
This is life: some thoughts on self-organized structure
formation in active liquids and biological systems
Hoffmann, L.A.

Citation
Hoffmann, L. A. (2023, June 29). This is life: some thoughts on self-
organized structure formation in active liquids and biological systems.
Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/3628032
 
Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the
University of Leiden

Downloaded from: https://hdl.handle.net/1887/3628032
 
Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3628032


CHAPTER 1

Introduction to Liquid Crystals, Active
Matter, and Differential Geometry

The goal of this thesis is to understand different aspects of self-organization that re-
sult in a spontaneous transition to order out of disorder. With no, or only minimal,
external guidance, a large range of systems is found to structure itself in a repro-
ducible fashion, creating large-scale structures and order out of seemingly random,
microscopic chaos. Examples range from bacterial colonies, to flocks of birds, and
human decision making processes. We use tools from elasticity theory, hydrody-
namics, statistical physics, and differential geometry to built and analyze minimal
models to learn about fundamental principles that drive these dynamics. In partic-
ular, we are interested in general laws that are independent of microscopic details.
Rather than accurately describing a certain, specific system, we want to find rules
that govern the dynamics of as broad a range of systems as possible. Analytical
calculations are combined with simulations and experiments to guarantee that the
models analyzed are realistic and predictive. Often biological systems are motivat-
ing the research questions presented in this thesis and we try to explain certain
biological processes, like tissue dynamics.

In the dynamic space of the living Rocket, the double integral has a different
meaning. To integrate here is to operate on a rate of change so that time falls
away: change is stilled .... “Meters per second” will integrate to “meters.” The
moving vehicle is frozen, in space, to become architecture, and timeless. It was
never launched. It will never fall.

T. Pynchon. Gravity’s Rainbow.

To be a physicist in A-Io was to serve not society, not mankind, not the truth,
but the State.

U. K. Le Guin. The Dispossessed.

We need a constant. You always need a constant. [. . . ] Let d be any constant,
for computational reasons the closer to 1 the better.

D. F. Wallace. Infinite Jest.
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In this chapter we introduce some of the basic concepts that will be used in later
chapters. First, in Sec. 1.1, we introduce the idea of a liquid crystal. These are
systems that consist of rod-like particles which tend to align with each other, thus
giving rise to an orientational order and an overall preferred direction. While the
system would like to be perfectly aligned (all the rods pointing in the same direction)
this is not always possible. So-called topological defects are particle-like distortions
of the aligned state that are stable in time. After introducing these structures, we
turn towards nematodynamics. We describe how liquid crystals behave in the pres-
ence of a flow field. Loosely speaking, what are the equations that should be used
to describe the dynamics of a small branch that is thrown into a flowing river. In
Sec. 1.2 active matter, a broad field of research that has recently attracted a lot of
attention, is introduced. The overarching idea is to describe systems that are inher-
ently out of equilibrium because its microscopic constituents are injecting energy
into the system. An example are systems where each of the microscopic particles
consumes energy and is motile on its own. We introduce three different models to
describe different kinds of active systems. First, the active nematodynamic equa-
tions, which are the generalization of the passive nematodynamic equations for the
case that each of the microscopic rods creates a microscopic flow. Thus, the flow
field is now no longer externally applied as before, but created by the system itself.
In the picture above, “branches” are thrown into an initially still river and these
“branches” move the water such that the river starts flowing. We present results
on how the presence of activity modifies the dynamics of topological defects. We
furthermore introduce the Toner-Tu equations and the Vicsek model, both of which
have been used to describe the flocking behavior of different kinds of systems, for
example, flocks of birds or animal herds. The basic idea is that each particle (think
bird) has a velocity and every particle (bird) tends to align with nearby neighbors.
This can result in all the particles (birds) in the system moving in the same direction
after some time. This process is the result of self-organization, that is no external
guidance is needed for the system to organize. Lastly, in Sec. 1.3, we introduce
some concepts from differential geometry. This is the mathematical language used
to describe curved surfaces. We close this chapter with an outline of the following
chapters of this thesis.

1.1 Passive Liquid Crystal
A liquid crystal is, as the name suggests, a state between a crystal and a liquid.
A crystal is characterized by a regular arrangement of its microscopic constituents,
meaning they are located on a regular lattice. If one then stands at point x in space
and looks at another point x1 far away, the density-density correlation function
between these two points is a periodic function,

lim
|x´x1|Ñ8

@

ρpxqρpx1q
D

“ periodic in x´ x1 . (1.1)

This captures the fact that an infinitely large crystal is just an infinite amount
of copies of the same basis and neighboring lattice points always have the same
distance independent of where in the crystal one looks, see Fig. 1.1a. On the other



1.1 Passive Liquid Crystal

1

11

hand, for a liquid (Fig. 1.1b) this symmetry is completely broken and the position
of two particles far away from each other is “minimally correlated” in the sense that
one can express the probability of finding a particle at some given position far away
from another only through the average particle density, that is

lim
|x´x1|Ñ8

@

ρpxqρpx1q
D

“ pAverage particle densityq2 . (1.2)

Now, a liquid crystal is an intermediate state in the sense that the system has liquid-
like order in at least one direction of space but where translational or rotational
symmetry is still broken (like a crystal). The liquid crystal is characterized by
how much symmetry is broken, i.e., how “crystalline” or “liquid” a system is. If
the system is translationally invariant but not rotationally invariant, it is called a
nematic liquid crystal if the system is still top-down symmetric, see Fig. 1.1c. If
positional order is imposed in one or two dimensions, it is called smectic or columnar
liquid crystal, respectively (Fig. 1.1d). If the system is not top-down symmetric, it
is called a polar liquid crystal (Fig. 1.1e). We will only be concerned with liquid
crystals that are translationally invariant (i.e., nematic or polar liquid crystals) and
consider only this case in the following.

An uniaxial nematic liquid crystal is typically made up of elongated particles
that have some direction, e.g., rods or rice grains, see Fig. 1.1c. Their centre of
mass has no long-range order (thus the system is translationally invariant) but they
tend to be aligned in the same direction (thereby breaking rotational symmetry).
The average orientation is captured by defining a unit vector, the so-called director
p. In the nematic phase the particles are top-down symmetric such that every
quantity describing the system is symmetric under pÑ ´p, see Fig. 1.1f. A biaxial
nematic liquid crystal is made up of particles that have two distinct orientations
(e.g., rectangles) such that in the corresponding ordered state particles are aligned
along two directions. Finally, in a polar liquid crystal particles are not top-down
symmetric and have a distinct orientation, i.e., they are not symmetric under pÑ
´p, see Fig. 1.1e,g. However, note that the kind of liquid crystal one deals with
is determined by the macroscopic symmetry, not the microscopic symmetry of the
particles. If top-down asymmetric particles align in a nematic fashion, that is for the
alignment the particles’ top-down asymmetry is irrelevant (Fig. 1.1h), this results
in a nematic liquid crystal [1–4].

1.1.1 Order parameter and isotropic-nematic transition
To quantify the amount of alignment one computes an order parameter. This quan-
tity vanishes in the liquid phase and is unity if all particles are aligned in the same
direction. To define this order parameter that characterizes the liquid crystal phase
one assigns to each particles an orientation or a direction a, according to whether
one is interested in the nematic or polar phase, see Fig. 1.1i. One then averages
over all of the particles’ orientations (directions) a which gives rise to a macroscopic
orientation (direction) p that describes the average orientation (direction) in the
system. To quantify how strongly the particles are aligned with this average orien-
tation one then computes the order parameter by taking the average over the angle
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 1.1: Liquid crystal.

(a) Sketch of a regular crystal lattice where particles are periodically arranged in space. (b)
Sketch of a fluid where particles are randomly oriented in space. (c) Sketch of a nematic
liquid crystal where the position of the center of mass of particles is random in space but
they have a preferred orientation. (d) Sketch of a smectic liquid crystals where particles
have a preferred orientation and, additionally, are forming layers. (e) Sketch of a polar
liquid crystal where particles have a preferred direction but no preferred location. (f)
Example of particles with top-down symmetry forming a nematic phase. (g) Example of
particles with a preferred direction (broken top-down symmetry) forming a polar phase.
(h) Example of particles with a preferred direction forming a nematic phase, their polar
direction is irrelevant and particles only have a preferred orientation. (i) Sketch of a polar
director (top) and nematic director (bottom) assigned to a particle. (j) Sketch of the
coarse-graining procedure where each particle is assigned an orientation and a macroscopic
director is defined from this by averaging over the orientation of all particles.
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θ each of the particles makes with the average director p to obtain a single number
to quantify the order in the phase. We follow Ref. [3] here. Choosing the coordinate
system in three dimensions such that p “ t0, 0, 1u, one can write the orientation of
each particle in spherical coordinates as

a “

¨

˝

sin θ cosϕ
sin θ sinϕ

cos θ

˛

‚ . (1.3)

A normalized distribution function P3pθ, ϕqdΩ3 describes the probability for a given
particle to have an orientation in an infinitesimal solid angle dΩ3 “ sin θdθdϕ. For
an uniaxial nematic or polar liquid crystal the distribution function is independent
of ϕ and it can be integrated out, P3pθ, ϕq “ P3pθq{2π. In two dimensions, instead,
we choose p “ t1, 0u,

a “

ˆ

cos θ
sin θ

˙

, (1.4)

and P2pθ, ϕqdΩ2 “ P2pθqdΩ2 “ P2pθqdθ. For a polar liquid crystal one can simply
compute the average angle between each particle and the director p. This defines
the polar order parameter:

P ¨̈“ xa ¨ py “ xcos θy “
ż

cos θPdpθqdΩd . (1.5)

For an isotropic system P2pθq “ 1{N2 “ 1{2π and P3pθq “ 1{N3 “ 1{2 such that
xcos θy “ 0 and the order parameter vanishes. On the other hand, for a perfectly
aligned system Ppθq “ δpθq{Nd (that is θ “ 0 and all particles point in the same
direction) such that P “ 1.

For a nematic liquid crystal, however, the dipole contribution xa ¨ py vanishes
identically due to the top-down symmetry of the nematic since in this case Pdpθq “
Pdpθ ´ πq. Thus, one needs to consider the next-order term in the multipole ex-
pansion, xpa ¨ pq2y, which is non-vanishing. The nematic order parameter S in d
dimensions is defined as

S ¨̈“
1

d´ 1
@

d cos2 θ ´ 1
D

. (1.6)

Here, an overall prefactor is introduced and a constant is subtracted from xpa ¨ pq
2
y

in order to normalize the order parameter such that S “ 0 in the isotropic case, and
S “ 1 in the perfectly aligned case. Indeed, in the isotropic case xcos2 θy “ 1{d, and
S “ 0, while in the aligned case cos θ “ ˘1 and S “ 1. These are the scalar order
parameters for the polar and nematic phase, respectively. Note that for a polar
liquid crystal P “ S, while for a nematic liquid crystal the polar order parameter
vanishes identically, P “ 0. Apart from the scalar order parameters, there is the
vectorial order parameter p determining the average orientation, and these two
quantities together completely characterize the nematic and polar order present in
a given system. However, since in the nematic phase there is an average orientation,
but not an average direction, it is often convenient to define a quantity that takes
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the top-down symmetry into account by definition, instead of stating that vectorial
director p is to be viewed as symmetric under pÑ ´p. A simple way of achieving
this is by considering pp instead of p, as the former is inherently symmetric under
p Ñ ´p. Commonly, the tensorial order parameter constructed from this, the
so-called Q-tensor, is defined as

Q ¨̈“ S

ˆ

pp´
1
d
1

˙

, (1.7)

for uniaxial nematic liquid crystals. Here, 1 is the unit matrix which has been sub-
tracted to make the tensorQ traceless. Note that for a biaxial nematic liquid crystal
one still defines a symmetric, traceless Q-tensor but its expression in terms of p is
different. For uniaxial nematic liquid crystals one can use Q and p interchangeably,
if one keeps the top-down symmetry requirement for the latter in mind while using
it. Having defined an order parameter, one can then study the phase transition
between an isotropic and an ordered phase in terms of this order parameter. For
example, in the Landau-de Gennes approach for the isotropic-nematic transition, a
free energy is written as a power series of the order parameter S,

FLdG “ aS2 ` bS3 ` cS4 , (1.8)

with a, b, and c temperature-dependent numerical prefactors, such that, due to
the presence of the cubic term, the transition from the isotropic (S “ 0) to the
nematic (S ‰ 0) phase is seen to be first order. We do not consider this further,
see, e.g., Refs. [1–7] for details. In the following sections and chapters we always
assume that a liquid crystal phase is present. In fact, unless otherwise noted, we set
P “ S “ 1. Thus, we are working with a highly order liquid crystal phase and often
study perturbations of this state. Furthermore, we will denote by p the director
field for both polar and nematic liquid crystals, from context it will be apparent
whether p is inversion symmetric or not.

