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A B S T R A C T   

The characteristic endogenous circadian rhythm of plasma glucocorticoid concentrations is made up from an 
underlying ultradian pulsatile secretory pattern. Recent evidence has indicated that this ultradian cortisol pul
satility is crucial for normal emotional response in man. In this study, we investigate the anatomical tran
scriptional and cell type signature of brain regions sensitive to a loss of ultradian rhythmicity in the context of 
emotional processing. We combine human cell type and transcriptomic atlas data of high spatial resolution with 
functional magnetic resonance imaging (fMRI) data. We show that the loss of cortisol ultradian rhythm alters 
emotional processing response in cortical brain areas that are characterized by transcriptional and cellular 
profiles of GABAergic function. We find that two previously identified key components of rapid non-genomic GC 
signaling – the ANXA1 gene and retrograde endocannabinoid signaling – show most significant differential 
expression (q = 3.99e− 10) and enrichment (fold enrichment = 5.56, q = 9.09e− 4). Our results further indicate 
that specific cell types, including a specific NPY-expressing GABAergic neuronal cell type, and specific G protein 
signaling cascades underly the cerebral effects of a loss of ultradian cortisol rhythm. Our results provide a 
biological mechanistic underpinning of our fMRI findings, indicating specific cell types and cascades as a target 
for manipulation in future experimental studies.   

1. Introduction 

Glucocorticoids (GCs) are a class of mammalian hormones known for 
their pleotropic effects across different bodily systems, such as meta
bolism, fluid homeostasis, immune and stress system responsivity, as 
well as brain function. The immunomodulatory capacity of these 

hormones has been utilized in clinical therapeutics for more than half a 
century (Rhen and Cidlowski, 2005). The underlying mechanisms 
through which GCs mediate such a diversity of biological processes 
remain a topic of intensive investigation. Recent evidence indicates that 
biorhythmicity might be of great importance. GCs exhibit a circadian 
rhythm, with high hormonal levels being secreted just prior to and 
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during the active part of the day. The circadian rhythm is superimposed 
on an underlying ultradian rhythm of more frequent episodes of GC 
secretion (i.e., hormonal pulses) (Russell et al., 2015). The brain is 
exposed to these hormonal pulses and has developed mechanisms able 
to perceive them and translate them to cellular, genomic and 
non-genomic events (Kalafatakis et al., 2019; Sarabdjitsingh et al., 
2010). Thus, GC pulsatility might regulate various physiological -, 
neural -, and glial processes, under baseline and stressful conditions, and 
hormonal dysrhythmicity could be associated with cognitive and 
behavioural disorders (Kalafatakis et al., 2021; Sarabdjitsingh et al., 
2010). 

We designed and conducted a randomised, double-blind, placebo- 
controlled, crossover study to assess functional relevance of GC pulsa
tility for human brain circuitry. We used a human model of adrenal 
insufficiency (metyrapone-induced suppression of GC endogenous 
biosynthesis) (Kalafatakis et al., 2016), in which GC deficiency was 
exogenously replaced via two different, pump-mediated subcutaneous 
infusion methods: one mimicking the normal adrenal function under 
baseline conditions (resembling the normal circadian and underlying 
ultradian, pulsatile rhythm) and another lacking GC ultradian pulsa
tility. The cumulative dosage of the infused hydrocortisone was equal 
for both methods (20 mg/day). Exposure of the human brain to the same 
emotional stimuli (fearful, happy, and sad faces) provoked a differential 
response from corticolimbic regions of the right hemisphere, involved in 
emotional processing, depending on the mode (i.e., presence or absence 
of ultradian rhythmicity) of GC replacement (Kalafatakis et al., 2018). 
These functional magnetic resonance imaging (MRI) findings provide 
evidence that ultradian GC rhythm could be critical in regulating neural 
dynamics in human, but, at the same time, they raise the question of why 
these particular brain regions are sensitive to changes in GC rhythmicity, 
while other brain regions are not. 

In the current work, we approached this question from a transcrip
tional and cell type point of view: we investigated the relationship be
tween differential GC rhythm-dependent brain activation in the fMRI 
data and anatomically patterned transcriptional and cell type profiles. 
To do this we utilized available data from the Allen Human Brain Atlas 
(AHBA) (Hawrylycz et al., 2012). This is an anatomically comprehensive 
transcriptional brain atlas sampled from a number of carefully selected, 
clinically unremarkable donor brains, produced by a combination of 
histology-guided fine neuroanatomical molecular profiling and 
microarray-assisted mapping of gene expression data into MRI coordi
nate space. The AHBA provides an unparalleled high-resolution 
genome-wide map of transcript distribution and the ability to analyze 
genes underlying the function of specific brain regions (Bauduin et al., 
2021; Burt et al., 2018; Habets et al., 2021; Li et al., 2021; Meijer et al., 
2021). 

In this context, we combined the functional MRI results of our study 
with available AHBA data to investigate which genes of the AHBA donor 
brains were differentially expressed in the GC rhythm-sensitive cortical 
brain areas (as specified by our functional MRI study) in comparison 
with the remaining cortical areas, thus specifying an anatomical tran
scriptomic signature of GC rhythm-sensitive cortical brain areas. We 
utilized gene ontology, pathway and protein-protein interaction data
bases to look for enrichment of functions (i.e., relate gene expression 
profiles of brain GC rhythm sensitivity to enrichment of specific brain 
cell functionality). We also utilized AHBA neuronal cell type databases 
to scale up the signature of cortical brain GC rhythm sensitivity from a 
transcript to a cell type level. In the latter case, if specific human-verified 
neuronal cell types are discovered to be enriched in the areas that show 
GC rhythm-responsivity, this could trigger a selective, preclinical, 
experimental investigation on the relationship between these human 
neuronal cell types and GC rhythmicity. 

2. Materials and methods 

2.1. Functional MRI study 

This was a randomized, double-blind, placebo-controlled crossover 
study of different modes of hydrocortisone replacement in healthy 
subjects, registered with the United Kingdom Clinical Research Network 
(IRAS reference 106181, UKCRN-ID-15236; October 23, 2013). The 
study followed the CONSORT guidelines for randomized controlled tri
als. Fifteen right-handed, healthy male volunteers aged 20–33 years 
were included in the study. The Ethics Committee of the University of 
Bristol approved the study, and all participants provided informed 
written consent. More details on the development and validation of the 
human model of adrenal insufficiency, and the different modes of GC 
replacement therapy, inclusion and exclusion criteria of the study, 
recruitment process, quality control and bioethical concerns, randomi
zation, and blinding processes, as well a detailed presentation of all 
outcome measures recruited (aside functional MRI), can be found else
where (Kalafatakis et al., 2016, 2018, 2021). 

2.2. Functional MRI data 

The functional image pre-processing steps consisted of (i) brain in
tensity normalization, (ii) 3D motion correction, (iii) B0 unwarping with 
assistance from the B0 fieldmap images, (iv) brain extraction, (v) spatial 
smoothing, (vi) temporal high pass filtering, and (vii) co-registration of 
the functional image with a corresponding high-resolution, anatomical, 
T1-weighted image and with MNI152 standard space. Bias field correc
tion has been applied, before removing the non-brain tissue from the 
high-resolution image. For each individual/session functional MRI 
dataset, a regression analysis was performed using a general linear 
model fitting the temporal evolution corresponding to the paradigm 
(emotional face presentation). A fraction of the temporal derivative of 
the blurred original waveform was added to the model. Temporal 
filtering was also applied. The form of the hemodynamic response 
function convolution method applied to the basic waveform was the 
Gamma variate. Three different effects were modelled (original 
exploratory variables); visual exposure to (i) fearful human faces, (ii) 
happy human faces and (iii) sad human faces. For the statistical analysis 
of the functional MRI data acquired during the presentation of 
emotional faces, we produced individual session/subject level maps of 
activity, indicating which brain regions were responding to the 
emotional face recognition (contrasting the baseline, resting state con
dition). For the comparisons between the GC pulsatile and non-pulsatile 
groups, whole-brain, group-level analyses were carried out using a 
mixed effects model. Each group-level analysis produced thresholded z- 
score brain region clusters highlighting statistically significant varia
tions in the activation pattern between the GC pulsatile and non- 
pulsatile groups in response to emotional face stimulation. In all cases, 
corrections for multiple comparisons were performed at the cluster level 
using Gaussian random field theory (minimum z > 2.3, cluster p 
threshold <0.05) (Kalafatakis et al., 2018). 

