
This is life: some thoughts on self-organized structure
formation in active liquids and biological systems
Hoffmann, L.A.

Citation
Hoffmann, L. A. (2023, June 29). This is life: some thoughts on self-
organized structure formation in active liquids and biological systems.
Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/3628032
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the
University of Leiden

Downloaded from: https://hdl.handle.net/1887/3628032
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3628032


CHAPTER 3

Chiral Active Liquid Crystal

Recent experiments on monolayers of spindle-like cells plated on adhesive stripe-
shaped domains have provided a convincing demonstration that certain types of
collective phenomena in epithelia are well described by active nematic hydrodynam-
ics. While recovering some of the hallmark predictions of this framework, however,
these experiments have also revealed a number of unexpected features that could
be ascribed to the existence of chirality over length scales larger than the typical
size of a cell. In this article we elaborate on the microscopic origin of chiral stresses
in nematic cell monolayers and investigate how chirality affects the motion of topo-
logical defects, as well as the collective motion in stripe-shaped domains. We find
that chirality introduces a characteristic asymmetry in the collective cellular flow,
from which the ratio between chiral and non-chiral active stresses can be inferred
by particle-image-velocimetry measurements. Furthermore, we find that chirality
changes the nature of the spontaneous flow transition under confinement and that,
for specific anchoring conditions, the latter has the structure of an imperfect pitch-
fork bifurcation.

L. A. Hoffmann, K. Schakenraad, R. M. H. Merks, and L. Giomi. Chiral stresses in
nematic cell monolayers. Soft Matter 16, 764 (2020). DOI: 10.1039/C9SM01851D.

If tensor analysis is good enough for turbulence, it ought to be good enough for
history. There ought to be nodes, critical points . . . there ought to be
super-derivatives of the crowded and insatiate flow that can be set equal to zero
and these critical points found. . . . 1904 was one of them – 1904 was when
Admiral Rozhdestvenski sailed his fleet halfway around the world to relieve
Port Arthur.

T. Pynchon. Gravity’s Rainbow.

Work of art arises from a background of other works and through association
with them. The form of a work of art is defined by its relation to other works
of art existing prior to it. [. . . ] Purpose of new form is not to express new
content but to change an old form which has lost its aesthetic quality.

V. Shklovsky. Theory of Prose.

https://doi.org/10.1039/C9SM01851D
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3.1 Introduction
Multicellular systems of prokaryotes, such as suspensions of planktonic bacteria,
have historically played a pivotal role in the development of the hydrodynamics of
active fluids, since the early work of Batchelor on the stress distribution in suspen-
sions of microswimmers [207]. By contrast, multicellular systems of eukaryotes have
entered only recently into the realm of active hydrodynamics, following a number of
inspiring experimental works on epithelial and mesenchymal cell layers and tissues
(see e.g. Refs. [120–123, 139, 208, 209]). Among these, monolayers of clotured
spindle-like cells, such as NIH 3T3 mouse embryo fibroblasts [121], murine neural
progenitor cells (NPCs) [139], human bronchial epithelial cells (HBEC) [123], Retinal
Pigment Epithelial (RPE1) cells [122] and C2C12 mouse myoblasts [122] represent
an especially promising class of model systems, because of their connection with
active nematic liquid crystals (see e.g. Ref. [49]).

First identified as a broken symmetry in certain types of cell cultures [210], and
later exploited to decipher their static [211] and dynamical properties [120–123, 139,
208], nematic order has surged as one of the central themes in collective cell dynam-
ics. In layers of spindle-like cells, where the local orientation can be unambiguously
identified, nematic order is marked by the presence of ˘1{2 disclinations [121, 139],
i.e. point-like singularities about which the average cellular orientation rotates by
˘π. Consistently with the predictions of active nematic hydrodynamics [67, 75],
these defects self-propel and pairwise annihilate until cell crowding freezes the sys-
tem into a jammed configuration. Before dynamical arrest, the collective motion
of the cells gives rise to a decaying turbulent flow at low Reynolds number, whose
statistics, spatial organization and spectral structure are in exceptional agreement
with the hydrodynamic picture [77] (but see Ref. [212] for an alternative theoretical
picture based on glassy dynamics).

Another remarkable demonstration of active hydrodynamic behavior in eukary-
otic cell layers has been recently reported by Duclos et al., upon confining spindle-like
RPE1 and C2C12 cells within adhesive stripe-shaped domains [122]. Depending on
the width of the stripe the system was found either in a stationary state, with the
cells parallel to the longitudinal direction of the confining region, or in a collectively
flowing state characterized by a spontaneous tilt of the cells toward the center of
the stripe. The latter picture, often referred to as spontaneous flow transition, had
been anticipated for over a decade by Voituriez et al. [26] and represents one of
the hallmarks of active liquid crystals. While confirming this seminal prediction,
however, Duclos et al. have also highlighted a number of unexpected features that
could be ascribed to the existence of chirality over length scales larger than the
typical size of a cell.

The notion of chirality is not new in active matter and has been theoretically
explored well before the interest around collective cell dynamics in eukaryotes had
started to blossom. Fürthauer et al., for instance, demonstrated that microscopic
torque dipoles, such as those arising from rotating molecular motors or flagella, give
rise to antisymmetric stresses and angular momentum fluxes, which, in turn, drive
rotating flows and other chiral patterns on the large scale [213, 214]. More recently,
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Banerjee et al. showed that rotational motion at the microscopic scale further
enriches the spectrum of hydrodynamical behaviors or chiral active fluids by giving
rise to non-dissipative “odd” viscosity [215], analogous to that found in quantum
Hall fluids [216]. Whereas undoubtedly interesting and relevant for a broad class
of biological and synthetic systems, these mechanisms appear however unsuited to
account for the chirality observed in the experiments by Duclos et al., because of
the manifest lack of rotational motion at the scale of individual cells.

In this article, we show that macroscopic chirality can arise in nematic cell layers
as a consequence of a misalignment between the cell’s local orientation and active
forces, even in the absence of microscopic rotational motion (Sec. 3.2). Collectively,
this gives rise to a chiral and yet symmetric stress tensor that, in two dimensions,
complies with the symmetries of the nematic phase. Next, we explore the effect of
such a chiral stress on the active flow generated by ˘1{2 disclinations and identify
a characteristic signature of chirality from which the ratio between chiral and non-
chiral active stresses can be experimentally estimated (Sec. 3.3). Finally, following
Duclos et al. [122], we investigate the hydrodynamic stability of a chiral nematic cell
monolayer confined on adhesive stripes and subject to various boundary conditions
and classify all possible scenarios arising from the interplay between the geometry
of the confining region, the extensile/contractile stresses and chirality (Sec. 3.4).

