameter ωbox in every box of size R2 of the system.
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We only include the order parameter in the histogram if this box is not empty, i.e.,
contains at least one left- or right-chiral particle, such that the order parameter is
well defined. The histogram is then obtained from averaging over all independent
runs. We find that this probability distribution is strongly peaked around ωbox “ 0
and ωbox “ 1, and that there is another maximum at ωbox “ 0.5. The relatively
non-monotonic shape of the histogram, can be explained by some values of ωbox “ 0
being much more likely to occur if they are rational numbers for ratios of small
number of particles. This is particularly evident for small densities where only few
particles are present in some boxes. However, in either case we find the general trend
of the distribution decreasing away from ωbox “ 0.5, and then strongly increasing
at the edges. A noticeable difference between the two cases shown in Fig. 4.3 is that
for higher densities and lower noises the relative height of the homochiral points is
much lower. We have also considered an intermediate state of lower noise (η “ 0.1)
and lower density (ρ “ 2) (not shown) and did not find a significant difference from
the histogram in Fig. 4.3a. thus, we conclude that it is mainly a density effect.

In Figs. 4.4a,b we present the probability distribution of finding a number nRbox
of right-chiral particles in a given system. Here, we define nRbox as the number
of right-chiral particles in a given box. As the distribution for left- and right-
chiral particles is essentially identical, we only show one of the two. Again, we
consider the average over independent runs at a fixed time where the average over
all system has reached a steady state to find the probability distributions. Note
that if all particles were distributed homogeneously in space, xnboxyhom “ p2Rq2ρ.
We normalize the number of particles by this number and write the renormalized
quantities with a tilde, i.e., ñRbox “ nRbox{xnboxyhom. For kc “ 0, i.e., if the system
is in the homochiral state at the time of measurement, the probability of finding no
right-chiral particles at all is around 50%, reflecting the fact that half the systems
we average over are filled only with left-chiral particles (inset in Fig. 4.4a). If
we look at the distribution without the cases where left-homochirality exists, the
distribution is rather broad, see Fig. 4.4a, with a mean of xñRboxy « 0.9 particles
per box with relative fluctuations of σ

`

ñRbox
˘

{xñRboxy « 0.62, where σ
`

ñRbox
˘

is
the standard deviation of the distribution. Note that the distribution peaks at
ñRbox “ 0.75 and decreases for both smaller and larger values. If we consider the
total number of particles ñbox without regard for their chirality, that is ñbox “
ñRbox ` ñLbox, we find the distribution shown in Fig. 4.4b. It is essentially identical
to the one for right-chiral particles (after subtraction of the systems where left-
homochirality is present), reflecting the fact that we the system is always in a
homochiral state, thus either only right- or only left-chiral particles are present,
and their distribution is equal to the distribution of all particles. This is markably
different for non-vanishing kc. Again, we choose kc “ 0.025 as an example. The
most likely case now is to encounter a box that contains no right-chiral particles and
the distribution is monotonically decreasing for increasing ñRbox, see Fig. 4.4c. The
average xñRboxy « 0.46 is about half the previous average value (reflecting that the
mean global order parameter is ω “ 0.5), but the distribution is much wider, with the
standard deviation almost being equal to the mean, σ

`

ñRbox
˘

{xñRboxy « 0.99. Thus,
fluctuations are very large. The distribution for the total number of particles in this
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Figure 4.4: Fluctuations of particles density.