2.3. Transcriptomic atlas 

The Allen Human Brain Atlas (AHBA) is a publicly available tran
scriptional atlas based on microarray measures, using a set of 58692 
probes in 3702 samples across brainstem, cerebellum, subcortical and 
cortical brain structures across six postmortem human brains (five males 
and one female, age range 24–57, African American, Caucasian and 
Hispanic ethnicities). For limited samples of two donor brains, expres
sion values were also measured by RNA sequencing. All expression data 
and metadata were downloaded from the AHBA (http://human.brai 
n-map.org) on October 14th, 2019. 
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2.4. Data analysis 

Our data analysis method can be summarized into seven distinct 
steps (see below). Many of our choices for data handling have been 
based on the work of Arnatkeviciute et al. (Arnatkeviciute et al., 2019). 
For step two (probe selection) and part of step three (sample selection), 
MATLAB scripts from their processing pipeline (publicly available at htt 
ps://github.com/BMHLab/AHBAprocessing/) were adapted and 
customized for our own analysis (with their approval), using MATLAB 
version R2020a. For the rest of the analysis steps, except for probe 
reannotation, the programming language R (version 3.6) has been uti
lized. All used R packages were installed under R build 3.6. All R code is 
made publicly available on GitHub at https://github.com/pchabets/ 
fMRI-transcriptomics-cortisol. 

Step 1. Reannotation of probes 
Since the probe annotation originally provided by the Allen Institute 

dates from a decade ago, probes were first reannotated to the latest 
human genome version and reference sequence using the Re-Annotator 
pipeline (Arloth et al., 2015). Re-Annotator is freely available for 
download at https://sourceforge.net/projects/reannotator/. The most 
recent genome and reference sequence were downloaded from the UCSC 
website on May 20th, 2020. The reannotation step resulted in the se
lection of 46,039 probes annotated to a total of 20,200 unique genes for 
inclusion into further analysis. 

Step 2. Probe selection 
If multiple probes were annotated to the same gene, we selected the 

best representative probe for that gene. Previous work has shown that 
selecting probes on the basis of the highest expression (intensity based 
filtering) improves the mean correlation between microarray and RNA 
sequencing (RNAseq) measures of gene expression obtained in the same 
brain samples, and increases the average inter-probe correlation for 
individual genes, thus improving microarray data reliability (Arnatke
viciute et al., 2019). Therefore, we first selected probes that showed a 
signal above noise signal in at least 50% of cortical and subcortical 
samples across all subjects (cf. Fig. 3A of Arnatkeviciute et al., 2019). 
This resulted in 31977 remaining probes, annotated to 15719 unique 
genes. Next, for each gene, if multiple probes were annotated to that 
gene, one single probe was selected by choosing the probe with the 
highest correlation to the RNAseq measures for the same gene in the 
same samples (RNA sequencing data available for first two donors. Data 
were downloaded at http://human.brain-map.org/static/download on 
October 14th, 2019). To further improve reliability of the differential 
expression analysis based on microarray probe measurements, we 
removed probes from the analysis that: a) were annotated to a gene that 
was not detected by the RNAseq measurement in the same sample, b) 
showed a low correlation to RNAseq data (Spearman Rho <0.2). This 
resulted in 10014 probes selected for 10014 unique genes. Previous 
work showed that functional enrichment analysis of genes that are 
removed based on these criteria show no enrichment for genes related to 
neuronal function (Arnatkeviciute et al., 2019). 

Step3. Sample selection 
Two AHBA donor brains were sampled bilaterally, while the other 

four donor brains were only profiled on the left hemisphere. This was 
done because no significant interhemispheric transcriptional difference 
was found in the first two brains. This is in accordance with previous 
evidence indicating that indeed no statistically significant tran
scriptomic differences between the left and right hemispheres exist 
(Hawrylycz et al., 2012; Johnson et al., 2009). To maximize spatial 
coverage, we only included AHBA samples from the left cerebral cortex 
for analysis. Because the differentially responding brain regions in the 
considered fMRI data were located on the right hemisphere, we sym
metrically flipped the MNI-coordinates of the affected brain regions 
from right to left, to optimize spatial transcriptomic coverage. Flipping 
the fMRI mask from right to left is a valid approach in this case, since we 

are looking at cortical anatomical transcriptional patterning only, and 
no statistically significant hemispheric difference exists on the mRNA 
level. 

Left hemisphere samples were selected if they could be annotated to 
the Desikan cortical parcellation atlas, using the AHBA processing 
pipeline available at https://github.com/BMHLab/AHBApr 
ocessing/(Desikan et al., 2006). In total, 1285 left cortical samples 
were included for differential gene expression analysis. Next, AHBA 
samples and fMRI masks were plotted in MNI152 space. Using trilinear 
interpolation, it was calculated for each AHBA sample whether it could 
be assigned to an “affected” brain area (meaning falling inside either of 
the two fMRI thresholded masks) or not. This resulted in 61 samples in 
the “affected” brain regions versus 1224 samples in the “unaffected” 
brain regions. 

Step 4. Normalization of expression values 
Variations in the way tissue samples were acquired, handled and 

processed – e.g. brain pH, post-mortem interval and RNA degradation – 
can potentially affect gene expression measurements. The Allen Institute 
has implemented a series of steps to mitigate this variability as much as 
possible, as outlined in the Allen Human Brain Atlas technical white 
paper (“Technical White Paper: Microarray Data Normalization,” 2013). 
Despite the measures implemented by the Allen Institute, Arnatkeviciute 
et al. (Neuroimage, 2019), have shown that, while the data normaliza
tion procedures applied by the Allen Institute prior to data release 
removed batch effects and artefactual inter-individual differences, a 
considerable degree of intrinsic donor-specific variance remains, and 
must be accounted for in order to perform valid data aggregation (we 
reiterated this finding by using unsupervised tSNE projection of the 
1285 left cortical samples in the plot in Fig. 1C). The tSNE plot clearly 
showed clustering of samples by donor brain. We therefore corrected for 
possible donor-driven effects by using the RemoveBatchEffect function 
from the limma package for R (Ritchie et al., 2015), treating each donor 
as a separate batch. Because the limma function uses linear modelling, 
this correction method can be sensitive to outliers. Therefore, an addi
tional outlier-robust normalization strategy was performed using scaled 
robust sigmoid (SRS) normalization: 

xy =
1

1 + exp
(

− (xi − 〈x〉)
IQR/1.35

)

where 〈x〉 and IQR represent the median and the inter-quartile range 
respectively, 

Followed by rescaling to a unit interval of 0–1 (Arnatkeviciute et al., 
2019; Fulcher et al., 2013): 

xnorm =
xy − min (x)

max(x) − min (x)

Fig. 1C shows the effect of this normalization strategy on the donor- 
driven clustering of samples. To also account for gene outliers within 
each sample due to sample-specific artefacts, we additionally performed 
the same SRS and unit-interval scaling procedure within each sample, 
across all the measured gene expressions (within-sample, across-genes 
normalization). Lastly, we used a mixed linear modelling approach to 
model in any remaining donor driven effects (see step 5 below). 