3.2 Microscopic Picture of Stress Tensor
Let us consider a two-dimensional volume element of the monolayer and let p be
the nematic director representing the average direction of the enclosed cells (Fig.
3.1a). Any stress tensor constructed must be invariant under the transformation
p Ñ ´p to comply with the nematic symmetry. The most generic form of such a
stress tensor associated with the volume element can then be expressed in the basis
of the nematic director p and its normal vector pK, namely:

σa “ σ‖pp` σKp
KpK ` τpppK ` pKpq . (3.1)

Here, σ‖ and σK represent the stresses experienced by the volume element in the
direction parallel and perpendicular to p, whereas τ is the shear stress. Note that,
even though the stress tensor is by construction invariant under p Ñ ´p, it is
nevertheless chiral for any non-zero τ value, as the stress distribution depicted in
Fig. 3.1a does not coincide with its mirror image. Furthermore, using the identity
pKi p

K
j “ δij ´ pipj allows us to cast the active stress as the sum of an isotropic

contribution, equivalent to an active pressure, a deviatoric term, common to all
active nematic liquid crystals regardless of their chirality [54, 55], and a chiral term,
namely:

σa “ ´PaI ` α

ˆ

pp´
1
2I

˙

` τpppK ` pKpq; , (3.2)

where:
Pa “ ´

σ‖ ` σK

2 , α “ σ‖ ´ σK . (3.3)

are the active pressure, and activity, respectively.
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Figure 3.1: Chiral active stress.

Schematic representation of stresses and forces in cellular nematic monolayers. (a) A
volume element whose faces are conventionally oriented in the direction of the nematic
director p and its normal vector pK. In the most general setting, the volume element is
subject to three independent stresses: the two normal stresses σ‖ and σK and the shear
stress τ . (b) The chiral stress τ arises at the microscopic level when the force exerted by
an individual cell is neither parallel nor perpendicular to the cell axis.

Microscopically, the chiral stress τ might originate from the fact that the force
exerted by an individual cell on its environment is tilted with respect to the cells
orientation. To illustrate this concept let us consider an individual cell c whose major
and minor axes are parallel to the unit vectors νc and νKc (Fig. 3.1b). Following Lau
and Lubensky [217] (But see also already [Simah and Ramaswamy, PRL, 2002]), one
can express the stress tensor as σa “

ř

c dcδpr ´ rcq, where the index c runs over
all the cells in the system, rc is the position of the c´th cell, and

dc “
1
2

¿

Σc

dA pfcRc `Rcfcq , (3.4)

is a force-dipole tensor. In Eq. (3.4), Rc is the distance between the cell’s surface
and center of mass, ´dAfc the force exerted by the cell’s area element dA on
the surrounding medium and the integral is calculated over the surface Σc of the
c´th cell. A complete derivation can be found in Ref. [217]. For an effectively
two-dimensional system, such as the one considered here, dA “ d` h, with h the
thickness of the cell along the z´direction, here assumed to be uniform throughout
the sample, and ` the one-dimensional arc-length.

Now, the magnitude of the active stresses Pa, α, and τ depend exclusively upon
the distribution of the forces exerted by the cells along their contour. The simplest
approximation of the force density field fc consists then of a dipole of the form:

fc “ FcδpRc ´ aνcq ´ FcδpRc ` aνcq , (3.5)

where a is the cell’s major semi-axis (Fig. 3.1b and Ref. [55]). To make progress,
we express the cellular forces in the tνc,νKc u basis, namely Fc “ F‖νc`FKν

K
c , with
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F‖ and FK the longitudinal and transverse components of the force exerted by the
c´th cell, here assumed for simplicity uniform throughout the system. Replacing
this in Eq. (3.5) and coarse-graining σa over the length scale of a volume element
Ωprq centered at r (Fig. 3.1a) yields:

σa “ aρ
“

2F‖xνcνcy ` FKxνcν
K
c ` ν

K
c νcy

‰

, (3.6)

where x¨ ¨ ¨ y is the spatial average within Ωprq and ρ is the local cell number density.
Finally, calculating the averages and comparing with Eq. (3.2) readily gives:

Pa “ ´aρF‖ , α “ 2aρSF‖ , τ “ aρSFK , (3.7)

where S “ 2x|νc ¨ p|2y ´ 1 is the local nematic order parameter in two dimensions.
As expected, in the absence of nematic order (i.e. S “ 0), the active forces exerted
by the cells result exclusively in an effective pressure, while both the deviatoric and
chiral stress vanishes identically. When nematic order is not uniform throughout
the system, hence S varies in space, the active stress tensor of Eq. (3.2) is more
conveniently expressed in terms of tensor order parameter Qij “ Sppipj ´ δij{2q,
namely:

σaij “ ´Paδij ` α0Qij ´ 2τ0εikQkj , (3.8)
where α0 “ 2aρF‖ and τ0 “ aρFK are constants independent on the nematic order
parameter S and εij is the two-dimensional Levi-Civita tensor (i.e. εxx “ εyy “ 0
and εxy “ ´εyx “ 1).

Some comments are in order. Although Eq. (3.5) is only a rudimental approxi-
mation of the force field generated by an irregularly-shaped cell, considering a more
involved force distribution does not change the qualitative picture with respect to
the emergence of chiral stresses, as long as this is asymmetric with respect to the
cell’s longitudinal direction. To illustrate this concept, we discuss in Appendix
3.A the case of a quadrupolar force distribution. Whereas the exact origin of this
asymmetry is beyond the scope of the present article, the biophysical literature is
not scarce of examples where chirality can be detected at the single-cell level. For
instance, various mammalian cells, when plated on micropatterns, can break the
left-right symmetry by suitably positioning their internal organelles with respect to
the cell body [218]. Analogously, chirality can emerge at the scale of the entire cell
from the self-organization of the actin cytoskeleton [219, 220]. The broken symmetry
can furthermore propagate over the mesoscopic scale and bias the cell’s collective
migratory motion [221].