1.1.2 Frank free energy
So far we have only talked about the symmetry of the liquid crystal and how to
quantify it. We now turn towards studying the dynamics of a liquid crystal. We
first consider the case of a nematic liquid crystal. It is common to assign to a nematic
liquid crystal a distortion free energy that vanishes if the nematic field is constant
and can be expanded in powers of ∇p. This energy thus captures the energetic cost
associated with a configuration where nearby particles are not aligned which would
result in non-vanishing gradients of the director field. Assuming that the variations
in the director field are slow it suffices to look at the lowest order terms in the free
energy. The final free energy must be symmetric under p Ñ ´p and x Ñ ´x.
Furthermore, terms that are total derivatives can be ignored in the description of
the bulk since they can be absorbed into a boundary term thanks to Stokes’ theorem
and |p|2 “ 1. Due to these requirements there are no terms of linear order in ∇p.
Thus, at lowest order in ∇p, the distortion free energy is of the form

FF “

ż

dAκF,ijkl∇ipj∇kpl , (1.9)
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where κF,ijkl is an unknown tensor that will, in general, depend on the local director
field and material properties. It is possible to show that, due to the symmetry
requirements, there are in the end only three independent terms such that the
distortion free energy can be written as [1, 3]

FF “

ż

dAκF,1

2 p∇ ¨ pq
2
`
κF,2

2 pp ¨∇ˆ pq
2
`
κF,3

2 ppˆ∇ˆ pq
2
. (1.10)

This elastic free energy of the nematic liquid crystal is called Frank energy. The
material constants κF,i have units of energy/length. The three terms of the free
energy are the contributions from splay, twist, and bend deformations of the ne-
matic field, respectively [1–3, 8]. These are visualized in Fig. 1.2. Note that in
two dimensions the second term of the free energy (twist) always vanishes identi-
cally. In many instances this free energy is still too complex to handle and resulting
equations are difficult to solve. Hence, to simplify analytical calculations one of-
ten considers the so-called one-elastic-constant approximation where the energetic
difference between the different deformation modes is assumed to be negligible,
κF,1 « κF,2 « κF,3 « κF. While this might not be quantitatively correct for many
materials [3] it is often sufficient to gain qualitative insight. In this case the free
energy simplifies (up to surface terms) to

FF ¨̈“
κF

2

ż

dA |∇p|2 . (1.11)

The equations describing the equilibrium of the bulk are found from minimizing
the free energy with respect to variations of the director field. From the resulting
Euler-Lagrange equation we define the so-called molecular field M that is found to
be

M ¨̈“ ´
δFF
δp

“ ´
BFF
Bp

`∇ ¨

ˆ

BFF
Bp∇pq

˙

“ κF∆p . (1.12)

In equilibrium the director and the molecular field must be parallel at each point.
A polar liquid crystal is similar to the nematic liquid crystal except that the

inversion symmetry p Ñ ´p is broken. Thus, instead of rods the particles are
usually sketched as arrows with a distinct head and tail. Due to this, terms that
were previously ruled out because they would break the inversion symmetry of the
nematic liquid crystal, are now allowed and should be added, e.g., to the Frank free
energy, to describe a polar liquid crystal completely. However, in later chapters we
will mostly assume that these terms are of sub-leading order and that the main
dynamics can be captured by the nematic terms alone. Thus, we will use the same
distortion free energy, Eq. (1.10), for both nematic and polar liquid crystals.

1.1.3 Defects in liquid crystals
It is not always possible for the system to be perfectly ordered and gradients in
the orientation field result in a non-vanishing elastic free energy. There are two
fundamentally different ways disorder can be introduced in the system. The first
is by continuous deformation of an initially perfectly aligned configuration. This
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(b)(a) (c) (d)

Figure 1.2: Splay, bend, and twist.

(a) A perfectly aligned nematic liquid crystal in two dimensions with no gradients in the
director field. (b) Sketch of a splay deformation of the liquid crystal in two dimensions, the
divergence of the director field is non-vanishing. (c) Sketch of a bend deformation in two
dimensions, the projection of the curl onto the direction of the director is non-vanishing.
(d) Sketch of the twist deformation in three dimensions, as there is no twist deformation in
two dimensions. The director is rotated/twisted in a given two-dimensional cross-section
relative to the director field in planes above and below.

deformation can be due to, for example, externally applied forces (e.g., an external
shear flow or magnetic field), or thermal fluctuations. The second way is by creat-
ing so-called topological defects. These are fundamentally different in that it is not
possible to continuously deform the defect configuration into an ordered configura-
tion. Thus, since these structures are stable under continuous deformations, they
are called topological. Defects can be present in a system, e.g., due to boundary
conditions or they can be created through externally applied forces. However, due to
their stability under continuous deformations, there are strict rules on how defects
can be created and decay. To introduce these, we first introduce the concept of the
topological charge. In the following subsection we introduce the concepts intuitively
in two dimensions. Afterwards, we present a more rigorous definition in both two
and three dimensions. Lastly, we compute the elastic energy of a defect.

Defect charge from line integral
As defects are stable against fluctuations and small deformations, they can often be
considered as particle-like excitations. Similar to fundamental particles, they also
carry a charge, their topological charge. Defects of different charges are distinct
in that, given a defect with charge s1 and one with charge s2, it is impossible to
continuously transform the defect of charge s1 into the defect with charge s2. The
charge is defined as the number of rotation the director field undergoes as one tracks
it along a closed circle [1–3, 9–11]:

s ¨̈“
1

2π

¿

C

dθ . (1.13)

Here θ is the angle that describes the orientation of the two-dimensional director
field which can be written as p “ tcos θ, sin θu, it being a two-dimensional unit vector
field. If no defect is present inside the circle C , the charge is zero. For a perfectly
aligned state the angle θ is trivially constant everywhere. Thus, in particular it is
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(a) (b) (c) (d)

Figure 1.3: Aligned and defective configurations.

(a) In a perfectly aligned state, the director does not rotate at all when one measures
the angle along a closed loop. (b) In a defect-free state without perfect alignment, as
one measures the orientation along a closed loop, the director rotates by certain angle
in counter-clockwise direction and then rotates back by the same angle in the clockwise
direction. This traces out a closed line on the circle measuring the orientation. (c) If a `1
defect is present the director completes a full 2π-rotation along a closed loop encircling the
defect. (d) For another defect (with charge `2) the director completes two full rotation,
rotating by a total of 4π.

constant along any loop C one chooses for the contour integral, see Fig. 1.3a. If the
system one considers is not perfectly ordered, then θ is not constant. However, in
the case sketched in Fig. 1.3b, where the director configuration is found by slightly
deforming the perfectly aligned state, the defect charge is still zero. This is because,
while the angle θ varies along the contour line, the changes dθ add up to zero. The
director first rotates slightly counterclockwise but then exactly the same distance
clockwise. However, for the configuration sketched in Fig. 1.3c this is not the case.
As one travels along C , the director continuously rotates counterclockwise, but never
clockwise. Therefore, when one has traveled once along the circular contour loop, the
changes in dθ add up to 2π, not 0 as before; the vector p performed a full rotation.
Thus, according to Eq. (1.13), this corresponds to a charge of s “ `1. This non-zero
charge reflects the fact that it is not possible to deform the configuration in Fig. 1.3c
into the one in Fig. 1.3a by continuously deforming the director field. On the other
hand, this is easily possible for the configuration in Fig. 1.3b which does not have
a topological charge, s “ 0. Thus, the configuration in Fig. 1.3c is a `1 defect. On
the other hand, for the configuration in Fig. 1.3d one finds that the director field
along the contour line rotates twice in the counterclockwise direction, thus this is
a configuration with charge s “ `2. It is not possible to continuously deform this
configuration into either the defect-free configuration in Fig. 1.3a or the `1 defect
in Fig. 1.3c. In this sense, defects with different charges are distinct structures. The
two defect configurations presented so far had positive charge because the director
field rotated in a counterclockwise direction. If the director field rotates clockwise,
however, the charge is negative.



1

18 1 Introduction

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

Figure 1.4: Defect charges.

(a) Vortex, (b) spiral, and (c) aster configuration of the `1 defect. They all have the same
charge, i.e., in each case the director rotates by 2π (as in (Fig. 1.3c)). (d) Configuration
of a ´1 defect. (e) Configuration of a `1{2 defect. (f) `1{2 defects are forbidden in polar
liquid crystals since they result in a discontinuity of the director field (here on the left half
of the center line). (g) Configuration of a ´1{2 defect. (h) A `1 defect is allowed for a
nematic as the director field is still continuous everywhere outside the defect core at the
center. (i) A `1 (red) and a ´1 (blue) defect are invisible from far away and the director
field is aligned there. (j) Same phenomenon but for a `1{2 (red) and a ´1{2 (blue) defect.
(k) A `1 (red) and a ´1{2 (blue) defect look like a `1{2 defect from far away.
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˘1 and ˘1{2 defects
Before turning to the question of how to create and destroy defects in physical sys-
tems, we investigate the properties of some isolated defects a bit closer. From defi-
nition Eq. (1.13) of the defect charge, it is straightforward to find a parametrization
for the director field p for an isolated defect of charge s, namely p “ cos θ x̂`sin θ ŷ
with θ “ sϕ ` ε, where ϕ is the angular coordinate in polar coordinates, and ε a
constant. For a `1 defect the constant ε determines the local geometry of the defect
such that the defect is an vortex (Fig. 1.4a) if ε “ π{2 mod π, an aster (Fig. 1.4c) if
ε “ 0 mod π, and a spiral (Fig. 1.4b) for all values of ε “ 0 in between these two lim-
iting cases. Note that it is possible to continuously deform these three configurations
into each other since they all have the same defect charge. Thus, topologically they
are the same, but energetically they could be different. If we were not working in
the one-elastic-constant approximation, at equilibrium the minimal-energy configu-
ration for a `1 defect is determined by the elastic constants in the Frank free energy
and boundary conditions. Since we are considering a two-dimensional director field
the twist-term in Eq. (1.10) vanishes. The `1 defects are energy-minimizing (if
the boundary conditions are chosen appropriately) as asters if κF,1 ă κF,3 (splay is
favored) and as vortices if κF,1 ą κF,3 (bend is favored). If κF,1 “ κF,3 the stable
configuration are spirals. However, in the degenerate case of the one-elastic-constant
approximation (κF,1 “ κF,3) that we will consider in following chapters all defects
have the same energy, independent of the value of ε. For other defects, with s ‰ 1,
varying ε simply results in a global rotation of the entire director field, thus for an
isolated defect it is irrelevant. In particular, there are not different geometries as
for the `1 defect. A defect with charge s “ ´1 is shown in Fig. 1.4d. Note that
the director field rotates in the clockwise direction now, giving rise to the negative
sign. So far, we have only considered defects of integer charge and sketched polar
director fields. However, for nematic director fields it is possible to find half-integer
charge defects as well. The configuration for a `1{2 defect is shown in Fig. 1.4e.
Note that it is not possible to have these configurations in polar liquid crystals since
the top-down asymmetry would lead to a discontinuity as shown in Fig. 1.4f. Thus
˘1 defects are the lowest possible defect charges for polar liquid crystals, but in
nematic liquid crystals one can have ˘1{2 defects. The configuration for the ´1{2
defect is shown in Fig. 1.4g. Topologically, integer charges are allowed for nematic
liquid crystals as well (as there is no discontinuity, see Fig. 1.4h), but this is usually
energetically not favorable as we will discuss at the end of this subsection.

Poincaré-Hopf theorem and defect annihilation
With the definition of topological charge at hand, we can now comment on how
defects can be created and destroyed. For this, first note that if several defects are
encircled by the contour C one chooses when computing the integral in Eq. (1.13),
the result is the sum of all the charges of the defects that are encircled. There is
now a deep connection between the geometry of the system one considers and the
sum of all defect charges present in the system. Namely, the Poincaré-Hopf theorem
states that [12–17]

ÿ

i

si “ χpDq , (1.14)
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where χpDq is the Euler characteristic of the system (manifold) D . For this to hold
the director field is required to point normal to the boundary BD of D (if there is
a boundary). The Euler characteristic is a topological constant that is unique for a
given geometry. For example, χpDiskq = 1, χpSphereq = 2, χpTorusq = 0. Thus, for
example, if we have a polar liquid crystal on a disk there will always be at least one
`1 defect present. For a nematic liquid crystal on a sphere, there will always be at
least four `1{2 defects present (or two `1 or one `2). Thus, the theorem Eq (1.14)
gives a lower bound for the number of defects present in a system and restricts the
number of possible defect configurations by relating the sum to the geometry of the
system.

However, the Poincaré-Hopf theorem is a statement about the sum of all defect
charges, not the total number of defects present. Thus, it is allowed to create two
additional defects if they have equal and opposite charge such that the total charge
of the system does not change. Equally, it is possible for two defects of charge s1
and s2 to merge, resulting in a defect with charge s1 ` s2. Thus, if s1 “ ´s2 the
two defects will annihilate and leave behind a region behind a defect-free region.
For example, a `1 and ´1 defect look from afar like a defect-free configuration, see
Fig. 1.4i, and if they annihilate they leave a defect-free region behind. Similarly for
a `1{2 and ´1{2 defect, see Fig. 1.4j. However, a `1 and a ´1{2 defect merging
creates a `1´1{2 “ `1{2 defect, see Fig. 1.4k. The only way to achieve an ordered
state form a defective configuration is for defects to annihilate. And if the geometry
of the system is chosen the right way, for example a circle, a defect-free configuration
can never be reached, according to Eq. (1.14).