Step 5. Testing significance of differentially expressed genes 
Differential gene expression analysis between the 61 “affected” 

versus 1224 “unaffected” samples was performed using the limma 
package for R (Ritchie et al., 2015). Genes were ranked in order of ev
idence for differential expression by first fitting a linear model to the 
microarray data with the lmFit function, and then using an empirical 
Bayes method to shrink the probe-wise sample variances towards a 
common value and to augmenting the degrees of freedom for the indi
vidual variances with the eBayes function (Ritchie et al., 2015; Smyth, 
2004). To further correct for the fact that samples in the “affected” and 
“unaffected” regions came from the same six donor brains, we included a 

P.C. Habets et al.                                                                                                                                                                                                                               

https://github.com/BMHLab/AHBAprocessing/
https://github.com/BMHLab/AHBAprocessing/
https://github.com/pchabets/fMRI-transcriptomics-cortisol
https://github.com/pchabets/fMRI-transcriptomics-cortisol
https://sourceforge.net/projects/reannotator/
http://human.brain-map.org/static/download
https://github.com/BMHLab/AHBAprocessing/
https://github.com/BMHLab/AHBAprocessing/


Neurobiology of Stress 22 (2023) 100514

4

Fig. 1. A. 3702 AHBA brain samples plotted with left-mapped brain regions that show differential responsiveness to GC pulsatility in the same three-dimensional 
(MNI-152) space. “Mask A′′ and “mask B” (black and grey dots in the 3D plot) correspond to the left-mapped versions of the brain regions that show differential 
responsiveness to GC pulsatility in the right hemisphere (2D images A & B). B. 1285 left cortical samples included in the differential expression analysis. Samples are 
colored depending on the Desikan parcellation they are mapped to (34 parcellations in total). Samples included in the mirrored fMRI mask coordinates (A and B from 
Fig. 1) are presented in orange. C. tSNE on the 1285 included left cortical samples before (left) and after (right) applying our normalization strategy (see Methods 
section for details). . (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 2. A. Boxplot of top 25 differentially expressed 
genes, ordered by significance from left to right 
(increasing p-value from left to right). The bottom and 
top hinges correspond to the first and third quartiles, 
with the median shown in the interquartile range 
(IQR). Whiskers extend to the smallest and largest 
values within a range of 1.5*IQR from the bottom or 
top hinge. Values outside the 1.5*IQR range are 
plotted as individual outliers. All plotted results have 
FDR corrected p < 0.05 (*). A list of all differentially 
expressed genes is included as extended data in 
Table S2. B. Density plot of differential stability 
values, plotted separately for higher and lower 
differentially expressed genes.   
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correlation term for samples coming from the same donor brain using 
the duplicateCorrelation function. We passed this as argument in the lmFit 
function before passing the resulting fit to the eBayes function to allow 
for repeated measures from the same subjects, by using a mixed linear 
model that accounts for any remaining donor effects. 

False discovery rate correction was performed by using the 
Benjamini-Hochberg (BH) procedure. BH-corrected p-values of p < 0.05 
were considered significant. To check reproducible gene expression 
patterns of these differentially expressed genes across all donor brains – 
meaning across all donor brains regardless of sex, age and other donor 
related factors (see Table S1 for descriptives, and more detailed tech
nical information in the technical white paper (“Technical White Paper: 
Microarray Data Normalization,” 2013)) –, we cross-referenced publicly 
available results of calculated differential stability (DS) metrics for the 
same AHBA data (Supplementary Table 2 of the study by Hawrylycz 
et al. (2015)), plotting the distribution of DS values for the differentially 
expressed genes (see Fig. 2B). Differential stability is a correlation-based 
measure for the consistency of a gene’s differential expression pattern 
across brain structures (Shaw et al., 2011). A difference in median dif
ferential stability of the differentially expressed genes in comparison 
with other genes was tested using the Mann-Whitney U test. 

Step 6. Functional and protein-protein interaction enrichment 
analysis 

Functional enrichment analysis of differentially expressed genes was 
performed using the RDAVIDWebService package for R (Fresno and 
Fernández, 2013). Gene ontology terms for biological processes, mo
lecular function and cellular components, as well as pathways described 
in the KEGG database, were considered. As a background, the tran
scriptome wide coverage of the AHBA microarray probes was used. 
Terms were considered to be significantly enriched if they showed a fold 
enrichment >1.0 and FDR-corrected p < 0.05, where fold enrichment 
was defined as the percentage of the differentially expressed genes 
belonging to that term, divided by the corresponding percentage in the 
background. 

The PheWeb database includes genome-wide associations for 1403 
EHR-derived ICD billing codes from 408,908 White British participants 
of the UK Biobank (Gagliano Taliun et al., 2020). According to the re
pository “All individuals were imputed using the Haplotype Reference 
Consortium panel, resulting in >20 million variants. Analyses on binary 
outcomes were conducted using SAIGE (a generalized mixed model 

association test that uses the saddlepoint approximation to account for 
case-control imbalance), adjusting for genetic relatedness, sex, birth year and 
the first 4 principal components.” (Gagliano Taliun et al., 2020) Enrich
ment analysis in the PheWeb database (using the genes nearest to the 
disease-associated loci) was performed using the webinterface of Enrichr 
(Chen et al., 2013; Kuleshov et al., 2016; Xie et al., 2021), with as input 
the 223 differentially higher expressed genes. Disease term genetic as
sociations were considered to be significantly enriched if they showed 
an odds ratio >1.0 and FDR-corrected p < 0.05, where the odds ratio 
was defined as the ratio of the proportion of a disease term in the 
differentially expressed genes list to the proportion of this disease term 
in all background genes (transcriptome wide protein coding genes). 

We used a hypergeometric test to test for enrichment of gene sets 
defined as differentially expressed in psychiatric diseases according to 
two recent transcriptomic signature studies (Gandal et al., 2018; Gir
genti et al., 2021). Data was extracted from DataTable S1 of the Gandal 
study (Gandal et al., 2018), and from the Supplementary Tables 1 and 22 
of the Girgenty study (Girgenti et al., 2021). Genes were included in a 
disease group if they had an FDR-corrected p-value≤0.05 for the defined 
disease, and were divided into ‘higher’ or ‘lower’ differentially 
expressed according to having a log fold change higher than 0.1 or lower 
than − 0.1 respectively. More stringent criteria resulted in empty gene 
groups. Inclusion of genes and categories of diseases according to both 
studies are summarized in Table S5. 

For protein-protein interaction enrichment analysis and densely 
connected network discovery, the web-based tool Metascape (Zhou 
et al., 2019) was used, inputting the list of 223 differentially higher 
expressed genes that showed FDR-corrected p < 0.05. Metascape plots a 
graph of the inputted list of genes, where each node in the network is a 
protein encoded by one gene. Each edge represents a known physical 
interaction between the two proteins, where ‘physical interaction’ 
means two proteins are biochemically bound, either directly or through 
a complex. The resulting network plot visually represents known phys
ical interactions between the proteins of interest. Within the resulting 
network, “densely connected” subnetworks are detected by the Molec
ular Complex Detection (MCODE) algorithm (Bader and Hogue, 2003). 
Densely connected subnetworks are defined as parts of the main network 
where each node (protein) has known physical interactions with all of 
the other nodes (proteins) in that network. Metascape uses the following 
databases for protein-protein interaction analysis: STRING, BioGrid, 
OmniPath and InWeb_IM. For the String and BioGrid database, only 

Fig. 3. Functional enrichment analysis results for A) KEGG pathways, B) GO categories relating to cellular components and C) GO categories relating to biological 
processes. Only term enrichments with Bonferroni-adjusted p < 0.05 are shown. Terms are ordered according to fold enrichment relative to chance, with colours 
indicating the -log10() transformed nominal p-value (higher -log10() value means lower p-value). Additional enrichment analysis using the PheWeb database is 
included in the extended data as Fig. S1. Data of the GO and KEGG enrichment analyses for both higher and lower differentially expressed genes are included in the 
extended data as Table S3 (for higher expressed genes) and Table S4 (for lower expressed genes). Enrichment analysis of psychiatric disease transcriptomic signatures 
is included as extended data in Table S5. . (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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physical interactions were included (as these databases normally also 
include ‘interactions’ between proteins other than solely based on 
biochemical bonding, such as regulatory interactions derived from 
computational analyses – as these interactions are possibly less accurate, 
we only kept physical interactions). Subsequent pathway and process 
enrichment analysis (using hypergeometric tests) was performed on the 
densely connected subnetworks, including terms from the KEGG 
Pathway, GO Biological Processes, Reactome Gene Sets, Canonical 
Pathways, CORUM, WikiPathways and PANTHER Pathway databases 
(Zhou et al., 2019). Significantly enriched pathways and processes were 
defined as showing fold enrichment >1.5 with a p-value <0.01, where 
fold enrichment is the ratio between the observed counts and the counts 
expected by chance. Log10 transformations of p-values were used in the 
plot (Fig. 4). 

Step 7. Cell enrichment analysis 
To translate our results from the individual gene level to a cell type 

level that is verified in human, we performed cell type enrichment 
analysis using three datasets: 1) WebCSEA data including only human 
cell types (Dai et al., 2022), 2) Allen Cell Type Atlas data, including 
highly specific characterizations of human cortical neuronal cell sub
types (Hodge et al., 2019), 3) NeuroExpresso data including only brain 
cell types (Mancarci et al., 2017). 