3.3 Defect Motion
The motion of ˘1{2 disclinations has become a hallmark of active nematic liquid
crystals. As it was theoretically predicted [67, 75] and experimentally verified in
both microtubules-kinesin [132, 134, 222, 223] and actin-myosin suspensions [224],
˘1{2 disclinations in active nematics drive a flow, whose structure and speed is
strictly related to the geometry of the defect. For `1{2 disclinations, in particular,
this flow has a Stokeslet structure that results in a propulsion of the defect in
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the direction of its symmetry axes p or ´p depending on whether the system is
contractile or extensile (Fig. 3.2 and Ref. [68]). Exceptionally, the same mechanism
has been experimentally identified in various types of cell cultures, including spindle-
shaped NIH 3T3 mouse embryo fibroblasts [121], murine neural progenitor cells
(NPCs) [139], Madin Darby canine kidney cells (MDCKs) [120] and human bronchial
epithelial cell (HBEC) [123]. Unlike in suspensions of rod-like cytoskeletal filaments,
however, the direction of motion of `1{2 disclinations is not necessarily parallel to
˘p and also the reconstructed flow around the defects is less symmetric than that
found in cytoskeletal suspensions. Whereas it is not unlikely for such a feature
to originate from statistical errors, here we demonstrate that chiral active stresses
affect the dynamics of `1{2 defects precisely by rotating their direction of motion
with respect to p. In fact, the angle between p and the direction of motion of the
defects could be used to indirectly measure the relative magnitude of the chiral stress
τ compared to the deviatoric stress α. This phenomenon shares some similarities
with recent results by Maitra and Lenz about the dynamics of `1{2 disclinations in
rotating active nematics [225].

An analytical approximation of the flow driven by the active stresses in the
surrounding of a disclination can be obtained by solving the incompressible Stokes
equation with a body force resulting from the active stress associated with an iso-
lated ˘1{2 defect. Namely:

η∇2v ` fa
˘ “ ∇P , ∇ ¨ v “ 0 , (3.9)

where η is the shear viscosity of the tissue, here assumed isotropic for simplicity,
and fa

˘ “ ∇ ¨σa is the body force arising from spatial variations of the active stress
of Eq. (3.2) in the presence of a ˘1{2 defect (see also Chapter 1). This approach,
introduced in Ref. [67], does not account for feedback of the flow on the orientation
of the director and hence the structure of the defect. Nevertheless it provides a
simple and faithful approximation of the defective flow as well as an estimate of
the defect velocity. A generic solution of Eq. (3.9) can be expressed in the form
v “ v˘ ` v0, where v0 is a solution of the homogeneous Stokes equation and is
dictated by the boundary conditions and v˘ is given by:

v˘prq “

ż

dA1Gpr ´ r1q ¨ fa
˘pr

1q , (3.10)

where G is the two-dimensional Oseen tensor given by:

Gprq “
1

4πη

„ˆ

log L
|r|
´ 1

˙

I `
rr

|r|2



, (3.11)

with L a constant set by the boundary conditions. Analogously, taking the diver-
gence of Eq. (3.9) allows to express the pressure field as the solution of the following
Poisson equation:

∇2P˘ ´∇ ¨ fa
˘ “ 0 . (3.12)

Now, in the presence of a disclination of strength s “ ˘1{2 located at the origin of
the px, yq´plane and oriented in the direction t “ pcosψ, sinψq, the nematic director



3.3 Defect Motion

3

93

Figure 3.2: Topological defects in presence of chiral active stress.

Pressure (a,b) and velocity (c,d) fields in proximity of ˘1{2 defects obtained from the
analytical solutions of Eq. (3.9) for an extensile chiral active nematic with α “ 4τ ă 0.
The configuration of the director is indicated by white lines for the case of (a) `1{2 and
(b) ´1{2 defects. For `1{2 defects, the velocity field at the core, thus the direction of
motion of the defect, is tilted by an angle θtilt “ arctanp1{2q « 27˝ with respect to the
defect polarity direction t “ x̂. For both chiral and achiral `1{2 defects, the pressure is
anisotropic and larger toward the direction of motion of the defects.

p “ pcos θ, sin θq has local orientation θ “ sϕ` p1´ sqψ, with ϕ “ arctanpy{xq the
polar angle [68]. The body force fa

˘ is then readily found in the form:

fa
˘ “

1
2r

$

&

%

αt` 2τtK , for s “ `1{2 ,

´pα cos 2ϕ` 2τ sin 2ϕqt` pα sin 2ϕ´ 2τ cos 2ϕqtK , for s “ ´1{2 ,
(3.13)

where tK “ p´ty, txq and r is the distance form the defect core. The effect of chirality
is most dramatic for `1{2 disclinations. In achiral active nematics, τ “ 0 and the
active force fa

` is purely longitudinal. For non-zero τ , fa
` acquires a transverse

component resulting in a tilt in the direction of motion of the defect by an angle

θtilt “ arctan
ˆ

2τ
α

˙

(3.14)

with respect to the orientation t (Fig. 3.2). As anticipated, Eq. (3.14) can in prin-
ciple be used in combination with experimental reconstruction of defect trajectories
in order to estimate the relative magnitude of the chiral and deviatoric stresses in
nematic cell monolayers.

To calculate the flow velocity in proximity of a ˘1{2 defect, we set, without
loss of generality, ψ “ 0, thus t “ x̂ and tK “ ŷ and we assume the defect at
the center of a circular domain of radius R. The exact velocity of the flow at the
boundary of such a domain, hence the homogeneous solution v0, is not relevant for
the purpose of this discussion. In practice, this will be determined by the chemistry
of the substrate and the possible presence of other topological defects in the same
region [121]. Under these assumptions, and carrying out algebraic manipulations as
those in Ref. [67], the flow velocity caused by a ˘1{2 defect can be found from Eqs.
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(3.10), (3.11) and (3.13) in the form:

v` “
α

12η tr3pR´ rq ` r cos 2ϕsx̂` r sin 2ϕ ŷu

`
τ

6η tr sin 2ϕ x̂` r3pR´ rq ´ r cos 2ϕsŷu , (3.15a)

v´ “
αr

12ηR

"„ˆ

3
4r ´R

˙

cos 2ϕ´ R

5 cos 4ϕ


x̂

´

„ˆ

3
4r ´R

˙

sin 2ϕ` R

5 sin 4ϕ


ŷ

*

(3.15b)