Defect charge from homotopy group
We now introduce a more rigorous definition of topological charge that is easily
extended to higher dimensions and that highlights the topological character. We
first consider two-dimensional defects, but comment on three-dimensional defects
afterwards. The starting point is to introduce the order parameter space M . For
a two-component spin, e.g., a polar liquid crystals, this order parameter space is
the unit circle, M “ S1. That is because there is one free parameter, the angle
θ, that can take values θ P r0, 2πs and is 2π-periodic, i.e., the director p can point
in any direction in the plane, and this is described by the unit circle. Given a
certain director field, one then has a mapping F from coordinate space D , e.g.,
the xy-plane, to the order parameter space M . Basically, in the two-dimensional
case, at any point in the plane there is a director which has a certain angle θpx, yq
such that ppx, yq “ cos θpx, yq x̂ ` sin θpx, yq ŷ. Since the angle depends on the
coordinates px, yq there is thus a mapping px, yq Ñ θpx, yq for every point in the
plane, see Fig. 1.5a. Using this simple mapping, it turns out that one can study
the topological properties of defective configurations. To see this, we can consider
a few examples for different director field configurations. Again, we look at closed
loops C in the coordinate space, however, we are now interested in how this loop C
in coordinate space is mapped into the order parameter space, i.e., we investigate
how the trajectory L “ FpC q of the angle θ in M . For a two-dimensional director
field, C thus lives in R2 while L lives in S1. For an almost perfectly aligned
configuration we find that L is a small closed loop around a single value for θ.
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For a configuration that is less well aligned, but sill without defects, L is now
a loop that covers a bigger range of values in θ. However, it does not cover the
entire circle, see Figs. 1.3a,b and Fig. 1.5b. Now, if we consider a `1 defect, this
changes. If C contains a defect, we find that L is closed, and does run once around
the circle, i.e., does not “turn around” as before for the defect-free configurations,
see Fig. 1.3c and Fig. 1.5c Furthermore, note that it runs in an anti-clockwise
configuration. If a ´1 defect is present, L again runs once around the circle, now,
however, in a clockwise-direction. For a `2 (´2) defect we find that L runs around
the circle twice in a counterclockwise (clockwise) direction, see Fig. 1.3d. Thus, C
encircles a defect of charge |s|, if L wraps around the circle s-times. To see the
connection with topology we have to consider the so-called homotopy group. While
it is possible to continuously contract L to a single point if it only covers part of a
circle (defect-free configuration) it is not possible if it wraps around the circle. Thus,
these two configurations are fundamentally different and it is not possible to move
continuously between one and the other. Similarly for higher defect charges. Note
that the possible defect charges (s is an integer) are thus completely determined
by the topology of the order parameter space M . L wraps around the circle s-
times, or it is homotopic to a single point1. The question how many different loops
there are that are unique in that they cannot be continuously transformed into each
other is answered by the (first) homotopy group π1 tells us how many different2
loops can be drawn on a given space. For the circle S1, it is possible to show that
π1pS

1q “ Z, i.e., the possible defect charges are all integer. This is an example of a
more general framework, where the defect charges that are possible in a given system
are completely determined by the topology (in particular the homotopy group) of
the corresponding order parameter space. Thus, to answer the question which defect
charges are possible in nematic liquid crystals, we just have to identify the order
parameter space M and then compute (look up) the homotopy group of this space.
Unlike polar liquid crystals, where the angle θ is 2π-periodic, for nematic it is π-
periodic, due to the top-down symmetry of the nematic particles. Thus, the order
parameter space is a half-circle, where θ runs from 0 to π, and where 0 and π are
identified, just as 0 and 2π are the same point on the circle. This space is known
as the real projective line RP1. Thus, the loop L only needs to wrap around half a
circle and then cannot be continuously shrunk to a point. In agreement with this,
one finds that π1pRP1q “ Z{2, i.e., the allowed defect charges are now half-integer,
see Fig. 1.5d. References of the underlying mathematical concepts are, for example,
Refs. [12, 13, 15–18], while a greater focus on the applications to liquid crystals can
be found, e.g., in Refs. [1, 2, 9, 11].

There are higher-dimensional analogs of the first homotopy group. Instead of 1-
spheres (that is circles) one considers how many unique 2-spheres, 3-spheres, ... there

1One says that a loop is homotopic to a single point if it can be continuously shrunk to a single
point. For example, if a surface has a hole and one draws a loop around this hole, it is not possible
to continuously shrink the loop to a point. Therefore, a loop that wraps once around a circle
cannot be shrunk to a point because of the “hole” of the circle. A loop on a disk, on the other
hand, can be continuously shrunk to a single point.

2This is to be understood in the homotopy sense: two loops are considered to be the same if they
are homotopic, i.e., can be continuously deformed into each other.
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Figure 1.5: Homotopy groups and defect charge.

(a) Illustration of the mapping F explained in the main text of a two-dimensional polar
director field at a single point px, yq in real space R2 onto it’s parameter space M “ S1. (b)
Mapping of the director of a defect-free configuration at several points onto the parameter
space, as well as the mapping of a closed loop C from real space onto the corresponding
loop L in parameter space. (c) The same mapping but for a structure containing a `1
defect. The loop C encircling the defect in real space is mapped onto the loop L that
wraps once completely around the parameter space S1. (d) The equivalent mapping but
for a nematic liquid crystal, from real space into the parameter space M “ RP1. This
space is a circle with antipodal points identified, thus it can be drawn as a half-circle whose
two end-points are identical. In the `1{2-configuration illustrated here the yellow points
are to be seen as the same point. (e) Mapping for a three-dimensional polar liquid crystal,
from real space R3 to the parameter space M “ S2. On the left-hand side a hedgehog
configuration is shown. One can draw a circle in each cross-section of the hedgehog (as
illustrated in the center) and map these onto the sphere. Doing this for each cross-section,
the union of all the circles adds up to a sphere, such that one has a mapping of a sphere in
real space onto the sphere that constitutes the parameter space. The hedgehog is assigned
a charge `1 because the sphere that is mapped wraps around parameter-sphere exactly
once. (f) If a two-dimensional polar liquid is allowed to rotate in the third dimension,
point-defects are no longer topologically protected. Rotating all the vectors that form a
`1 defect, it is possible to continuously transform the defective structure into a defect-
free structure where all the arrows are parallel and point upwards. In parameter space,
this rotation corresponds to contracting a loop on a sphere to a single point. Initially
(red, L1) the structure is defective, the loop wraps around the equator of the sphere (at
θ “ π{2). In the two-dimensional case this would be the loop wrapping once completely
around the circle. However, if the director is allowed to rotate in the third dimension, the
configuration space is a sphere, not a circle. Thus, it is possible to move the loop upwards,
corresponding to a rotation of the director field by a certain angle (blue, L2). Finally, if
the loop is contracted to a point (green, L3) the director field in real space is no longer
defective but perfectly aligned.
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are and this leads to the second, third, ... homotopy group. While more abstract, the
basic idea is the same. Given a certain space M , how many unique ways are there
to embed n-spheres that cannot be continuously deformed into each other. In three-
dimensional liquid crystals the higher-dimensional homotopy correspond to different
kinds of defects. That is, unlike in two dimensions, where only point defects exists,
there are now different kinds of defects which are measured using different homotopy
groups. The first homotopy group measures line defects, which are “stretched out”
point defects, i.e., each cross-section of the line looks like a point defect. A loop
can be drawn around a line, and thus the first homotopy group corresponds to the
possible defect charges of these disclination lines. The two-sphere S2, on the other
hand, is used to measure point defects. That is because if there is a single point,
to completely encircle it one needs to draw a sphere around it. This is similar to
how an electric charge is measured through Gauss’s law by integrating the electric
field on a sphere containing the charge. Thus, to learn which possible line and point
defects there are in polar and nematic liquid crystals, we have to compute π1 and
π2 for the respective parameter space. For a three-dimensional polar liquid crystal
(three-component spin) the unit director can be parametrized in terms of two angles
such that there are now two parameters ϕ P r0, 2πs and θ P r0, πs. These parameters
span the two-sphere S2 and thus M “ S2 for three-dimensional polar liquid crystal.
This simply reflects that p is a three-component spin of unit magnitude that can
point in any direction in three-dimensional space. Then π2pS

2q “ Z is the analogy of
the loop wrapping around the circle, with spheres wrapping around a sphere. This
means that there are an infinite number of integer charge point defects. The unit
charge point defect, called hedgehog, is shown in Fig. 1.5e. Each of its cross-sections
looks like a two-dimensional `1 defect. Thus, to measure the charge one can take
a contour integral in each cross-sectional plane which is mapped onto a loop on
the parameter space, the 2-sphere. The union of all these lines results in a sphere
wrapping round M . Thus, to measure three-dimensional point charges one has to
consider how 2-spheres can wrap around 2-spheres, that is π2pS

2q. Again, either the
sphere L can be continuously contracted to a single point, or it completely wraps
around the sphere M “ S2 a total of s-times, resulting in the allowed charges to be
the integers Z again. On the other hand, π1pS

2q “ 0, i.e. all loops one draws on a
sphere can be continuously deformed into each other, and in particular they can all
be contracted to a single point, see Fig. 1.5f. Thus, there are no line defects in polar
liquid crystals and only two distinct line defects in nematic liquid crystals. This is
known as the “escape in the third dimension” and can be illustrated as follows. If
one starts, for example from a two-dimensional `1 defect but the polar director lives
in three dimensional, i.e., is allowed to rotate in z-direction, it is always possible
to continuously rotate the director into an aligned configuration, see Fig. 1.5f. A
“defect” line is just the same configuration but parallelly extended in z-direction.
But since one can perform the same rotation operation in each cross-section of the
line it is thus not topologically protected. For a three-component nematic director
field, on the other hand, M “ RP2. This space is called real projective plane
and can be defined as a two-sphere with antipodal points identified. This is the
two-dimensional analogue of the antipodal points of a circle being identified for a
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two-dimensional nematic, resulting in the real projective line RP (Fig. 1.5d). Again,
to learn which kind of line and point defects are allowed one computes the first two
homotopy groups, the result is π1pRP 2q “ Z2 “ t0, 1u, π2pRP2q “ Z{2. Thus, for
a nematic liquid crystal, there is a single unique defect line. That is because it is
possible to continuously deform a `1{2 into a ´1{2 defect if the nematic director
is allowed to rotate in z-direction. But it is not possible to reach the defect-free
configuration as in the polar case, thus there is no escape in the third dimension.
There is thus either the defect-free configuration or the disclination line of charge
s “ 1{2. There are no topologically protected lines of higher charges, since, e.g, a
configuration that would have integer charge can be deformed into the defect-free
configuration. This can easily be seen from 1 “ 1{2 ` 1{2 “ 1{2 ´ 1{2 “ 0. In
the second-to-last step we used that `1{2 can be deformed into ´1{2, and thus the
two are identical. Physically, this correspond to start from an integer line, split it
into two half-integer lines, deform one of them such that each cross-section has the
structure of a ´1{2 point defect, and then combine the two lines again, resulting in
an annihilation. In three-dimensional liquid crystals there are more exotic defects
and one can consider higher-order homotopy groups. We refer to Refs. [12, 13, 15–
18] for the mathematical background and to Refs. [1, 2, 9, 11, 19–25] for more details
on the subject of higher-dimensional homotopy groups applied to liquid crystals.

Energy of defects
After this small detour we now return to the two-dimensional case and more basic
notions, introducing some concepts of practical relevance. Here and in the following,
we focus on ˘1{2 and ˘1 defects because these are the minimal allowed defect
charges in nematic and polar liquid crystals, respectively. Assuming an isolated
point defect at the center of a disk of radius R, its elastic energy is found from the
Frank free energy Eq. (1.11) with the director being given by p “ cos θ x̂` sin θ ŷ
to be [1, 3]

FF “
κF

2

ż

dA |∇p|2 “ κF

2

ż

dA s2

r2 “ πκF

ż R

a

dr r s
2

r2 (1.15)

such that the energy of a defect can be written as [1–3]

Es “ πκFs
2 log R

a
` Ec , (1.16)

where R is the size of the system and a the defect core radius, the small length
scale cutoff where the continuous theory breaks down near the center of the defect.
Physically, the order parameter goes to zero in this region, but in the simplified
continuous theory we are using there is a singularity of the director field. See the
following paragraph for a more detailed discussion. In the last step, going from
Eq (1.15) to Eq. (1.16), we added a constant defect core energy Ec by hand to ac-
count for the energy associated with this region. In our theory it is an undetermined
constant, but it is possible to model the defect core in order to get an expression
for this energy, see Refs. [1–3] Thus, the elastic energy scales with the defect charge
squared. In particular, the energy of two half-integer defects is smaller, by a factor
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of two, than the energy of a single integer defect. If possible (that is for nematic
liquid crystal), the elastic energy can hence be reduced by an integer defect split-
ting into two half-integer defects. Therefore, unless externally imposed through,
e.g., substrate patterning or boundary conditions, one commonly only finds ˘1{2
defects in nematic liquid crystals and ˘1 defects in polar liquid crystals. For this
reason, ˘1{2 and ˘1 are the most relevant defect charges for nematic and polar
liquid crystals, respectively. Defects of greater charges are rarely encountered in
practice.

Lastly, we briefly comment on a general feature of the defect geometry. We focus
on two dimensions, but the same idea holds in three dimensions. One can split a
defect into two regions, are core region and a far-field region. Single defects are
system-wide structures in that the geometry of their far-field does not change with
distances, if not for the presence of boundaries or other defects. In particular, the
line integral, Eq. (1.13), yields the same charge s independent of how far away from
the defect core one computes the line integral. In the far-field region the nematic
order parameter is unity, S “ 1, but the director field varies slowly in space in such
a way that the Frank free energy is not minimal giving rise to the elastic energy
of a defect written Eq. (1.16). The fact that the defect is a system-wide structure
is reflected in the dependence of the elastic energy on the system size R. Near the
defect core the structure of the defect changes, however. As can be appreciated,
e.g., from the illustrations in Figs. 1.4a-h, the director field is not well-defined at
the center of the defect. This results in a singularity in the director field at the
origin, where the orientation of the director field is undefined. The singularity is an
artifact of our approach of keeping the scalar order parameter at unity throughout
the system. If the order parameter is allowed to vary, one finds that it decays
to zero inside the defect core. Thus, directional order is locally destroyed, which
removes the singularity. See, e.g., Refs. [1–3] for details and the resulting elastic
energy associated with a defect core. However, if one is interested in the dynamics
of defects away from the defect core it is sufficient to ignore the dynamics inside the
defect core by introducing a short-distance cutoff a which reflects the fact that the
assumption of unit order parameter is valid only on larger length scales, r ą a. This
cutoff was introduced when the free energy of a defect in Eq. (1.16) was calculated.
It is easily seen that taking a Ñ 0 results in a divergent elastic energy, reflecting
the breakdown of the model. We will proceed with using an ultraviolet cutoff in the
following and ignore the dynamics inside the defect core.

1.1.4 Passive nematodynamics

So far we have only considered the elastic forces due to the Frank free energy
(Sec. 1.1.2). In the presence of a flow field there are additional forces, different
from the elastic relaxation driven by the Frank free energy, acting on the liquid
crystal particles. The description of these problems goes under the name of ne-
matohydrodynamics. The resulting dynamics is described by the following three
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Figure 1.6: Flow alignment.