(a) We show the probability distribution to find a number of ñR
box right-chiral particles in

a box for kc “ 0. Here, ñR
box is not the total number of particles but the ratio of number of

particles over the average number of particles one would expect in a box in a homogeneous
system (see main text). Thus for ñR

box ă 1 the number of particles in a box is smaller
than expected in a homogeneous system while for ñR

box ą 1 it is greater. The probability
distribution shown here is obtained by ignoring/subtracting the cases where the system
has evolved to a left-homochiral state. The inset shows the distribution if these cases
are not subtracted. The large probability of finding a box without right-chiral particle
reflects the fact that the system evolves in half of the runs to a left-homochiral where no
right-chiral particles are present. (b) The probability to find a given relative total number
of particles in a box. (c) The same probability distribution as in (a) but for kc “ 0.025
and without subtracting the cases of left homochirality. This is because, as was shown
in Fig. 4.2, the system virtually never evolves to a homochiral state and the systems are
always mixed. The inset shows the depends of the ratio of standard deviation over mean
for the probability distribution P pñR

boxq as a function of the rate kc. The best fit is found
to be „ k0.017

c . (d) The same distribution as in (b) but for kc “ 0.025.
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Figure 4.5: Correlations of particles density.

(a) The correlation function between right-chiral particles (RR, blue), left-chiral particles
(LL, orange), and between left- and right-chiral particles (RL, green). The x-axis is dis-
tances measured in terms of the system size L. The inset shows the same data in a log-log
plot with the best fit of the linear region (in the log-log plot), namely 0.1 ă |r´r1|{L ă 0.5.
(b) The same data but for kc “ 10 now. Simulation parameters: km “ 5, ρ “ 2, η “ 0.3,
v0 “ 0.4, m “ 2. Again for each set of parameters we average over 1000 independent runs.

case (Fig. 4.4d) is similar to the one for vanishing rate kc, with xñboxy « 0.9 and
σ pñboxq {xñboxy « 0.75. However, it is thus not anymore the same distribution as the
right- or left-chiral distribution, as can be appreciated immediately by comparing
Fig. 4.4c and Fig. 4.4d. With increasing kc, the shape of the distribution remains
similar, but xñRboxy slightly increases (to xñRboxy « 3.7 for kc “ 10), while the relative
fluctuations slightly decrease (see inset of Fig. 4.4c). Mean and relative fluctuations
for the total number of particles ñbox remains constant. For kc “ 0.025, but higher
density and lower noise (ρ “ 4 and η “ 0.1 compared with ρ “ 2 and η “ 0.3
before) we find that the shape of the distribution is not modified significantly, with
the mean being equal, but that the distribution is slightly less broad, xñRboxy « 0.84
and xñboxy « 0.61.

Apart from the number fluctuations for left- and right-chiral particles we can
investigate their correlations in space. This is shown for two different values of kc,
kc “ 0.025 and kc “ 10, in Figs. 4.5a and Fig. 4.5b, respectively. We consider the
spatial correlation function of the particles density CXY “ xnX p|r|qnY p|r

1|qy for
particles of same chirality (X “ Y “ L or X “ Y “ R), and particles of different
chirality, X “ R and Y “ L. We find that, for kc “ 0.025 particles of same chirality
are more strongly correlated in space than particles of different chirality, even on long
distances, see Fig. 4.5a. Furthermore, the correlation functions follow approximately
a power-law behavior with the decay for the correlation for particles of same chirality
being about twice as large compared with the one for the correlation of different-
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chirality particles. Namely, for kc “ 0.025, the same-chirality correlation function
scales as CXX „ |r ´ r1|´0.2 while for the different-chirality correlation function
CRL „ |r ´ r1|´0.11, see inset in Fig. 4.5a. For higher density and lower noise we
find that the behavior is similar, with the ratio of the exponents being about two as
well. For higher kc, the correlation of the particle density of same chirality particles
and different chirality particles overlaps is equal for large distances. Their power
law behavior is very similar, with CXX „ |r ´ r1|´0.18 and CRL „ |r ´ r1|´0.16, see
Fig. 4.5b. Furthermore, in this case the large length-scale behavior of the correlation
functions is very similar as well.