`
τr

6ηR

"„ˆ

3
4r ´R

˙

sin 2ϕ´ R

5 sin 4ϕ


x̂

`

„ˆ

3
4r ´R

˙

cos 2ϕ` R

5 cos 4ϕ


ŷ

*

. (3.15c)

These flows are illustrated in Fig. 3.2c,d for a specific choice of the angle θtilt.
The corresponding pressure field is readily found from Eq. (3.12) with ∇ ¨ fa

` “

´pα cosϕ` 2τ sinϕq{p2r2q and ∇ ¨ fa
´ “ 3pα cos 3ϕ` 2τ sin 3ϕq{p2r2q. This yields:

P` “ P
p0q
` `

1
2 pα cosϕ` 2τ sinϕq , (3.16a)

P´ “ P
p0q
´ ´

1
6 pα cos 3ϕ` 2τ sin 3ϕq . (3.16b)

where P p0q˘ are harmonic functions depending on the boundary conditions. Inter-
estingly, the pressure field given by Eqs. (3.16) is independent on the distance
from the defect core, but varies with the angle ϕ and, depending on the sign of
the stresses α and τ , is maximal or minimal at specific directions relatively to the
polarity vector t. For instance, for extensile systems (i.e. α ă 0) with negligible
chirality (i.e. τ « 0), Eq. (3.16a) predicts a pressure maximum in the ´t direction,
thus toward the “head” of the comet-like structure characteristic of `1{2 defects.
Despite our analysis revolving around incompressible systems, we can expect this
trend to persist in the presence of small spatial variations of the density field ρ.
In this case, and under the assumption that ρ „ P , we expect a higher density of
extensile (contractile) cells in the front (back) of `1{2 defects, consistent with the
experimental observation of Kawaguchi et al. [139]. Finally, the lack of spatial de-
pendence in Eqs. (3.16) originates for the specific parametrization of the orientation
field θ in proximity of the defects, i.e. θpϕq “ ˘ϕ{2. In a more realistic setting,
θpr, ϕq “ ˘ϕ{2 ` θfarpr, ϕq, where θfar is a non-singular function that determines
the far-field configuration of the nematic director and vanishes at the defect core.
Accounting for the far-field configuration of the director results into a dependence
of the pressure on the distance from the defect core.

In summary, the presence of a symmetric chiral active stress, such as that em-
bodied by the parameter τ , affects the flow generated by ˘1{2 disclinations by
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stretching and rotating the velocity field in the surrounding of the defects (Fig.
3.2c,d). Most pr ominently, this results in a tilt in the direction of motion of `1{2
defects: i.e. vself “ v`pr “ 0q “ R{p4ηqpαt` 2τtKq. Thus `1{2 defects self-propel
at an angle θtilt with respect to their orientation t [see Eq. (3.14)]. Such an angle
could in principle be measured in experiments on two-dimensional cell cultures, thus
providing a direct measurement of the relative magnitude of the chiral stress. The
same behavior has been reported in the case of actively rotating `1{2 defects, in
the limit of vanishing angular velocity [225].

3.4 Spontaneous Flow on Adhesive Stripes
In this section we revisit a classic problem of the hydrodynamic stability and sponta-
neous flows of active nematics in a quasi-one-dimensional channel (Fig. 3.3). First
discussed in a seminal paper by Voituriez et al. [26], later elaborated by many
others [27, 28, 226] and recently observed in experiments on cell monolayers [122]
and suspensions of microtubules and kinesin [135], this phenomenon consists of a
continuous transition between a stationary and uniformly oriented configuration to
a state characterized by a spontaneous distortion of the nematic director coupled
to an internally driven shear flow. The transition, in many aspects similar to the
Fréedericksz transition in passive liquid crystals [227], results as a consequence of
two different mechanisms. First, a distortion of the nematic director drives a shear
flow as illustrated by Eq. (3.9) for the time-independent case; second, the nematic
director rotates in a shear flow. As a consequence, when the hydrodynamic torque
driven by the active stresses outweighs the elastic restoring torque, the uniformly
oriented configuration becomes unstable to splay or bending deformations, depend-
ing on the sign of the active stress α and other material parameters. Roughly
speaking, this occurs when the active length scale `a “

a

κF{|α|, defined by the
ratio between the passive and active torques, with κF the Frank elastic constant,
becomes comparable to the width L of the channel [77].

In the following, we extend and generalize the theoretical analysis by Duclos et al.
[122] by considering various experimentally relevant scenario in terms of boundary
anchoring and flow. The hydrodynamic equations governing the dynamics of an
incompressible (i.e. ∇ ¨ v “ 0) active nematic liquid crystal are given by [26–28]:

Dpi
Dt

“ pδij ´ pipjq

ˆ

λujkpk ´ ωjkpk `
1
Γ Mj

˙

, (3.17a)

Dvi
Dt

“ Bjp´Pδij ` 2ηuij ` σelij ` σaijq , (3.17b)

where D{Dt “ Bt ` v ¨ ∇ is the material derivative, uij “ pBivj ` Bjviq{2 and
ωij “ pBivj ´ Bjviq{2 are respectively the strain-rate and vorticity tensor and M “

´δFF{δp is the so-called molecular field, governing the relaxational dynamics of
the nematic director, with FF the Frank free energy. See also Chapter 1 for an
introduction. In the one-elastic-constant approximation, the latter is simply given
by FF “ κF{2

ş

dA |∇p|2 and M “ κF∇2p. The material parameters λ and Γ are
respectively the flow-alignment parameter, controlling the tendency of the nematic
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Figure 3.3: Sketch of channel.

Schematic representation of the channel of infinite length in x-direction and width L in
y-direction.

director to rotate in a shear flow, and the rotational viscosity of the nematic fluid.
In Eq. (3.17b), the pressure P includes the active pressure Pa given in Eqs. (3.2)
and (3.7), but, due to incompressibility, is not an independent field and σel is the
elastic stress resulting from the departure of the director configuration from the
ground state of the Frank free energy. Although it does affect the onset of the
spontaneous flow instability, the latter is often unimportant for the phenomenology
of active nematics and will be neglected here for simplicity.