A liquid crystal is confined to a channel. At the edge of the channel the orientation of the
liquid crystal is fixed. Here, the director field is set to be perpendicular at the boundary.
If a shear flow is imposed (black arrow on the left), this flow interacts with the director
field and rotates it. This results in a distorted director field, which does not minimize the
Frank free energy, but instead is tilted in the direction of the flow by an angle π´ θL. The
angle θL is called Leslie angle.

coupled equations [1–3, 26–28]:

Dtpi ` ωikp
k “ λuikp

k ` Γ´1hi , (1.17a)
Dtvi “ ∇jp´Phgij ` σijq , (1.17b)
∇ ¨ v “ 0 . (1.17c)

Here, Dt ” D{Dt ¨̈“ Bt`v ¨∇ is the material derivative while uij “ p∇ivj`∇jviq{2
and ωij “ p∇ivj´∇jviq{2 are the strain-rate and vorticity tensor, respectively. The
molecular field M , defined in Eq. (1.12) in the one-elastic-constant approximation,
governs the relaxation dynamics of the nematic director. The material parameters
λ and Γ are, respectively, the flow-alignment parameter and the rotational viscosity
of the nematic fluid. The rotational viscosity determines how quickly the liquid
crystal relaxes back to its equilibrium configuration in the absence of flows, v “ 0.
On the other hand, the flow-alignment parameter controls how the nematic director
field responds to a shear flow. In general, a shear flow can be decomposed into a
rotational and an extensional component. For |λ| ą 1 the material is called flow
aligning and the director field will tend to align with an angle θL “ arccosp1{λq{2
to the direction of flow in which case the rotational and extensional parts of the
shear flow are balanced, see Fig. 1.6. On the other hand, for |λ| ă 1 it is called flow
tumbling with the rotational part of the shear flow always dominating such that the
director will rotate continuously under shear. Furthermore, the sign of λ is related
to the shape of the liquid crystal particles. Namely, for λ ă 0 particles are imagined
to be rather disk-like whereas for λ ą 0 they are more rod-like. λ “ 0 corresponds
to spheres.

Eq. (1.17a) can thus be understood as the evolution equation for the director field
in the presence of a flow. The terms on the left-hand site constitute the comoving and
corotational derivative. On the right-hand side there are two, potentially competing,
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terms. The first one describes how the director field is deformed by the presence of a
flow and the second one drives the liquid crystal back to its equilibrium configuration
such that the molecular field vanishes if the Frank free energy is minimal. If no flow
is present this equation reduces to a gradient descent describing how the director
evolves to its equilibrium state over time.

Eq. (1.17b) additionally contains a hydrodynamic pressure Ph, the metric gij
and the dissipative stress tensor σij “ 2ηuij ` σelij . This equation is the momentum
balance in the overdamped regime and reduces to the usual low-Reynolds-number
Navier-Stokes equation if the elastic stress tensor is taken to vanish, i.e., if σelij “ 0.
This elastic stress tensor is due to the presence of the liquid crystal which results
in an additional stress. We will give an explicit expression for this stress tensor
below. Through this equation the director field p can act back on the flow field
and, in particular, it can source a flow if M ‰ 0. This phenomenon is termed
backflow. Finally, we only consider incompressible fluids, which is enforced by Eq.
(1.17c), and eventually results in a non-vanishing hydrodynamic pressure. If a fluid
is incompressible its density is constant.

Eq. (1.17a) is called Leslie-Ericksen equation and describes the dynamics of the
director field in the presence of a flow field that potentially distorts the liquid crystal
field and drives it away from its equilibrium configuration. These equations were de-
rived originally by Refs. [29–33] from symmetry and thermodynamic considerations
in the form they are presented here. That is, all terms allowed by symmetry were
written down and then relations between them were derived from thermodynamic
principles. The derivation assumes local equilibrium and that the system is close
to equilibrium. Furthermore, an uniaxial nematic state with uniform magnitude
of order is assumed. These assumptions are valid far below the nematic-isotropic
transition temperature. A more general set of equations, where only local ther-
modynamic equilibrium and the system being close to equilibrium, is assumed can
be derived from linear irreversible thermodynamics. In this case the equations are
written in terms of the Q-tensor order parameter Qij such that uniaxiality and a
constant scalar order parameter are no longer required. The derivation is similar
to the one for the Leslie-Ericksen equation we sketch below except that the Frank
free energy and the dynamic equation for the flow parameter are now written in
terms of Qij . If written in term of Q, Eq. (1.17a) is typically referred to as the
Beris-Edwards equation. See Refs. [34–38] for details.

Derivation of nematodynamic equations
We will not consider the Q-tensor approach further now, but instead very briefly
sketch the derivation of Eqs. (1.17). We refer to Refs. [3, 39, 40] for more details of
the derivation below. The total free energy has the form

Ftot “

ż

dV ρ

2v
2 ` Fint ` FF , (1.18)

where the first term represents the kinetic energy with ρ the density, and Fint is an
internal free energy, e.g., enforcing incompressibility. Then, for an isothermal pro-
cess, the dissipation (energy production) rate T 9S is given by T 9S “ ´DtFtot. Using
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the general momentum conservation equation ρDtv
i “ ∇iσ

ij one finds (dropping
surface terms)

´
D

Dt

ż

dV ρ

2v
2 “

ż

dV σij∇ivj , (1.19a)

as well as
´
D

Dt

ż

dV Fint ` FF “

ż

dV M iDtpi ´ σ
E
ij∇ivj . (1.19b)

Here,
σEij ¨̈“ ´

BFF
Bp∇ipkq

∇jpk ´ Phgij (1.19c)

is the so-called Ericksen stress which is the sum of the distortion stress tensor and
a pressure term which is due to incompressibility. The first term on the right-hand
side of Eq. (1.19b) is due to a variation in the orientation of the liquid crystal
particles while keeping their center of mass fixed. The second term is due to the
displacement of the center of mass of the liquid crystal particles while keeping their
orientation fixed. Thus, adding the two contributions Eq (1.19a) and Eq. (1.19b),
the total dissipation is given by

T 9S “

ż

dV σvij∇ivj `M iDtpi , (1.20)

where we defined the viscous stress σvij as the difference between the total stress
and the equilibrium stress, σvij “ σij ´ σEij . In general this stress is asymmetric
and the antisymmetry is characterized by a vector Lk “ ´εijkσvij . It is found that
L “ pˆM , i.e., it is the torque exerted by the fluid on the director, and this torque
vanishes in equilibrium where director and molecular field are parallel. Denoting by
σsij the symmetric part of σvij it is then easily seen that

T 9S “

ż

dV σsiju
ij ` pi , Ni , (1.21)

where Ni :“ Dtpi ` ωijp
j describes the rate of change of the director field with

respect to the background fluid. Thus, the two sources of dissipation are seen to
be shear flow and rotation. Assuming that the fluxes uij and Ni are weak on the
molecular scale it is possible to write the forces σsij and Mi in terms of these fluxes:

Mk “ Rijku
ij `UklN

l , (1.22a)
σsij “ Pijklu

kl `RijkN
k , (1.22b)

where Onsager relations where used to simplify these expressions. The yet to be
determined tensors Pijkl, Rijk, and Uij have dimensions of viscosity. To determine
these tensors it is used that they have to be symmetric under the local symmetry
of the nematic (symmetry group D8h), such that the only vector appearing in their
expressions is the local director. Additionally, the final equations must be invariant
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under pÑ ´p. The most general expressions, assuming incompressibility, are then
found to be

Mi “ ζ1Ni ` ζ2p
juij (1.23a)

σvij “ ν1pipjp
kplukl ` ν2piNj ` ν3pjNi ` ν4uij ` ν5pip

kukj ` ν6pjp
kuki (1.23b)

with ζ1 “ ν3 ´ ν2 and ζ2 “ ν2 ` ν3 “ ν6 ´ ν5. The coefficients νi are called Leslie
coefficients and there are thus five independent coefficients with the dimension of
viscosity. Note that, at lowest order in p the total stress tensor just reduces to
σij “ ´Phgij ` ν4uij ` Oppq and that is the (passive) stress tensor we will use in
the following chapters. Furthermore, in the absence of any flow field, i.e. uij “ 0,
the viscous stress can be written as

σvij
ˇ

ˇ

uij“0 “
ζ2
2ζ1

rpiMj ` pjMis ´
1
2 rpiMj ´ pjMis (1.24)

which is then the stress due to the director field not minimizing the Frank free
energy. To make connection with Eqs. (1.17) we define Γ “ 1{ζ1 and λ “ ´ζ2{ζ1.
Thus, we immediately recover Eq. (1.17a) from Eq. (1.23a). Furthermore, we define
ν4 “ 2η and thus find the expression for the stress tensor in Eq. (1.17b) that was
stated above, where we now also have an explicit expression for the stress tensor σelij
as was promised before.

1.2 Active Matter
We will now turn towards active systems. So far we have introduced liquid crystals
that are passive, that is the individual particles respond only to external forces and
are not motile themselves. However, the thesis is concerned with active systems.
These are systems where the individual constituents making up the system inject
energy into the system themselves. For example, the rods making up a nematic
liquid crystal are now motile and move around on their own. This drives the system
as a whole away from equilibrium and allows numerous new dynamic structures [41–
53]. The field of active matter is nowadays very large and we focus on three of
the main models, namely active liquid crystals, the Toner-Tu equations, and the
Vicsek model. All three are models used to explain macroscopic pattern formation
in systems with underlying orientational order and where microscopic particles are
motile. The former two are both coarse-grained, hydrodynamic theories used to
describe the large-scale behavior of systems. Thus, these models are employed
when one is interested in the dynamics on the level of the entire system and not the
dynamics of its microscopic constituents. The hydrodynamic theories are typically
classified according to the symmetry of the microscopic particles (are they nematic
or polar) as well as the relevance of momentum conservation. If momentum is not
conserved, the systems (or rather models used to describe a system) are called “dry”.
On the other hand, if momentum conservation is relevant the system is referred to
as “wet” [42]. This convention is due to the fact that systems in which momentum
conservation is important are often systems in which active particles are suspended
in a surrounding fluid such that solvent-mediated hydrodynamic interactions are
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relevant and must be taken into account, with the total momentum in these systems
thus being conserved. In a dry system, on the other hand, the dynamic of the
surrounding fluid is irrelevant for the dynamics of the particles, e.g., because of a
separation of timescales, and its presence can be incorporated by a simple friction
term. For example, the active particles can be modeled as a system with overdamped
dynamics where momentum is simple transferred to the surrounding fluid. In this
case momentum is not conserved in the system of active particles one considers,
though of course globally it is still conserved. A successful example of model used
to describe wet systems is that of active nematodynamics whereas dry active matter
is often described by the Toner-Tu model. In the following, we first introduce active
liquid crystals and after that we turn towards introducing the Toner-Tu equations.
These are the active hydrodynamic models used in later chapters. The other class of
systems, agent-based models, are instead built up by considering not macroscopic,
hydrodynamic quantities but the dynamics of individual microscopic particles. A
famous example of these is the Vicsek model which we will briefly discuss thereafter
as well. At the end of the section, we introduce some applications of active matter
theory to biological systems.

1.2.1 Active nematodynamics
The equations used in the framework of active liquid crystal theory are very similar
to the ones derived/described in the previous subsection. The only addition is
that there is an additional term in the stress tensor, the so-called active stress. This
stress is a macroscopic quantity found by coarse-graining over the energy-consuming
microscopic particles and drives the system out of equilibrium on the macroscopic
scale. We present a version of this microscopic derivation in Chapter 3. Here we just
state the commonly used expression for the active stress tensor and justify it from
symmetry considerations. In the following subsection we present some examples to
highlight different features of active liquid crystals.

Active hydrodynamic equations
The active stress tensor we (mostly) use reads σaij “ αQij . Here, α is the propor-
tionality constant between the nematic order parameter and the active stress. It is
called activity. This stress is in general anisotropic, thus cannot be absorbed into
a pressure, and the symmetry is broken by the presence of the director field. In
this sense, this expression for the stress tensor is the obvious choice in that it is the
lowest-order symmetric tensor in the director field that respects the nematic sym-
metry and it is not isotropic (because of the aligned liquid crystal particles breaking
rotational symmetry). Thus, as we will show in Chapter 3, the microscopic particles
are modeled as force dipoles with a the direction of force given by their direction,
see Fig. 1.7a. Depending on its sign, one calls the activity either extensile, if α ă 0
or contractile, if α ą 0. For extensile activity the force is pushing outwards, in the
direction of the orientation, while for contractile activity it is pulling inwards. See
Fig. 1.7b for a sketch of the active force dipole. This model of a microscopic force
dipole was already used by, e.g., Pedely and Kessler [54] and an active version of
Eqs. (1.17) was first written down by Simha and Ramaswamy [55]. They derived
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the active stress by coarse graining over a model of microscopic force dipoles; see also
e.g. Refs. [41, 42, 48, 56] for more details. Shortly after, the same equations were
derived in the framework of linear irreversible thermodynamics. This approach is
very similar to the derivation of the passive case sketched in the previous subsection
[57–59]. From almost the very beginning, a large effort has been made to connect
these hydrodynamic equations to microscopic models and the statistical mechanics
of non-equilibrium systems, e.g., in Refs. [55, 60–63]. We do not consider this fur-
ther, see, e.g., Refs. [42, 64, 65] and references therein for an introduction and more
details.

We will use this active stress tensor and drop the elastic stress tensor because,
while it does affect the details of the dynamics, it is often unimportant for the
phenomenology of active nematics. Since it complicates the structure of the equa-
tions considerably, we treat it as a subleading correction and do not consider it in
the following chapters. Thus, to summarize and for future reference, our dynamic
equations of an active liquid crystal (for both nematic and polar liquid crystals) are

Dtpi ` ωikp
k “ λuikp

k ` Γ´1hi , (1.25a)
Dtvi “ ∇jp´Phgij ` σijq “ ∇jp´Phgij ` 2ηuij ` σaijq , (1.25b)
∇ ¨ v “ 0 . (1.25c)

Note that the pressure Ph now includes an active pressure Pa. See Fig. 1.7b for
the flow that a single microscopic particle can drive due to the coupling between
active force and velocity field. Even though Eqs. (1.25) look very similar to the
passive equations, Eqs. (1.17), the resulting dynamics are much richer and more
complicated. For example, for flow aligning systems (λ ą 1), extensile active liquid
crystals are unstable to splay instabilities while contractile active systems enhance
bend instabilities; and vice versa for flow tumbling systems (λ ă 1) systems. We
now present two examples to illustrate some aspects and for future reference.