We conclude this section with a brief summary of the results presented so far. In
general, we find a large amount of inhomogeneity in number of particles and order
parameter. This is despite the fact that our dynamical model for the motion in
space (Vicsek model) does not distinguish between particles of different chirality.
That is, the equations of motion for both species are identical and interaction be-
tween particles of same and different chirality are identical as well. Having studied
the interaction properties of mixed systems, we now consider homochiral systems
more closely. In particular, we are interested in the transition from a mixed to a
homochiral state. Thus, in the following we always set kc “ 0 to guarantee that the
system reaches a homochiral state in a finite time. That is, in all of the simulations
below the probability distribution of the order parameter is peaked at ω “ 0, 1 and
symmetric. Thus, instead of the order parameter we now investigate the time τ it
takes a system with a given set of parameter values to reach the homochiral state.
We vary different parameters to investigate how τ depends on them. We study its
average xτy as well as the probability distribution P pτq.

4.2.2 Time to homochirality
To investigate the time it takes the system on average to reach the homochiral
state we again run 1000 independent simulations, terminating each run only when a
homochiral state is present. As explained above, for kc “ 0 the system is guaranteed
to remain in a homochiral state once it has reached it and it is possible to end
the simulation at this time. First, we consider the influence of the magnitude of
rotational noise η of the Vicsek model on the transition to homochirality. We find
that for small noises the mean time xτy required to reach the homochiral state is
significantly larger than for lower noises and quickly decreases as noise is increased.
On the other hand, the mean time for moderate and large noises is very similar, see
Fig. 4.6a, with the mean time sometimes increasing very slightly for large noises.
This is due to a small noise speeding up the time in which a particle can explore
the space. In the extreme case of vanishing noise the initial particles remain on a
single straight trajectory (possible due to the periodic boundary conditions), and
the system remains occupied mainly by nutrients forever. Thus, a small noise is
necessary to reach a homochiral state. However, increasing the noise more does
not change the dynamics significantly. Remember that, while there is flocking at
smaller noises, at large noises orientational alignment breaks down, Thus, perhaps
surprisingly, flocking does not seem to speed up (or slow down) the transition to
homochirality. For a better idea of the statistics we show in Fig. 4.6b the probability
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Figure 4.6: Transition time for different noise values and division rates.

(a) The average time xτy in which the system evolves for a homochiral state as a function of
noise η for different cell division rates km. (b) The distribution P pτq of the transition time
τ found from recording τ for 1000 independent runs for three values of noise. (c) The same
distribution but now for three different division rates. (d) The mean (purple), standard
deviation (STD, red), and median (olive green) of the distribution P pτq for different values
of noise and for one division rate, km “ 5. Simulation parameters: kc “ 0, ρ “ 2, v0 “ 0.4,
m “ 2.
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distributions for the time for a few different values of noise. We find that for all
values of noise the distribution is peaked at small times but that that there is a
significant tail. Thus, there is large diversity in the run times. Furthermore, we find
a power-law behavior with xτy „ η´0.16p˘0.01q. However, since η “ 1 is the maximal
noise in our parametrization with orientations being randomly chosen in each time
step for this value, the the noise is restricted to the values η P r0, 1s, and thus it
is not possible to study if the apparent power-law behavior persists over more than
one order of magnitude. Thus, interestingly, a small amount of noise being present
speeds up the transition to homochirality significantly.

Next, we consider different values for the cell division rate km. Remember that
the rate km is defined relative to the death rate such that km ą 1 is required for a
growing cell population (greater division than death rate) and that for km ă 1 the
cells in a given system will eventually all die. Surprisingly, the value of the ratio is
rather irrelevant, with the mean length for km “ 2 and km “ 10 being very similar
even though in the former case the cells are dying at a rate five times higher, see
Fig. 4.6a. In particular, different rates show the same power law behavior. To
illustrate the similarity of the three different ratios we consider, we present in Fig.
4.6c the probability distribution for different rate ratios at a fixed noise. Indeed,
they are almost indistinguishable. We find that these probability distributions are
again strongly peaked at small times, but that there is a long tail with some runs
taking almost five times the average time to reach homochirality. To quantify the
probability distribution of the time to homochirality we present the mean, standard
deviation, and median for a fixed rate ratio km “ 5 for different noises. Note that the
results for km “ 2 and km “ 10 is almost identical. We find that all three quantities
have a similar magnitude and fall off at a similar rate, with the standard deviation
and mean curves overlapping while the mean is shifted by a constant factor with
respect to these curves, see Fig. 4.6d. All three curves follow the same power-law
behavior „ η´0.16p˘0.03q.