We solve Eqs. (3.17) in a rectangular channel which is infinitely long in x´direction
and has width L in y´direction (Fig. 3.3). Because the channel is invariant for
translations along the longitudinal direction, we assume for simplicity p and v to be
independent of x, both while stationary and spontaneously flowing. Furthermore,
incompressibility and mass conservation demand the y´component of the velocity
to vanish identically, i.e. vy “ 0. Thus taking p “ pcos θ, sin θq and v “ pvx, 0q, the
Eqs. (3.17) reduce to:

Btθ “
κF

Γ B
2
yθ ´

Byvx
2 p1´ λ cos 2θq , (3.18a)

Btvx “ By

´

ηByvx `
α

2 sin 2θ ` τ cos 2θ
¯

, (3.18b)

whereas from the y´component of Eq. (3.17b) we obtain the following expression
for the pressure field:

P “ P0 ´
α

2 cos 2θ ` τ sin 2θ , (3.19)

with P0 a constant. Next, we look for stationary solutions of Eqs. (3.18) subject to
different boundary conditions in terms of orientation of the nematic director at the
boundary and whether or not the cells are allowed to slide along the channel walls,
thus: θ “ θpyq, vx “ vxpyq. In order for the fluid to be stationary, the shear stress
must be uniform across the channel. Thus, from Eq. (3.18b):

σxy “ ηByvx `
α

2 sin 2θ ` τ cos 2θ “ const . (3.20)

Solving Eq. (3.20) with respect to Byvx and substituting this into Eq. (3.18b) yields
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a single homogeneous equation for θ, namely:

κF

Γ B
2
yθ “

1
2η

´

σxy ´
α

2 sin 2θ ´ τ cos 2θ
¯

p1´ λ cos 2θq . (3.21)

Before analyzing specific cases in detail, we consider the generic situation in which
the nematic director is anchored to the channel walls at an arbitrary angle θ0 ‰
arccosp1{λq{2, thus:

θp0q “ θpLq “ θ0 . (3.22)

In the following, we will separately analyze the scenarios in which the cells are
stationary at the boundary of the channel (Sec. 3.4.1) and when, on the other
hand, they are able to slide while keeping their orientation fixed (Sec. 3.4.2).

Our analysis is complemented by numerical solutions of Eqs. (3.18) with various
boundary conditions. For this purpose we rescale time by the viscous time scale
τν “ ρL2{η, length by the channel width L and stress by the viscous stress scale
σν “ ρL2{τ2

ν , i.e. t Ñ t{τν , y Ñ y{L, σ Ñ σ{σν . All the other quantities in Figs.
3.4 and 3.5 are rescaled accordingly.

3.4.1 No-slip boundary conditions
In this section, we consider the case in which the cells are unable to slide along
the boundary of the channel, i.e. vxp0q “ vxpLq “ 0, which, in turn, experience
a non-vanishing stress σxy ‰ 0 resulting from the cellular forces. In this case,
θpyq “ θ0 is always a trivial solution of Eq. (3.21) with the boundary condition
given by Eq. (3.22), and the monolayer admits a stationary and uniformly aligned
configuration. Because of the internal stresses, however, such a uniform state can
become unstable with respect to splay or bending deformations for sufficiently large
active stresses or channel widths. To illustrate this point, we take θpyq “ θ0`δθpyq,
with δθp0q “ δθpLq “ 0, and linearize Eq. (3.21) about δθ “ 0. This yields:

B2
yδθ ` q

2δθ “ 0 , (3.23)

where we have introduced the constant:

q2 “
Γ
ηκF

”

p1´ λ cos 2θ0q
´α

2 cos 2θ0 ´ τ sin 2θ0

¯

´ λ sin 2θ0

´

σxy ´
α

2 sin 2θ0 ´ τ cos 2θ0

¯ ı

. (3.24)

The solution of Eq. (3.23) is readily found to be:

δθ “ C sinpqyq , qL “ nπ , (3.25)

with a constant C and n P Z an arbitrary integer. By virtue of Eq. (3.20), the
corresponding velocity field is given by:

ηByvx “ δθ p2τ sin 2θ0 ´ α cos 2θ0q . (3.26)
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whose solution with no-slip boundary conditions is given by:

vx “
C

qη
p2τ sin 2θ0 ´ α cos 2θ0qp1´ cos qyq , qL “ 2mπ , (3.27)

with m P Z another arbitrary integer. Upon comparing Eqs. (3.25) and (3.27) we
find that the first mode to be excited is pn,mq “ p2, 1q, thus the trivial solution
θpyq “ θ0 becomes unstable when q “ qc “ 2π{L or, equivalently, when L “ Lc “
2π{q. To be more specific, we consider, in the following, two practically relevant
cases, where θ0 “ 0 (parallel anchoring) and θ0 “ π{2 (homeotropic anchoring).

Parallel anchoring
If the nematic director is parallel to the channel walls θ0 “ 0, thus:

q2 “ q2
‖ “

αΓp1´ λq
2ηκF

. (3.28)

As in non-chiral active nematics, the instability is triggered by splay deformations
(i.e. transverse to the nematic director) and uniquely depends on the non-chiral
active stress α. Furthermore, as in non-chiral active nematics [67], such a splay
instability affects flow-aligning systems (i.e. λ ą 1) in the presence of extensile
active stresses (i.e. α ă 0), and flow-tumbling systems (i.e. λ ă 1) in the presence
of contractile active stresses (i.e. α ą 0). A critical α value is readily found in the
form: αc “ 8π2ηκF{rΓL2p1´ λqs.

At the onset of the transition, the constant C can be calculated upon expanding
Eq. (3.21) up to the third order in δθ, Then, using the solution of the linearized
equation yields a cubic equation in C. Solving the latter gives (see Appendix 3.B):

δθ « ˘

d

ˆ

L

Lc
´ 1

˙„

3
4` 3{pλ´ 1q



sin 2πy
L
,

vx « ˘
α

ηq‖

d

ˆ

L

Lc
´ 1

˙„

3
4` 3{pλ´ 1q

ˆ

cos 2πy
L
´ 1

˙

.

The spontaneous flow instability consists, therefore, of a standard pitchfork bifur-
cation whose relevant fields, θ and vx, scale like pL ´ Lcq

1{2 at criticality, see Fig
3.4a. Despite the fact that the chiral stress τ does not affect the instability of the
stationary state, it leaves a clear signature on the post-transitional behavior of the
flowing monolayers. This can be seen in Fig. 3.5a, showing numerical solutions of
Eqs. (3.18) in the flowing state for various α and τ values. The most prominent ef-
fect of chirality, in this case, is evidently to render both the distortion of the nematic
director and the associated flow asymmetric with respect to the channel centerline.