Spontaneous flow transition
First predicted by Voituriez et al. [26], the spontaneous flow transition in active
liquid crystals is a transition between a stationary and a flowing state in a channel.
This transition is analogous to the Fréedericksz transition in standard liquid crystal
theory [3, 40] with the twist that instead of an externally applied magnetic field
the transition is now driven by the active forces produced on the microscopic level3.
The ground state considered is an active, two-dimensional film in a channel that is
infinitely long in x-direction (such that the whole problem is translationally sym-
metric in this direction) and has width L in y-direction4. The boundary condition
imposes that the director field is parallel to the edge of the channel, i.e., pointing
in x-direction there.
3In fact, in the case that there is no flow alignment (λ “ 0) the problem can be mapped exactly
onto the Fréedericksz transition.

4Note that the system is rotated by 90˝ with respect to Ref. [26] to make a comparison with
Chapter 3 easier.
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(a) (b)

(c)

𝜃

Figure 1.7: Activity and active flow transition.

(a) A polar particle (top) exerts a force (pink arrow) along its own direction. A nematic
particle (center) can also exert a directed, polar force, or it can exert a non-directed,
nematic force (bottom) (b) In our convention, if the forces are pointing outward, the
activity α is negative and we call the activity extensile. If the forces are pointing inwards
the activity is positive and we call it contractile. The blue arrows illustrate the fluid flow
that the respective activities can drive. (c) Active particles are aligned in a channel (left) of
width L smaller than some critical length scale Lc. If the width of the channel is increased
to some value greater than this critical length scale, the particles away from the edge of
the channel (where perpendicular anchoring is enforced) rotate by an angle π ´ θ and a
flow (blue arrows) is created in this spontaneous flow transition.
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They consider an active polar liquid crystal whose dynamic is essentially de-
scribed by Eqs. (1.25) but including the elastic stress tensor as written in Eq.
(1.24) and with κF,2 “ 0 (no twists since we are working in two dimensions) in
the Frank free energy, Eq. (1.10), as well as an additional term 9pi included in
the Leslie-Ericksen equation that is related to the activity. However, the general
phenomenon is independent of these small modifications, as will be seen in Chapter
3 as well. There we repeat the calculation of Voituriez et al. [26] in a slightly more
general context (including a chiral active stress) and thus we present the detailed
calculation in Chapter 3 and only state the results of Ref. [26] now. The onset of the
transition is essentially controlled by the sign of αp1` λq, which has to be positive
for a spontaneous flow transition to occur. In this case the system acquires a non-
vanishing velocity field and starts flowing, if, for a given activity, the width of the
channel exceeds a critical size Lc. Alternatively, for a given channel thickness this
leads to a critical activity. The critical length scale is proportional to the so-called
active length scale defined as `a “

a

κF{|α|, quantifying essentially the relative
strength of elastic versus active forces. Below the critical threshold, L ă Lc, the
elastic terms dominate and the polarization field is constant with the orientation
set by the boundary condition. Above the transition, L ą Lc, the stationary state
v “ 0 is unstable and a new solution exists with a non-trivial flow field v ‰ 0. Due
to the interaction with the flow-field, the constant polarization field is disrupted
and rotates away from the edge of the channel. If the integration constant is chosen
such that the total net flow vanishes, the minimum tilt angle reached by the po-
larization field for flow-aligning systems is essentially given by the Leslie angle θL.
The structure of the velocity field and the exact point at which the flow transition
occurs depend on the boundary conditions of either the velocity or the stress field.
See Fig. 1.7c for an example with perpendicular anchoring of the nematic at the
boundary and no-slip boundary conditions (i.e., the velocity field vanishes at the
boundary). A more detailed/extended look at this phenomenon can be found e.g.
in Refs. [27, 28] and we will return to this problem in detail in Chapter 3.

The take-away message is that the transition know for passive liquid crystals
is recovered in active systems. But, whereas in the passive case an external field
had to be applied to distort the uniformly aligned system, in the active case the
transition is driven by the system itself. The presence of activity alone can create a
non-vanishing flow field that distorts the director field.

Active defects
We will now consider the affect of activity on the topological defects in the director
field introduced in the passive case in Sec. 1.1.3. Again, we merely state the results
here and go into more detail for some of the calculations in the following chapters.
In particular, we consider four different defect charges, namely ˘1{2 and ˘1, in two
dimensions because these are the minimal allowed defect charges in nematic and
polar liquid crystals, respectively. In general, the idea is to choose the configuration
of the director field p such that the defect one wants to study is present. That is
one chooses pi “ cos θ x̂` sin θ ŷ with θ “ sϕ` ε, where ϕ the angular coordinate
in polar coordinates, s the defect charge, and ε a constant, c.f. Sec. 1.1.3. For
this configuration one then solves Eqs. (1.25) for the velocity field. The presence of
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activity combined with the presence of symmetry-breaking due to the defect results
in numerous interesting phenomena that have been studied in detail. In particular,
there is mounting evidence that active defects have biological functions, see below
in Sec. 1.2.4 for more on this.

Historically, the case of an active `1 defect in polar systems was first studied
by Kruse et al. [57]. It is the simplest case to study because the `1 defect is
rotationally symmetric which simplifies the calculations considerably. As explained
in Sec. 1.1.3 the constant ε determines the local geometry of the defect such that
the defect is an aster if ε “ 0 mod π, a vortex if ε “ π{2 mod π, and a spiral for all
values of ε in between these two limiting cases. At equilibrium, which configuration
is the one minimizing the elastic energy is determined by the elastic constants in the
Frank free energy and boundary conditions. In an active system, which is away from
equilibrium, the stability of the different configurations is determined from solving
Eqs. (1.25). Since the problem is rotationally symmetric the velocity field always
only has a azimuthal component vϕ and the radial velocity field vr vanishes. It was
found by Kruse et al. [57] that

vϕprq “ αω0pη, εqr ln r

r0
, (1.26)

where r0 is a constant set by the boundary conditions, and ω0pη, εq is a function
of the constant ε and viscosity η. Imposting no-slip boundary conditions at the
boundary of a disk of radius R results in r0 “ R, see Fig. 1.8b. Including friction
results in a new effective length scale that sets r0. Thus, spiral defects are rotating
for any non-vanishing value of activity. For κF,1 “ κF,3 it is found that a steady state
solutions exists if |λ| ą 1 and then cos 2ε “ 1{λ. Thus, the spiral defects rotate for
any non-vanishing velocity. Not assuming the one-elastic-constant approximation,
i.e., for δκF “ κF,3 ´ κF,1 ‰ 0, a stability diagram can be obtained [57]. For flow-
aligning systems, if contractile activities are sufficiently small, asters (vortices) are
stable if δκF ą 0 (δκF ă 0). Above some critical value of activity there is a dynamic
instability and only rotating spirals are stable. An in-detail follow-up numerical
investigation of the phase diagram was carried out by Elgeti et al. [66].

We now move on to the nematic case where ˘1{2 defects are relevant. This
was first systematically investigated theoretically by Giomi et al. [67]. These are
no longer spherically symmetric and thus the expressions are more complicated. In
particular, a steady-state analytical solution of the velocity field can be found only
if one only solves the Stokes equation, Eq. (1.25b), but not the Leslie-Ericksen
equation, Eq. (1.25a). There is thus no feedback of the flow on the orientation
of the director. Since the constant ε does not change the geometry of the defects
(unlike in the case of a `1 defect) but only results in a total rotation one can
thus set ε “ 0, see Sec. 1.1.3. The flow fields generated by the ˘1{2 defects are
shown in Figs. 1.8c-f. The most interesting new phenomenon is that the active
`1{2 defect, and only this one, is self-propelling. That is, a ´1{2 defect has a
three-fold rotational symmetry (symmetric under rotation of 2π{3) in the director
field and a six-fold rotational symmetry in the velocity field. This results in the
velocity field vanishing at the defect core. The same was found in the case of a `1
defect, see Eq. (1.26). However, the `1{2 defect has an orientation and it is only
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Figure 1.8: Active defects.

(a) Color bar of the speed relative to the maximal speed used in following panels. (b)
Velocity field (white stream lines) of a `1 defect (red stream lines are director field) for
contractile activity.. The flow is purely azimuthal and the defect is stationary. (c) Velocity
field of a `1{2 defect for contractile activity. The flow created by the defect results in
the defect moving in the direction of the orange arrow, i.e., towards its “tail”. (d) If
the activity is extensile, the velocity field is mirrored and the defect moves towards its
head. (e) Velocity field of a ´1{2 defect for contractile activity. Like the `1 defect it
is stationary. (d) Velocity field ´1{2 defect for contractile activity; the velocity changes
sign compared with extensile activity. (g) If a `1{2 and a ´1{2 defect are present in the
same system, there are four fundamentally different configurations possible. First, in (g),
we show the configuration for contractile activity and where the half-integer defects are
oriented such that the velocity of the `1{2 defect points towards the ´1{2 defect. (h)
Contractile activity but the velocity of the `1{2 defect points away from the ´1{2 defect.
(i) Same configuration but for extensile activity. (j) Extensile activity but the velocity of
the `1{2 defect points towards the ´1{2 defect again. (k) Annihilation trajectories for
different values of activity for defects originally oriented as in (h) and (j). The positive
defect is initially located at x` “ 5 while the negative defect is located at x´ “ ´5.
Plotted is the position of the defects as a function of time for different activities. When
the two branches intersect, the defects are at the same position and annihilate. The passive
case is shown in green, the trajectories are symmetric and the defects annihilate at x “ 0.
For negative (extensile) activity, the velocity of the `1{2 defect points towards the ´1{2
defect. This results in a speed-up of the annihilation, which now occurs at smaller times
compared with the passive case, and an asymmetry. The annihilation occurs not at x “ 0,
but at x ă 0. The greater the absolute value of activity, the faster the speed of the `1{2
defect and the annihilation process. For positive (contractile) activity the velocity of the
`1{2 defect points away from the ´1{2 defect. This slows the annihilation process down
and the defects now annihilate at a position x ą 0. Time and position are in arbitrary
units.
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mirror symmetric, with the symmetry axis being its orientation, not rotationally
symmetric. This results in a velocity field that is non-vanishing at the defect core.
Namely, for a defect in a disk of radius R and with no-slip boundary conditions, the
velocity at the defect core is given by v0 “ αR{p4ηq. This is the velocity with which
the defect core (and therefore the entire defect) is moving. Thus, due to the presence
of activity the defect effectively creates a flow field that then in turn transports the
defect, effectively resulting in a self-propelling particle. The direction of motion is
set by the sign of activity. For contractile activity (α ą 0) the defect moves in
direction of its “tail” while for extensile systems (α ă 0) it moves in direction of
its “head’. That is the defect moves towards the left and right, respectively, for a
director configuration as in Fig. 1.8c,d.

So far we have considered only a single isolated defect. Knowing the flow fields
created by these it is then, e.g., possible to study the influence of activity on the
defect annihilation mentioned in the passive case in Sec. 1.1.3. We consider the
case of one `1{2 and one ´1{2 defect at an initial distance ∆pt “ 0q. It turns out
that both the initial configuration (that is, the relative orientation of the defects)
and the sign of the activity are relevant. If the system is initialized such that the
tail of the `1{2 defect points in the direction of the ´1{2 defect, then the active
flow results in a speed-up of the `1{2 defect towards the ´1{2 defect in contractile
systems such that effectively the annihilation time decreases. On the other hand,
in extensile systems the `1{2 defect moves towards its head, that is away from the
´1{2 defect, hence effectively resulting in a repulsive interaction. If the `1{2 defect
is oriented initially in the opposite direction, then the behavior is reversed5. See
Figs. 1.8g-j. To obtain an equation describing the defect dynamics, one proceeds
as follows. The energy of a defect pair is given found similarly to the energy of an
isolated defect (Eq. (1.16)), but with

θ “ s1 arctan
ˆ

y ´ y1

x´ x1

˙

` s2 arctan
ˆ

y ´ y2

x´ x2

˙

` ε . (1.27)

Choosing the coordinate system such that y1 “ y2 “ 0, and x2 “ ´x1 “ ∆{2, and
integrating in polar coordinates over θ P r0, 2πs and r P r0,∆{2´ as Y r∆{2` a,Rs
one finds the elastic energy

Es1`2 “ Es1 ` Es2 ` 2πκFs1s2 ln R∆ ` 2Ec , (1.28)

i.e., the energy consists of the sum of the energy of the isolated defects plus an
interaction term. This expression can be rewritten as [1]

Es1`2 “ πκF ps1 ` s2q ln R
a
` 2πs1s2 ln a

∆ ` 2Ec . (1.29)

Thus, the divergent term lnR vanishes if the defect charges add up to zero, s1 ` s2
= 0. This reflects the fact that if in a region the defect charges add up to zero, from
5If the two defects are not as perfectly aligned as in the configurations sketched in Figs. 1.8g-j then
there are additional torques acting on the defects, see [68, 69].
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far away the director field looks homogenous and not defective, see Figs. 1.4i-k. The
elastic force exerted by defect 1 on defect 2 can be found from this expression to be

F2 “ ´∇2Es1`2 “ p2πκFs1s2∆q x̂, (1.30)

thus the force is attractive if the defects have charge of opposite sign (resulting
in the annihilation), and repulsive if they have the same sign. We now consider
the case of two half-integer defects in more detail, with a `1{2 defect at position
r` “ tx`, 0u and a ´1{2 defect at position r´ “ tx´, 0u. In general, assuming
an overdamped equation of motion, and in the absence of backflow, the resulting
equations of motion for a single defect is given by ζdr{dt “ F , where F is the
net force acting on the defect, and ζ an effective drag coefficient. In our case, this
results in the equation of motion

dx˘
dt “ ¯

C
x` ´ x´

, (1.31)

where C “ 2πκFs1s2{ζ, such that

d∆
dt “ ´

2C
∆ . (1.32)

It is straightforward to integrate this equation and one finds ∆ptq “ 2
?