WebCSEA provides a web-based application for cell-type-specific 
enrichment analysis of genes, based on scRNA-seq panels of human 
tissues. Inputting our list of higher differentially expressed genes in the 
web-based interface, cell-type specificity was assessed across 1355 
human tissue cell types. Although this method is good for assessing 
tissue specificity and general cell type specificity, the tool is not optimal 
for distinguishing between the many different inhibitory and excitatory 
subtypes of interneurons that were shown to exist across the human 
cortex (Hodge et al., 2019; Tasic et al., 2018). 

That is why we additionally used the Allen Cell Type data measured 
in samples from human cortical areas (from the middle temporal gyrus), 
using single nucleus RNA sequencing followed by cortical neuronal cell 
type classification (Hodge et al., 2019). This dataset consists of a clas
sification of 75 different GABAergic and glutamatergic cortical neuronal 
cell types, as well as cortical astrocytes and microglia. For enrichment 
analysis, we first concatenated the marker genes for each of these spe
cific cell types as listed in Supplementary Table 2 of the paper by Hodge 
et al. (2019). Next, we used an inclusion threshold of having at least five 
different marker genes per cell type, which excluded five cell types 
(three inhibitory, and two excitatory neuronal cell types: Inh L2-5 VIP 
SERPINF1, Inh L4-6 SST B3GAT2, Inh L4-5 SST STK32A, Exc L5-6 
THEMIS C1QL3, Exc L6 FEZF2 OR2T8). We then used a hypergeomet
ric test to test for any significant overrepresentations (‘enrichments’) of 
cell type marker genes in our set of differentially expressed genes, using 
a threshold of p < 0.05 after Bonferroni correction, using the tran
scriptome wide coverage of the AHBA microarray probes as background. 

For a very small selection of genes, it was found that, as far as cortical 
neuronal cell types are concerned, some genes have measurable 
expression only in one specific cell type (Hodge et al., 2019). Because 
our differential expression results are based on cortical tissue only, any 
of those ‘cell-type-exclusive-genes’ present in our results, might indicate 
enrichment of the related cell types – even if the hypergeometric test 
fails to reach significance, because of missing differential expression of 
other less specific marker genes. That is why we additionally 
cross-referenced our differentially expressed gene set for cell types that, 
according to the cortical cell type data – besides having multiple marker 
genes – showed single genes to be expressed highly specifically in that 
cell type. 

Additionally, we used the NeuroExpresso (Mancarci et al., 2017) 
database to perform a similar cell type enrichment analysis for the 
higher differentially expressed genes. Genes were converted from rat to 
human orthologues using the “homologene” package in R, which is a 
wrapper for the Homologene database by the National Center for 
Biotechnology Information (NCBI) (Mancarcı, n.d.). Although 
rodent-derived and not specific for cortical neuronal cell types, this 
dataset contains more abundant putative marker genes for 20 other 
brain cell types, like microglia, oligodendrocytes and astrocytes. The 
number of included marker genes for each cell type are listed in 
Table S6. Threshold for calling “enrichment” of cell type (i.e. marker 
genes) significant was based on marker genes showing enrichment in the 
differential expression results using a threshold of p < 0.05 after Bon
ferroni correction, using the transcriptome wide coverage of the AHBA 
microarray probes as background. 

To plot mean gene expression levels in human cortical cell types of 
the genes included in the densely connected networks discovered in the 
protein-protein interaction enrichment analysis (see above, step 6), we 
used recently added single nucleus RNA sequencing data, sampled from 
several locations of human cortical donor brains (middle temporal 
gyrus, anterior cingulate cortex, primary visual cortex, primary motor 
cortex, primary somatosensory cortex, primary auditory cortex), avail
able at the Allen Cell Type atlas website (Allen Institute, 2019). These 
data list trimmed mean expression for each gene per distinguished cell 
type (Allen Brain Map, 2019). This dataset distinguishes a total of 120 
different human cortical cell types. Trimmed means are calculated by 
first log2 transforming gene expression and then calculating the average 
expression of the middle 50% of the data (data with lowest and highest 
25% of expression values removed) independently for each gene and cell 
type. 

3. Results 

3.1. Differential expression analysis 

In order to analyze what defines cortisol rhythm sensitive cortical 
brain regions on a transcriptomic level, we performed differential gene 

Fig. 4. Densely connected networks of protein-protein interactions and their enrichment categories.GPCR: G protein-coupled receptor.  
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expression analysis using our fMRI data in combination with a high 
resolution transcriptomic human brain atlas. The brain regions that 
showed significant variations in the BOLD signal responses to emotional 
stimulation (exposure to emotionally valenced faces) between the pul
satile and the non-pulsatile group were matched with brain coordinates 
of the AHBA samples from the left cortex, as depicted in Fig. 1 (see 
Methods section for details). Note that although lateralization in func
tion is well described, it has been established in multiple studies that 
there are no statistically significant transcriptional hemispheric differ
ences in adult brain (Hawrylycz et al., 2012; Johnson et al., 2009). This 
indicates that post-transcriptional factors constitute hemispheric dif
ferences in function, while left and right hemispheres are similar on a 
gene transcription level. Because only two donor brains have been 
sampled bilaterally, while all six donor brains include samples from the 
left hemisphere, we maximized spatial resolution by mapping the fMRI 
effects of the right hemisphere to cortical AHBA sample coordinates of 
the left hemisphere by inverting the x-axis coordinates in MNI-152 space 
(Fig. 1A). 

After selection of cortical samples, based on their inclusion in the 
cortical Desikan parcellation atlas (Desikan et al., 2006), 61 left cortical 
samples were mapped to the differentially responsive brain areas (re
gions corresponding to either “mask A” or “mask B′′ in Figs. 1A), and 
1224 left cortical samples were selected as control samples (Fig. 1B and 
Table 1). 

Despite the gene expression normalization procedures performed by 
the AHBA (“Allen Human Brain Atlas,” 2013), it has been established 
that large inter-individual differences in gene expression remain in the 
AHBA samples (Arnatkeviciute et al., 2019). We too find that for the 
1285 left cortical samples used in our differential expression analysis, 
samples from the same brain have more similar gene expression levels 
(Fig. 1C). To account for these between-donor effects, and additionally 
any between-sample effects in our differential expression analysis, we 
applied both within-sample and across-sample normalization strategies 
(see Methods section) (Arnatkeviciute et al., 2019). We visualize the 
efficacy of these strategies by running a t-distributed Stochastic 
Neighbor Embedding (tSNE) on all 1285 included cortical samples 
before and after preprocessing steps (Fig. 1C). 

After all preprocessing steps and probe selection criteria were 
applied, differential expression analysis was performed for 10014 gene 
transcripts, comparing 61 AHBA samples (cases) with 1224 AHBA 
samples (controls). This resulted in 304 genes that showed significant 
differential expression after correcting for false discovery rate (FDR), 
with the significancy threshold set at Benjamini-Hochberg corrected p <
0.05. 223 genes showed a differentially higher expression, and 81 genes 
showed a differentially lower expression. The top 25 of differentially 
expressed genes are plotted in Fig. 2A (for a full list see Table S2). 

Although possible donor-driven effects were mitigated by extensive 
normalization strategies, we additionally tested the possibility of 
incomparable transcriptomic signatures between donor brains (for 
example due to age, gender, ethnicity etc.) that might invalidate the 
differential expression analysis. We did this by using the differential 
stability (DS) metric: a correlation-based measure for the consistency of 
a gene’s differential expression pattern across brain structures (Shaw 
et al., 2011). We used the fact that gene expression patterning across 
brain structures was assessed for reproducibility in all six AHBA donor 
brains in previous works (Hawrylycz et al., 2015; Quintana et al., 2019). 
By cross-referencing our differentially expressed genes list with these 

previous results (Supplementary Table 2 of the study by Hawrylycz et al. 
(2015)), we find that our differentially expressed genes show high me
dian differential stability in comparison to other genes (median = 0.74 
versus median = 0.53, p < 0.001). This indicates that the identified 
genes have reproducible gene expression patterns across all donor 
brains, regardless of sex, age and other donor related factors (Fig. 2B). 