Homeotropic anchoring
The case in which the nematic director is perpendicularly anchored to the channel
walls, θ0 “ π{2, yields:

q2 “ q2
K “ ´

αΓp1` λq
2ηκF

. (3.29)
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(a) (b)

Figure 3.4: Bifurcation diagrams for spontaneous flow transition.

Bifurcation diagram of the spontaneous flow transition obtained from numerical (dots)
and analytical (lines) solutions of Eqs. (3.18) for κF{Γ “ L “ 1, λ “ ´0.5 and various τ
values. (a) No-slip boundary conditions and parallel anchoring (see Sec. 3.4.1). The chiral
stress τ does not influence the critical α value, but weakly affect the post-transitional
configuration of the nematic director. (b) Stress-free boundary conditions and special
boundary anchoring θp0q “ θpLq “ ´θtilt{2 (see Sec. 3.4.2). The chiral active stresses,
embodied by the parameter τ , explicitly break the clock-counterclockwise symmetry of the
lowest free-energy configuration rendering the pitchfork bifurcation “imperfect”. In this
case, only one of the two branches of the bifurcation diagram is connected to the trivial
solution, which may then be the only one observed experimentally.

In this case the instability is triggered by bending deformations (i.e. parallel to the
nematic director). In contrast with the scenario of Sec. 3.4.1, flow-aligning sys-
tems are unstable in the presence of extensile active stresses, whereas strongly flow-
tumbling systems (i.e. λ ă ´1), are unstable in the presence of contractile active
stresses. The critical α value is readily found in the form: αc “ ´8π2ηκF{rΓL2p1`
λqs.

To conclude this section, we observe that for both parallel and homeotropic
anchoring, the spontaneous flow instability crucially relies on the flow-alignment
behavior of the system, governed by the phenomenological parameter λ. As for
molecular liquid crystals, where λ depends upon the molecules shape and interac-
tions, we expect the flow-alignment parameter to be affected by the cellular shape,
which in turn is not fixed, and by the passive and active processes underlying the
cell-cell and cell-substrate interactions.

3.4.2 Stress-free boundary conditions
In this subsection we consider the scenario in which the cells are allowed to slide
along the boundary, while keeping a fixed orientation θ0 with respect to the channel
walls. As in the adhesive stripes used in Ref. [122], the channel walls do not comprise
a real physical barrier, but represent instead the interface between two regions of
the substrate with different coating. As the walls now do not exert any force on the
cells σxyp0q “ σxypLq “ 0. Mechanical equilibrium [i.e. Eq. (3.20)] thus implies
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(a) (b) (c)

Figure 3.5: Angle and velocity for spontaneous flow transition.

Numerical solutions of Eqs. (3.18) in the dimensionless quantities defined above and for
κF{Γ “ 1, λ “ ´0.5 as well as different values of τ and α for three sets of boundary
conditions. (a) and (b) are numerical solutions for the Eqs. (3.18) with parallel anchoring
as well as no-slip boundary conditions [panel (a) and analyzed analytically in Sec. 3.4.1]
and stress-free boundary conditions [panel (b) and Sec. 3.4.2], respectively. (c) Numerical
solutions for stress-free walls and the stationary solution θ0 “ ´θtilt{2 “ ´ arctanp2τ{αq{2
imposed at the boundary, see Sec. 3.4.2.

σxy “ 0 everywhere.
The most striking difference with respect to the case discussed in Sec. 3.4.1, as

well as the most prominent consequence of the chiral stress τ , is that the stationary
and uniformly aligned configuration (i.e. θ “ θ0 and vx “ 0) is not a trivial solution
of Eq. (3.21) for non-vanishing α and τ values, unless the chiral and non-chiral
active stresses cancel each other identically. Before considering this latter case (see
Sec. 3.4.2), we find approximated expressions for the local orientation θ and the
velocity vx in the limits in which the active stresses are either very small or very
large.

For very large active stresses, the active terms in Eq. (3.21) overweight the
elastic term on the left hand side. As a consequence, the equilibrium configuration
of the nematic monolayer consists of a region in the bulk of the channel where the
cells have uniform orientation θ “ ´θtilt{2 “ ´ arctanp2τ{αq{2 and two boundary
layers, whose size is roughly ξbl „

a

κF{pΓσ0q, with σ0 “ pα{2q sin 2θ0 ` τ cos 2θ0,
where the director interpolates between the bulk and boundary orientation (see Fig.
3.5b). This phenomenon closely resembles flow-alignment in nematics (see e.g. Ref.
[3]) with ´θtilt{2 playing the role of the Leslie angle θL “ arccosp1{λq{2. Whereas
passive flow-alignment, however, requires λ ą 1 (e.g. flow-aligning nematics), such
an active flow-alignment occurs at any finite value of α and τ , provided the elastic
boundary layer is sufficiently small to have a clear distinction between bulk and
boundary alignment.

For small α and τ values, we can postulate that the nematic director will depart



3.4 Spontaneous Flow on Adhesive Stripes

3

101

only slightly from its orientation at the boundary. Thus, taking again θpyq “ θ0 `
δθpyq and linearizing Eq. (3.21) around δθ “ 0, we obtain:

B2
yδθ ` q

2pδθ ` δθ0q “ 0 , (3.30)

with q2 given, as before, by Eq. (3.24) and:

q2δθ0 “
Γ

2ηκF
p1´ λ cos 2θ0q

´α

2 sin 2θ0 ` τ cos 2θ0

¯

. (3.31)

For a general anchoring angle θ0, a solution of Eq. (3.30) with boundary conditions
δθp0q “ δθpLq “ 0 is given by:

δθ “ δθ0

ˆ

cos qy ` sin qy tan qL2 ´ 1
˙

. (3.32)

The associated velocity field can then be found from a direct integration of the
linearized equation:

ηByvx ` pα cos 2θ0 ´ 2τ sin 2θ0q δ `
α

2 sin 2θ0 ` τ cos 2θ0 “ 0 . (3.33)

The lack of a boundary condition for Eq. (3.33) can be compensated with a global
constraint on the total momentum, namely

şL

0 dy vx “ 0.
In the following, we provide explicit approximated expression for the velocity field

in the special cases where θ0 “ 0 (parallel anchoring) and θ0 “ π{2. Furthermore,
we will investigate the stability of the trivial solution of Eq. (3.21) obtained when
θ0 is such that the chiral and non-chiral active stresses cancel each other identically.