C
?
ta ´ t,

where ta is an integration constant. It is the time at which the defect separa-
tion vanishes and thus the time at which the defects annihilate. See Fig. 1.8k for
an example of an annihilation trajectory. This dynamics was studied in detail in
Refs. [70–74], among others. So far we have only considered the passive case, where
the annihilation is purely due to the gradient force derived from the elastic energy.
To investigate the effect activity has on the annihilation dynamics we include the
self-propulsion speed v0 of the `1{2 defect by simply adding v0 on the right-hand
side of Eq. (1.31) for the equation for x`. Thus, the equation for the time evolution
of the distance between the two defects takes the simple modified form [67, 75]

d∆
dt “ v0 ´

2C
∆ . (1.33)

It is found that for sufficiently large activity and rotational viscosity there are two
regimes. For large separations of the defects the dynamics is dominated by activity
and ∆ptq9αt. If the defects are close to each other, they behave as in the passive
case, ∆9

?
ta ´ t. Some resulting trajectories for different values of activity are

shown in Fig. 1.8k. See Refs. [67, 75] for more details. In particular, two `1{2
defects can effectively attract (as long as activity dominates over elastic repulsion)
if the initial configuration is chosen properly.

Active turbulence
If activity is sufficiently large, it cannot only modify defect annihilation but can
result in the creation of defects. This is due to the activity creating large deforma-
tions of the director field which results in the generation of defect pairs that can
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separate, instead of instantly annihilating, due to the motility of the `1{2 defect, as
described above. Defect pairs thus constantly are created and annihilate, with the
overall sum of charges being constant, according to the topological requirement of
the Poincaré-Hopf theorem. The system can reach a dynamical steady state where
the mean number of defects is on average constant in time [67]. This state of high
activity has been called active turbulence, due to the turbulent-like looking flows
in the system, or active chaos. However, despite a similar phenomenology the state
is very different from classical turbulence, which occurs at high Reynolds numbers
[76] unlike the active turbulence at low Reynolds numbers. See e.g. Refs. [77, 78]
for more details on this topic.

3D active liquid crystals
So far, we have only considered the case where the director field is a two-component
field. However, recently the case of fully three-dimensional active liquid crystals
has attracted attention as well, both theoretically and experimentally. Similar to
the two-dimensional case, one of the main points that is being investigated is the
behavior of defects in these systems. Instead of point defects being present, however,
the number of defective structures is much larger in three dimensions (see Sec. 1.1.3
above). The dominant excitations now are disclination lines and loops (that is,
closed lines) and point defects. But other, more exotic structures such as knotted
disclination lines could be present as well. First steps have been taken towards
understanding the dynamics of disclination lines, both experimentally [79–82] and
theoretically [83–90], but the understanding is still very incomplete.

1.2.2 Toner-Tu equations
We now introduce the Toner-Tu equations in two dimensions. As mentioned as the
beginning of this section, these are used to model dry systems, that is systems where
momentum is not conserved. They were introduced in 1995 by J. Toner and Y. Tu
in Refs. [91, 92]. In this model there are two dynamical fields, the number density
field ρpr, tq and the velocity field vpr, tq. Both of these macroscopic, continuous
fields can be defined from the position rnptq and velocity vnptq of the microscopic
constituents, such that

ρpr, tq ¨̈“
ÿ

n

δpr ´ rnptqq , (1.34a)

vpr, tq ¨̈“
1

ρpr, tq

ÿ

n

vnptqδpr ´ rnptqq . (1.34b)

As the velocity of each microscopic particle, vnptq, gives rise to an orientation of
this particle, namely pnptq “ vnptq{|vnptq|, it is possible to write all of the follow-
ing equations either in terms of the macroscopic polarization or the velocity. The
model then consists of two equations for the two dynamical fields, namely the mass
conservation equation, and an equation of motion for the velocity field. Following
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Ref. [42] we write these as

Btρ` v∇ ¨ pρpq “ 0 , (1.35a)

Btp` λ1 pp ¨∇qp “ ´
1
Γ
δFp
δp

. (1.35b)

where Fp is a free-energy functional, v is the self-propulsion speed of the individual
particles, while Γ is a kinetic coefficient. Note that we have ignored noise terms
here. In writing the equations in this way it is easy to distinguish the equilibrium
contribution (arising from the free energy) from the non-equilibrium ones. Note the
difference in prefactor for the second terms on the left-hand side of Eqs. (1.35). The
parameter λ1 has dimensions of speed and determines the strength of the convective
term that is similar to the advective term in the Navier-Stokes equation. However,
since the system is out of equilibrium and momentum is not conserved, Galilean
invariance is broken such that it is possible to have λ1 ‰ v. Comparing with the
corresponding equations for the active liquid crystal, Eqs. (1.25), we see that there
is an important difference in that the orientation field p is both the orientational
order parameter (as in the active liquid crystal case) and also a current (by being
equal to the direction of velocity). Thus, the director field acts on itself through the
advection term pp ¨∇qp as well as through the flow alignment term δFp{δp in Eq.
(1.35b). The former is different from the active liquid crystal model where velocity
and polarization were not proportional, and the term reads v ¨∇p. The free energy
is given by

Fp ¨̈“

ż

dr
„

ξ̃pρq

2 |p|
2
`
ζ̃pρq

4 |p|
4
`
κ̃F

2 |∇p|2 ´ ωρ´ ρ0

ρ0
∇ ¨ p



, (1.36)

where ρ0 is the average density such that ρ´ ρ0 describes the density fluctuations.
Using this free energy, the Toner-Tu equations can be written as:

Btρ` v∇ ¨ pρpq “ 0 , (1.37a)

Btp` λ1 pp ¨∇qp “ ´
”

ξpρq ` ζ |p|
2
ı

p` κF∇2p´ µ∇ρ , (1.37b)

where ξ “ ξ̃{Γ, ζ “ ζ̃{Γ, κF “ κ̃F{Γ, and µ “ ω{pΓρ0q. As before, this free
energy is found from symmetry considerations, considering all terms that are in
harmony with the polar symmetry of the system. Note that here we do not write all
possible terms allowed by symmetry, and that this is a minimal model that will be
used in Chapter 2 and has proven to capture the relevant dynamics there. By not
including all the terms we disregard possible long-range hydrodynamic couplings.
For a further discussion on this see Refs. [93–95]. The full free energy can be found,
e.g., in Ref. [42]. The second-to-last term of Eq. (1.36) is the Frank free energy
contribution in the one-elastic-constant approximation which penalizes gradients
in the director field. The first two terms in Eq. (1.36) control the order-disorder
transition that occurs at ξ “ 0. The parameter is a function of the density and there
is a critical density ρc at which the transition occurs. For ρ ă ρc, that is ξ ą 0, the
system is isotropic such that p “ 0 and consequently the mean velocity vanishes
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as well. Above the critical density, for ρ ą ρc, i.e., ξ ă 0, the system assumes
an ordered state with uniform orientation and non-vanishing mean velocity, namely
|p0| “

a

´ξ{ζ and v “ v0p0. It is then customary to write ξ “ ξ0 p1´ ρ{ρcq
near the transition. Note that ξ0{Γ is a rotational diffusion rate and that ζ ą 0 is
required for stability. Remarkably, this equation allows for long-range order even in
two dimensions, evading the Mermin-Wagner theorem, due to its non-equilibrium
nature and the convective term generating long-range interactions. This model has
been studied in great detail, see, for example, Refs. [42, 96, 97] and references
therein.

1.2.3 Vicsek model
The Toner-Tu equations can be seen as a hydrodynamic theory of the agent-based
Vicsek model, and coarse-graining the equations of the Vicsek model one can recover
the Toner-Tu equations [60]. Unlike the models for active matter described so far,
the Vicsek model, introduced by Vicsek et al. in 1995 [98], is not a hydrodynamic
theory but describes the evolution of the microscopic active particles in a system.
As before for the Toner-Tu equations, each of the N particles in the system has
a position rnptq and a velocity vnptq which gives rise to a polarization pnptq “
vnptq{|vnptq|. While there are slightly different versions, a commonly used version
of the equations of motions in two dimensions is [98, 99]

rnpt`∆tq “ rnptq ` v0∆tpnpt`∆tq (1.38a)

θnpt`∆tq “ arg
«

ÿ

j

Cnmptqpmptq

ff

` ηξnptq . (1.38b)

Here, ∆t is a time step such that the position of the nth particle changes by v0∆t
in the direction of its orientation pn. Thus, Eq. (1.38a) is just a deterministic
motion with each particle moving with velocity v0 in the direction of their orientation
pn “ tcos θn, sin θnu. The interaction with other particles is included in the equation
of motion for the orientation, Eq. (1.38b). Here Cnm is the connectivity matrix
defined as

Cnm “

#

1 if |rnptq ´ rmptq| ă R
0 if |rnptq ´ rmptq| ą R

, (1.39)

where R is a free parameter that determines the length scale of the interaction.
Thus, the connectivity matrix is unity for all particles that are closer than R to
a given particle and vanishes for all particles that are further away. In this way,
arg r

ř

m Cnmptqpmptqs is the angle of the average orientation of all particles that are
within a radius R of a given particle n. Incorporated into the equations of motion
for the nth particle as in Eq. (1.38b), this results in an alignment interaction. Each
particle tends to align with all the particles near it. In the absence of noise this
results in all particles having the same orientation after some time, even if the
orientations of all particles are initially random. The presence of the noise term
introduces some randomness, and, depending on its magnitude η, acts against the
alignment interaction. The Gaussian white noise term ξnptq is uniformly distributed
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in r´π, πs. η “ 1 is the maximal noise for which the orientation of each particle is
randomized at each time step ∆t. In this case there is no alignment at all and the
model reduces to a collection of N independent random walkers. Away from this
extreme case, there is a competition between the alignment interactions and the
noise, and depending on the relative importance of each term the particles in the
system are more or less aligned. This can be quantified by the polar order parameter

P ¨̈“ |P ptq| “
1
N

ˇ

ˇ

ˇ

ˇ

ˇ

N
ÿ

n“1
pnptq

ˇ

ˇ

ˇ

ˇ

ˇ

. (1.40)

Since one can fix length and time scales of the model by setting R “ 1 and ∆t “ 1,
there are effectively three free parameters in the model, the density ρ “ N{V (where
V is the area of the system), the noise amplitude η, and the deterministic velocity v0.
Essentially, at a fixed velocity there is an ordered state if the density is sufficiently
high and the noise sufficiently low. The critical noise below which collective motion
occurs is found to be ηc „

?
ρ. Despite the simple equations Eq. (1.38) there has

been a lot of debate and research surrounding the model since its introduction over
25 years ago. We refer to Refs. [97–100] and references therein for further details.

1.2.4 Active matter and collective motion in biology
As the last part of this section, we briefly comment on some applications of the mod-
els introduced above to biological systems, as this will be one of the main motivating
factors in the following chapters. Biological systems are inherently non-equilibrium
and active. Often they develop in a situation where many microscopic particles
(e.g., cells or bacteria) have to coordinate without, or with only minimal, external
guidance. Examples of minimal guidance include the presence of gravity or chemi-
cal gradients (chemotaxis). It is then natural to use the theories introduced above,
where each microscopic particle is active, i.e., moving on its own, but where macro-
scopic order still spontaneously develops on system-spanning scales, to explain vari-
ous phenomena observed in biological systems. The models described above can be
adapted to include environmental guidance through the addition of external fields.
As we mentioned, which of these models should be used depends on properties of
the system one wants to describe, e.g., if momentum is conserved or not. In general,
the procedure is to assign to each microscopic particle an orientation and/or a ve-
locity, coarse-grain these quantities over a certain system-dependent scale (think ten
particles as the order of magnitude), and then use these averaged quantities in the
hydrodynamic active matter models. For the Vicsek model, it being an agent-based
and not a hydrodynamical theory, coarse-graining is not necessary. The advantage
of this approach is that the resulting equations of motions are relatively simple and
easy to analyze, compared with other models that take many microscopic details
into account. Furthermore, the generality and abstraction of this approach allows
it to extract fundamental principles and guiding mechanisms for self-organization
that are universally valid. Many different kinds of pattern formations and collec-
tive motions, spanning several magnitudes of size, have been successfully described
with models of active matter. For example, dry active models (Toner-Tu equations
and Vicsek model) have been used to study and explain the flocking behavior of
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Figure 1.9: Active matter and biology.

(a) Example of a flock of birds, taken from Ref. [104]. (b) Traveling waves in actin motility
assays, taken from Ref. [110]. (c) Top: To each MDCK cell (grey) an orientation is
assigned, after coarse-graining over the size of a few cells this results in an orientation
field (red sticks). This orientation field can be extracted (black sticks) and one can study
its dynamic in isolation. Bottom: Using this procedure, one can find topological defects
(here `1{2 defect, blue arrow). Taken from Ref. [120]. (d) Using the same procedure for
cells in a NIH 3T3 monolayer (top), one can find (bottom) ´1{2 (light blue circle), and
`1{2 defects (orange circles), the latter of which are motile. Taken from Ref. [121]. (e)
The spontaneous flow transition is observed using RPE1 cells in a channel. The cells flow
towards the bottom on the left edge of the channel, and towards the top on the right edge.
Away from the edges the cells are tilted, compare with Fig. 1.7c. Taken from Ref. [122]. (f)
A HBE cell monolayer monolayer (top) is found to be in a state that matches well with the
descriptions of active turbulence. There are numerous defects present (bottom, green are
`1{2 and red are ´1{2 defects) that constantly annihilate and nucleate. From Ref. [123].
(g) C2C12 myoblasts are confined to a disk in a flat layer. It is observed that a `1 defect
is present and that after some time the cells move upwards, forming a three-dimensional
tower of cells. From Ref. [124].

animal herds, birds, fish, or bacteria [42, 43, 96, 97, 101–109], see Fig. 1.9a, thereby
investigating and understanding fundamental principles that underly the dynamics
of collective motion and flocking. These principles are independent of many of the
microscopic details of the system one considers. It is sufficient that it is possible to
assign to each particle (be it a fish, bird, bacteria, etc.) an orientation and a velocity,
and that there is some alignment interaction between nearby particles. Apart from
flocking, other applications have been to explain traveling waves in actin motility
assays [110] (Fig. 1.9b) or cluster formation in myxobacteria [111]. Numerous stud-
ies of artificial active systems, such as active colloids or self-propelled hard rods,
have also be performed and used to study flocking behavior and collective motion in
the lab. See, e.g., Refs. [93, 112–119]. Despite their simplicity (relative to the com-
plexity of biological systems) they have often be able to recreate structures found
in biological systems.