3.2. Differential gene expression in pulsatility-sensitive brain regions 
shows neuronal specificity and enrichment for retrograde endocannabinoid 
signaling 

In order to establish whether the differential expression results were 
specific to brain cell expression patterns, and to interpret the differential 
expression results in terms of biological pathways and processes, we 
analyzed the differentially expressed genes for enrichment of gene 
ontology (GO) terms (including GO terms relating to cellular compo
nents, biological processes, and molecular functions) and Kyoto Ency
clopedia of Genes and Genomes (KEGG) pathway categories (Fig. 3). 
Using all 223 genes that showed higher differential expression in the 
pulsatility-responsive brain regions, we found significant enrichment for 
37 different GO terms related to cellular components and biological 
processes (FDR corrected p < 0.05, see Table S3). Most notably, terms 
relating to neurons (e.g. neuron part, neuron development, neuron 
projection) and intercellular communication (e.g. signaling, cell 
communication, synapse, response to stimulus) were found to be 
enriched, confirming neuronal specificity of differential gene expression 
in pulsatility-responsive brain regions. Significant enrichment for KEGG 
pathways (FDR corrected p < 0.05) was found for the categories 
‘retrograde endocannabinoid signaling’, ‘glutamatergic synapse’, 
‘GABAergic synapse’ and ‘morphine addiction’ (see Fig. 3 and Table S3). 
In the 81 genes with lower differential expression, none of the positive 
hits in the GO term enrichment analysis showed statistically significance 
after FDR correction (Table S4). Enrichment analysis for KEGG path
ways in these 81 genes yielded one positive hit but reached no statisti
cally significance (Table S4). 

3.3. Differentially expressed genes in pulsatility-sensitive cortical brain 
regions show enrichment for transcriptomic signatures of stress-related 
psychiatric disease 

To further relate the transcriptomic signature of the rhythm-sensitive 
brain regions to possible disease mechanisms, we tested for enrichment 
of brain gene expression patterns of several psychiatric disorders in our 
differentially expressed genes. Using two recent brain transcriptomic 
studies defining brain transcriptomic signatures for several psychiatric 
disorders based on several tissue types (Gandal et al., 2018; Girgenti 
et al., 2021), we tested for enrichment of our higher and lower differ
entially expressed genes in these transcriptomic signatures (see Table S5 
for all results). In one study including both MDD and PTSD brain sam
ples (Girgenti et al., 2021), we found enrichment of both MDD and PTSD 
genes in our 223 higher differentially expressed genes (Table S5). Using 
a second study including multiple psychiatric diseases (Gandal et al., 
2018), our differentially higher expressed genes were enriched for genes 
showing higher differential expression in autism spectrum disorder 
(ASD), bipolar disorder (BD) and alcoholic abuse disorder (AAD). In our 
81 differentially lower expressed genes, we found enrichment for genes 
showing differentially lower expression in ASD, schizophrenia (SCZ) and 

Table 1 
Overview of samples from the six AHBA donors in the differentially GC-rhythm responsive area and the control regions.   

Donor Donor Donor Donor Donor Donor All 

Differentially responsive area 10021 12876 14380 15496 15697 9861 donors 
6 10 10 13 8 14 61 

Control region        
169 168 249 209 222 207 1224  
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BD (Table S5). In further validation of our differential expression results 
in relation to stress-related disorders, we performed additional enrich
ment analysis using the PheWeb database: a dataset based on 
genome-wide associations for EHR-derived diagnoses in the UK Biobank 
(Gagliano Taliun et al., 2020). We found the most enriched category 
(meaning having the highest odds ratio and lowest p-value) to be ‘Acute 
reaction to stress’ (odds ratio = 24.50, corrected p = 0.099), although 
the FDR-corrected p-value did not reach the threshold of significance 
(see Fig. S1). 

3.4. Protein-protein interaction enrichment analysis reveals association of 
pulsatility-responsive brain regions with particular Giα signaling events 

To interpret our differential expression results on a functional pro
tein level, we analyzed proteins encoded by the differentially expressed 
gens for known protein interaction networks related to specific biolog
ical pathways. Using the list of 223 differentially expressed genes that 
show higher expression in the pulsatility-responsive brain regions, 
protein-protein interaction enrichment of the proteins encoded by those 
genes was analyzed using multiple databases (see Methods section) to 
plot a network containing all proteins (encoded by our differentially 
expressed gene list) that have documented interactions with at least one 
other protein in the list (Fig. S3). Next, using the MCODE algorithm 
(Bader and Hogue, 2003) for detection of densely connected network 
components within this network, we found two densely connected net
works in the main network, and one separate densely connected network 
consisting of only three gene products (SOX5, ZFP36, MAGED1) 
(Fig. S3). Subsequent pathway and process enrichment analysis for each 
of these three densely connected networks only yielded significant 
enrichment hits for the two subnetworks contained in the main inter
action network (colored red and blue in Fig. S3). One subnetwork con
sisted of ADRA1B, GNAO1, GNG2, GNG4, GNB2, GNB4 and PIK3CG, 
and showed enrichment for G-potein beta-gamma signaling through 
PIK3Kgamma (p = 5.01e− 15), more generic G-protein beta-gamma 
signaling (p = 2.00e-14) and cholinergic synapse (p = 1.58e− 14) 
(Fig. 4). The other densely connected network consisted of 
protein-protein interactions between NPY, ANXA1, SST, PTGER3, 
OPRK1 and CXCL2, and showed enrichment for Gαi signaling events (p 
= 1.26e− 12), and (more generic) G protein-coupled receptor (GPCR) 
ligand binding (p = 1.26e− 11), as well as a subclass of GPCRs, the 
rhodopsin-like receptors (p = 2.00e− 12). These results further support 
the notion that GC rhythm alterations act directly on the brain and will 
have most effect in brain regions that, on an anatomical transcriptional 
patterning level, show to be enriched for genes related to particular 
GPCR functionality. The same analysis performed on the set of genes 
with lower differential expression did not result in any densely con
nected networks showing significant enrichment. 

3.5. Cortical cell type analysis reveals exclusive enrichment of GABAergic 
neurons and differentially expressed genes specific to certain cell types 

To further investigate cortical patterning related to rhythm sensi
tivity on a cell type level, we analyzed whether the found transcriptomic 
signature showed enrichment of marker genes of several brain cell types, 
including data on highly detailed subtyping of inhibitory and excitatory 
interneurons. 

Using the WebCSEA interface, inputting our 223 higher differentially 
expressed genes showed brain tissue specificity, as well as cell type 
specificity for neuronal cell types (both excitatory and inhibitory neu
rons) (Fig. S2). To further specify distinguished neuronal subtypes, we 
used the 223 higher differentially expressed genes for cell type enrich
ment analysis using marker gene data on 75 human cortical cell subtypes 
(see Methods section (Hodge et al., 2019),). Using this data, enrichment 
analysis showed an exclusive enrichment of marker genes of GABAergic 
cell types. Specifically, the three cell types found to show enrichment of 
their respective marker genes in our differential expression results were 
the GABAergic SP8-expressing interneurons (belonging to a cluster of 
neurons expressing PAX6 and TNFAIP8L3); EGFEM1P-expressing in
terneurons (belonging to the cluster of neurons expressing VIP and 
PENK); and the QRFPR-expressing interneurons (belonging to the clus
ter of neurons expressing SST and GXYLT2) (Fig. 5). Using the 81 lower 
differentially expressed genes showed no enrichment for any of the 
neuronal cell types (Fig. 5). 

For the 223 higher differentially expressed genes, cross-referencing 
of single marker genes, specific and sufficient for the classification of a 
single cortical neuronal cell type (see Methods section), yielded a match 
with one specific GABAergic NPY-expressing interneuron. When taking 
all marker genes for this cell type into account, the NPY-expressing in
terneurons failed to reach significance in our hypergeometric enrich
ment analysis, as not all marker genes were present in our differentially 
higher expressed gene set. However, in the cell type dataset, NPY gene 
expression was found to be highly specific for a single inhibitory cell 
type (Fig. S2) (Hodge et al., 2019). Even though the NPY-expressing 
neuronal cell type failed to reach significance in the hypergeometric 
test (p = 0.265), we thus consider the significantly higher expression of 
NPY in the examined brain regions an indication of an enrichment of the 
specific NPY-expressing GABAergic neurons in those regions. 

To further look on a cell type level at the MCODE component genes in 
the protein-protein interaction analysis – which also contains NPY – we 
used the gene expression levels by cell type from a recently added single 
nucleus RNA sequencing cluster-based cell type dataset, consisting of 
120 distinguished human cortical cell types (see Methods section) (Allen 
Brain Map, 2019). The results are plotted in Fig. 6, and again show a 
specific GABAergic neuronal cell type (“Inh L6 SST NPY”) that shows 
highly specific expression of the NPY gene. The same plot including the 
top-50 higher differentially expressed genes and both cortisol receptors 
(GR and MR) is shown as Fig. S4. 