Parallel anchoring
For θ0 “ 0 Eqs. (3.28) and (3.31) yield:

δθ0 “
τ

α
. (3.34)

The corresponding velocity field is then readily obtained by integrating Eq. (3.33).
This gives:

vx « ´
τ sin q‖y

q‖η
`
τ cos q‖y tan q‖L

2
q‖η

, (3.35)

where the wave number q‖ is that given in Eq. (3.28). Numerical solutions for this
case are displayed in Fig. 3.5b for various α and τ values.

We stress that, whereas the flowing configurations resulting from the instability
of the stationary state are left-right and clock-counterclockwise symmetric (i.e. the
cells are equally likely to flow toward the negative or positive x´direction and,
correspondingly, to tilt clock- or counterclockwise, see Sec. 3.4.1), in this case the
direction of the tilt as well as that of the flowing monolayer is set by the signs of
the constants α and τ .
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Homeotropic anchoring
For θ0 “ π{2 from Eqs. (3.28) and (3.31) we find that the amplitude δθ0 is given,
once again, by Eq. (3.34). Thus, the expressions for δθ and vx are formally identical
to those given in Eqs. (3.32) and (3.35), but with wave number qK as given in Eq.
(3.29).

Stationary solution
To conclude this subsection, we consider a special situation where the orientation of
the cells at the boundary is fixed, as before, but such that the chiral and non-chiral
stresses cancel each other identically. Thus: θ0 “ ´θtilt{2 “ ´ arctanp2τ{αq{2.
In this case the orientation of the nematic director in the bulk of the channel,
determined by the balance between the chiral and non-chiral active stress, is equal
to that at the boundary. As a consequence, the boundary layer described in Sec.
3.4.2 disappears and the system can achieve a stationary and uniformly aligned
configuration. As those described in Sec. 3.4.1, however, the latter is unstable for
sufficiently large active stresses or channel width.

Using the same algebraic manipulations adopted in Sec. 3.4.1, one can show
that the perturbation δθ is again of the form given in Eq. (3.25) with:

q2 “
Γ
`?
α2 ` 4τ2 ´ αλ

˘

2ηκF
. (3.36)

Analogously, the velocity is given by Eq. (3.27), but with no constraint on the
phase qL, because of the stress-free boundary conditions. As a consequence, the
first mode to be excited is n “ 1, thus the stationary state becomes unstable when
q “ qc “ π{L or, equivalently, when L “ Lc “ π{q. Some numerical solution of Eq.
(3.18), in this regime, are shown in Fig. 3.5c.

Notably, the transition from stationary to flowing is, in this case, no longer left-
right and clock-counterclockwise symmetric, as in the examples discussed in Sec.
3.4.1, for any τ ‰ 0. This is well illustrated by the bifurcation diagram of Fig. 3.4b,
showing the departure in the director orientation from the boundary value at the
center of the channel [i.e. θp1{2q ´ θ0, with L “ 1]. The dots have been obtained
from a numerical integration of Eqs. (3.18), whereas the solid lines correspond to
analytical solutions obtained by solving a third order equation for the constant C
in Eq. (3.25), as in Sec. 3.4.1. We find:

θpL{2q ´ θ0 “

?
6 sin qcL

2

ˆ

?
6λτ ˘

b

a` b
L2

c

L2

˙

2p4αλ´
?
α2 ` 4τ2q

, (3.37)

where a “ α2p1 ` 4λ2q ` 2τ2p2 ` 3λ2q ´ 5αλ
?
α2 ` 4τ2 and b “ ηκFq

2p8αλ ´
2
?
α2 ` 4τ2q{Γ. For α ą αc, the solution consists of two branches, of which only one

is connected with the stationary solution θpyq “ θ0. Furthermore, the gap between
the two branches increases monotonically with τ . If the instability is triggered upon
applying a small random perturbation to the stationary state, this will always select
the closest branch, thus the one connected to the trivial solution. As a consequence,
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a chiral cellular monolayer driven out of the stationary state by a small perturbation,
will systematically tilt and flow in the same direction, which is in turn determined
by the sign of the chiral active stress τ . The transition described above is known
in bifurcation theory as a perturbed or imperfect pitchfork bifurcation and occurs
when a standard pitchfork bifurcation, whose normal form is θ3 ´ µθ “ 0, is biased
by a small symmetry-breaking perturbation: i.e. θ3 ´ µθ ` PL ` PSθ

2 “ 0, where
µ, PL, and PS are constant parameters. If PL “ PS “ 0, the equation is invariant
under θ Ñ ´θ. Thus, for µ ą 0, the trivial solution is unstable and the transition is
supercritical, while for µ ă 0, only the trivial solution is stable, and the bifurcation
is subcritical. By contrast, for non-vanishing PL and PS , the equation is no longer
invariant under θ Ñ ´θ and the bifurcation is no longer symmetric (see Refs. [228,
229] for an overview).

In our case, the role of the symmetry-breaking perturbation is played by the
chiral stress τ . Thus, in the unperturbed scenario, τ “ 0 and the stationary solution
is θ “ 0, with the critical α value being αc “ 2π2ηκF{rΓL2p1 ´ λqs. When τ ‰ 0,
on the other hand, expanding Eq. (3.21) around θ “ 0 and using B2

yθ “ ´q
2θ one

finds:

2
3 αcp4λ´ 1qθ3 ´

”

αpλ´ τ ´ 1q `
a

α2 ` 4τ2
ı

θ

` τp1´ λq ` 2τp2λ´ 1qθ2 `O
“

pα´ αcq
2θ3‰ “ 0 . (3.38)

Evidently, this coincides with the normal form of a perturbed bifurcation for any
finite τ value. For τ “ 0, on the other hand, one recovers the normal form of
the symmetric pitchfork bifurcation. Upon increasing τ , the bifurcation is shifted
toward smaller α values, until, for τ “ π2{ηκFpΓL2q, αc “ 0 and the system is never
stationary.