Regarding wet active matter, described using the active nematodynamics equa-
tions, an important example that much research has focused on is the modelling
of cells as active nematics. There are many other applications, such as swimming
bacteria [49, 125–131] and, especially, kinesin-driven microtubule solutions [75, 80,
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81, 132–135]. However, we now focus on describing some facts about applications in
cells and tissues, since this will be very important for many of the following chap-
ters. For an overview over this topic see, for example, the review articles Refs. [42,
49, 52, 136, 137] and references therein. In the following we just outline the gen-
eral idea and highlight a few successful applications. In confluent cell monolayers
one essentially has a two-dimensional layer of cells that covers the substrate almost
completely, i.e., there are no holes in the layer. The cells interact via hydrodynamic
interactions, thus they are considered wet. The starting point is, again, to assign
to each cell a direction. After coarse-graining this results in a continuous director
field whose evolution can be tracked over time, see Fig. 1.9c,d. Since each of the
cells is motile, the liquid crystal field obtained through coarse-graining is active.
Many of the predictions and characteristics of active nematic liquid crystal theory
have been recovered in cell monolayers, indicating that it is a decent theory to de-
scribe their dynamics. For example, the spontaneous flow transition described in
Sec. 1.2.1 has been experimentally observed in cells (Fig. 1.9e) [122, 138], as has
active turbulence [123] (Fig. 1.9f), with the theory introduced above being able to
qualitatively describe many of the observed dynamics. Furthermore, active ˘1{2
defects have been observed in cells by, e.g., Refs [121, 123, 138, 139], and their dy-
namics can be described using the active nematic theory as explained in Sec. 1.2.1
(Fig. 1.9c,d). These defects in particular have been linked to biological functions.
For example, it has been observed that at the position of defects cell apoptosis (dead
cells being expelled from the cell monolayer) takes place [120], or that the growth of
protrusions and structure formation in growing embryos is related to the presence
of defects [140, 141] (Fig. 1.9g). The latter will be the topic of Chapters 5,6 and we
will describe more details about this there.

Lastly, we mention that the field of active matter is much too broad to ever
do it justice here, fields like active polymers [46], active solids and metamaterials
[142–144], or applications to plants [145–148], were not even mentioned here.

1.3 Differential Geometry
In the last section of this chapter we turn away from active matter and towards
differential geometry. The purpose of this section being to introduce some concepts
and notations that we will use in some of the following chapters to investigate how
active matter interacts with geometry and creates different kinds of shapes. In
these chapters we are concerned with two-dimensional surfaces that are embedded
(i.e., live in) three-dimensional space. This is different from, e.g., general relativity
where, besides dealing with higher-dimensional spaces, there is no surrounding space
in which the surface can be embedded. This results in a slightly different approach
than one might is familiar with from other fields like general relativity. On the other
hand, the fact that the surface is embedded in three-dimensional space makes it very
easy to illustrate definitions and concepts. We therefore now introduce definitions
used in later chapters in a (hopefully) intuitive and illustrative manner, and refer
to other works for a more mathematically rigorous treatment. In the appendix we
briefly outline how a connection can be made between the “intrinsic geometry” view
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(used, e.g., in general relativity) and the “extrinsic geometry” view commonly used
in soft matter.

1.3.1 Tangent vectors, normal vectors, metrics, and all that
We follow in this subsection mainly the review by M. Deserno [149], especially for the
parts about external curvature, which is also discussed in Refs. [16, 150]. Literature
on the internal curvature is numerous, with basically every book on differential
geometry or general relativity introducing it, some references are [14–17, 150–152]
As mentioned, we are interested in studying a two-dimensional surface M that
is embedded in three-dimensional Euclidean space R3. As the surface M is two-
dimensional, it is possible to parametrize it in terms of two coordinates tu1, u2u. For
this one can imagine that a subset S of R2, i.e., a small, flat surface, is equipped
with an usual cartesian coordinate system with coordinates u1, u2. This flat surface
can then be mapped onto a small part of the curved surface M . That is, the flat
surface can be “bent and stretched into shape” by this mapping, and the coordinate
system on S is deformed together with the surface, see Fig. 1.10a. In this way, it
is possible to obtain a coordinate system on (a part of) M . Through introducing
curvature, we map the two-dimensional coordinate system into three dimensional
space and we can write

Xpu1, u2q ¨̈“

¨

˝

Xpu1, u2q
Y pu1, u2q
Zpu1, u2q

˛

‚ . (1.41)

This is the parametrization of the surface M , and to each coordinate tu1, u2u we
assign a point tX,Y, Zu P R3. This mapping is called a chart. We use bold-face
characters to denote vectors in R3. Thus, Eq. (1.41) simply defines a different vector
in R3 for each value of tu1, u2u, and for each different choice of tu1, u2u the vector
Xpu1, u2q ends at a different point. The union of all these points forms M . For
example, for a sphere we can choose u1 “ θ P r0, πs and u2 “ ϕ P r0, 2πs such that

Xpθ, ϕq “ R

¨

˝

sin θ cosϕ
sin θ sinϕ

cos θ

˛

‚ . (1.42)

Note, however, that in general a single chart is not sufficient to describe the entirety
of a given surface. Even for a sphere, this is not possible. Instead, several charts
have to be “patched together” in an “appropriate way”. The union of several charts
is called an atlas. The precise definition of what is meant by “appropriate way” can
be found in any introduction to differential geometry, see e.g. Refs. [14–17, 150–152].
Very abridged, the requirement is for different charts to overlap at least partly and
in a smooth way. Having chosen a parametrization, it is possible to define several
important geometric quantities. First, we define a coordinate system at every point
of the surface M . The tangent vectors are defined as

ea ¨̈“
BX

Bua
” BaX , (1.43)
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(a) (b) (c) (d)

Figure 1.10: Differential geometry.

(a) We illustrate some of the quantities defined in the main text, namely the parametriza-
tion Xpu1, u2q of a two-dimensional surface surface M , as well as the coordinate system
te1, e2,nu defined on M . (b) Cap of a sphere with circles (black) drawn in the direction
of maximal and minimal curvature, that is the curves that have the largest and smallest
curvature/radius are drawn. As the sphere is symmetric, the two curves drawn have the
same curvature. (c) However, for a cylinder one of the curves is completely flat, i.e., the
curvature in this direction vanishes. (d) For a saddle surface, the curvature in one direction
is positive while the curvature in the other direction is negative. However, the magnitude
of the curvature in both directions is identical.

and te1, e2u spans the local two-dimensional tangent plane at each point of M . A
third vector, the surface normal, can be constructed from these:

n “
e1 ˆ e2

|e1 ˆ e2|
, (1.44)

with “ˆ” the ordinary vector product in R3. Evidently, the surface normal n has
unit norm while, in general, the tangent vectors are not normalized when defined
as above. These three vectors, te1, e2,nu form a local coordinate system in R3,
see Fig. 1.10a. They are just ordinary vectors in R3 that are based at the point
Xpu1, u2q since each of these vectors is (implicitly) a function of the coordinates
tu1, u2u. From this coordinate system we can directly define two central quantities,
the metric tensor (sometimes called first fundamental form)

gab ¨̈“ ea ¨ eb , (1.45)

and the curvature tensor (sometimes called second fundamental form)

Kab ¨̈“ ea ¨ Bbn “ ´n ¨ Bbea “ ´n ¨ BabX. (1.46)

Here, “¨” is the scalar product in R3. In Eq. (1.46) we used ea ¨n “ 0 in the second
step. Note that, strictly speaking, gab and Kab are not tensors themselves but
components of tensors in the coordinate system we chose, with the full (index-free)
tensor given by g “ gabduadub andK “ Kabduadub. These are the truly coordinate-
independent quantities that are invariant under coordinate transformation. The
metric is used to raise and lower indices, e.g.,

ea “ gabeb . (1.47)

The tangent and normal vectors are related via the Weingarten equation ∇an “
Kb
aeb and the Gauss equation ∇aeb “ ´Kabn. The second fundamental form

satisfies the Mainardi-Codazzi equation ∇aKbc “ ∇cKab.
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From the metric and curvature tensor one can define the following quantities.
The area element dA of the surface M is defined as

dA ¨̈“ ?gdu1du2 , (1.48)

were g “ det gab is the determinant of the metric. The area element quantifies the
size of an infinitesimal area element of M at each point of the surface. The trace
and determinant of the curvature tensor are two important scalars that quantify the
curvature of a given surface. We call

H ¨̈“
1
2gabK

ab “
1
2K

a
a (1.49)

the mean curvature and
KG ¨̈“ detKa

b (1.50)

the Gaussian curvature, both of which are defined at each point of the surface. Note
that the mean curvature H is sometimes defined without the factor 1{2. These
quantities can be interpreted as follows. Thinking back to the two-dimensional flat
patch of R2 that is being bent and stretched into the shape of a part of M , the metric
describes exactly how the patch, and the coordinate system tu1, u2u on the patch,
have to be stretched and deformed in order to match the surface. If the patch is not
deformed at all, the metric reduces to the identity matrix. If the diagonal elements
are ą 1 pă 1q the patch is being stretched (compressed) in this direction. Non-zero
off-diagonal elements correspond to twisting. In this sense, the metric quantifies
how the coordinate system of M behaves and it thus quantifies how to measure
distances and angles on M . Remember that in Eq. (1.45) the metric is defined
using the tangent vectors on M which are not orthogonal. The curvature tensor,
on the other hand, describes how the surface is embedded in the surrounding space.
In particular, it is straightforward from its definition (Eq. (1.46)) to see that the
curvature tensor quantifies how much the surface normal changes in the direction
of the tangent vector. Since the surface normal has always norm one, only its
direction changes. Thus, if the surface is flat, the direction of the surface normal
does not change and the curvature tensor trivial. If the surface is bending towards
the direction of n in one direction, this component of the curvature is negative,
while if it bends in the opposite direction, it is positive. Both the metric tensor
and the curvature tensor thus quantify different aspects about how M curves and
bends. Note that the definition of the metric does not contain any reference to the
surface normal while the curvature tensor does. Therefore, it is possible to define
the metric even if the surface is not embedded in another space, here R3, while the
definition of the curvature tensor relies on this embedding. One thus says that the
metric quantifies internal curvature (which one would see and be able to measure if
one lived on M without knowing about the surrounding space), while the curvature
tensor quantifies external curvature, measuring how a given surface is bending and
curving in the surrounding space. For the latter one does not need to know anything
about distances on the surface, one simply can consider from an outside point-of-
view how the surface (normal) is changing in space in different directions. However,
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the two are, in fact, not independent from each other. To see this note that it is
possible to construct the so-called Riemann tensor from the metric alone, thus it
is a purely internal quantity, independent of, and not relying on, the surrounding
space. Nevertheless, in two dimensions the Riemann tensor is found to be

Rabcd “ KG rgacgbd ´ gadgbcs , (1.51)

thus the Gaussian curvature (an external quantity) enters, despite the original def-
inition of the Riemann tensor not containing any reference to the curvature tensor.
From contracting two indices one finds the Ricci tensor

Rab “ gacRabcd “ KGgab . (1.52)

Taking the trace of the Ricci tensor, one obtains a simple equation relating internal
and external curvature, namely

R “ gabRab “ 2KG . (1.53)

This relation is called Theorema Egregium. Thus, metric and curvature tensor are
not as independent as could be thought at first glance.

The mean curvature can be interpreted as follows. At each point, one can as-
sociate with each direction in the tangent plane a curvature that states how much
the curvature of M changes in this direction. The mean curvature is the average of
the largest and smallest value at each point. The Gaussian curvature, on the other
hand, is the product of the two. For a sphere both curvatures are the same, namely
1{R, due to the symmetry of the sphere, see Fig. 1.10b. However, for a cylinder the
Gaussian curvature is zero (Fig. 1.10c) while for a saddle point the mean curvature
is zero (Fig. 1.10d). As mentioned above, Gaussian curvature is related to internal
curvature. Thus, if the Gaussian curvature is zero there is no internal curvature
and the shape can be obtained by bending a flat surface. That is, no stretching of
the flat surface is required. It is, for example, possible to bent a flat sheet of paper
into a cylinder but not into a sphere, because the paper cannot be stretched. As the
sphere has non-zero Gaussian curvature, to deform a flat surface into a sphere the
original surface has to be stretched and distances are distorted. From another point
of view, if the curvature is zero a single chart is sufficient to obtain a coordinate
system on the entire surface M . Thus, mean curvature can be seen as making a
statement about how a surface is embedded in R3, while Gaussian curvature con-
tains information about the internal curvature. If one was living on a surface M
without having a notion of R3, then one would not be able to distinguish between
a cylindrical and a flat M .