We now vary the two different speeds that are present in the system, namely the
speed of movement v0, entering through the Vicsek model, with which cells move
in space as well as the speed of the reactions, namely how many times we run the
Gillespie algorithm for between each time step ∆t of the Vicsek model, i.e., the
number of steps m. For both parameters we perform an analysis similar as the one
for the noise presented above. Varying the speed v0 we find that τ decreases with
increasing speed, see Fig. 4.7a. The decrease is fast for low values of speed and slower
for large values. The higher the speed the more peaked the distribution at small
times. Again, we find that standard deviation and median curves are very similar
but with the curve of the mean time xτy offset by a constant, such that all three
quantities show the same power law behavior, namely xτy „ σpτq „ v

´0.25p˘0.02q
0

(inset in Fig. 4.7a). A similar behavior is found when varying the number of steps
m. The higher the number of steps the faster a homochiral state is reached, see Fig.
4.7b. The most significant difference compared with the speed v0 is that the decay
is much steeper as τ „ m´0.64p˘0.02q, see Fig. 4.7b.

Finally, we consider the effect of density on the transition time. For each value of
density we again consider the different values of noise we have been studying before.
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Figure 4.7: Transition time for different speed and density

(a) The mean (blue), standard deviation (STD, orange), and median (green) of the dis-
tribution P pτq for different values of the speed v0 of the Vicsek model. The inset shows
the same data but in a log-log plot, with the red line indicating the power law decay of all
three quantities „ v

´1{4
0 . (b) The data as in panel (a) but when varying m, the number

of steps of the reactions performed during each step of the Vicsek model. Mean, standard
deviation, and median now decay as „ x´0.64. (c) The average time xτy as a function of the
density ρ. Each curve corresponds to a different values of noise η. Simulation parameters:
kc “ 0, km “ 5, ρ “ 2 (in panels (a) and (b)), v0 “ 0.4 (in panels (b) and (c)), m “ 2 (in
panels (a) and (c)).
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These two parameters, density and noise, are the crucial parameters when studying
the flocking transition in the Vicsek model. We find that as we increase the density,
the mean time increases slightly faster than linear for all values of η. Away from
the smallest noise value η “ 0.01, we do not find a significantly different behavior
when varying the noise at a fixed density, see Fig. 4.7c.

Lastly, we note that when increasing R, the mean time increases approximately
linearly with R, however the value of the noise becomes less important, with the
time being considerably less sensitive to changes in noise, as expected since the
alignment interaction radius is increased.

4.3 Discussion
We now deliver a more detailed discussion of some of our results. Jafarpour et
al. [231, 236] used Eqs. (4.1) to describe a model that can explain the transition
to homochirality in molecules. To account for spatially extended systems, they
included a reaction equation that described molecules moving to a different neigh-
boring box with a certain rate, thus molecules are effectively diffusive. Indeed the
authors showed that a system governed by these discrete reaction equations can be
described by the following continuous stochastic differential equation for the chiral
order parameter ω:

dω
dt “ ´

2V kckd
Nkm

ˆ

ω ´
1
2

˙

`D∇2ω `

c

2kd
N

ω p1´ ωqζptq , (4.5)

where N " 1 is the number of particles, V the volume of the system, D a diffusion
coefficient, and ζptq a Gaussian white noise of zero mean and unit variance. The
noise ζptq is independent of our noise ξptq included in the Vicsek model and is due
to the inherent noise of the reaction equations. To explain why the system always
reaches a homochiral state if kc vanishes, we first consider a system that is not
spatially extended, i.e., diffusion is irrelevant and the equation reduces to