In addition to the specific human cortical neuronal cell type datasets, 
that include a vast majority of cortical neuronal cell types, we also 

Fig. 5. Results of human cortical cell type enrichment analysis reveal four inhibitory neuronal cell types for the differentially higher expressed genes (DEG higher). 
For the lower expressed genes (DEG lower) no neuronal cell types were found to be enriched. Results of NeuroExpresso cell type data enrichment analysis are 
included as extended data in Table S6. 
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looked at enrichment in a larger cross-laboratory, rodent-derived data
set containing putative marker genes for different cell types in the brain, 
not specific to either cortical regions or neuronal subpopulations 
(Mancarci et al., 2017). We found a significant enrichment for marker 
genes of microglia, Purkinje cells and serotonergic cells (Table S6). 

4. Discussion 

In this study we investigate the transcriptional and cell type 
patterning of brain regions that are sensitive to cortisol pulsatility. 
Strikingly, both the top significant differentially expressed gene 
(ANXA1) and the most significantly enriched KEGG pathway term 
(retrograde endocannabinoid signaling) have been identified before as 
key components of rapid non-genomic GC signaling (Atsak et al., 2012; 
Di et al., 2016; Tasker and Herman, 2011; Tierney et al., 2003). 

The endocannabinoid system has emerged as an important regulator 
of some of the rapid, non-genomic glucocorticoid effects in the brain 
(Atsak et al., 2012; Di et al., 2016; Tasker and Herman, 2011). The 
mechanism involves the glucocorticoid-mediated activation of mem
brane associated variants of the GRs at the target brain cells (mainly 
postsynaptic sites) to induce endocannabinoid synthesis and/or local 
release, causing retrograde cannabinoid type I receptor-mediated mod
ulation of the presynaptic neuronal activity. This mechanism has been 
described as responsible for (i) the hormonal negative feedback regu
lation of excitatory synaptic inputs to hypothalamic (paraventricular 
nucleus) neuroendocrine cells (Tasker and Herman, 2011), and (ii) the 
long-lasting suppression of spontaneous inhibitory synaptic inputs (Di 
et al., 2016) as well as facilitation of excitatory inputs to the basolateral 
amygdala principal neurons induced by glucocorticoids in the acute 
stress setting (Karst et al., 2010), while (iii) a similar involvement of this 
glucocorticoid-induced mechanism has been also described for the 
attenuation of inhibitory transmission in prelimbic cortex, again under 
stressful conditions (McReynolds et al., 2018). Our data suggest that 
cortical brain regions with the capacity of recruiting the retrograde 
endocannabinoid signaling pathway may be more sensitive to the 
characteristics of the ultradian glucocorticoid rhythm, i.e., able to 
convert changes in glucocorticoid pulsatility into different neurobio
logical effects (in our case differential neural activation in response to 
the same emotional stimuli). 

The ANXA1 finding is also of great interest as it has been implicated 
as a facilitator in the rapid non-genomic inhibitory feedback effects of 
endogenous glucocorticoids on ACTH release (Tierney et al., 2003). 
Although these findings were limited to the folliculo-stellate cells in the 

anterior pituitary gland, the ANXA1 gene has also been implicated in the 
neuroprotective and anti-inflammatory role of microglia (McArthur 
et al., 2010). Although sparse ANXA1 gene expression has been 
demonstrated in microglia of human brains (McArthur et al., 2010), the 
extensive cortical cell type data based on single nucleus RNA sequencing 
of multiple cortical regions of the human brain (Allen Brain Map, 2019; 
Allen Institute, 2019) that we used here, shows ANXA1 gene expression 
to be mostly apparent in excitatory neuronal cells (Fig. S4). In this data, 
ANXA1 does not show any pronounced expression (trimmed means > 0) 
in the microglial cell types of the human cortical cell type data (Fig. S4). 
ANXA1 is however listed as a microglial marker gene in the Neuro
Expresso rodent-based data. 

ANXA1 is also part of the defined densely connected network of 
protein-protein interactions that drives enrichment of terms related to 
GPCR function, more specifically Gαi signaling events. This enrichment 
can be interpreted as an indication of i) the involvement of a specific (set 
of) cortisol activated GPCR(s) associated with G alpha i proteins, ii) 
membrane GR/MR having a hitherto unknown association with Gαi 
signaling events, iii) cross-talk between GR/MR signaling and signaling 
cascades involving these G protein species. For example, this could mean 
that a cortisol pulse is linked to an inhibitory transmission effect (Gαi) 
(Neves et al., 2002). Additionally, the interaction network showed 
enrichment of G-protein beta and gamma subunits and linked this to 
acetylcholine receptor signaling. It was previously demonstrated that 
intracellular calcium signaling via the mAChR3 subtype depends on the 
beta 2, gamma2 and gamma 4 subunits that are present in the MCODE-1 
network (Khan et al., 2015). This suggests a link between calcium 
regulation and the sensitivity to cortisol pulses, perhaps involving 
annexin A1 (Lim and Pervaiz, 2007). 

Our WebCSEA results reiterate the GO-analysis results, again 
showing neuronal cell type specificity of the differentially expressed 
genes (with hits for both inhibitory and excitatory neurons). The results 
of our specific cortical cell subtype analysis, using more detailed gene 
expression profiling of subtypes of both excitatory and inhibitory 
neuronal subtypes, show exclusive enrichment for GABAergic neurons. 
This is of interest because evidence has consistently implicated (SST 
expressing) GABAergic interneuron dysfunction in MDD (Major 
Depressive Disorder) pathology (Levinson et al., 2010; Luscher et al., 
2011). Additionally, differential higher expression of NPY in our brain 
region of interest might indicate ‘enrichment’, or relative abundance, of 
a specific SST-NPY expressing GABAergic interneuron. Although NPY 
seems to be highly selectively expressed by one cortical neuronal sub
type, it should be noted that NPY is also expressed in subcortical 

Fig. 6. Dot plot of trimmed mean gene expression per cell type for GR, MR, and the identified MCODE cluster, and their specificity (percentage of cell types 
expressing them). Genes with a trimmed mean expression of 0 in all cell types (meaning they show expression in less than 25% of cells for each cell type) are omitted 
from the plot (see Methods section for details). The red arrow points to high mean expression (dark red colored dot) of NPY very specific for a particular SST- 
expressing GABAergic neuronal cell type. The same plot for the top-50 of differentially expressed genes is included in the extended data as Fig. S2. (For interpre
tation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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neurons, and not specific to neuronal cell types only (Carniglia et al., 
2017). 

Both hypercortisolemia and circadian rhythm alterations have been 
related to MDD subtypes and MDD pathology in general (Keller et al., 
2017). Our results additionally seem to point to the importance of 
ultradian rhythm disturbances in the process of GABAergic interneuron 
dysfunction in MDD pathology. In our differentially expressed genes, we 
did in fact find enrichment of an MDD brain transcriptomic signature as 
defined by one recent study (Girgenti et al., 2021). However, we did not 
find an MDD brain transcriptomic signature enrichment when using the 
transcriptomic signature defined by another study (Gandal et al., 2018). 

Although anatomical cell type enrichment in our defined brain re
gions appears to be exclusive for GABAergic neurons in the human 
cortical cell type data, inspection of the cell type specific expression 
shows excitatory neuron specificity for some differentially expressed 
genes as well. Specifically, ANXA1 and NR4A2 show expression pre
dominantly in glutamatergic neuronal cell types (see Fig. S4). This im
plies that, although there might be an important role for GABAergic 
signaling in pulsatility sensitivity, the Gαi and Gαq signaling events 
implicated in the differential brain activational response to cortisol 
rhythm changes are not specific to GABAergic cell types but occur in 
glutamatergic neurons as well. 