A brief comment on the bold-face and index notion is in order which hopefully
clarifies the potentially somewhat confusing notation. Every symbol that is bold-
face is a vector (or matrix) in R3, thus it can be written as a three-component
vector, as we have done, for example, when defining the position vector X in Eq.
(1.41). They are thus in reference to the three-dimensional coordinate system of
R3. Bold-face quantities just being ordinary vectors (or matrices) in R3, they can
be multiplied through the scalar product or the vector product with each other.
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However, some quantities, e.g. the tangent vectors, have an additional index. In
the definition, these are just used to enumerate and distinguish the two different
tangent vectors that are present. The indices are in reference to the two-dimensional
coordinate system on the surface M . It is then possible to define another, different
scalar product with respect to the indices, namely y ¨̈“ xaxa “ gabxaxb, where xa
is some arbitrary quantity that could be taken to be, e.g., the tangent vector. This is
different from the scalar product above in that the resulting quantity y is a scalar in
that it does not carry any index. However, it being bold-faced, it is still a vector in
R3. From the “surface-M -point-of-view” a bold-face quantity without index is just
a scalar, for example X is just a point on the surface M . If one lived exclusively
on the surface M without being aware of the surrounding space, one would not
notice the vector-character that one sees when one lives in R3, looking onto M from
outside. When taking the scalar product in R3 one thus ignores potential indices
while, when taking the scalar product on M , one ignores the potential bold-face
character.

As an illustrative example we consider the sphere. From Eq. (1.42) it is straight-
forward to find the tangent vectors

eθ “ R

¨

˝

cos θ cosϕ
cos θ sinϕ
´ sin θ

˛

‚ , eϕ “ R

¨

˝

´ sin θ sinϕ
sin θ sinϕ

0

˛

‚ . (1.54a)

The metric is found from Eq. (1.45) to be

gab “ R2
ˆ

1 0
0 sin2 θ

˙

. (1.54b)

To see the difference in the two scalar products note that, for example, by definition

gθθ “ eθ ¨ eθ “ R

¨

˝

cos θ cosϕ
cos θ sinϕ
´ sin θ

˛

‚¨R

¨

˝

cos θ cosϕ
cos θ sinϕ
´ sin θ

˛

‚

“ R2 `cos2 θ cos2 ϕ` cos2 θ sin2 ϕ` sin2 θ
˘

“ R2 . (1.54c)

On the other hand,

eaea “ gabeaeb “ gθθeθeθ ` g
ϕϕeϕeϕ “

1
R2

”

eθeθ `
eϕeϕ

sin2 θ

ı

(1.54d)

does not carry any index, but is a 2-tensor in R3. One could thus say that ea is a
3 ˆ 2 matrix and not just a tangent vector. This is connected to a more rigorous
connection between the two viewpoints which we briefly explain in Sec. 1.A below.
For completeness, we note that H “ 1{R and KG “ 1{R2 for a sphere.

Finally, as the last part of this subsection, we introduce the covariant derivative.
When taking an ordinary derivative, one compares how a given quantity changes
between two infinitesimally close points. Usually one considers them to be at a
distance h and then takes the limit h Ñ 0. When taking derivatives on a curved



1.3 Differential Geometry

1

49

surface it has to be taken into account that not only the quantity might change from
point to point, but that the surface is changing as well. For example, as mentioned
above, the metric relays informations about how to measure distances on a surface.
If the metric is not constant, than this has to be taken into account when taking
derivatives to ensure that, very loosely speaking, one always “compares the same
infinitesimal distances” when taking derivatives at different points. “h now depends
on the position on the surface” and is not constant anymore. One thus introduces
the covariant derivative ∇a, replacing partial derivatives in flat space. For a scalar
quantity (that is, no index) the two agree, ∇aX “ BaX, for a one-index quantity
one has

∇aX
b “ BaX

b `XcΓbac , (1.55a)
∇aXb “ BaXb ´XcΓcab . (1.55b)

Here Γabc are the so-called Christoffel symbols that are the corrections due to curva-
ture. Accordingly, they are defined from the metric

Γabc ¨̈“
1
2g

ad rBbgcd ` Bcgbd ´ Bdgbcs . (1.56)

If the surface is flat and the metric constant, then the Christoffel symbols vanish
and the partial and covariant derivatives agree. Taking the covariant derivative
of higher rank-tensors (more indices) results in more correction terms, see, e.g.,
Ref. [16, 149, 152]. However, the metric is special and ∇agbc “ 0 is always true, i.e.,
the metric is covariantly constant (by construction). Note that a scalar quantity
in this context is one without indices, thus ∇aX “ BaX and ∇aX “ BaX, even
though the latter is bold-face and thus a vector in R3. However, since we are taking
derivatives on M , we are interested in if a quantity is a scalar, vector, ... from the
internal-geometry point-of-view. These are the basic geometric quantities we will
need in later chapters. More specialized concepts will be introduced there when
needed.

1.3.2 Hydrodynamic equations on curved surfaces
In the preceding sections we explained the hydrodynamic equations that we will
use in following chapters. However, we wrote these equations only for a flat, two-
dimensional surface. While sufficient for Chapters 2, 3 in Chapters 5, 6, 7 we will
need the equivalent of these equations on curved surfaces. A straightforward way of
finding these equations is to simply replace all quantities in the flat equations with
their curved counterparts. That is, partial derivatives become covariant derivatives,
indices are raised and lowered using the metric of M , vectors are considered vectors
on the surface M etc. While this is quit ad-hoc, there are more rigorous justifications
for this procedure which result in the same equations. It is possible to find additional
terms which are non-trivial only for curved surfaces, that are not found using this
method. For example, explicit couplings between the nematic director and the
extrinsic curvature have been studied [153–159]. We will ignore such terms for
simplicity in the following chapters.
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1.3.3 Helfrich Hamiltonian
An intimate connection between differential geometry and soft matter physics is
found in the study of lipid membranes. These are two-dimensional surfaces that are
liquid in the sense that in-plane shear stresses are negligible. Often, when one is
interested in the dynamic on the scale of the membrane, one can ignore microscopic
details and study a coarse-grained model. A popular example is the Helfrich model.
The Helfrich free energy reads [149, 160, 161]

FH ¨̈“

ż

dA
”

γ ` κB pH ´H0q
2
` κGKG

ı

, (1.57)

where H0 is the so-called spontaneous curvature. The elastic constants of this model
are the surface tension γ, the bending modulus κB, and the Gaussian bending mod-
ulus κG. This free energy can be found as an expansion up to terms of O

`

length´3˘

in the curvature [149, 162]. The different terms can be interpreted as follows. The
surface tension γ couples only to the area element dA and thus penalizes changes
in the area. If it is positive (as is usually the case) it works towards minimizing
the surface area. The second term punishes deviations of the mean curvature H
from the spontaneous curvature H0, which can be seen as the “preferred” mean
curvature. The elastic constant associated with this term is the bending modulus
κB. Finally, the third term contains the Gaussian curvature. Remarkably, using
the Gauss-Bonnet theorem, it can be shown that this term is equal to a topologi-
cal invariant (Euler characteristic) of the membrane. Thus, the value of

ş

dAKG is
constant for arbitrary continuous deformations of the surface as long as the topol-
ogy does not change, e.g., through the rapture of the membrane or the creation of
holes. This is true for a closed vesicle, if the membrane has a boundary one needs
to consider an additional boundary term. Thus, if one considers only changes that
keep the topology constant one can ignore this term. Accordingly, the Gaussian
bending modulus κG does no enter into the so-called shape equation which is found
from minimizing the Helfrich free energy, and whose solution yields the equilib-
rium shape of the membrane. Introducing a pressure to ensure volume conservation
through adding a Lagrange-muliplier term ´PV to the free energy Eq. (1.57), one
finds [149, 162–166]

2γH ´ κB
2

 

∆H ´ 2 pH ´H0q
“

pH ´H0qH ´ 2H2 `KG
‰(

“ P . (1.58)

The derivation of this equation is quite lengthy, and we refer to Chapter 7 where we
present the derivation. This is a very complex equation, with fourth-order deriva-
tives when written in terms of the surface parametrization, and can be solved exactly
only in a few cases in the presence of symmetries that reduce the complexity of these
equations. In the case of vanishing bending modulus it reduces to the well-known
Young-Laplace law 2γH “ P which on its own is highly non-trivial, encompassing,
as a special case, the minimal surface equation H “ 0. Even only this very special
case of the full shape-equation gives rise to the complex field of minimal surfaces
[167, 168]. The Helfrich model has been studied in great detail and much more
can be said about modifications to this simple model, connections to microscopic
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models for membranes, bilayers, etc. We refer to the extensive literature for further
details, see, e.g., Refs. [149, 169–172] and references therein. Furthermore, the Hel-
frich Hamiltonian is closely related to the Willmore functional

ş

dAH2 which has a
long and fruitful history as well. Lastly, a brief comment about the assumption of a
lipid membrane. As mentioned above, this entails that no in-plane shear stresses are
present. Basically, there are no in-plane elastic stresses in the membrane but only
normal stresses that bend and curve it6. If one relaxes this assumption, for example
because one wants to derive the shape equation of an elastic solid, one needs to
take additional elastic stresses into account. These arise because curving a surface
results in a change in the metric which corresponds to a change of internal distances.
If the material is elastic these give rise to additional energetic contributions that
depends on the Young and Poisson moduli of the material. See, e.g., Refs. [1, 10,
173, 174] for more on this. We will return to this point when considering a liquid
crystal coupled to a deforming surface, in Chapters 5, 6, 7. This concludes this
introductory chapter we now give a brief outline of the following chapters of this
thesis.

1.4 Outline
In Chapter 2 we ask the question how ordered states arise in a system where
particles tend to align their directions with their neighbors. That is, what are
the self-organizing dynamics and principles due to which an initially completely
disordered state evolves, over time, into a state with almost perfect order and with
only minimal or no environmental guidance. Comparing experimental results of
active colloids with simulations and analytics, we identify the crucial role topological
defects play in this process. The results are not specific to the experimental system
considered but give insight into general principles of self-organization of systems
that can be described by the Toner-Tu equations, for example flocking animal herds
or bacteria.

In Chapter 3 we consider an active nematic liquid crystal but start from a
microscopic picture where the microscopic particle exerts forces not along its ori-
entation but at an angle to it. That is, the force dipole is not aligned with the
orientation of the particle. Coarse-graining this picture, we find that a new term,
the active chiral stress, is added to the standard equations of active nematodynam-
ics introduced above. We investigate how this new term influences the dynamics
of active ˘1{2 defects and the spontaneous flow transition. We use the results to
explain recent experimental observations of chirality in cell and tissue dynamics.

In Chapter 4 we investigate the question of the possible origin of chirality in
cells. It appears from experimental observations that some kind of cells always ap-
pear with a certain chirality (handedness). However, it is unclear why evolutionarily
one chiral state should be preferred over the other. In this chapter we describe a
simple model that can be used to explain the transition to homochirality. That is,
starting from a system where both chiral states are present, we find that over time
6This is closely related to the diffeomorphism invariance of the surface and the reason one can
write the Helfrich free energy in terms of geometric quantities only.
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one of the two states disappears. This occurs without the need for explicit symme-
try breaking and which of the two possible chiral states dies out is purely due to
chance. More generally, our model can be used as a starting point to investigate
how properties persist or disappear during the evolution of a system that can be
described using the Vicsek model.

Chapter 5 is concerned with the interaction of active topological defects and
elastic surfaces. This research is motivated by experimental evidence that topo-
logical defects might play the role of topological morphogens. That is, topological
defects could be responsible for the formation of protrusion or limbs during mor-
phogenesis, the biological process of shape-development in tissues and organisms.
We develop an analytical model to investigate the interaction of activity, topological
defects, and shape deformations of elastic surfaces. In a simple setting (an initially
flat disk) we can show exactly how the presence of activity can favor the buckling
instability of surfaces. We complement the analytical model with simulations to go
beyond the linear instability and investigate the system for larger values of activity.

We continue investigating the interaction of active defects and elastic surfaces in
Chapter 6. Instead of a flat disk we now consider a sphere as the initial geometry.
We investigate both polar and nematic active liquid crystals. We find a wealth of
different dynamics, which differ greatly for different signs of activity and whether
the liquid crystal has polar or nematic symmetry. For example, we find that the
sphere flattens and can even transition to a torus, or that the sphere elongates into
a spindle-like shape.

Finally, in Chapter 7, we present the full derivation of the model used in
Chapters 5, 6. As the derivation is rather lengthy, we have included a brief version of
the derivation of the equations of motion in the respective chapters, and present the
full derivation in this separate chapter, rather than as an appendix. Starting from
previous work on passive elastic surfaces, we systematically include active stresses
and liquid crystalline order to obtain a general set of equations that can be used
to describe active liquid crystals coupled to an elastic surface. From these general
equations we derive the equations used in Chapters 5, 6. Furthermore, we present
some preliminary results for the active-buckling instability for defects different from
charge `1, which was the case analyzed in detail in Chapter 5.

1.A Connection Between Extrinsic and Intrinsic Geometry
Point of View

In this section we briefly introduce another point-of-view on the tangent vectors ea.
As before, there is a mapping from a subset of R2 to the space R3 (or generally,
another three-dimensional manifold). This mapping is defined as

ui Ñ Xµ
`

ui
˘

. (1.59)

Here, as before, Xµ is the position vector defining the manifold M that is embedded
in R3. Now, in this section, latin indices take values P r1, 2s and refer to components
of tensors on M . Greek indices, on the other hand, refer to components of tensors
on R3 and consequently take values P r1, 2, 3s. The metric of R3 is just the identity
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matrix δµν which is used to raise and lower greek indices. The components of the
tangent vectors of M are defined as before as

eµi ¨̈“ BiX
µ . (1.60)

Note that this matrix has both greek and latin indices. It can thus be used to convert
between latin and greek indices, i.e., project quantities defined in the coordinate
system of R3 onto M . For example, the induced metric on M is defined as the
projection of the metric of R3 as

gij ¨̈“ δµνe
µ
i e
ν
j . (1.61)

This is the metric on M and is used to raise latin indices. Thus, while they are called
tangent vectors, eµi actually carries two indices and is thus a 2ˆ 3 tensor. However,
instead of greek and latin indices it is common in the (soft matter) literature to use
only one set of indices and use bold-face characters instead of latin indices. Thus,

Xµ ÝÑX eµi ÝÑ ei eµi eµj “ δµνe
µ
i e
ν
j ÝÑ ei ¨ ej (1.62)

etc. This is easily generalized to cases where a surface is embedded in a manifold
different from R3 by considering a more general metric than the identity matrix.
We will use the bold-face notation in the following chapters.