dω
dt “

c

2kd
N

ω p1´ ωqζptq (4.6)

for kc “ 0. Note that this equation has two fix points, namely ω “ 0 and ω “ 1,
that are the states of homochirality. Furthermore the relevant term on the right-
hand side is coupled to the noise ζptq. Thus, the reason the system ends up in
the homochiral state is the presence of noise in the reactions and without it the
homochiral states would not be fix points. Hence, Jafarpour et al. speak of noise-
induced homochirality. The authors then show that including the diffusion term
does not change the picture, thus the system described by

dω
dt “ D∇2ω `

c

2kd
N

ω p1´ ωqζptq (4.7)

has fix points at the homochiral state, and the system will evolve to these states
in a finite time. We now adapt this argument to the extended model we studied.
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The reactions described in Eqs. (4.1) are identical, however, the spatial dynamics is
more complicated. Spatial dynamics is due to the Vicsek model, not simple diffusion.
Thus, the second term on the right-hand side of Eq. (4.7) is still valid for our system,
while the first has to be modified. A complete derivation of the continuous equations
of motion describing our system is beyond the scope of this study. However, our
observation of always finding a homochiral state if kc “ 0 can be explained as
follows. Instead of diffusive dynamics our particles follow the Vicsek model, that is,
they undergo persistent, anisotropic motion that is interrupted by rotational noise
and alignment interactions. In the limit of η Ñ 1 we recover the case of active
Brownian particles, which move isotropically through space. Thus, in this extreme
case one can define an effective diffusion coefficient such that the form of Eq. (4.7) is
unchanged, thus explaining why we still find the transition to homochirality. Away
from the extreme case η “ 1, the motion is no longer isotropic, thus the scalar factor
in Eq. (4.7) has to be replaced by a matrix describing the anisotropic motion and
alignment. However, this does not change the relevant structure of the equation and
a similar argument as before can be applied for why a homochiral state is always
reached in a finite amount of time.

4.4 Conclusion
We studied the Vicsek model coupled to a set of reaction equations that model cell
division, cell death, and an influx of cells from outside the system. We found that the
system is guaranteed to evolve to a homochiral state from an initially symmetrically
mixed state in finite time only if the system is closed in the sense that the reaction
rate kc vanishes. In the mixed state we find large fluctuations of the local order
parameter and the particle density around the mean value. In particular, we find
that particles of same chirality tend to be correlated more strongly in space than
particles of opposite chirality. In the case where the system evolves to a homochiral
state, we showed that the transition time has a fat-tail distribution with ratio of
mean and standard deviation being of order unity. Introducing a small amount
of noise in the spatial dynamics significantly decreases the mean transition time.
Lastly, we found that the time decays like a power law with the speed v0 of the
Vicsek model and the number of steps m of the reactions.

Furthermore, while the investigation of chirality and the question how homochi-
rality emerges was the motivation and starting point of this investigation, we note
that the model we investigated is more general. Since the chirality of the particles
does not enter the equations of motion, that is the equations of motion are the
same for left- and right-chiral particles, the model can be more generally considered
a model for the competition and spread of an arbitrary property in a population
of particles interacting through alignment interactions. On the other hand, there
is evidence that the chirality of cells influences their spatial dynamics in that the
left-chiral and right-chiral cells move differently in space [122, 138, 240, 243]. Thus,
a natural extension of the model above is to extend it to account for chirality-
dependent spatial dynamics. Furthermore, to compare the theoretical model dis-
cussed here with experiments, using cells is rather hard. Experiments using bacteria,
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some of which have been both successfully described using the Vicsek model and
shown to be chiral might thus be better suited to test some of the predictions made
above. Finally, an analytical theory of the model we simulated could be developed
along the lines of the model of Jafarpour et al. [231, 236]. A stochastic differen-
tial equation for the order parameter can be derived from the reaction rates. The
main difficulty of generalizing this approach to our model consists in including the
anisotropic, non-equilibrium spatial dynamics.