No microglial enrichment was found in the human cortical cell type 
analysis, but it was found in NeuroExpresso-based results. The enrich
ment analysis using the NeuroExpresso data, however, is more difficult 
to interpret, as the marker gene data used here are rodent derived, not 
cortex specific and therefore not comparable to the standard of tissue 
processing and measuring protocols from the human cell type data (i.e. 
mainly microarray based, different labs with different procedures were 
used) (Allen Brain Map, 2019). Also, while only six marker genes were 
included for microglial cells in the human cortical cell type data (Hodge 
et al., 2019), the NeuroExpresso datasets lists over a hundred unique 
marker genes for microglia (see Table S6). Depending on the specificity 
of those genes, an abundance of marker genes could lead to an increase 
in false positive results. Yet, there is considerable evidence for a role of 
microglia in the stress response and transcriptomic dysregulation of 
microglia, although mostly in the context of overactivation in chronic 
stress (Réus et al., 2015; Wohleb, 2016). 

4.1. Limitations and strengths 

It is important to note that we only describe anatomical tran
scriptomic patterns, based on healthy donor brains, and do not investi
gate putative brain transcriptional effects in the brains of the 
participants of the pulsatility study. The aim of our current study was to 
investigate the anatomical transcriptional and cell type patterning of 
pulsatility sensitive brain regions. Notably, this is unrelated to any local 
transcriptional effects that loss of ultradian cortisol rhythm might have 
on specific brain regions, and does not include any post-transcriptional 
factors that can explain observed lateralization in function. 

The AHBA provides the most detailed dataset for examining spatial 
distribution of human brain transcriptomics to date but is limited to six 
donor brains. Another differential expression analysis with the same 
spatial resolution would not be possible in other publicly available data 
at this time. Importantly, it should be noted that to mitigate any donor- 
driven bias, and to control for any possible incomparability of gene 
expression levels due to donor-specific differences (e.g. age, gender, 
ethnicity) we 1) did thoroughly correct for any donor-driven gene 
expression bias, 2) used a regression based method that allows for 
repeated sampling from the same subjects, and 3) checked the compa
rability of gene expression patterning of differentially expressed genes 
across donor brains using the differential stability criterion. The 
outcome of these control measurements (see Figs. 1C and 2B) indicate an 
unbiased differential expression analysis and reproducible results across 
all 6 donor brains, regardless of demographic or biological differences of 
donors. Although we estimate the sample size (i.e. n = 1285) coming 

from these six donors to be sufficient for the scope of our current ana
lyses, including more donor brains with the same spatial resolution 
likely would have further improved the generalizability of the current 
results to brains with a more substantial diversity of donor 
characteristics. 

It deserves mentioning that our analysis uses unbalanced groups, as 
we compared 61 brain samples versus 1224 other brain samples. This is 
important to be recognized, as imbalanced data can result in reduced 
statistical power (Lydersen, 2018; van Belle, 2008a). However, using a 
substantially larger set of ‘control samples’ (1224 brain samples) than 
‘case samples’ (61 brain samples) can substantially increase statistical 
power compared to a scenario where 61 ‘case samples’ would have been 
compared to ‘61 control samples’ (Lydersen, 2018). Although an 
increased number of controls increases statistical power, it has been 
suggested that as a rule of thumb, increasing the largest group to more 
than five times the smallest group, might not result in significant further 
increase of statistical power (van Belle, 2008b). In terms of statistical 
power, then, using 1224 control samples might not be better than using 
300 control samples. Biologically, however, it is needed to include all 
control samples, as we aim to investigate the transcriptional landmark of 
the brain areas affected by cortisol pulsatility compared to the rest of the 
cortex that did not seem to be affected in the same way. 

We define a cortical brain region as ‘pulsatility sensitive’, i.e. 
showing a differential pattern of neural activation between physiolog
ical pulsatile and non-pulsatile groups, on the basis of a task-based fMRI 
study. It is therefore possible that additional cortical regions could be 
defined as ‘pulsatility sensitive’ in a different task-based setting. Our 
results thus formally define transcriptional and cell type patterns of 
regions that are pulsatility sensitive in the context of emotional pro
cessing. Accordingly, we selected ‘rest-of-cortex’ as control samples in 
our differential expression analysis because the fMRI results are based 
on a whole-brain analysis - in the context of emotional processing. 
Importantly, these fMRI results reflect significant differences in neural 
activation during emotional processing between both groups (see Sup
plementary Fig. S4 of Kalafatakis et al. (2018). This means that the 
statistical maps we used in our analysis are unrelated and independent 
to mean task activation (i.e., a brain region might show a distinct mean 
neural response to the task, but might not at all show differential fluc
tuation of activation during task conditions between groups, and vice 
versa). Consequently, it would be invalid to select ‘control samples’ only 
from regions showing significant base neural response to the task. To 
illustrate, we thresholded a separately calculated statistical map for 
mean task activation to exactly include all significantly differential 
responsive regions (meaning that the significantly differential respon
sive region with the lowest mean task activation is used as a threshold 
for “task activation”). Using this threshold, virtually the whole brain can 
be defined as ‘activated by task’. For these reasons, we chose to use 
“rest-of-cortex” as control samples. 

The task-based setting used in our fMRI study, with a validated 
paradigm for probing emotional processing, has several advantages. 
First, we found differences in emotional processing on a functional level 
between pulsatility groups, meaning that the imaging effects correlate to 
functional effects as well (Kalafatakis et al., 2018). Second, by using the 
context of emotional processing, effects of loss of ultradian rhythm are 
likely related to brain functionality affected by cortisol signaling related 
pathologies such as major depressive disorder, posttraumatic stress 
disorder and other stress related psychiatric disorders. 

In fact, we did find enrichment of differentially expressed genes 
related to transcriptomic brain signatures described in both PTSD and 
MDD, but also ASD, BD, SCZ and AAD. A difficulty with interpreting 
these enrichment results is that defined differentially expressed gene 
sets in both transcriptomic studies used for gene set definition (Gandal 
et al., 2018; Girgenti et al., 2021) are based on several brain tissues from 
non-overlapping anatomical origins. None of the tissues included in 
these studies overlaps with the fMRI mask we used for our differential 
expression analysis. In this regard it is also important to note that even 
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the same neuronal cell type can have a different transcriptomic profile 
depending on the cortical region it is embedded in, indicating the 
possible loss of power using several different non-overlapping tissues 
(Beerens et al., 2022). Another issue is that MDD enrichment was found 
when using one study by Girgenti et al. (2021), but not when using the 
MDD gene set as defined by the study by Gandal et al. (2018). This 
further indicates the difficulty of comparing different brain tissues, 
especially given a lack of robust marker genes throughout tissue types 
(which was the case for the data by Girgenti et al.). Although the study 
by Gandal et al. lists correlated log2 fold change in differentially 
expressed genes across disorders, and results from this study that are 
shared amongst different brain areas and diseases might be more robust, 
there is only one gene that satisfies the condition of having an 
FDR-corrected p-value <0.05 in all five disorders (gene: CRH). This 
might explain the lack of enrichment of our differential expression re
sults for the ‘all-diseases’ group of genes as defined by the Gandal study. 

It deserves further mentioning that the disease-enrichment analysis 
using the PheWeb dataset (Gagliano Taliun et al., 2020), which listed 
“Acute reaction to stresss” as a top enriched term (odds ratio = 24.50, 
FDR-corrected p = 0.099), neither reached threshold significance 
(which we defined as q < 0.05), nor was based on a highly specific 
dataset. The PheWeb data was collected as part of the UK Biobank, that 
uses data from regular care sources. Specific brain diseases might not be 
as commonly diagnosed as bladder infections or types of cancer 
(Fig. S1). In all this aspecificity, it is interesting to see “Acute reaction to 
stress” come up as a first hit nonetheless, although one can question its 
reliability for the reasons mentioned above. 

Cell type enrichment analysis was based on human cortical cell type 
data, which we consider a strength of the study. However, as these data 
distinguishes more inhibitory than excitatory neuronal cell types, and 
lists approximately twice as many combined inhibitory marker genes 
than excitatory marker genes (386 versus 173), there is a possible bias 
towards inhibitory cell enrichment. The significantly higher expression 
of the NPY gene – which is highly specific for a specific SST expressing 
cluster of inhibitory neuronal cell types – and the fact that the differ
entially expressed genes show enrichment for four inhibitory cell types, 
but no excitatory cell types, do seem to point to the importance of a 
GABAergic neuronal response to cortisol pulsatility. 