3.5 Discussion and Conclusions
In this article we have investigated how a chiral and yet symmetric stress tensor
might arise microscopically in nematic cell monolayers and how such a chiral stress
influences some of the hallmark phenomena of active nematics. In Sec. 3.2 we pro-
posed a microscopic model where a misalignment of the active force dipole and the
cell’s orientation is demonstrated to lead to a macroscopic chiral active stress tensor
of the form Eq. (3.2). In Sec. 3.3 we showed how the presence of chiral active stresses
tilts the flow around ˘1{2 disclinations, thereby leading to a misalignment between
the defect polarity and the direction of motion, by an angle θtilt “ arctanp2τ{αq,
with τ and α the chiral and non-chiral active stress respectively. In Sec. 3.4 we
investigated the spontaneous flow transition in a quasi-one-dimensional channel for
both no-slip and stress-free boundary conditions as well as for various types of an-
choring. For no-slip boundaries (Sec. 3.4.1), we recovered the classic pitchfork
bifurcation first discussed by Voituriez et al. [26]. In this case the chirality does
not affect the transition itself, but does leave a signature on the post-transitional
configurations of the nematic director and velocity field, in the form of asymmetry
with respect to the channel centerline. In case of stress-free boundaries (Sec. 3.4.2),
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we found that chirality renders the stationary and uniformly aligned configuration
incompatible with most of the anchoring conditions. As a consequence, the cellular
monolayer is always in motion, for any non-vanishing chiral and non-chiral active
stress. For very large active stresses, in particular, we found an active analog of flow-
alignment in nematics, with the bulk orientation (analogous to the Leslie angle [3])
set by the ratio between chiral and non-chiral active stresses, i.e. ´θtilt{2. Finally,
in the special case in which the nematic director is anchored at an angle ´θtilt{2
at the channel walls, we found that the spontaneous flow transition becomes asym-
metric, i.e. only one of the two branches of the pitchfork bifurcation is connected
to the trivial solution, which may then be the only one observed experimentally.
This latter result could potentially explain the experimental observations by Duclos
et al. [122], who found that NIH 3T3 cells are more likely to tilt clockwise then
counterclockwise once the spontaneous flow transition sets up. In Ref. [125, 230]
it was found that at the interface between an active nematic phase, with negligible
distortions of the director field, and an isotropic phase there is an active anchoring
angle that is set by the activity. This discussion can easily be repeated for the chiral
active stress tensor in Eq. (3.2) with the result being that the angle is changed
due to the presence of chirality. Furthermore, considering a confined nematic phase
without isotropic phase but with distorted director field, the case considered in Sec.
3.4 being one example, it is readily found that the active anchoring angle is equal
to the angle θtilt introduced above. Thus, the active anchoring angle considered in
Ref. [125, 230] (no distortions of director field but region with active nematic and
isotropic phase) and the anchoring angle θtilt derived above (distorted director field
but only a nematic phase) can be seen as being the two special cases of the more
general case with a nematic-isotropic phase interface and non-negligible distortions
of the director field.

Further experimental investigations into the influence of chirality would be in-
teresting. In particular, the tilt of the flow around ˘1{2 disclinations has, according
to our knowledge, not yet been observed. Thus, measurements of the tilt angle and
experimental investigations of the flow field are needed to compare the theory with
real-life cell monolayers. Additionally, as mentioned, the tilt angle opens a possibility
to determine the relative magnitude of the chiral stress directly by particle-image-
velocimetry measurements. Furthermore, since the cells used in Ref. [122] were only
weakly chiral the effects of chirality were not as pronounced. Performing similar ex-
periments with cells with stronger chirality and for different boundary conditions
would enable further tests of the presented theory.

3.A Stress due to a Force Quadrupole

The derivation of the active stresses given in Sec. 3.2 can be straightforwardly gen-
eralized to account for a more complex force distribution. For illustrative purposes
we consider here the case of a quadrupole consisting of two force dipoles applied at
the ends of the cell in longitudinal and transverse directions. In this case the force
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density field fc is given by:

fc “ F
paq
c δpRc ´ aνcq ´ F

paq
c δpRc ` aνcq

` F pbqc δpRc ´ bν
K
c q ´ F

pbq
c δpRc ` bν

K
c q , (3.39)

where a and b are, respectively, the major and minor semiaxis. Taking F piqc “

F
piq
‖ p`F

piq
K p

K, with i “ a, b, and coarse-graining over the scale of a volume element,
we find: Pa “ ´paF

paq
‖ ` bF

pbq
K q, α “ 2paF paq‖ ´ bF

pbq
K q and τ “ aF

paq
K ` bF

pbq
‖ .

3.B Nonlinear Expansion
Expanding Eq. (3.21) about θ0 “ 0 up to third order in δθ yields

´
κFη

Γ B2
yδθ “

αpλ´ 1qδθ
2 ´ τpλ´ 1qδθ2 `

αp1´ 4λqδθ3

3 `
pτ ´ σxyqpλ´ 1q

2 ,

which can be written as
L2
c

L2 δθ “ δθ ´
2τδθ2

α
`

2p1´ 4λqδθ3

3pλ´ 1q `
pτ ´ σxyq

α
. (3.40)

The stress σxy is determined by the no-slip boundary condition and force balance,
i.e.,

ż L

0
dy1

´

σxy ´
α

2 sin 2θ ´ τ cos 2θ
¯

“ 0 . (3.41)

An expansion up to third order in δθ “ C sinp2πy{Lq around θ “ 0 yields the
condition

0 » pC2 ´ 1qLτ `
ż L

0
dy1σxy (3.42)

and thus σxy “ τ ´ 2τC2 sin2p2πy{Lq “ τp1´ 2δθ2q. This determines σxy and can
be used in Eq. (3.41) to find

0 “ δθ3 ´
3pλ´ 1q
2p4λ´ 1q

ˆ

1´ L2
c

L2

˙

δθ . (3.43)

Comparing with the normal form given in Sec. 3.4.2 we find that, for L ą Lc,
µ “ 3pλ´1q{p2p4λ´1qq is positive for all λ ă 1{4 and λ ą 1 and vanishes for λ “ 1.
With δθ “ C sin 2πy{L solving for C at y “ L{2 and expanding about L „ Lc to
leading order yields the trivial solution C “ 0 and

C « ˘

d

ˆ

L

Lc
´ 1

˙„

3
4` 3{pλ´ 1q



, (3.44)

which has a singularity at λ “ 1{4. As remarked on in the general discussion in
Sec. 3.4.2 the system displays a supercritical bifurcation for µ ą 0 but a subcritical
bifurcation for µ ă 0. Thus the character of the bifurcation is determined by the
sign of µ and in the present case this sign changes at the singularity λ “ 1{4 and at
λ “ 1, where the system transitions between flow-tumbling (λ ă 1) and flow-aligning
(λ ą 1).