As discussed in relation to microglia, the additional cell type 
enrichment analysis using NeuroExpresso cell type data might not 
reflect optimal marker gene specificity. For some enriched cell types, 
NeuroExpresso marker genes also seem to be non-specific upon further 
inspection (Table S6). For example, the enrichment found for ‘seroto
nergic cells’ is based on the inclusion of two genes (TRH and PTGER3), 
that are in fact not specific for serotonergic cells. Obviously, serotonin 
producing cell bodies should be absent or very scarce in cortical cells. 
Assuming that these markers are not abundant in axonal projections of 
5-HT neurons, and given that these ‘marker’ genes are not exclusive for 
5-HT neurons, we consider this enrichment call to be a false positive 
outcome. 

The aim of this study was to investigate the anatomical transcrip
tional and cell type patterning of pulsatility sensitive brain regions. We 
show that the loss of cortisol ultradian rhythmicity alters emotional 
processing response in cortical brain areas that are characterized by 
transcriptional and cellular profiles of GABAergic functioning. Our re
sults indicate that specific cell types and G protein signaling cascades 
underly the cerebral effects of loss of physiological cortisol rhythm, thus 
making these cell types and cascades a target for manipulation in future 
experimental studies. 

Overall, in this study, we have identified target genes, signaling 
pathways and neuronal subtypes that might constitute key players in the 
physiological response to glucocorticoid pulsatility and its translation to 
differential biological effects in the human brain. 
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modulator of M3 muscarinic receptor signalling and novel roles of Gβ1 subunits in 
the modulation of cellular signalling. Cell. Signal. 27, 1597–1608. https://doi.org/ 
10.1016/j.cellsig.2015.04.007. 

Kuleshov, M.V., Jones, M.R., Rouillard, A.D., Fernandez, N.F., Duan, Q., Wang, Z., 
Koplev, S., Jenkins, S.L., Jagodnik, K.M., Lachmann, A., McDermott, M.G., 
Monteiro, C.D., Gundersen, G.W., Ma’ayan, A., 2016. Enrichr: a comprehensive gene 
set enrichment analysis web server 2016 update. Nucleic Acids Res. 44, W90–W97. 
https://doi.org/10.1093/nar/gkw377. 

Levinson, A.J., Fitzgerald, P.B., Favalli, G., Blumberger, D.M., Daigle, M., Daskalakis, Z. 
J., 2010. Evidence of cortical inhibitory deficits in major depressive disorder. Biol. 
Psychiatr. 67, 458–464. https://doi.org/10.1016/j.biopsych.2009.09.025. 

Li, J., Seidlitz, J., Suckling, J., Fan, F., Ji, G.-J., Meng, Y., Yang, S., Wang, K., Qiu, J., 
Chen, H., Liao, W., 2021. Cortical structural differences in major depressive disorder 
correlate with cell type-specific transcriptional signatures. Nat. Commun. 12, 1647. 
https://doi.org/10.1038/s41467-021-21943-5. 

Lim, L.H.K., Pervaiz, S., 2007. Annexin 1: the new face of an old molecule. Faseb. J. 21, 
968–975. https://doi.org/10.1096/fj.06-7464rev. 

Luscher, B., Fuchs, T., Kilpatrick, C.L., 2011. GABAA receptor trafficking-mediated 
plasticity of inhibitory synapses. Neuron 70, 385–409. https://doi.org/10.1016/j. 
neuron.2011.03.024. 

Lydersen, S., 2018. Balanced or imbalanced samples? Tidsskr. Nor. Laegeforen. 138 
https://doi.org/10.4045/tidsskr.18.0539. 

Neves, S.R., Ram, P.T., Iyengar, R., 2002. G protein pathways. Science 296, 1636–1639. 
https://doi.org/10.1126/science.1071550. 

Mancarcı, B.O., n.d. Homologene. 
Mancarci, B.O., Toker, L., Tripathy, S.J., Li, B., Rocco, B., Sibille, E., Pavlidis, P., 2017. 

Cross-laboratory analysis of brain cell type transcriptomes with applications to 
interpretation of bulk tissue data. eNeuro 4. https://doi.org/10.1523/ 
ENEURO.0212-17.2017. 

McArthur, S., Cristante, E., Paterno, M., Christian, H., Roncaroli, F., Gillies, G.E., 
Solito, E., 2010. Annexin A1: a central player in the anti-inflammatory and 
neuroprotective role of microglia. J. Immunol. 185, 6317–6328. https://doi.org/ 
10.4049/jimmunol.1001095. 

McReynolds, J.R., Doncheck, E.M., Li, Y., Vranjkovic, O., Graf, E.N., Ogasawara, D., 
Cravatt, B.F., Baker, D.A., Liu, Q.-S., Hillard, C.J., Mantsch, J.R., 2018. Stress 
promotes drug seeking through glucocorticoid-dependent endocannabinoid 
mobilization in the prelimbic cortex. Biol. Psychiatr. 84, 85–94. https://doi.org/ 
10.1016/j.biopsych.2017.09.024. 

Meijer, M., Keo, A., van Leeuwen, J.M.C., Dzyubachyk, O., Meijer, O.C., Vinkers, C.H., 
Mahfouz, A., 2021. Molecular characterization of the stress network in individuals at 

P.C. Habets et al.                                                                                                                                                                                                                               

https://doi.org/10.1016/j.neuroimage.2019.01.011
https://doi.org/10.1016/j.neuroimage.2019.01.011
https://doi.org/10.1016/j.neuroscience.2011.08.047
https://doi.org/10.1186/1471-2105-4-2
https://doi.org/10.1186/1471-2105-4-2
https://doi.org/10.1016/j.psyneuen.2021.105334
https://doi.org/10.1523/ENEURO.0005-22.2022
https://doi.org/10.1523/ENEURO.0005-22.2022
https://doi.org/10.1038/s41593-018-0195-0
https://doi.org/10.1155/2017/5048616
https://doi.org/10.1155/2017/5048616
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1186/1471-2105-14-128
https://doi.org/10.1093/nar/gkac392
https://doi.org/10.1016/J.NEUROIMAGE.2006.01.021
https://doi.org/10.1016/J.NEUROIMAGE.2006.01.021
https://doi.org/10.1523/JNEUROSCI.2279-15.2016
https://doi.org/10.1093/bioinformatics/btt487
https://doi.org/10.1098/rsif.2013.0048
https://doi.org/10.1038/s41588-020-0622-5
https://doi.org/10.1038/s41588-020-0622-5
https://doi.org/10.1126/science.aad6469
https://doi.org/10.1126/science.aad6469
https://doi.org/10.1038/s41593-020-00748-7
https://doi.org/10.1111/ejn.15447
https://doi.org/10.1111/ejn.15447
https://doi.org/10.1038/nature11405
https://doi.org/10.1038/nn.4171
https://doi.org/10.1038/nn.4171
https://doi.org/10.1038/s41586-019-1506-7
https://doi.org/10.1038/s41586-019-1506-7
https://doi.org/10.1016/j.neuron.2009.03.027
https://doi.org/10.1186/s13063-016-1159-x
https://doi.org/10.1186/s13063-016-1159-x
https://doi.org/10.1073/pnas.1714239115
https://doi.org/10.1073/pnas.1714239115
https://doi.org/10.1530/EJE-18-0853
https://doi.org/10.1016/j.psyneuen.2020.105096
https://doi.org/10.1016/j.psyneuen.2020.105096
https://doi.org/10.1073/pnas.0914381107
https://doi.org/10.1038/mp.2016.120
https://doi.org/10.1016/j.cellsig.2015.04.007
https://doi.org/10.1016/j.cellsig.2015.04.007
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1016/j.biopsych.2009.09.025
https://doi.org/10.1038/s41467-021-21943-5
https://doi.org/10.1096/fj.06-7464rev
https://doi.org/10.1016/j.neuron.2011.03.024
https://doi.org/10.1016/j.neuron.2011.03.024
https://doi.org/10.4045/tidsskr.18.0539
https://doi.org/10.1126/science.1071550
https://doi.org/10.1523/ENEURO.0212-17.2017
https://doi.org/10.1523/ENEURO.0212-17.2017
https://doi.org/10.4049/jimmunol.1001095
https://doi.org/10.4049/jimmunol.1001095
https://doi.org/10.1016/j.biopsych.2017.09.024
https://doi.org/10.1016/j.biopsych.2017.09.024


Neurobiology of Stress 22 (2023) 100514

13

risk for schizophrenia. Neurobiol Stress 14, 100307. https://doi.org/10.1016/j. 
ynstr.2021.100307. 

Quintana, D.S., Rokicki, J., van der Meer, D., Alnæs, D., Kaufmann, T., Córdova- 
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